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ABSTRACT
With the rapid growth of e-commerce in recent years, e-commerce
platforms are becoming a primary place for people to find, compare
and ultimately purchase products. To improve online shopping ex-
perience for consumers and increase sales for sellers, it is important
to understand user intent accurately and be notified of its change
timely. In this way, the right information could be offered to the
right person at the right time. To achieve this goal, we propose a
unified deep intent prediction network, named EdgeDIPN, which is
deployed at the edge, i.e., mobile device, and able to monitor mul-
tiple user intent with different granularity simultaneously in real-
time. We propose to train EdgeDIPN with multi-task learning, by
which EdgeDIPN can share representations between different tasks
for better performance and saving edge resources in the meantime.
In particular, we propose a novel task-specific attention mechanism
which enables different tasks to pick out the most relevant features
from different data sources. To extract the shared representations
more effectively, we utilize two kinds of attention mechanisms,
where the multi-level attention mechanism tries to identify the
important actions within each data source and the inter-view at-
tention mechanism learns the interactions between different data
sources. In the experiments conducted on a large-scale industrial
dataset, EdgeDIPN significantly outperforms the baseline solutions.
Moreover, EdgeDIPN has been deployed in the operational system
of Alibaba. Online A/B testing results in several business scenarios
reveal the potential of monitoring user intent in real-time. To the
best of our knowledge, EdgeDIPN is the first full-fledged real-time
user intent understanding center deployed at the edge and serving
hundreds of millions of users in a large-scale e-commerce platform.
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1 INTRODUCTION
E-commerce platforms are becoming a primary place for people
to find, compare and ultimately purchase products. One of the
fundamental questions that arises in e-commerce is to understand
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user intent, which allows for providing better services for both
sellers and customers. In reality, a user’s intent is changing all
the time when surfing the e-commerce app. For example, a user’s
intent may change from browsing to buying when she finds some
goods of interest. It is important to be notified of the change of user
intent timely, which can provide users with brand new proactive
experiences by offering the the right information at the right time.
However, previous work only deals with the offline user intent
prediction [7, 18, 23, 24, 27] and cannot monitor user intent in
real-time. The reasons are twofold. First, previous work cannot
predict users’ real-time intent with a high accuracy limited by the
representation capability of traditional coarse-grained behavior
data. Second, it is difficult to monitor user intent in real-time in
traditional cloud-based computing architecture due to the high
communication cost.

In order to overcome the aforementioned difficulty when moni-
toring user intent in real-time, we propose to deploy our user intent
understanding system at the edge, i.e., mobile devices, following
the idea of edge computing. There are several advantages to deploy
the system at the edge. First, it offers us the opportunity to unlock
the potential of the vast untapped data created by the connected
devices. In our system, we collect a new type of user interactive
behavior data, which we call touch-interactive behavior and con-
tributes a lot when predicting user’s real-time intent. Second, it can
reduce the communication cost between the cloud and the devices
significantly. During the Alibaba 2019 Double 11 Shopping Festival,
EdgeDIPN serves more than 0.5 billion customers without suffering
from the traditional peak traffic problem of the platform on that
day. Third, it can greatly increase the response speed of EdgeDIPN
by moving the model to the data instead of the data to the model.
The response time of EdgeDIPN is between 20 ∼ 50 ms on different
devices, which is immune to the influence of the network traffic and
can achieve the real-time requirement. Last but not least, it enables
us to create new business scenarios in the e-commerce platform
based on the real-time user intent.

However, monitoring user intent in real-time at the edge is chal-
lenging. First, it is necessary to build a computationally lightweight
and memory efficient system, because edge resources are typically
resource-constrained. Second, the touch-interactive behavior is
more fine-grained and contains less semantic information com-
pared with traditional browse-interactive behavior. Therefore, it is
challenging to extract useful features from these data to improve
the prediction performance. To solve these challenges, we propose
a unified deep intent prediction network, named EdgeDIPN, which
is able to monitor multiple user intent with different granularity
simultaneously in real-time. To save edge resources, we propose
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to train EdgeDIPN with multi-task learning. In more details, we
extract a universal shared representation based on users’ behav-
ior data from several views, based on which multiple user intent
with different granularity could be derived. In this way, edge re-
sources can be reduced dramatically, because we do not need to
build a model for each intent separately. We improve the perfor-
mance of multi-task learning from two aspects. First, we utilize two
kinds of attention mechanisms to extract the shared representation
more effectively, where the multi-level attention mechanism tries
to identify the important actions within each data source and the
inter-view attention mechanism learns the interactions between
different data sources. Second, we propose a novel task-specific
attention mechanism which enables different tasks to pick out the
most relevant features from different data sources. The contribution
of the paper can be summarized as follows:

• We propose a unified deep intent prediction network, named
EdgeDIPN, which is deployed at the edge and able to monitor
multiple user intent with different granularity simultane-
ously in real-time.

• We propose to train EdgeDIPN with multi-task learning by
sharing representations among several intent, which can
save edge resources dramatically. In addition, several atten-
tion mechanisms are proposed to improve the performance.

• We evaluate the performance of EdgeDIPN by conducting
extensive experiments on a large-scale industrial dataset.
The results show the superiority of EdgeDIPN in predicting
user intent. In particular, EdgeDIPN has been deployed in
the operational system of Alibaba. Online A/B testing results
show the benefits of monitoring user intent in real-time.

2 PROBLEM STATEMENT
2.1 Dataset
We build two types of user interactive behavior dataset which depict
users from different views, i.e., the novel touch-interactive behav-
ior collected from the edge and the traditional browse-interactive
behavior. In particular, the touch-interactive behavior is further
divided into the swipe and tap interactive behavior. The touch-
interactive behavior records a user’s fine-grained behavior when
surfing in the app and thus contains rich user behavior patterns.

