
SparkCruise: Workload Optimization in Managed Spark
Clusters at Microsoft

Abhishek Roy
Microsoft

abhishek.roy@microsoft.com

Alekh Jindal
Microsoft

alekh.jindal@microsoft.com

Priyanka Gomatam
Microsoft

priyanka.gomatam@microsoft.com

Xiating Ouyang∗
University of Wisconsin-Madison

xouyang@cs.wisc.edu

Ashit Gosalia
Microsoft

ashit.gosalia@microsoft.com

Nishkam Ravi
Microsoft

nishkam.ravi@microsoft.com

Swinky Mann
Microsoft

swinky.mann@microsoft.com

Prakhar Jain∗
Databricks

prakhar.jain@databricks.com

ABSTRACT
Today cloud companies offer fully managed Spark services. This
has made it easy to onboard new customers but has also increased
the volume of users and their workload sizes. However, both cloud
providers and users lack the tools and time to optimize these mas-
siveworkloads. To solve this problem,we designed SparkCruise that
can help understand and optimize workload instances by adding a
workload-driven feedback loop to the Spark query optimizer. In this
paper, we present our approach to collecting and representing Spark
query workloads and use it to improve the overall performance on
the workload, all without requiring any access to user data. These
methods scale with the number of workloads and apply learned
feedback in an online fashion. We explain one specific workload
optimization developed for computation reuse. We also share the
detailed analysis of production Spark workloads and contrast them
with the corresponding analysis of TPC-DS benchmark. To the best
of our knowledge, this is the first study to share the analysis of
large-scale production Spark SQL workloads.
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1 INTRODUCTION
Spark [4] is a widely popular data processing platform that is used
for a variety of analytical tasks, including batch processing, interac-
tive exploration, streaming analytics, graph analytics, and machine
learning. At Microsoft, Azure HDInsight [26] offers managed Spark
clusters that allow users to start processing their data processing
without worrying about managing the underlying infrastructure.
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However, once the data processing tasks are deployed as produc-
tion workflows, users are largely responsible for optimizing their
workloads to achieve better performance at lower costs. This is fast
emerging as a major pain in cloud data services, more so due to
the lack of DBAs in the cloud environments [21], leading to several
recent efforts for building new platforms and features that optimize
end to end workloads in the cloud [22, 27, 29, 30].

Performance improvements in Spark have come a long way over
the last decade. It started with the initial proposal of resilient dis-
tributed datasets (RDDs) in 2010 for improving the performance of
multiple parallel operations by reusing a working set of data [33].
Later, Shark [31] was proposed in 2013 to run declarative Hive
queries (SQL-on-Hadoop) interactively using the Spark processing
backend. The Shark project evolved into Spark SQL [13] for do-
ing relational data processing along with a query optimizer, called
Catalyst, in 2015. While Catalyst was rule-based in the beginning,
query costing and cost-based query optimization was later added
to Spark in 2017 [1]. Most recently, given the broader realization
that it is often hard to make the right query optimization choices
at compile time [16], adaptive query execution was introduced in
Spark in 2020 [3]. However, given the breadth of applications and
deployment scenarios that are typically seen in modern data pro-
cessing systems like Spark, it is still hard to pre-build the right set
of optimizations in the system itself. This has led to a new wave of
thinking to instance optimize a data processing system to a given
workload [23, 30]. In fact, the presence of hundreds of configu-
rations in current Spark codebase aligns with the above line of
thinking that a Spark deployment could be tuned to different work-
load needs. Unfortunately, it is incredibly hard, if not impossible, to
manually tune these configs or adapt the system to a given work-
load. Interestingly, modern cloud deployments of data processing
systems offer an unprecedented opportunity to observe and learn
from large volumes of workloads. As a result, we could build a
workload-driven feedback loop to automatically (and continuously)
tune the system from the workloads seen at hand.

We presented our overarching vision on how to improve cloud
query engines in [21]. In this paper, we describe SparkCruise, the
next big step in optimizing Spark workloads that we have built for
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Spark clusters in Azure HDInsight. SparkCruise exposes a work-
load optimization platform that leverages massive cloud workloads
and provides a feedback loop to the Spark engine for improving
performance and reducing costs. We demonstrated an early ver-
sion of the SparkCruise system earlier [28]. Since then we have
added newer techniques for plan log collection, introduced a scal-
able telemetry pipeline that runs daily, explored data cleaning and
integration techniques to improve the quality of our common work-
load representation, analyzed production workloads to characterize
the Spark workloads in HDInsight, provided a notebook for cus-
tomers to derive insights from their own workloads, and pushed
one concrete feature for automatic computation reuse all the way to
production. We describe the overall system design and extensibility
of SparkCruise, the opportunities for compute reuse in production
Spark workloads, the deployment of SparkCruise in HDInsight,
and the experiences from our production journey.

