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ABSTRACT

Some mission critical systems, e.g., fraud detection, require accurate,
real-time metrics over long time sliding windows on applications
that demand high throughput and low latencies. As these applica-
tions need to run “forever” and cope with large, spiky data loads,
they further require to be run in a distributed setting. We are un-
aware of any streaming system that provides all those properties.
Instead, existing systems take large simplifications, such as imple-
menting sliding windows as a fixed set of overlapping windows,
jeopardizing metric accuracy (violating regulatory rules) or latency
(breaching service agreements). In this paper, we propose Railgun, a
fault-tolerant, elastic, and distributed streaming system supporting
real-time sliding windows for scenarios requiring high loads and
millisecond-level latencies. We benchmarked an initial prototype
of Railgun using real data, showing significant lower latency than
Flink and low memory usage independent of window size. Further,
we show that Railgun scales nearly linearly, respecting our msec-
level latencies at high percentiles (<250ms @ 99.9%) even under a
load of 1 million events per second.
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1 INTRODUCTION

In some mission critical systems, e.g., financial fraud detection, it is
desirable that the underlying streaming engines fulfill our proposed
M-A-D requirements:
Msec-level latencies at high percentiles (<250ms @ 99.9%);
Accurate sliding window aggregations event-by-event;
Distributed, scalable and fault-tolerant.

However, to the best of our knowledge, no streaming engine
today delivers all three MAD requirements. Initial streaming en-
gines such as STREAM [6], NiagaraCQ [16] or Siddhi [44] provide
accurate sliding window aggregations per event, but do not scale
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beyond one node, nor do they comply with millisecond-level la-
tencies. In opposition, state-of-the-art streaming engines such as
Flink [11], Kafka Streams [18], and others [7, 33, 36, 39] provide
scalability and fault-tolerance with low latencies, but at the expense
of inaccurate sliding windows aggregations due to their window
choices or load shedding [1], failing to meet A.

A critical decision is how to handle a large streaming state while
delivering low latency. In low throughput and small windows,
events can fit in-memory of a single node, and accurate aggre-
gations can be computed for every new event over sliding windows.
However, for large windows or high throughput (where D is re-
quired) handling the incoming and expiring events becomes such
a problem that streaming engines either shed load, or use hop-
ping windows as an approximation of real-time sliding windows,
computing aggregations and expiring events only so often.

For instance, using hopping windows, a 5-min sliding window
can be approximated, e.g., using five fixed physical 5-min windows,
each offset by 1 minute (the hop) and where, as time passes, new
windows (and their aggregations) are created and expired. Figure 1
illustrates this behavior of hopping windows, and how they might
lead to inaccurate aggregations. At timestamp 5, there are exactly
5 active physical windows, h1-h5. When es arrives, still within a
5-min window of e;, window h1 is already expired and h6 created.
Since h1 expires at timestamp 5, and h2 only starts at timestamp 2,
both h1 and h2 only count 4 events, el-e4 and e2-e5, respectively.
This shows an example where a true 5-min sliding window (s0)
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Figure 1: A 5-min hopping window with 1-min hop uses
physical windows (h1-h6) but none capture the 5 events (cir-
cles) together, unlike a real-time sliding window (s0).

takes into account all 5 events for its aggregations when e5 arrives,
but a hopping window with 1-min hop does not. The hop could
be made smaller, e.g., 1 second, but that would imply concurrently
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managing 300 5-min physical windows, instead of 5. Additionally,
since the frequency on which time slides is still fixed, a 1 second
hop window might still not capture all 5 events together.

To keep latency low while dealing with high event through-
put, state-of-the-art streaming engines use hopping windows in
an attempt to save memory. Aggregations over real-time sliding
windows require accessing all events to compute accurate aggrega-
tions, making these solutions low scale. Approximate aggregations
can be done over hopping windows by discarding event tuples, but
require handling the multiple aggregation window states, where the
number of window states is defined by a ratio between the window
size, and the hop size. As we shall see in Section 5.1, this tradeoff
works until the hop size is much smaller than the window size.
When windows start to span over multiple minutes, or hours, the
window aggregation state becomes so large, that streaming engines
either choose to reduce aggregation precision further (by using
larger hops of minutes or hours), or deploy lambda architectures,
to combine delayed results computed in batch with small real-time
windows (see Figure 2).

This state of affairs presents a challenge for modern fraud de-
tection systems. Responsible for processing trillions of dollars per
year worldwide, these mission-critical systems have demanding
latency requirements (e.g., <250 ms for 99.9% percentile), and still
require accurate aggregation metrics event-by-event (for regulatory
and adversarial reasons, see Section 2.1) over long windows. To
address this need, we propose Railgun, a novel distributed stream-
ing engine based on low-memory-footprint, disk-backed sliding
windows (an improvement on the sliding windows and SlideM
algorithm [34]) on top of which, we built state-management and
distributed communication layers to fulfill all of the MAD require-
ments. Our contributions are as follows:

(1) We formulate the MAD requirements, supporting why they
are needed in use-cases such as fraud-detection (Section 2.1);

(2) We present our proposal, Railgun, with an overview of the
architecture, components and decisions (Sections 3 and 4);

(3) We illustrate how Flink degrades when small hops are used
to approximate real-time sliding windows (Section 5.1);

(4) We show that Railgun computes real-time metrics over large
windows in an efficient and scalable way (Section 5.2).
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Figure 2: Approaches to manage very large streaming state
to fulfill tail low latency.
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(5) We show that Railgun scales nearly linearly, up to 50 nodes,
even under a load of 1 million events per second, while
respecting our latency requirement at high percentiles (Sec-
tion 5.3).