The swipe-interactive behavior includes four types of basic
actions, i.e., Open Page, Leave Page, Swipe and Tap. A user’s swipe-
interactive track is a time sequence of actions, consisting of these
four basic types of actions. Each action has a timestamp and a page
index to identify when and where the action occurs. In addition,
the positional coordinates of the action on the touch screen are
also recorded (i.e., we record the tap position for the Tap action
and the start and end positions for the Swipe action.). The duration
presents how long the action lasts. For each action at a data point,
we extract 14 features. Among these features, the time duration of
a swipe, time gap between two actions and positional coordinates
of actions (i.e., tap position X/Y, swipe start position X/Y, swipe end
position X/Y and swipe length on X/Y) are continuous variables.
Page indices, action indices and swipe directions (i.e., left/right and
up/down) are categorical variables. We conduct discretization on
all the raw features to ensure unified inputs for EdgeDIPN. The
discretization of the continuous variables is described as follows:

• Position.The positional coordinates of actions are discretized
according to the resolution of the touch screen. We divide
the width and length of the screen into 17 and 25 uniform
segments corresponding to X and Y, respectively, for one-hot
vectors encoding.

• Swipe Length. The length of a swipe is encoded into a one-
hot vector, the length of which is as twice as the length
of the one-hot vectors of position encoding. The reason of
applying twice length is that, for a swipe track, we consider
the direction of the swipe.

• Time Gap and Duration.We apply a step function to en-
code time gaps between actions and swipe duration as follow:

𝑦 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑥/𝑓𝑠 , 𝑥 < 𝑓𝑏

𝑥/𝑓𝑏 + 9, 𝑓𝑏 ≤ 𝑥 < 10 × 𝑓𝑏

19, 𝑥 ≥ 10 × 𝑓𝑏

where {𝑓𝑠 = 100, 𝑓𝑏 = 1000} are used for time gap, and
{𝑓𝑠 = 25, 𝑓𝑏 = 250} are used for time duration.

The tap-interactive behavior records the information associ-
ated with the tap actions. A user’s tap-interactive track is a time
sequence of tap actions. Each action has a timestamp and page
index to identify when and where the action occurs. There is also
an event id to identify whether a user taps on a page or a button.
If a button is tapped, the button name is also recorded. We extract
3 raw features (i.e., event index, page index and button index) for
each tap action, all of which are categorical variables.

The browse-interactive behavior represents the typical be-
havior users conduct on products. It includes five types of actions,
i.e., Browse, Search, collect,Add to cart and Purchase. A user’s browse-
interactive track is a time sequence of these actions. We extract 6
raw features for each action (i.e., type index, top category index,
leaf category index, page index, page stay time and timestamp),
where the type index represents the type of an action.

2.2 Problem Formulation
EdgeDIPN is used to monitor multiple user intent with different
granularity in real-time, which enables us to send the right infor-
mation to the right user at the right time. The typical predicted
user intent is listed as follows.

• Real-time Purchasing Intent: whether a user would buy
some goods within one hour.

• Long-time Purchasing Intent: whether a user would buy
some goods within the current day.

• Real-time Cart Intent: whether a user would add some
goods to cart within one hour.

• Retention Intent: whether a user would visit the app the
next day.

Besides the above global intent, EdgeDIPN also predicts some
fine-grained intent such as category preference. Note that a user’s
category preference is measured by the probability of whether the
user would buy some goods belonging to the category. We also
set the category preference as real-time and long-time preference,
which means the probability of the order being placed within one
hour and one week, respectively. In addition, the category is fur-
ther divided into the top category and leaf category, following the
settings of the category label system in Taobao app.
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Figure 1: The model architecture of EdgeDIPN.

In our work, each intent is treated as a separate task and we
adopt the binary classification for each task. Note that we do not
use multi-label classification for the category preference, because
the softmax operation would make the model too big to fit at the
edge due to the large number of categories to be predicted.

3 MODEL ARCHITECTURE
We propose a unified deep intent prediction network deployed at
the edge, named EdgeDIPN, to predict multiple user intent with
different granularity simultaneously, as shown in Figure 1.

3.1 Embedding Layer
In the discretization process, the raw values of every feature are
encoded into one-hot vectors. Then the one-hot vectors are used
as the inputs of EdgeDIPN. As the inputs are high dimensional
binary vectors with limited representation capacity, we use the
embedding layer to transform them into low dimensional dense
representations. The embedding operation follows the table lookup
mechanism. In more details, each feature is corresponding to one
embedding matrix. For example, the embedding matrix of the But-
ton Index feature in the tap-interactive behavior is represented as
E𝑏𝑢𝑡𝑡𝑜𝑛 = [𝑒1; 𝑒2; ...; 𝑒𝑛𝑏 ] ∈ R𝑛𝑒×𝑛𝑏 , where 𝑒𝑖 ∈ R𝑛𝑒 represents an
embedding vector with dimension 𝑛𝑒 (i.e., 10), and 𝑛𝑏 (i.e., 500)
represents the number of buttons that a user can tap. The embed-
ding vector of the Button Index feature can then be obtained as
ebutton = E𝑏𝑢𝑡𝑡𝑜𝑛 · bbutton ∈ R𝑛𝑒 , where 𝑏𝑏𝑢𝑡𝑡𝑜𝑛 ∈ R𝑛𝑏 is the one-
hot vector of the Button Index feature. In addition, to capture the
temporal order information in users’ behavior sequence used by
the following multi-level attention mechanism, we add the time
feature to each action defined as the elapsed time (i.e., seconds)
between the moment the action happens and the current moment.
However, the model size would become too large after the embed-
ding operation if we directly use the original elapsed time as the
input feature. We notice that the impact of the time feature to the
current intent decays as the elapsed time increases. Therefore, we
propose a new discretization method which would not influence
the model performance and can save model space significantly at

the same time. Specifically, we split the time feature into multiple
granularity, i.e., the continuous time feature in range of [2𝑘 , 2(𝑘+1) )
is mapped to the discrete feature (𝑘 + 1) while [0, 1) is mapped to
0. At last, for each action, all the embedded features are concate-
nated into a vector and fed into a fully-connected layer for reshape.
Specifically, each behavior sequence S can be encoded as a matrix
E, i.e., E = {e1, e2, ..., en} ∈ R𝑛×𝑑𝑒 , where 𝑑𝑒 is the dimension of ei
and 𝑛 is the number of actions contained in S. Moreover, as shown
in Figure 1, except for the behavior sequences which can capture
the short-term user features, we also collect some statistics for
long-term user features.