Our key contributions can be summarized as follows:

• We present the SparkCruise platform for adding workload-
driven feedback loop in Spark, and discuss how it transforms
Spark engine from optimizing one query at a time to opti-
mizing end to end workloads. (Section 3)

• We describe a query plan telemetry pipeline for collecting
anonymized Spark SQL plans with low overheads and at
production scale. (Section 4)

• We introduce a denormalized workload representation for
Spark that combines both the compile-time and run-time
characteristics of the workload and could be used for a va-
riety of optimization features. We discuss the data quality
challenges in creating this workload representation and show
cleaning techniques to overcome them. (Section 5)

• We present detailed insights from production Spark work-
loads at Microsoft, including distributions of inputs, applica-
tions, queries, operators, cardinalities, selectivities, and plan
shapes such as width and height. (Section 6)

• We describe a workload insights notebook that we have built
and released for customers in HDInsight to discover insights
from their own workloads. (Section 7)

• Finally, we drill down into automatic computation reuse as a
concrete workload optimization in Spark that we have built
and released for customers in HDInsight. We discuss the
reuse mechanisms and various online and offline policies for
view selection and materialization. (Section 8)

2 SPARK BACKGROUND
The Spark data processing platform supports a variety of analytical
applications including batch or interactive analytics over structured
or unstructured data, streaming analytics over constantly arriving
data, graph analytics over linked data, iterative machine learning
algorithms, and the newer data science applications. Structured
data processing, in particular, has increasingly gained enterprise
level adoption in the last few years with several large companies
running their key ETL workloads using Spark. This has resulted
in several trends. First, Spark has become the most active Apache
project that is visited on GitHub [18], with a vibrant open source
community of 83 committers [19] and numerous meet-ups around
the world [12], Second, there is in-house Spark development at

several large enterprises such as LinkedIn [24], Facebook [11], and
IBM [8], and Third, there are managed Spark services from all major
cloud providers, including Amazon Web Services [5, 9], Microsoft
Azure [6, 7, 26], and Google Cloud [10].

At Microsoft, Azure HDInsight allows customers to run popular
open source frameworks — including Apache Hadoop, Spark, Hive,
Kafka, and more [26]. Essentially, it abstracts the complexities in
setting up and maintaining the cluster, and providing a more man-
aged experience for customers to quickly get started with their
analytical tasks. For Spark, this means that users can leverage the
latest Spark distributions, easily configure their cluster for different
application needs, and monitor and tune the performance and costs.
As a result of this better Spark infrastructure experience, we find
a large fraction of HDInsight customers running their recurring
ETL workloads. Others prominent use of HDInsight Spark is for
interactive notebooks that have become very popular for ad-hoc
analysis. Interestingly, workload optimization is relevant to both
these usage types: for saving total costs in ETL workloads and for
reducing the time to insights in interactive workloads.

Spark workloads are made up of applications, each of which
consist of one ormore queries running in the Spark session.Multiple
applications can run in parallel on the same cluster. We focus on
Spark SQL queries, i.e, all analytics that compile down to Spark
dataframes and go through the Catalyst query optimizer, while
ignoring the programs written directly against the RDDs. This is
because declarative Spark SQL workloads are more amenable to
characterization and feedback in the query optimizer layer (without
affecting the user expectation on how the programs should be
executed, as with RDDs), not to mention they also form the majority
of our workloads.

In the remainder of the paper, we first provide an overview of
SparkCruise, our workload optimization platform for Spark, before
describing each of its components and discussing the features we
have shipped in HDInsight.

3 SPARKCRUISE OVERVIEW
SparkCruise adds a workload-driven feedback loop to Spark to
instance optimize its performance for a given workload. Figure 1
shows the overall architecture. As mentioned before, we focus on
Spark SQL queries that run through the Catalyst query optimizer
and that users expect the system to optimize, as opposed to RDD
programs that are almost like physical execution plans handcrafted
by the users. There are four sets of components in Figure 1 that are
worth highlighting and we discuss them below.