2 BACKGROUND

A data stream S is an unbounded sequence of events ey, ey, ..., each
with a timestamp. Aggregations over streams are computed using
windows. A window w is a sequence of contiguous events of S with
a certain size ws (defined by a number of events, time interval, or
start-stop conditions as in a user session). In this paper, we focus
on time-based windows, henceforth referred simply as windows.
As time passes, a window over a stream is evaluated often, at a
specific, and changing, timepoint T, ;. T,y determines the events
to include for the aggregations, where an event with timestamp ¢;
belongs to a window evaluation iff T, — ws < t; < T,pq-
Hopping windows are windows where T,,,; changes according
to a step of length s. This step s, or hop, marks when new windows
are created. If s is smaller than ws, then the windows overlap, i.e.,
an event may belong to more than one hopping window!. When s
is equal to ws, hopping windows do not overlap, and events belong
to exactly one window. This case is frequently given the name of
tumbling windows. Step s is generally not bigger than ws.
Real-time sliding windows, or just sliding windows, are windows
where T, is the moment right after a new event has arrived. This
frequent evaluation is computationally expensive as, for each new
event e;, the system has to expire events and (re-)compute aggrega-
tions, but on the other hand, aggregations are always accurate.

2.1 Fraud-detection requires MAD systems

Fraud-detection systems are responsible for, e.g., approve or block
transactions, or raise alarms when money laundering is suspected.
As subcomponents of financial ecosystems, fraud-detection sys-
tems have very strict and demanding requirements, including all
the MAD requirements defined above. It is easy to see why MD are
required. Good customer experience implies a service that replies
almost instantaneously (i.e., with sub 250ms latency at the 99.9%
percentile, M), and which is available at all times even when process-
ing several thousand of requests per second [5] (i.e., that is scalable
and resilient to high-loads and failures, by being distributed, D).

Let’s address accuracy (A) of sliding window aggregations. To
make decisions, modern fraud-detection systems use machine learn-
ing models and rule based-systems, both fueled by streaming aggre-
gations [10]. For instance, queries such as Q1 and Q2 below can be
used to profile the common behaviors of card holders or merchants,
and detect suspicious behavior.

Profiles computed over hopping windows are weaker as they are
vulnerable to adversary attacks. Sophisticated fraudsters use many
techniques to understand the best possible timings, and exploit
attacks to occur at specific times, or follow a specific cadence, taking
advantage of the predictable hop size.

Q1: SELECT SUM(amount), COUNT(*) FROM payments

GROUP BY cardId [RANGE 5 MINUTES]
Q2: SELECT AVG(amount) FROM payments

'Hopping windows are often called sliding windows by systems such as Flink because
they approximate the behavior of real-time sliding windows.



GROUP BY merchantId [RANGE 5 MINUTES]

Example 1: Streaming 5-min metrics per card and merchant.

Additionally, profiles over hopping windows lead to inaccurate
and counter intuitive results, compromising rule compliance - ei-
ther from internal bylaws, or from external regulators. As illus-
tration, consider the following business rule: “if the number of
transactions of a card in the last 5 minutes is higher than 4, then
block the transaction”. If the window is implemented using 1-min
hops, then the situation in Figure 1 can happen: the rule should
trigger on the fifth event since it arrives within 5 minutes of the
first one, but there is no hopping window including all 5 events in
its boundaries using a 1-min hop.

To avoid this, one could argue that the hop could be adjusted to
catch the intended behavior. However, the solution is not a panacea.
First, the problem in Figure 1 can happen regardless of the hop size.
Second, if the hop is reduced to a size where hopping windows
behave almost like real-time sliding windows (e.g., 1-ms or even
1-sec step) then most stream processing engines systems crash or
significantly degrade performance (cf. Section 5.1). This problem
worsens with long windows. Fraud profiles use windows spanning
over days, weeks, months and sometimes years. These include, e.g.,
the number of distinct addresses used in the last 6 months, or the
average user’s expenditure of the past year. As we shall see in
Section 2.2, the performance of hopping windows depends on a
ratio between the window size and the hop size. Hence, the longer
windows are, the lower the precision must be, to achieve the same
performance in terms of CPU, memory consumption and latency.

If streaming aggregations use only hopping windows and have
metrics over long windows, then fraud systems need to use batch
jobs and lambda-architectures [29]. In that case, imprecise but real-
time aggregations are combined with precise but outdated aggre-
gations over complex pipelines which are costly to maintain and
hard to debug. Because of this, a lot of work has been committed
to integrate batch and streaming in the same language and plat-
form [4, 11, 13]. Nevertheless, in these systems, compliance is not
achieved in real-time, limiting the possibility of preventing fraud
from happening, and be restricted to use-cases where a post-mortem
alarm is useful. Real-time 100% compliance (i.e., accurate metrics
per-event, A) is only possible using real-time sliding windows.

2.2 Related Work

The first generation of stream processing engines has risen from
the database community. These include seminal systems such as
STREAM [6], TelegraphCQ [14], NiagaraCQ [16], Aurora [3], and
later, Borealis [2], Coral8 [45], Event Insights [35], Siddhi [44],
Spade [23], Trill [13], Truviso [22], and SAP ESP [53]. While a few of
these systems implement real-time sliding windows [6, 13, 16, 44],
almost all of them run as a single-node (Borealis and Spade are
noteworthy exceptions), and they do not address the aggressive
low-latency requirements we have.