3.2 Multi-level Attention Layer
The user interactive behaviors are all time sequence of actions. A
traditional method is to use RNN to model the long-term depen-
dencies between actions. The adoption of RNN can eliminate the
need for extensive feature engineering. However, there are two
limitations which hinder us from adopting RNN in EdgeDIPN. First,
edge resources are typically resource-constrained and thus places a
high demand on the memory cost and inference time of the model.
Under this context, RNN is not suitable for use at the edge due to
the complex data dependencies and limited parallelism. Second,
RNN cannot achieve the best performance because of the unique
characteristics of the touch-interactive behavior sequence with
plenty of noisy actions operated by users inadvertently.

Therefore, we propose to use the attention mechanism to iden-
tify the important actions in the behavior sequence and reduce the
interference from the noisy actions. Specifically, we use a softmax
layer to determine the weights of different behavior actions. In
this case, those actions contributing more to the intent understand-
ing are given larger weights. The weights a = {𝑎1, 𝑎2, ..., 𝑎𝑛} are
computed as follows:

𝑎𝑡 = softmax(ht), ht = 𝒘𝒔2tanh(𝑾𝒔1et), (1)

where et is embedding vector of the 𝑡-th action, 𝑾𝒔1 ∈ R𝑑𝑒×𝑑𝑒 ,
𝒘𝒔2 ∈ R𝑑𝑒 , and 𝑎𝑡 is the weight calculated for et. Then we can sum
up the behavior sequence E according to the calculated weights to
get a representation vector r ∈ R𝑑𝑒 , i.e., r = ∑︁𝑛

𝑖=1 𝑎𝑖ei.
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However, there is a limitation in the representation vector r,
which usually focuses on a specific component of the sequence, like
a special set of actions. In reality, there can be multiple components
in a sequence that together form the overall preferences of a user.
More importantly, EdgeDIPN is proposed to predict multiple user
intent and different intent may correspond to different component
of the behavior sequence. Therefore, we perform multiple hops
of attention and get multiple representation vectors that focus on
different component of the behavior sequence, following the idea of
the sentence embedding task in [15]. Suppose we want ℎ different
components to be extracted from the sequence, we just need to
extend𝒘𝒔2 into a matrix𝑾𝒔2 ∈ Rℎ×𝑑𝑒 . Formally, we have

A = softmax(𝑾𝒔2tanh(𝑾𝒔1E𝑇 )), R = AE, (2)

where the softmax() is performed along the second dimension of
its input. As a result, the weight vector a ∈ R𝑛 becomes a weight
matrix A ∈ Rℎ×𝑛 , and the representation vector r ∈ R𝑑𝑒 becomes
a embedding matrix R ∈ Rℎ×𝑑𝑒 . After the multi-level attention
layer, for each behavior sequence, we can get two outputs, i.e., the
representation vector rf ∈ R𝑑𝑒 by flattening and reshaping R, and
the reweighed sequence by applying the element-wise product on
E and R as follows:

rm = reduce_mean(R), V = E ⊙ rm . (3)

The reweighed sequences are then sent to the following layer.

3.3 Inter-view Attention Layer
To better fuse the views extracted from different behavior sequences,
we adopt the inter-view attention mechanism [9] that learns the
inter-view relations between different views, as shown in Figure 1.
The inter-view attention takes two views as inputs, and emphasizes
the important interactions between the two views using attention
scores. In particular, for each action in one view, we calculate its
relevance with all the actions in the other view. In this way, the
asynchronous interactions between actions in these two sequences
can be captured effectively. The inter-view attention IA(Vs,Vb) is
formulated as follows, taking the swipe-interactive view Vs and
the browse-interactive view Vb for example:

IA(Vs,Vb) = As (Vb,Vs,Vs) ⊙ Ab (Vs,Vb,Vb),

As (Vb,Vs,Vs) = softmax(VbVs
𝑇

√
2𝑑

)Vs,

Ab (Vs,Vb,Vb) = softmax(VsVb
𝑇

√
2𝑑

)Vb,

(4)

where As ∈ R𝑛×𝑑𝑒 and Ab ∈ R𝑛×𝑑𝑒 are attentive representations of
Vs and Vb, respectively, and the element-wise product ⊙ is used to
model the interactions betweenAs andAb. Note that IA(Vs,Vb) is a
symmetric operation and returns the representationRsb betweenVs
and Vb. We can calculate Rst and Rtb following the same procedure.
At last, we can get three representations rsb ∈ R𝑑𝑒 , rst ∈ R𝑑𝑒 and
rtb ∈ R𝑑𝑒 by applying the reduce_mean operation.

3.4 Multi-task Layer
In this work, we need to monitor multiple user intent simulta-
neously. Considering the limited computational and memory re-
sources at the edge, it is not reasonable to build a model for each

intent separately. Therefore, we propose to train EdgeDIPN with
multi-task learning, by which a universal shared representation
could be learned and used to derive multiple intent simultaneously
In this way, edge resources can be reduced dramatically.

Prior approaches to simultaneously learning multiple tasks com-
monly concatenate the learned representations from several data
sources and send the concatenated representation to the following
task-specific output layers [2, 8, 18]. However, we find that different
data representations have different contributions in different tasks.
Therefore, the performance of each task is highly dependent on an
appropriate choice of weighting for each representation. Searching
for an optimal weighting is prohibitively expensive and difficult to
resolve with manual tuning. Therefore, we propose a novel task-
specific attention mechanism to learn the weights for each task
automatically and enable each task to pick out the most relevant
features from different data representations.

The task-specific attention consists of two components, i.e., data-
level attention and feature-level attention, as shown in Figure 1.
These two components allow each task the selection of effective
data representations and latent features, respectively.