First, SparkCruise provides an elaborate query plan telemetry
that captures Spark SQL query plans in a scalable manner. This
includes an additional plan log listener to collect plans in JSON
format, adding identifiers called signatures at each node in the
query plan, anonymizing the plans from any personally identifiable
information (PII), and collecting the resulting log in both structured
and semi-structured format with varying degree of retention. The
query plan telemetry is enabled simply via a configuration change
and once collected it could be used for a variety of further analysis
by both the service provider and well as the customer themselves.

Second, the workload collected above goes through a set of pre-
processing to generate a common workload representation that
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Figure 1: SparkCruise Architecture

could be used for running the actual workload optimization al-
gorithms. This includes linking the operators in the logical and
physical query plans with the stages in the Spark jobs execution,
and cleaning the workload logs for missing or invalid values. The
resulting workload is represented as a denormalized workload table.
The workload preprocessing is run over large volumes of workloads
in a distributed manner, i.e., using Spark itself for scaling out the
preprocessing tasks. Furthermore, the preprocessing is done once
and shared across all of the downstream analyses and optimizations.

Third, theworkload table generated above could be used to derive
better understanding and insights. Such insights are helpful for both
the service operators as well as the customers. SparkCruise provides
a workload insights notebook to quickly analyze the workload table
generated for their workloads. The notebook also comes with a
number of pre-canned queries to easily capture the shape, size,
performance, and cost of the workload.

Finally, the workload table is also used to run optimization al-
gorithms such as materialized view selection [20]. By providing a
common workload representation consisting of both the compile-
time and run-time characteristics, SparkCruise democratizes the
development of newer workload optimization algorithms based on
a variety of opportunities, e.g., learning cardinality models from
past workloads. We serialize the optimization output into a feed-
back file and provide that to be loaded into the Catalyst optimizer
for future optimization. The actual optimization action is performed
by adding extra optimizer rules using the Spark extensions API,
thus turning it into a self-tuning system.

In the following sections, we delve into each of the above four
components of SparkCruise in more detail.

4 QUERY PLAN TELEMETRY
Workload optimizations in SparkCruise are rooted in analyzing
and improving the Spark SQL query plans. Therefore, collecting
Spark SQL query plans is at the core of SparkCruise. Our design
requirements for adding this observability are five-fold:

(1) We do not want to make changes in the core Spark codebase.
This is because we want the query plan telemetry to be easily

collected with open-source Spark as well as with multiple
deployments in different Microsoft products.

(2) Collecting plan telemetry should have minimal overheads to
avoid impact on query performance. This means we should
be reusing existing telemetry events and only add additional
information wherever required.

(3) We need to identify patterns in the query plans in order to
learn from past workloads and apply them in future queries.
This requires to annotate query plans with signatures that
could be used to identify and match interesting patterns.

(4) Query plans could contain sensitive information, particularly
in the column and table names. Therefore, we need to scrub
all such information and protect customer privacy.

(5) Finally, we need to support multiple scenarios where the
query plans could be leveraged, from local debugging within
the cluster to global workload analysis by the cloud provider.

Note that in contrast to the recently described Diametrics bench-
marking platform at Google [15], SparkCruise captures a rich set of
query plans (not just the SQL queries) along with associated meta-
data (run-time statistics to learn from the past behavior of those
query plans), without copying the customer data. This is because
in contrast to Diametrics, SparkCruise is not limited to internal
customers and workloads and so access to customer data is not
possible without explicit customer approval.

In the remaining of this section, we first describe query plan lis-
tener, plan annotations, and plan anonymization, before describing
the telemetry pipeline.

4.1 Plan Listener
The first step in adding workload optimization capability to Spark
is to collect the workload traces. Spark already collects telemetry
at the level of both applications and tasks, however, the query plan-
level details are incomplete. Specifically, the event logs contain
Spark SQL query plans in text format, same as the one output by
the EXPLAIN command, that is hard to parse and consume later on.
Furthermore, many of the lines in the text plans are trimmed in case
they are too long. So we need a more reliable format for query plan
telemetry. Fortunately, the LogicalPlan object in Catalyst contains
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a method to serialize a query expression in JSON format. We have
leveraged this by implementing a custom listener that logs the Spark
query plans in JSON. The listener is invoked at the end of every
query execution (i.e., SparkListenerSQLExecutionEnd event). Our
listener emits the JSON plans from all four stages, namely the parsed
plan, analyzed plan, optimized plan, and the physical execution plan.
Later on, the workload optimization algorithms ingest workload
traces and provide feedback to the query optimizer.