On the other hand, the latest generation of stream processing
engines focus on processing high throughputs under low latency
requirements, by building scalable, fault-tolerant, distributed sys-
tems. Examples of these include Flink [11], Kafka Streaming [18],
Spark Streaming [7], and others [32, 33, 36, 37, 39, 47]. However,
to achieve high levels of performance, these systems need to limit
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what windows are possible. Neither Flink, Kafka Streaming, Spark
Streaming, or to the best of our knowledge, any known, distributed
streaming engine implements real-time sliding windows, restricting
the window slide movement to fixed hops.

So why are hopping windows so largely used? Since the window
size and hop size do not change during run-time, the number of
physical window states active at any given time is fixed and ex-
actly %. This allows streaming engines to do important
optimizations, such as avoiding to store events. Since the number
of active window states is fixed, arriving events can be discarded
once their contribution has been applied to all the active windows
states. Hence, besides saving storage, these solutions also avoid
processing event expiration. As an example, recall Q1 and Figure 1:
the sum and count payments made by a card in the last 5 minutes
with 1-min hop. Any event for this window affects 5 window states,
and in this case, two variables 2 per window state. Every minute
and, for every card active in the last 5 minutes, two new variables
are created and the oldest two, expired.

Since their memory requirements are independent of throughput,
this property makes hopping windows interesting as long as the
% is low. When the ratio is higher, hopping windows
bring extra problems with respect to latency, CPU usage and state
scalability. For instance, a 60-min window with a 5-min hop implies
12 active window states per metric; but if the hop is decreased to 1
second, for the same window size, the number of active window
states becomes 3600. All of which must be updated per arriving
event, and per metric. The situation becomes unsustainable espe-
cially on large windows ranging hours or days, unless the hop is
adjusted accordingly, with severe consequences on the usefulness
of the aggregations computed. The impact of using small hops on
large windows is further explored in Section 5.1.

Despite these drawbacks, hopping windows’ wide usage and
characteristics have driven substantial research and optimizations
such as Cutty [12], Scotty [48] and others [9, 46] that contribute to
its popularity by delivering reduced hardware costs, support for
out-of-order events, and distributed computations of a single query.

Unlike hopping windows, real-time sliding windows cannot dis-
card events and therefore require storing and accessing events. For
each event, metrics must be updated with the events exiting and
entering the window. Since the window slides for every event, and
not just at a specific hop, the optimizations discussed above for
hopping windows are no longer possible.

Flink acknowledges the issue of high-precision metrics over
time windows for low latency fraud-detection, with a customized
solution [21]: for each event, the solution computes each aggrega-
tion from scratch by iterating over all stored events (persisted in
RocksDB) for those matching the window interval. This approach
has quadratic performance, and since Flink was not designed to
store events and manage event expiration, few optimizations are
possible and performance degrades with long windows. Hence, this
solution has much worse performance than Flink’s standard hop-
ping windows (compared in Section 5.1), failing our M requirement.

The interested reader can further explore related issues with
stream processing engines elsewhere [8, 24, 25].

ratio

2one variable for the sum and another for the count
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3 RAILGUN

Railgun is the paper’s main contribution, and takes different design
decisions when compared to the alternatives above: 1) works with
real-time sliding windows to achieve aggregation correctness at
all times (and not just at every hop); 2) uses an event reservoir to
efficiently store and access events under low latency and optimal
memory usage; 3) manages an embedded aggregation store (per-
sisted in RocksDB) for holding aggregation states and auxiliary
data; and 4) takes advantage of a messaging layer (using Kafka) for
distributed processing, fault-tolerance and recovery.

The event reservoir, described in Section 4.1.1, exploits the pre-
dictable, time access pattern of events to optimize transfers between
memory and stable storage, accessing nearly all events from mem-
ory using an eager caching. Plus, by optimizing the computation and
storage of aggregation states, Railgun can deliver accurate results,
per-event, with low latency. This event reservoir is an evolution of
previous work [34]. Here, we use a locally-attached storage in each
Railgun node to minimize latency, a schema registry to support
event schema evolution, and define a data format and compression
for efficient storage, both in terms of deserialization time and size.

To distribute work and achieve scalability, Railgun uses Kafka
topics, further split into (topic, partition). Each stream can have mul-
tiple topics, depending on the combination of the metrics’ group
bys, and each topic has multiple partitions which are distributed
among the several nodes’ processor units. A (topic, partition) maps
to a task in Railgun, and is its minimal unit of work. Inside a task,
we compute all aggregation metrics for a data stream subset, fol-
lowing a task plan optimized to reuse computations. To support
high-availability and fault-tolerance, tasks have multiple replicas,
and a Railgun node processor concurrently handles a set of ac-
tive tasks and a set of replica tasks. In addition, Railgun relies on
Kafka’s consumer group guarantees to ensure that tasks are al-
ways assigned to nodes, and provides a custom rebalance strategy
(see Section 4.2) to optimize task recovery, while safeguarding a
balanced assignment from tasks to nodes.

Railgun delivers event-by-event accurate results, by supporting
real-time sliding windows, while still providing millisecond-level
latencies at high percentiles. As we shall see in Section 5, Railgun
can preserve these consistent tail latency results even when its

scaled to achieve throughputs of one million events per second, and
its performance is independent of the window size.

Railgun’s high-level architecture is presented in Figure 3, show-
ing what happens when an event traverses the system. At this stage,
and to simplify development, all Railgun nodes are equal and com-
posed by layers: a front-end layer to communicate with the client; a
back-end layer to compute aggregations and access storage; and a
messaging layer to handle distribution of tasks, detect failures, and
communication between processor unit workers. This design could
be revised in the future, with different nodes split by function.