Data-level Attention. The data-level attention is used to learn
the weights for each data representation given a task. Suppose we
have𝑚 representations extracted from different data sources shown
as the blue rectangles in Figure 1, i.e.,D = {r1, r2, ..., rm}, the weight
vector ar for the given task on different data representations is:

ar = {𝑎𝑟1, 𝑎𝑟2, ..., 𝑎𝑟𝑚},

𝑎𝑟𝑖 =
exp(𝑒 (ri))∑︁𝑚
𝑗=1 exp(𝑒 (rj))

,

𝑒 (ri) = 𝒘𝒓2tanh(𝑾𝒓1ri + 𝑏𝑟1),

(5)

where𝑾𝒓1 ∈ R𝑑𝑒×𝑑𝑒 , 𝒘𝒓2 ∈ R𝑑𝑒 , and 𝑎𝑟𝑖 is the weight calculated
for the data representation ri. After getting the weight vector ar ∈
R𝑚 , we extract a weighed data representation matrixM by applying
the broadcasted element-wise product on D and ar.

Feature-level Attention. After getting the weighed data rep-
resentation M, we go one step further and let each task to pick
out the relevant features from M. The intuition behind this idea is
that different features in the same data representation may have
different impact on different tasks. The feature-level attention is
a natural extension of the data-level attention at the feature level.
Specifically, instead of computing a single scalar weight for each
weighed data representation r′i , the feature-level attention computes
a feature-wise weight vector for r′i , formalized as follows:

af = {af1, af2, ..., afm},

afi =
exp(𝑒 (r′i ))∑︁𝑚
𝑗=1 exp(𝑒 (r′j ))

,

𝑒 (r′i ) =𝑾𝒇 2tanh(𝑾𝒇 1r
′
i + 𝑏 𝑓 1),

(6)

where𝑾𝒇 1 ∈ R𝑑𝑒×𝑑𝑒 , the vector𝒘𝒓2 ∈ R𝑑𝑒 in Eq. 5 is replaced with
the matrix𝑾𝒇 2 ∈ R𝑑𝑒×𝑑𝑒 in Eq. 6, and the softmax() is performed
along the second dimension of its input. As a result, we can get
a feature-wise weight matrix af ∈ R𝑚×𝑑𝑒 . Then the new feature-
wise weighted data representationM′ is obtained by applying the
element-wise product onM and af , i.e.,M′ = M ⊙ af .
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Figure 2: System overview under edge computing.

Attention Fusion. This component is used to combine the two
weighted data representation M and M′, as shown in Figure 1. The
combination is accomplished by a dimension-wise fusion gate:

F = sigmoid(𝑾M +𝑾 ′M′ + 𝑏),
O = F ⊙ M + (1 − F) ⊙ M′,

(7)

where𝑾 ,𝑾 ′ ∈ R𝑑𝑒×𝑑𝑒 and 𝑏 ∈ R𝑑𝑒 .
For each task, the extracted data representation O is then fed

into two fully connected layers to further learn the combination of
task-specific features automatically. Given 𝑇 binary classification
tasks, the loss function of task 𝑡𝑖 is:

L𝑖 = − 1
𝑁

𝑁∑︂
(𝑥,𝑦) ∈D

(𝑦log𝑝𝑖 (𝑥) + (1 − 𝑦)log(1 − 𝑝𝑖 (𝑥))) (8)

whereD is the training set with size𝐷 , 𝑥 is the input of the network
and 𝑦 is the label, and 𝑝𝑖 (𝑥) represents the predicted probability of
sample 𝑥 for task 𝑡𝑖 . The global loss is:

L =

𝑇∑︂
𝑖=1

L𝑖 + 𝜆 | | (AA𝑇 − I) | |2𝐹 (9)

where the term | | (AA𝑇 −I) | |2
𝐹
is used to punish redundancy between

different vectors in the weight matrix A mentioned in Section 3.2,
and thus the multi-level attention mechanism can focus on different
component of the behavior sequence.

4 SYSTEM OVERVIEW
The structure of our user intent prediction system is illustrated in
Figure 2. For model deployment, the procedure is as follows. First,
user behavior data is collected from the mobile app usage logs to
construct the dataset. Second, features are generated to build the
training samples. Third, EdgeDIPN is trained in the cloud based on
the samples. Finally, the trained model is deployed to each user’s
mobile device. In addition, we build a platform where the model
deployment procedure is automatically conducted. As a result, we
have built a user intent understanding system in several apps owned
by Alibaba for more than a year, such as Taobao, Tmall, Xianyu and
Freshippo with little manual work. For user intent management,
EdgeDIPN automatically predicts multiple user intent using the
real-time features collected from the mobile device at a predefined
time interval. The predicted user intent is stored in two forms, i.e.,
the cloud-based storage where only the predicted intent is sent to
the cloud and the edge-based storage where the intent is directly
stored at the edge, and used to support the above business scenarios.

5 EXPERIMENTS
5.1 Experimental Setup
Dataset Statistics. We conduct the experiments on a large-scale
industrial dataset collected from Taobao. The dataset contains nor-
mal users’ daily interaction information when using our app. We
collect 800,000 users’ behaviors for two weeks. For each user, we
randomly truncate about 400 groups of samples on average. In total,
we obtain 300 million groups of samples. Each group contains the
user profile feature, the user statistic feature, and the three behavior
sequences (the default length is 256 and padding 0 for short ones).
The labels of the multiple tasks are then tagged for each group
based on the timestamp of the last action. We use samples in the
first 13 days for training and samples in the last day for evaluation.

Compared Methods. We compare EdgeDIPN with the follow-
ing baseline methods. In particular, we conduct experiments to
verify the effect of each component in EdgeDIPN. In the following,
we introduce the compared methods briefly.

• GBDT, which is the competitive gradient boosting model
widely used in the industrial environment.

• EdgeDIPN-tradition, which does not use the touch inter-
active behavior data. Our goal is to see the benefit of using
the new touch-interactive behavior.

• EdgeDIPN-single, which does not use multi-task learning
and train a separate model for each intent.

• EdgeDIPN-v0, which replaces themulti-level attentionmech-
anism with the GRU architecture and removes the inter-
view attention and task-specific attention mechanism from
EdgeDIPN. This method is used to verify the effect of each
component in EdgeDIPN.