The above plan listener has very low overhead, e.g., in the order
0.5 seconds for TPC-DS queries. Still, we discovered that customers
sometimes end up machine generating very large Spark SQL plans
in their production workloads. These large plans could contain 10s
of thousands of nodes in the parsed query plans, that lead to out of
memory errors in one specific case. Therefore, we added additional
checks to limit the plan logging for extremely large query plans. For
example, if parsed and analyzed plans are found to be too big then
we attempt to log only the subsequent plans (optimized, physical)
as they are typically smaller than the initial plans.

4.2 Plan Annotations
Given that the goal of SparkCruise is to learn from the past Spark
workloads and apply feedback to future queries, we want to identify
patterns in query plans for future feedback. Therefore, we annotate
every node in the query plan with identifiers, called signatures,
that can be used for providing targeted feedback to future queries.
Signatures are recursive hashes of the query plan nodes that capture
both the node-level details as well as the query plan structure. We
could further decide on which nodes and what levels of details
in those nodes to include in the signature hash, thus capturing
different kinds of query plan patterns. We describe the two kinds of
signatures that we provide by default, although, our design allows
to easily add newer signatures: (1) Strict Signatures capture the
complete information at the node level and its children. At the leaf
level it also includes the dataset version. (2) Recurring Signatures
also capture the information at the node level and its children.
However, it ignores the literal values and the dataset version.

4.3 Plan Anonymization
SparkCruise only analyzes workload metadata, with no access to
customer data. Still, the filenames, table names, and column names
could potentially contain keywords or identifiers relevant to dif-
ferent customer businesses. Therefore, SparkCruise anonymizes
Spark SQL query plans by obfuscating the column and table names.
Furthermore, we also obfuscate any literal values in the query
predicates (filter or join predicates) to avoid leaking any customer
identifiable information. We apply the same obfuscation to parsed,
analyzed, optimized, and physical plans. However, we preserve the
column reference ids that track columns within a query plan from
leaf to the root of the plan.

4.4 Telemetry Pipeline
We feed the annotated and anonymized query plans into a teleme-
try pipeline consisting of several end points, each for different set
of scenarios, as shown in Figure 1. The annotated and anonymized
query plans are emitted as Spark events that are captured by the
SparkFirehoseListener and converted into rows, with one row for

each event and all plans and other metadata as JSON values in that
row. We then push these event rows into several backends: (1) an
optional user defined Azure Blob Filesystem location for users to
run their own workload analysis later on, (2) Azure Data Explorer
tables for interactive analysis, typically by the service operators,
with a smaller retention window, and (3) Cosmos storage (com-
pressed formats) for historical analysis over larger time windows.
The above Spark events are also collected in the application log
on the local cluster, for any real-time debugging or analysis by the
users themselves.

5 WORKLOAD REPRESENTATION
In this section, we describe the steps to transform raw events into a
shared workload representation. A shared workload representation
removes the time consuming step of data collection and integration
from each optimization algorithm. We also explain the relational
format of the workload representation and why it has been widely
adopted by downstream optimization algorithms.

5.1 Plan Linking
At the end of query execution, SparkCruise collects different plans
related to query processing, namely parsed plan, analyzed plan, op-
timized plan, physical plan, and executed plan. Each plan in this list
is derived from the previous plan. However, Spark does not preserve
the provenance information between individual nodes of the differ-
ent plans. This makes it impossible to get the runtime cardinalities
and costs for logical operators. Specifically, SparkCruise applies
view materialization and reuse based on signatures computed on
optimized logical plan, but the cost-based view selection needs to
consider the cost of logical operators as well. So, we attempt to link
the nodes from different plans during workload preprocessing.

We include two plan linking algorithms for logical and physical
query plans: (1) Top-down heuristic based - This method starts from
the root node and links nodes from two query plans using a set
of predefined heuristics. For example, this method skips the Ex-
change operator that is present in physical plans but not in logical
query plans. Similarly, a logical Join operator can be converted
into Exchange, Sort, and SortMergeJoin physical operators. This
method uses lexical similarity when matching nodes in logical
plans and their corresponding physical implementations such as
Aggregate and HashAggregate. (2) Bottom-up similarity based - We
extended Cupid [25], a generic schema matching system for SQL
tables, to match query plans. Cupid uses weighted lexical similarity
and structural similarity score for every pair of sub-trees in logical
and physical plans to find the best match between nodes. We use
the same set of rules for lexical similarity as the top-down heuristic
method. From our experience, we have found (1) to be preferable,
especially as it is easier to debug. Going ahead, we would like to
maintain the provenance information inside the Spark optimizer
itself to avoid this post-processing linking of plans.