3.1 Front-End Layer

The front-end layer is the entry point for client requests, including
events, requests for new metrics/streams, or deletions. Besides com-
municating with the client, the front-end layer distributes events
and manages the overall cluster state (both using Kafka).

When a new stream is registered by the client, the front-end
creates a set of partitioned topics to support it. The number of
topics needed per stream depends on the number of distinct group
by fields of the stream. As further detailed in Section 4, a stream is
mapped to one or more topics to support work distribution across
the several processing units. Hence, when a new event arrives (step
1 of Figure 3), it is the front-end layer responsibility to route events
to all of its topics (step 2). E.g., in case of Example 1 and Figure 3,
to simultaneously publish any event of stream payments to topics
merchant and card, as they are group by aggregations for both
merchantId and cardId (Q1 and Q2 of Example 1).

The metrics of a stream are computed by one or more back-
end instances possibly residing in different Railgun nodes (step 3),
which reply to the node originally posting the event in its dedicated
reply topic (step 4). The front-end is also in charge of collecting the
several computations (step 5) from its reply topic, and responding
to the client with all the aggregations computed for that particular
event in a single message (step 6).

3.2 Back-End Layer

The back-end layer is responsible for the computation of metrics.
Each back-end instance has one or more processor units, each with
its own dedicated thread. A processor unit manages a set of tasks,
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all computed within a single thread, to reduce context switching
and synchronization, thereby optimizing for latency.

Importantly, each processor unit is completely independent of
each other, and two processor units deployed on the same physical
Railgun node are logically equivalent to two Railgun nodes with
one processor unit each. As such, by having many processor units
inside a single node, we can exploit multi-core machines efficiently.
Notwithstanding, and as we shall see in Section 4.2, distributing pro-
cessor units among multiple physical nodes can bring advantages
in terms of fault-tolerance, work rebalance and high availability.

Algorithm 1 Processor Unit Logical Loop

1: while running do

2 processOperationalRequests(requests)

3 activeMessages «— consumerActiveT asks.poll()

4 replicaMessages < consumerReplicaTasks.poll()

5 for message « activeMessages U replicaMessages do
6 t «— message.topic

7 p < message.partition

8 taskProcessor « taskProcessors.get(t, p)

9 answer « taskProcessor.processMessage(message)

10: if (message € activeMessages) then
1 sendReply(answer)

12: end if

13: end for

14: end while

The processor unit duties are listed in Algorithm 1. While run-
ning, the processor handles operational requests (such as adding/re-
moving new streams or metrics); consumes message events for its
assigned (active and replica) tasks; forwards the events to their
appropriate task processors which handle event storage and task
computation; and replies with the computation answer to a dedi-
cated reply topic, for active tasks. Each processor unit is then both
a consumer of event topics (inbound stream events), and a producer
for reply topics (outbound aggregation results).

A task encompasses the computation of all metrics associated
with a given (topic, partition). A (topic, partition) is the unit of work
distribution among nodes and processor units. As we shall see in
Section 3.3, events are routed, consumed and processed accord-
ing to their (topic, partition). Processor units have active tasks, for
which they are the leaders, and replica tasks for which they are hot
standbys. To poll messages from the messaging layer, the processor
unit has two consumers, for each type of task. Separating the con-
sumers allows us to prioritize active tasks, and better exploit Kafka
rebalance protocol and consumer group guarantees (cf. Section 4.2).

Finally, processing message events and computing metrics for
any task happens within a task processor. Each processor unit has as
many task processors as (active or replica) tasks it has assigned, all
computed within a single thread. Thus, while the number of proces-
sors units sets the cluster’s level of parallelism, the number of task
processors in Railgun establishes the cluster’s level of concurrency.

3.3 Messaging Layer

The goal of the messaging layer is many-fold: 1) serve as the commu-
nication layer between different Railgun nodes, including between
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the front-end and back-end layer of the same physical node; 2)
detect Railgun node failures, during the polling of messages; 3) sup-
port the recovery of Railgun node failures, by reliably storing events
and aggregation replies which can be rewinded upon request.

Currently, Railgun uses Kafka [31]. Kafka is a distributed, highly
scalable and fault tolerant messaging system, with high throughput
and low latency guarantees. In opposition to push-based systems
such as RabbitMQ [43], Kafka follows a pull-based approach where
consumers continuously poll for new messages by providing their
individual offset since the last poll. This is important since it allows
a Railgun node to recover by rewinding the stream and replaying
unprocessed messages without degrading the end-to-end latency
of the overall system. Kafka stores messages in topics and provides
built-in capabilities to split topics into several partitions, for higher
throughput and parallelism. As described further in Section 4, Rail-
gun takes advantage of Kafka’s partitions to distribute work among
the several Railgun processor units and their task processors.

Except with the client, all communication happens using Kafka,
and Railgun nodes are, simultaneously, Kafka producers and con-
sumers. Railgun nodes communicate for many reasons: 1) to broad-
cast operational requests triggered by the client, such as creat-
ing/deleting a stream, metric or partitioner; 2) to propagate events
to all of their topics; 3) to share aggregation partial results which
are collected before answering the client; 3) to handle cluster main-
tenance tasks such as node removal/addition and the corresponding
rebalance of tasks in the cluster.

Although we could have chosen any other messaging system (as
long as it implements the same pull-based and partition concepts),
we choose Kafka due to its proven performance, and for provid-
ing us with many features that simplify our development. First,
Kafka is actively monitoring what consumers enter or leave the
cluster, requiring every consumer to send heartbeats periodically
and assuming consumer failure, otherwise. Therefore, whenever
the consumer landscape changes, Kafka detects this and, at step 3 of
Algorithm 1, triggers a callback to rebalance the cluster. At this mo-
ment, Railgun’s assignment strategy (described in Section 4.2) takes
over, e.g., to decide how to reassign the multiple (topic, partition) -
or tasks — of a failed node.