• EdgeDIPN-fastgrnn, which replaces the GRU architecture
in EdgeDIPN-v0 with a more advanced RNN architecture
named Fastgrnn [13] with smaller model size and lower
prediction costs suited to be used at the edge. In addition, we
also test the low rank version of Fastgrnn which can further
reduce the mode size, denoted as EdgeDIPN-fastgrnnlr.

• EdgeDIPN-v1, which replaces GRU in EdgeDIPN-v0 with
the multi-level attention mechanism.

• EdgeDIPN-v2, which adds the inter-view attention mecha-
nism to EdgeDIPN-v1.

• EdgeDIPN-v3, which adds the data-level attention mecha-
nism to EdgeDIPN-v2.

• EdgeDIPN-v4, which adds the feature-level attention mech-
anism to EdgeDIPN-v3 but the feature-level attention mech-
anism picks out relevant features from the original data
representations D instead ofM.

• EdgeDIPN, which is the complete model.
Evaluation Metrics. The metric used in our experiments is

Area Under the Curve (AUC), which is insensitive to class imbalance
and suitable to our experiments. Since EdgeDIPN is used to predict
multiple intent simultaneously, we define a metric name for each
intent, as shown in Table 1.

Experimental Details. The dimension of embedding features
is 10 and the dimension of the reshaped embedding vector is set to
𝑑𝑒 = 64. The parameters ℎ and 𝜆 corresponding to the multi-level
attention mechanism are set to 10 and 0.01, respectively. Layers of
MLP is set by 128 × 64 × 2. In our experiments, we test 8 binary
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Table 1: The metric name of each user intent.

User Intent Metric Name
Real-time Purchasing Intent RPAUC
Long-time Purchasing intent LPAUC
Real-time Cart Intent RCAUC
Retention Intent RAUC
Real-time Top Category Preference RTCAUC
Long-time Top Category Preference LTCAUC
Real-time Leaf Category Preference RLCAUC
Long-time Leaf Category Preference LLCAUC

classification tasks, i.e., 𝑇 = 8. EdgeDIPN is trained with SGD,
using the Adam optimizer [12] with initial hyper-parameters of
𝜖 = 10−3, 𝛽1 = 0.9 and 𝛽2 = 0.999. We set the mini-batch size to be
1024 and apply exponential decay, in which the learning rate starts
at 0.001 and decay rate is set to 0.9. We train EdgeDIPN using a
distributed TensorFlow with 1 parameter server and 200 workers.

5.2 Experimental Results
Results of different models. Table 2 shows the performance
of the evaluated models. We have the following observations. (1)
EdgeDIPN outperforms the baseline methods EdgeDIPN-tradition
on all the tasks by a significant margin between 0.9% and 5.3% in
terms of AUC. The improvement of EdgeDIPN over EdgeDIPN-
tradition reveals the value of adopting the touch-interactive be-
havior to depict users from different views. (2) The multi-level
attention mechanism is effective in identifying the important ac-
tions and reduce the interfence from the noisy actions. We can see
that EdgeDIPN-v1 performs better than EdgeDIPN-v0, EdgeDIPN-
fastgrnn and EdgeDIPN-fastgrnnlr for all the tasks. (3) The inter-
view attention mechanism plays an important role in EdgeDIPN. As
shown, EdgeDIPN-v2 outperforms EdgeDIPN-v1 for all the tasks. (4)
With the help of multi-task learning, EdgeDIPN can increase AUC
by about 0.85% on average compared with EdgeDIPN-single. This
shows the superiority of adopting multi-task learning in EdgeDIPN,
which can not only save edge resources dramatically but also im-
prove the performance greatly. In particular, the comparison of
EdgeDIPN, EdgeDIPN-v4, EdgeDIPN-v3 with EdgeDIPN-v2 demon-
strate the effectiveness of our proposed task-specific attentionmech-
anism. The reason is that different data representations as well as
their features play different role in different tasks. By adopting the
task-specific attention mechanism, we can let each task choose
the most relevant data representations and features, and thus re-
duce the mutual influence between tasks. We can also see that
EdgeDIPN outperforms EdgeDIPN-v4 for all the tasks. This is be-
cause the feature-level attention cannot consider the relationship
between data representations in EdgeDIPN-v4, which can be solved
by adopting the data-level attention first in EdgeDIPN.

Impact of sequence length (Scalability). In this section, we
evaluate the impact of different sequence lengths on the perfor-
mance of the models. The results are shown in Table 3. We evaluate
four different models, where Att, RNN, FG and FG-lr denote the
model with the the multi-level attention mechanism, GRU, Fast-
grnn and Fastgrnnlr structure, repectively. As shown, the prediction

0.78
0.8
0.82
0.84
0.86
0.88
0.9
0.92
0.94
0.96

1 5 10 15 20 25 30

RPAUC LPAUC RCAUC RAUC
RTCAUC LTCAUC RLCAUC LLCAUC

Figure 3: Impact of multiple components.

performance 1 of each model increases when the sequence length
increases. This is because more useful features can be extracted
from longer sequences. However, longer sequences result in larger
memory cost and longer inference time, which creates a heavy
burden for the deployment at the edge. Compared to RNN, Att
scales better when the sequence length increases. As shown, when
the sequence length is 512, Att can reduce the model size and in-
ference time by 43.9% and 56.2% , respectively. Although FG and
FG-lr can reduce the model size and inference time significantly
compared with RNN, they perform much worse in terms of AUC in
our scenario. Compared with FG and FG-lr, Att not only performs
much better in terms of AUC, but also has comparable and even
better performance in model size and inference time, which further
demonstrates its the effectiveness.

Impact of multiple components. In this section, we evaluate
the impact of the parameter ℎ in the multi-level attention mech-
anism. We vary ℎ from 1 to 30 for each task and the results are
shown in Figure 3. We can see the best performance appears after
ℎ reaches 10. This demonstrates that there can be multiple compo-
nents in a sequence that together form the overall preferences of a
user. However, it is not always true that a larger ℎ results in better
performance. As shown, there is no more benefit when ℎ is larger
than 10. Therefore, an appropriate ℎ should be selected.