The next linking between nodes in Spark physical plans and
executed plans involves a simple tree traversal. Figure 2 shows
an example of the links between optimized logical plans and the
executed plan. After the plans linked together, we can assign sig-
natures computed on optimized logical plans to the cost of the
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Figure 2: Linking of nodes in optimized logical plan (left)
and executed plan (right).

Figure 3: Linking different entities in Spark workloads.

corresponding physical operator. This allows us to develop cost-
based workload optimization algorithms and apply feedback during
query optimization using signatures.

5.2 Data Cleaning
At the end of query execution, Spark reports runtime metrics such
as cardinality, time, and memory. However, these metrics are mostly
at the stage level (multiple operators combined together) and few
metrics are reported for individual operators. Thus, even after link-
ing query plans we do not have metrics for most of the logical
operators. To solve this problem we perform a few data imputation
steps to assign metrics to individual operators. We describe two
imputation strategies for row cardinalities and running time –

(1) Spark provides runtime cardinality metrics at different nodes
in the query plans, generally for operators where cardinality
changes such as scan, filter, aggregates, and joins. To get
the cardinalities for remaining operators, we perform a post-
order traversal of query plans and, if cardinality is missing,
then we copy the cardinalities from the child node. For some
operators such as Join, in case of missing cardinality, we take
the maximum cardinality among all child nodes.

(2) Spark reports the running time for every stage in query plan.
We divide the stage-level running time among the operators
with missing running times in the stage node . With the im-
puted running time per operator, we can calculate the serial
time cost of a subexpression in plan as the sum of times from
individual operators. The serial time of subexpressions along
with output cardinality is used by the cost-based view selec-
tion algorithms to select views with high savings potential
and low materialization costs.

5.3 Workload Table
Workload table is the foundation for workload optimization al-
gorithms. The workload table combines different entities in Spark
applications, such as application metadata, query metadata, metrics,
query plans, and annotations to create a tabular representation of
the workload. In this section, we will describe the steps performed
to create the workload table from raw events.

As explained in Section 4.4, the anonymized telemetry data can
be stored in multiple locations (from storage accounts to databases)
depending on the type of analysis. The collected telemetry is trans-
formed to workload table by the Workload Parser Spark job. The
Workload Parser job has connectors to read and write the data
from different sources. Workload Parser can independently process
the telemetry belonging to each Spark application. This allows the
Workload Parser job to scale with the number of applications in
the workload.

The Workload Parser job recreates the hierarchy of entities in a
Spark workload. Figure 3 shows the typical entities in a Workload
that include Applications, Queries, Plans, Metadata, and Metrics.
These entities are parsed from the events in JSON format. For ex-
ample, the preorder traversal of query plans is serialized in JSON
format and the Workload Parser job recreates the query plan graph
from the serialized format. The Workload Parser also performs the
necessary plan linking and data imputation steps. Then, these linked
entities in the workload are exported as a denormalized workload
table. The workload table has one row per physical operator. Each
row of the workload table contains the details of physical opera-
tor, application-level metadata, query-level metadata, linked logical
operator details, and compile-time and run-time statistics. Table 1
shows a subset from the workload table. There is a lot of repeated
metadata information in the workload table. We have found that
having a single denormalized workload table with all the available
information removes the need for complex data processing steps by
downstream workload optimization algorithms. After this step, the
workload table is available for processing by workload optimization
algorithms and for visualization via Workload Insights Notebook.

6 PRODUCTION INSIGHTS
In this section, we show insights from production Spark work-
loads at Microsoft with the goal to understand the volume, shapes,
sizes, costs, and other aspects of production Spark SQL queries.
Later in the next section, we contrast these with TPC-DS queries, a
popular benchmark for analytical workloads. We consider a large
subset of daily workloads from HDInsight consisting of 176 clus-
ters from 114 Azure subscriptions, and consisting of 34,834 Spark
applications with 349,366 Spark SQL query statements (a mix of
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