Second, in Kafka, consumers can be organized in consumer groups,
to allow load distribution among a group of several consumers, with
important guarantees. Namely, by design, Kafka ensures that there
is exactly one consumer within a consumer group subscribing and
consuming messages from a (topic, partition). We take advantage of
this property to ensure that there is exactly one processor actively
responsible for a task, by configuring all Railgun active task con-
sumers to belong to the same consumer group. On the other hand,
replica task consumers all have different consumer groups to enable
multiple Railgun processors to subscribe to the same (topic, parti-
tion). Therefore, we ensure high-availability by having multiple hot
replicas available in the cluster.

Finally, we ensure exactly-once semantics by combining Kafka’s
at-least-once guarantees, with an event deduplication logic on the
application back-end layer (see Section 4.1.1).



3.4 Railgun Operators

Railgun’s language is summarized on Figure 4. We support SQL-
like query statements, where each statement can include multiple
aggregations over a single stream.

Currently, Railgun does not natively support stream joins. In
practice, we implement joins (e.g., between a stream and a lookup
table) prior to the streaming engine, in an enrichment stage.

Besides sliding and tumbling windows, we support infinite win-
dows, i.e., windows where events never expire (e.g., the count of
all distinct addresses of a client). Any window can be delayed,
i.e., where instead of considering the window against the latest
arriving event, we can delay its starting by a specific delay offset.
Delayed windows are especially useful in bot-attacks scenarios. We
choose not to support hopping windows, since we see them as an
approximation of our sliding windows. In practice, we never found
a use-case where hopping windows are functionally preferable to
sliding windows. Although, at this time, we only support time win-
dows, the system could be easily extended to support windows
whose size is based on the number of event.

Finally, we use jexel expressions [17] as our filter expression
language to support additional flexibility, using Java.

4 COMPUTATION AND DISTRIBUTION

The (topic, partition) combinations affect how work is distributed
among the several Railgun nodes, and processor units. Each data
stream has a topic for each configured top-level entity, which we
call partitioner. For instance, Figure 3 shows two topics for two
partitioners - merchant and card - over the same payments stream
(corresponding to the group bys for merchantId and cardId of
Example 1). Currently, the set of partitioners is manually provided
by an administrator when a stream is created, depending on the
possible group bys of the metrics. Since computation is contained
within a task processor, to provide accurate metrics, we need to
ensure that whenever a task processor is computing a metric for
an entity (e.g., of a particular card, or merchant), it receives all that

SELECT AggExpression FROM streamName
WHERE filterExpression

GROUP BY fields

OVER WindowExprESSION

AggExpression ::= Aggregation (field) |
Aggregation (field), AggExpression

Aggregation ::= count |
sum |
avg |
stdDev |
max |
min |
last |
prev |

countDistinct

WindowExpression ::= TimeWindowExpr |
TimeWindowExpr delayed by offset

TimeWindowExpr ::= sliding windowSize |
tumbling windowSize |
infinite

Figure 4: Railgun Operators.
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entity’s events. As a result, metrics with multiple group bys over
a stream, as in Q1 and Q2 of Example 1, may cause the event to be
forwarded to more than one topic (step 2 of Figure 3). Events are,
in fact, replicated as many times as the number of partitioners (i.e.,
top-level group bys such as cardId or merchantId) needed for a
stream, resulting in a few topics per stream.

Notwithstanding, the number of topics needed is usually small,
and it is not necessarily equal to the number of distinct group by
keys of all stream metrics defined (which could lead to dozens of
topics). Accurate metrics, only need events to be hashed by a subset
of their group by keys. E.g., two metrics, one grouping by card
and merchant, and the other by card, could both use topic card.
This reduces Kafka’s storage, and thus the front-end receives, from
configuration, the partitioners for a given a stream upon stream
creation. Partitioners can also be set after a stream is created, but
this causes the creation of new (topic, partition) and a consequent
cluster rebalance, which can be an expensive operation. However,
and as we shall see in Section 4.2, our rebalance strategy is sticky,
i.e., it preserves task assignment to their previous processor as
much as possible. As a result, the processing of the existing (topic,
partition) of the cluster is generally unaffected when a rebalance
is triggered for adding new topics. Plus, adding a new partitioner
is done only when a new top-level group by is needed which, in
practice, is rarely required after a stream is created.

Finally, a partition is a Kafka concept that further allows us to
distribute work among several consumers (i.e., processor units).
For partitioning, Kafka allows producers to provide a key when
publishing a message, which is hashed according to the number of
partitions defined for a topic. When a key is provided, it is guaran-
teed that messages with the same key will always be delivered to
the same (topic, partition). In Railgun, we configure the message
key for each topic to be the partitioner. When a new event arrives
for a stream, the front-end layer node receiving the event publishes
as many messages as partitioners defined for that stream.

The number of partitions for each topic is defined according to
the expected load of each stream-partitioner. Recall that the (topic,
partition) is the minimal work unit, and the distinct number of
(topic, partition) establishes the number of task processors created
in Railgun, where each task processor handles a single pair of
(topic, partition). Hence, by increasing the number of partitions,
we increase the cluster’s level of concurrency. As described, by
exploiting Kafka’s guarantees over consumer groups, we ensure
there is exactly one active task processor for each existing (topic,
partition). However, to support high-availability, the number of
task processors is multiplied by the replication factor. If there are n
distinct (topic, partition), and r is the replication factor, there are
exactly n X r task processors working in the cluster.