5.3 Online A/B Testing
5.3.1 Intelligent Pop-ups. Pop-ups are one of the most powerful
tools on e-commerce platforms which can reach most of the traffic
the platforms receive. If used intelligently, they can play an im-
portant role in turning the visitors into sales. In this section, we
introduce a novel pop-up strategy based on the real-time category
preference predicted by EdgeDIPN in online traffic of Taobao. One
important task in Taobao is to promote the conversions of the inac-
tive customers. Since these customers are hard to place an order,
we design a special promotion strategy, introduced as follows. We
first use the pop-ups to pop some product from the candidate prod-
ucts to the inactive customers. If one customer taps the pop-ups,
she would be directed into a shopping page where the products
are specially designed for the inactive customers and can promote
the conversions effectively. Therefore, one of the key tasks in this
strategy is to improve the click-through rate of the pop-ups.

1Due to the page space limitation, we only show the AUC for the real-time purchasing
intent. The performance is simlar for other intent.
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Table 2: Comparison of different models.

Model RPAUC LPAUC RCAUC RAUC RTCAUC LTCAUC RLCAUC LLCAUC
GBDT 0.7911 0.7747 0.8057 0.8421 0.8933 0.7826 0.9102 0.8203
EdgeDIPN-tradition 0.7960 0.7856 0.8159 0.8457 0.9069 0.7883 0.9267 0.8263
EdgeDIPN-single 0.8396 0.8068 0.8208 0.8512 0.9241 0.7889 0.9407 0.8286
EdgeDIPN-fastgrnn 0.8367 0.8049 0.8181 0.8496 0.9153 0.7834 0.9291 0.8214
EdgeDIPN-fastgrnnlr 0.8342 0.8037 0.8160 0.8490 0.9105 0.7807 0.9262 0.8185
EdgeDIPN-v0 0.8413 0.8093 0.8191 0.8519 0.9208 0.7895 0.9397 0.8278
EdgeDIPN-v1 0.8435 0.8097 0.8221 0.8522 0.9231 0.7901 0.9418 0.8283
EdgeDIPN-v2 0.8458 0.8106 0.8239 0.8527 0.9266 0.7909 0.9433 0.8292
EdgeDIPN-v3 0.8471 0.8126 0.8271 0.8534 0.9317 0.7947 0.9471 0.8341
EdgeDIPN-v4 0.8482 0.8138 0.8291 0.8538 0.9335 0.7955 0.9499 0.8357
EdgeDIPN 0.8489 0.8152 0.8298 0.8543 0.9346 0.7969 0.9514 0.8368

Table 3: Impact of sequence length.

Sequence Length 64 128 256 512
RPAUC (RNN) 0.8395 0.8418 0.8463 0.8499
RPAUC (FG) 0.8371 0.8384 0.8419 0.8432
RPAUC (FG-lr) 0.8353 0.8359 0.8396 0.8389
RPAUC (Att) 0.8413 0.8457 0.8489 0.8508
Model Size (RNN) 1.38MB 1.73MB 2.42MB 3.83MB
Model Size (FG) 1.06MB 1.38MB 1.69MB 2.45MB
Model Size (FG-lr) 0.88MB 1.19MB 1.53MB 2.21MB
Model Size (Att) 1.03MB 1.30MB 1.57MB 2.15MB
Infer Time (RNN) 19.5ms 32.9ms 59.8ms 111.6ms
Infer Time (FG) 15.6ms 24.5ms 41.3ms 81.7ms
Infer Time (FG-lr) 14.2ms 23.6ms 35.5ms 59.8ms
Infer Time (Att) 13.7ms 22.6ms 31.2ms 48.9ms

To improve the CTR of the pop-ups, one common method is to
pop the hot products to the customers, which is usually a good
strategy. A more effective method is to pop the products based
on customers’ preference. However, the inactive customers have
very few history behaviors and thus traditional recommendation
methods are not suited to be used in this scenario. The advantage of
our EdgeDIPN is that we can utilize users’ rich real-time behaviors
to predict users’ intent. Therefore, we propose to pop the products
based on customers’ real-time leaf category preference.

We set four pop-ups strategies as follows.
• Hot Strategy where the popped product is selected based
on the purchase frequency of the products.

• Category-1 Strategy where the leaf category ranking first
in the category preference is selected and then the hot prod-
uct belonging to this category is selected.

• Category-2 and Category-3 Strategy are used to compare
with Category-1, where the leaf category ranking second
and third are selected, respectively.

The online A/B testing results are shown in Figure 4, where the x-
axis and y-axis represents the date time and the CTR, respectively. It
is notable that the category-1 strategy contributes up to 50.1% CTR
promotion in average compared with the hot strategy in the online

0.
15
97

0.
16
45

0.
16
24

0.
15
44

0.
15
07

0.
23
17

0.
23
61

0.
23
83

0.
24
35

0.
24

0.
22
56

0.
22
62

0.
22
82

0.
22
97

0.
22
92

0.
21
82

0.
22
04

0.
22
69

0.
22
36

0.
21
99

20200116 20200117 20200118 20200119 20200120

Hot Category-1 Category-2 Category-3

Figure 4: The results of different pop-up strategies.

traffic. The reason is that EdgeDIPN can understand a user’s real-
time preference by utilizing the rich real-time behaviors conducted
by the user, which helps the pop-ups to select more appropriate
product. In addition, the category-1 strategy increases the CTR
by 4.4% and 7.3% compared with the category-2 and category-3
strategy, respectively. This indicates the effectiveness of EdgeDIPN
in ranking user category preference.

5.3.2 Intelligent Push. Push notifications are another powerful tool
to boost the user engagement on e-commerce platforms. Compared
with the pop-ups, push notifications cause less disturbance to users
and thus can be used at any moment when a user is visiting the
app. In this section, we introduce a novel push notification strategy
for the soon-to-expire coupons based on the real-time purchasing
intent predicted by EdgeDIPN in online traffic of Taobao.

We choose two different types of coupons (denoted as 𝐶1 and
𝐶2) and set two push strategies to compare the performance.

• Random Strategy where the system chooses the moment
randomly to push the notification of the soon-to-expire
coupons to a user when she is visiting.

• Model Strategy where the system uses the score given by
EdgeDIPN and a fixed threshold to decide the push moment.

The users selected to get this notification will be pushed a mes-
sage in Taobao’s mobile application. We use the CTR improvement
𝐼𝐶 as the evaluation metric, defined as follows:

𝐼𝐶 =
𝐶𝑇𝑅𝑚𝑜𝑑𝑒𝑙 −𝐶𝑇𝑅𝑟𝑎𝑛𝑑

𝐶𝑇𝑅𝑟𝑎𝑛𝑑
, (10)

where𝐶𝑇𝑅𝑚𝑜𝑑𝑒𝑙 and𝐶𝑇𝑅𝑟𝑎𝑛𝑑 are the CTR of the push notifications
with model and random strategy, respectively.
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Table 4: The results of different push notification strategies.

Num. of Users 𝐼𝐶1 𝐼𝐶2

Random Strategy 18.3𝑀 / /
Model Strategy 18.3𝑀 +9.02% +5.32%

We hypothesize that the users with a low purchasing intent
may not be interest in these coupons and would be disturbed by
these push notifications. On the contrary, the users with a high
purchasing intent may be attracted by these coupons and click the
related push notifications. Therefore, we set the threshold 𝑡𝑙 = 0.3
which has the best online performance. The users whose real-time
purchasing intent score given by EdgeDIPN is large than 𝑡𝑙 are
selected to get this push notification in the model strategy bucket.

As shown in Table 4, the model strategy contributes up to 9.02%
and 5.32% 𝐶𝑇𝑅 promotion compared with random strategy in the
two different types of coupons in the large scale online traffic. The
reason is that EdgeDIPN can help the system to understand users’
real-time purchasing intent and push the coupon notification to
the right person at the right time. Compared with random strategy,
a reasonable model strategy relied on EdgeDIPN would result in a
significant CTR improvement.

6 RELATEDWORK
6.1 Multi-task Learning
Multi-task learning has been used successfully across various ap-
plications of machine learning. Ruder [20] presents an overview
of multi-task learning in deep learning, where multi-task learn-
ing is typically done with either hard or soft parameter sharing
of hidden layers. The hard parameter sharing method is the most
commonly used multi-task learning approach, which shares the
hidden layers between all tasks and keeps several task-specific out-
put layers [4, 5, 8, 18]. The shared-bottom model structure suffers
from optimization conflicts caused by task differences. To overcome
this issue, Ma et al. [16] propose the MMoE method by sharing the
expert submodels across all tasks with a gating network trained
to optimize each task. However, MMoE is originally designed for
DNNs where the shared-bottom model can be easily partitioned
into small expert submodels to reduce the parameter size. This is
not suited for EdgeDIPN with a complicated bottom model, which
would result in a model with a large size and cannot be deployed
at the edge. In soft parameter sharing, each task has its own model
with its own parameters where the distance between the parameters
is regularized [6, 17, 25]. However, compared to the hard param-
eter sharing methods, the soft parameter sharing methods have
much more task-specific parameters and thus are not suited to be
adopted at the edge. Recently, some work [3, 21] try to optimize
multi-task learning from the perspective of loss functions. Previ-
ous methods usually use a weighed sum of losses, where the loss
weights are uniform or manually tuned, and is hard to achieve the
best performance. To overcome this issue, Kendall et al. [3] pro-
pose to automatically learn the weights by using the homoscedastic
task uncertainty, while Sener et al. [21] cast multi-task learning
as multi-objective optimization and aim to find a Pareto optimal
solution. These methods are orthogonal to our work and can be

adopted in EdgeDIPN seamlessly. Compared with previous work,
EdgeDIPN proposes a task-specific attention mechanism to let each
task pick out the most relevant features from the extracted data
representations and thus reduce the conflict between different tasks.
Moreover, the task-specific attention mechanism is light-weight
and very friendly to be used at the edge.

6.2 Mobile User State Prediction
Another related work is user state prediction based on the mo-
bile phone usage history. In these studies, the usage history is
used as features for machine learning models and the targeted
user state varies for each study, such as emotion state [26], user
trait [22], and mental health [1]. However, none of these studies
implement an on-device inference for a real-time prediction [14].
Current on-device applications are mainly image recognition [10]
and natural language processing such as smart reply [11]. Recently,
Ochiai et al. [19] implement a MLP model on Android smartphone
for the smartphone operation troubleshooting recommendation.
We are the first to monitor multiple user intent on a large-scale
e-commerce platform at the edge. In [9], we make a preliminary at-
tempt at predicting user’s real-time purchasing intent with a model
named DIPN. EdgeDIPN distinguishes from DIPN in several aspects.
First, EdgeDIPN is a full-fledged real-time user intent understand-
ing center and demonstrates its effectiveness in several business
scenarios while DIPN just focuses on the purchasing intent pre-
diction. Second, EdgeDIPN replaces the RNN component with the
multi-level attention mechanism, which can not only improve pre-
diction performance but also save edge resources. Last but not least,
EdgeDIPN proposes a novel task-specific attention mechanism for
the multi-task learning.

7 CONCLUSION
In this paper, we propose a unified deep intent prediction network,
named EdgeDIPN, which is deployed at the edge and able tomonitor
multiple user intent with different granularity simultaneously in
real-time. To save edge resources, we propose to train EdgeDIPN
with multi-task learning by sharing representations among several
intent. In addition, several attention mechanisms are proposed to
improve the performance of EdgeDIPN. Experimental results on a
large-scale industrial dataset shows the superiority of EdgeDIPN. In
particular, EdgeDIPN has been deployed in the operational system
of Alibaba. Online A/B testing on several business scenarios shows
the benefits of monitoring users’ intent in real-time.

Note that EdgeDIPN is a universal and scalable architecture
which extracts an effective user embedding from various user be-
haviors and thus new user intent can be easily integrated. In ad-
dition, EdgeDIPN is the first full-fledged on-device attempt at the
domain of e-commerce, which can offer the opportunity to create
more novel business scenarios in the e-commerce platforms.

ACKNOWLEDGMENTS
This work is supported in part by the National Natural Science
Foundation of China under Grant No. 61702016 and 61832001,
the National Key Research and Development Program of China
(No.2018YFB1004403),Beijing Academy of Artificial Intelligence
(BAAI), and Okawa Research Grant.