4.1 Task Processors

The computation of all metrics for a given (topic, partition) en-
capsulates a task, which is done within a task processor. Each task
processor is designed to share nothing, and work independently
of other task processors, without the need to synchronize or ac-
cess shared storage. To support this, each task processor is further
composed of: an event reservoir that stores its own events; a state
store holding aggregation states of each configured metric; and an



execution task plan - i.e., a directed acyclic graph (DAG) defining
how metrics will be executed.

4.1.1  Event Reservoir. The event reservoir is a structure that stores
all the events of a task processor, and allows efficient access of the
events as they are needed by windows to update the aggregations.
The event reservoir is an evolution of previous work [34], and has
two parts: a very small memory part holding the tail and head of
each window, and a potentially large part stored in the node’s local
disk holding the full set of events.

Processing an event starts with the event reservoir, where events
are persisted to and loaded from disk as needed. Before persistence,
events are serialized and compressed into groups of contiguous
chunks. Grouping events into chunks helps to reduce the num-
ber of I/O operations needed. In a reservoir, all I/O operations are
asynchronous, to not affect event processing latency. Chunks hold
multiple events and are kept in-memory until they reach a fixed
size, after which they are closed, serialized, compressed, and per-
sisted to disk over ordered and append-only files. Similarly, files
hold multiple chunks of events, until they reach a fixed sized, af-
ter which they become immutable. Since files are immutable and
events follow a monotonic order given by their timestamp, we can
efficiently support random reads by maintaining an auxiliary index
in-memory, from timestamps to files. Supporting random reads is
especially useful when adding metrics with new windows to the
system.

Since chunks are frequently persisted to disk, recovery is sim-
plified, as only the most recent events can be lost, and quickly
recovered from Kafka broker nodes.

Out-of-order events are supported until the closure of a chunk,
i.e., aslong as the event timestamp occurs after the last closed chunk
timestamp. After that moment, and depending on the configuration,
events are either discarded, or have their timestamp rewritten to
the first timestamp of the chunk. For scenarios requiring extensive
support for out-of-orders events, we can delay the chunk closure
by a time period provided by configuration. This keeps chunks in a
transition state in-memory for a threshold period, on which they
are closed for recent event, but are still open for late events. In a
way, this configuration can be seen as a watermark [49], which
should be used with care, as it may cause an increased memory
consumption, and recovery delays. However, since latency is a
prime goal of our system, we might delay the closure of a chunk,
but we never delay the answer and computation of event metrics,
as opposed to systems such as Spark Streaming or Flink. Events are
also deduplicated based on an id, against the chunks still in-memory,
to avoid processing an event more than once.

The reservoir takes advantage of the predictable event consump-
tion pattern in stream processing where events are always con-
sumed by their timestamp order, by advancing windows. Namely,
the reservoir provides very efficient iterators which transparently
load chunks of events into memory as they are needed by win-
dows. Iterators eagerly load adjacent chunks into cache when a
new chunk is loaded from disk, and starts to be iterated. Hence,
when a window needs events from the next chunk, the chunk is nor-
mally already available for iteration. Notwithstanding, if for some
reason, chunks are evicted from the application cache right before
they are requested, thus resulting in syscall to fetch them from disk,
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|:| closed chunk being iterated by the Tail

[] closed chunk in disk

Figure 5: Iterators for a Window in Event Reservoir.

the request will likely not trigger an actual read request to disk.
Since chunks are organized as a sequence in a file, the operating
system I/O will likely already read ahead the chunk contents into
page cache. Thus, when a chunk not in cache is requested, it is likely
delivered from the OS page cache, paying only the deserialization
cost — a fraction of what it would be if an actual I/O request to
disk was required. This predictability helps us relax the hardware
demands for the reservoir tremendously, as even for low latency
scenarios, we can use a network-attached storage or HDDs, instead
of holding all events in memory, which significantly reduces the
total cost of ownership.

Along with a reservoir, we keep a Schema Registry to support
schema evolution of events. Before persisted, chunks are serialized
using a specific events’ schema and stored referencing their current
schema id. Each time the event schema changes, a new entry is
added to the schema registry, and the current schema id reference
is updated. Whenever we need to deserialize a chunk with an old
schema, we just retrieve it from the schema registry. Chunks are
also compressed aggressively to guarantee a good compression
ratio. This is important to minimize storage overhead, since events
can be replicated across multiple task processors.

Regardless of the window type and window size, only a tiny
fraction of events need to be kept in-memory, as illustrated by
Figure 5. By default, each window has two iterators — one for the
head of the window (incoming events), and another for the tail
(expiring events) — and each iterator only needs one chunk in-
memory>. Whenever possible, we reuse iterators among windows.

3However, due to eager caching, more chunks may be in-memory.



For instance, over the same reservoir, two real-time sliding windows
always share the same head iterator (e.g., a 1-min and a 5-min sliding
window share the same head iterator, which points to the most
recently arrived event). This design makes the reservoir optimal
for I/O [41], and extremely efficient for long windows. Namely, and
except for the extra storage needed (minimized by compression
and serialization), windows of years are equivalent to windows of
seconds - in performance, accuracy, and memory consumption.

4.1.2  Task Plan. The task plan is a DAG of operations that compute
all the metrics of a task, following the order: Window -> Filter —>
Group By —-> Aggregator. Since we often have metrics sharing the
same Window, Filter, and Group By operators, the plan optimizes
these by reusing the DAG’s prefix path.

Group By
(merchant)

Figure 6: Plan DAG of Example 1.

Figure 6 shows the DAG of Example 1. In it, all metrics share
the same window, but Q1 groups by field card while Q2 by field
merchant. Optimizing the DAG to reuse operators prevents us from
repeating unnecessary computations, especially ones related with
windows. Every time a plan advances time, the Window operator
produces the events that arrive and expire, to the downstream oper-
ators of the DAG. However, to make these optimizations, we restrict
Railgun’s query expressibility to follow a strict order of operations,
defined in Section 3.4. This is in contrast to general solutions such
as Flink or Spark Streaming, which provide a more flexible API,
harder to optimize.

While the roots of the DAG iterate over the reservoir and push
events downstream, the leafs (i.e., Aggregator operators) use the
state store to keep and access the results of the aggregations.

4.1.3  State Store. Similar to other streaming engines such as Flink,
Railgun uses RocksDB [20] to store, for each metric key value, the
latest aggregations results and auxiliary data. Built on top of LSM-
trees [38], RocksDB has proven to be a reliable, memory efficient
and low latency embedded key-value store.

The amount of RocksDB keys, and their access pattern is tightly
related with the task plan. Namely, each key represents a partic-
ular metric entity in a plan, and the amount of keys accessed per
event match the number of DAG’s leaves of a plan. For instance,
for each event, the plan of Figure 6 will access exactly two keys
for the card aggregations (sum and count), and one key for the
merchant (amount). Each key holds the aggregation current value
for the specific window and the specific entity. Depending on the
aggregation type, auxiliary data might be stored with the aggre-
gation. For instance, an average requires storing also a counter,
while a sum or a count, do not require any extra data other than
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the current value. Additionally, max and min store a deque struc-
ture [30], the stdDev stores the three parameter to compute the
Welford’s online algorithm [50], whereas the countDistinct uses
an auxiliary column-family in RocksDB to hold the counts.

To support fault-tolerance, RocksDB provides checkpointing,
which forces the flushing of all data in-memory to disk. However,
by design, even without checkpoints, RocksDB data is only kept
in-memory for a short period of time, and is frequently persisted
to disk. This makes checkpoints very efficient, since only a small
amount of data needs to be written to disk, at a given time. We
synchronize checkpoint triggers among the event reservoir and the
state store, and references to the latest event checkpoint offset of
each task processor and node are frequently stored in a dedicated
Kafka topic, which allows us to ensure that both stores can be easily
recovered during a failure.

4.2 Rebalance and Recovery

The assignment of tasks to nodes and processor units is triggered
during a Kafka rebalance, which happens whenever nodes or tasks
are added/removed from the cluster.

As previously mentioned, Kafka tracks consumers within each
consumer group to guarantee load distribution and message deliv-
ery. Kafka consumer group protocol ensures each (topic, partition)
has exactly one consumer assigned in a group. In particular, it is im-
possible to have a (topic, partition) assigned to multiple consumers
of the same group, and if there are more consumers in a group
than (topic, partition) combinations, a consumer might not have
any (topic, partition) assigned. To achieve this, Kafka is continually
tracking what consumers are registered for a consumer group, and
is actively receiving heartbeats for each consumer. When a con-
sumer enters or leaves (either due to a failure or graceful shutdown)
a Kafka consumer group, a rebalance happens.

When a rebalance is triggered, one of the Railgun nodes (the
consumer group coordinator) decides how (topic, partition) pairs
are distributed among each consumer. While Kafka makes available
several different strategies to assign (topic, partition) to consumers,
Railgun uses a custom assignment strategy, built upon Kafka’s
sticky assignment implementation. The assignment strategy logic
is shown in Figure 7 and is split into two main assignments: active
tasks, and replica tasks.

Recall that a task maps to a specific (topic, partition), and that
consumers (located within processor units) can have tasks assigned
as active and as replicas. This distinction between active and replica
tasks has more to do with Kafka consumer groups, than with com-
putation. A processor unit will process messages from both active
and replicas, and compute their aggregations in the same way. The
only difference is that messages from replica tasks will not trigger
a response from the processor, since this responsibility is exclusive
of active consumers. While active consumers share the same con-
sumer group, replica consumers have different consumer groups
from active and other replica consumers. This allows us to assign a
(topic, partition) to a single active consumer in the cluster, but also to
multiple replica consumers, simultaneously. Since both active and
replicas tasks consume messages from the same (topic, partition),
they always consume them on the same order, ensuring consistency
on the reservoir and metric state store for the several replicas.



Achieving a perfect assignment of tasks is an NP-complete prob-
lem as it implies solving a search over multiple-goals [28]: 1) min-
imize recovery time by minimizing data shuffling; 2) respect the
cluster balance for active/replica tasks; 3) distribute the load fairly
among the processors. In practice, our assignment strategy logic,
shown in Figure 7, implements a greedy approach that always pro-
tects two invariants: 1) tasks are only assigned to a physical node
once; 2) the load respects a predefined processor budget.

The first invariant aims to avoid the loss of multiple task copies
when a node fails, or it is decomissioned. Hence, while metric com-
putation within each task processor is agnostic to where processor
units are located, the assignment strategy is not. Consequently, the
strategy takes as input the locality of each processor, to ensure that
a physical node will never be assigned the same task twice during
the same a rebalance iteration assignment.