327



REFERENCES
[1] B. Cao, L. Zheng, C. Zhang, P. S. Yu, A. Piscitello, J. Zulueta, O. Ajilore, K. Ryan,

and A. D. Leow. Deepmood: Modeling mobile phone typing dynamics for mood
detection. In KDD, page 747–755, 2017.

[2] Y. Chen, Y. Ma, X. Mao, and Q. Li. Multi-task learning for abstractive and
extractive summarization. Data Science and Engineering, 4(1):14–23, 2019.

[3] R. Cipolla, Y. Gal, and A. Kendall. Multi-task learning using uncertainty to weigh
losses for scene geometry and semantics. In CVPR, pages 7482–7491, June 2018.

[4] R. Collobert and J. Weston. A unified architecture for natural language processing:
Deep neural networks with multitask learning. In ICML, pages 160–167, 2008.

[5] L. Deng, G. Hinton, and B. Kingsbury. New types of deep neural network learning
for speech recognition and related applications: an overview. In ICASSP, 2013.

[6] L. Duong, T. Cohn, S. Bird, and P. Cook. Low resource dependency parsing:
Cross-lingual parameter sharing in a neural network parser. In ACL-IJCNLP,
pages 845–850, 2015.

[7] Z. Gharibshah, X. Zhu, A. Hainline, and M. Conway. Deep learning for user
interest and response prediction in online display advertising. Data Science and
Engineering, 5(1):12–26, 2020.

[8] R. Girshick. Fast r-cnn. In ICCV, pages 1440–1448, 2015.
[9] L. Guo, L. Hua, R. Jia, B. Zhao, X. Wang, and B. Cui. Buying or browsing?:

Predicting real-time purchasing intent using attention-based deep network with
multiple behavior. In KDD, page 1984–1992, 2019.

[10] A. Ignatov, R. Timofte, W. Chou, K. Wang, M. Wu, T. Hartley, and L. V. Gool. Ai
benchmark: Running deep neural networks on android smartphones. In ECCV
Workshops, 2018.

[11] A. Kannan, K. Kurach, S. Ravi, T. Kaufmann, A. Tomkins, B. Miklos, G. Corrado,
L. Lukacs, M. Ganea, P. Young, and et al. Smart reply: Automated response
suggestion for email. In KDD, page 955–964, 2016.

[12] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2014.

[13] A. Kusupati, M. Singh, K. Bhatia, A. Kumar, P. Jain, and M. Varma. Fastgrnn: A
fast, accurate, stable and tiny kilobyte sized gated recurrent neural network. In
NIPS, pages 9017–9028. 2018.

[14] S. Li, D. Zhai, P. Du, and T. Han. Energy-efficient task offloading, load balancing,
and resource allocation in mobile edge computing enabled iot networks. Science

China Information Sciences, 62(2):29307, 2018.
[15] Z. Lin, M. Feng, C. N. dos Santos, M. Yu, B. Xiang, B. Zhou, and Y. Bengio. A

structured self-attentive sentence embedding. In ICLR, 2017.
[16] J. Ma, Z. Zhao, X. Yi, J. Chen, L. Hong, and E. H. Chi. Modeling task relationships in

multi-task learning with multi-gate mixture-of-experts. In KDD, page 1930–1939,
2018.

[17] I. Misra, A. Shrivastava, A. Gupta, and M. Hebert. Cross-stitch networks for
multi-task learning. CoRR, abs/1604.03539, 2016.

[18] Y. Ni, D. Ou, S. Liu, X. Li, W. Ou, A. Zeng, and L. Si. Perceive your users in depth:
Learning universal user representations from multiple e-commerce tasks. In
KDD, pages 596–605, 2018.

[19] K. Ochiai, K. Senkawa, N. Yamamoto, Y. Tanaka, and Y. Fukazawa. Real-time
on-device troubleshooting recommendation for smartphones. In KDD, page
2783–2791, 2019.

[20] S. Ruder. An overview of multi-task learning in deep neural networks. CoRR,
abs/1706.05098, 2017.

[21] O. Sener and V. Koltun. Multi-task learning as multi-objective optimization.
CoRR, abs/1810.04650, 2018.

[22] S. Seneviratne, A. Seneviratne, P. Mohapatra, and A. Mahanti. Predicting user
traits from a snapshot of apps installed on a smartphone. SIGMOBILE Mob.
Comput. Commun. Rev., 18(2):1–8, 2014.

[23] A. Toth, L. Tan, G. D. Fabbrizio, and A. Datta. Predicting shopping behavior with
mixture of rnns. In ACM SIGIR Forum, 2017.

[24] R. Xu, J. Du, Z. Zhao, Y. He, Q. Gao, and L. Gui. Inferring user profiles in social
media by joint modeling of text and networks. Science China Information Sciences,
62(11):219104, 2019.

[25] Y. Yang and T. M. Hospedales. Trace norm regularised deep multi-task learning.
CoRR, abs/1606.04038, 2016.

[26] X. Zhang, W. Li, X. Chen, and S. Lu. Moodexplorer: Towards compound emotion
detection via smartphone sensing. Proc. ACM Interact. Mob. Wearable Ubiquitous
Technol., 1(4), 2018.

[27] G. Zhou, X. Zhu, C. Song, Y. Fan, H. Zhu, X. Ma, Y. Yan, J. Jin, H. Li, and K. Gai.
Deep interest network for click-through rate prediction. InKDD, pages 1059–1068,
2018.

328


	Abstract
	1 Introduction
	2 Problem Statement
	2.1 Dataset 
	2.2 Problem Formulation

	3 Model Architecture
	3.1 Embedding Layer
	3.2 Multi-level Attention Layer
	3.3 Inter-view Attention Layer
	3.4 Multi-task Layer

	4 System Overview
	5 Experiments
	5.1 Experimental Setup
	5.2 Experimental Results
	5.3 Online A/B Testing

	6 Related Work
	6.1 Multi-task Learning
	6.2 Mobile User State Prediction

	7 Conclusion
	Acknowledgments
	References