Another constraint relates with how load is distributed among
the several consumers. To ensure that load is fairly distributed
among the cluster, for each assignment, the strategy sets the max-
imum budget of each processor unit as: budget = 1#(%.
Each time a rebalance is triggered, the available budget of a node is
reset to this value. Whenever a task is assigned to a processor, the
available budget of a node is decremented by 1. When its budget
reaches 0, the processor can no longer receive assignments. At this
stage, we consider all tasks as equal, however, in the future we
might want to give tasks a different weight, depending on their
computational cost (viz., partition load, event reservoir size, etc.).

To ensure these two invariants, upon each new rebalance itera-
tion assignment, the group coordinator collects cluster metadata to

Active Tasks Assignment
For each unassigned active task

Try to Assign to
Previous Active
Processor

rebalance
—_—

Try to Assign to
Previous Replica
Processor

Continue...

Try to Assign to g yes
Previous Stale assigned?
Processor

no

Assign to Least ’
Loaded Processor

f Replica Tasks Assignment \
For each unassigned replica task

Try to Assign to
Previous Replica
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Continue...

Assign to Least
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Figure 7: Railgun Sticky Assignment Strategy.
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understand how many tasks, physical nodes and processor units
exist, and how processors are located within each physical node.

Regardless of the task’s type, the goal of the sticky assignment
strategy is to avoid data reshuffling as much as possible, while
respecting the two invariants above. Therefore, the first step of the
algorithm is to always try to maintain the task in the consumer
that had the task in the previous iteration. An assignment might
fail, if we violate one of the two invariants.

Active tasks that can not be kept in the same processor will
be attemptedly assigned to a processor previously holding one of
its previous replica tasks. If more than one processor replica is
available for assignment, we choose the one with the least load.
If a task cannot be assigned to a processor replica (because of the
conditions mentioned above), we will try to assign the task to a
processor that still has the task as stale. A stale task is a task for
which the processor used to be assigned in the past (either as active
or replica), but lost its assignment during a rebalance. In other
words, processors with stale tasks are processors that still have
data “leftovers” available for that task. Hence, assigning a task to
one of its stale processors, only requires recovering a subset of the
data, instead of the whole data. Again, in case of ties, we choose
the processor with the least load. In the future, we might consider
to give priority to the processor that has more data available (i.e.,
the processor that needs less data shuffle to recover).

Lastly, if none of the assignments is possible, we simply assign
the task to the consumer with the most available budget.

This assignment strategy, in combination with a replication fac-
tor, allows us to achieve high-availability. When a node fails and
a rebalance is triggered, active tasks are always the first tasks as-
signed, maximizing the probability to be allocated in nodes already
holding that task. In this case, the processor does not need to recover
any data and the task is recovered immediate.

When a task is assigned to a processor that was not actively
processing it before (either as active or replica), a recovery process
happens within that processor, which might affect these tasks’
immediate availability. However, since we prioritize the assignment
of active tasks over replicas, this is extremely unlikely to happen
for active tasks. As usual, the replication factor is set according
to the number of failures we want to tolerate before affecting a
task’s availability. In practice, in most of our deployments we use a
replication factor of three.

To perform recovery, the processor triggers a request to another
processor unit that still has data available - to copy the event reser-
voir, the state store, and the last event offset since its last checkpoint.
After data is transferred, the processor starts its execution by con-
suming messages from Kafka since the last checkpointed offset.
Importantly, a processor with stale data, only needs to copy the
delta between its own last checkpoint and the newest checkpoint
available in the cluster, thereby minimizing the time to recover.

5 EXPERIMENTS

To validate our approach we present three experiments, in order
to: 1) measure how Railgun’s real-time sliding windows compare
with the performance of Flink’s hopping windows; 2) assess how
Railgun’s latencies are affected with different window sizes and



a growing number of windows; 3) measure how Railgun can be
scaled to handle more load by adding more nodes to the cluster.

All of our experiments focus on tail latency, i.e., the latency of the
system at the high percentiles of latency distribution. Tail latency
measures how stable and consistent a system is, and it is one of
our core Service Level Objectives (SLOs) contractualized with our
clients. Addressing tail latency is hard for multiple reasons. First,
tail latency is very hard to debug, as it can be affected by multiple
types of resources, either individually or by its combination, includ-
ing disk storage differences, garbage collector configurations, or
network bandwith. Second, in a distributed setting, tail latency is
impacted by its slowest component [19], which in our case could
mean the slowest Kafka broker, or the most loaded Railgun proces-
sor responsible for a larger data partition.

To make our experiments representative, in all three of them
we used a real fraud dataset from one of our client. This dataset
includes 103 fields, and with it, we aim to simulate real-world
dictionary cardinalities for the aggregation states, and the expected
load differences among the several Railgun processors.

In all of our experiments we have one or more injectors produc-
ing events to a single Kafka input topic (for computing metrics over
a single group by over one stream) at a sustained throughput. Each
computing node consumes events from the input topic, computes
the several aggregations, and sends the results to the injector’s
dedicated reply topic. Latencies are measured by the injector based
on the reply message time. Le., we compute the end-to-end latency
since the injector sends the message to Kafka, until the moment
it consumes from Kafka the aggregations response. As such, this
latency includes the network time, the communication overhead
using Kafka, and the processing time of the Railgun (or Flink) com-
puting node. These latencies are corrected to take into account the
coordination omission problem [26].

The first two experiments (Section 5.1 and Section 5.2) aim to
validate several of our design decisions, and have a simpler setup.
For these, we use 3 m5.2xlarge AWS instances, with 8 vCPUs, 32GB
of RAM, using only EBS storage. We use Kubernetes to deploy 1
Kafka pod (with Zookeeper), 1 injector, and 1 computing engine
— either Railgun or Flink (v1.11.0) — with a JVM heap of 10GB all
in separate VMs (by using Kubernetes anti-affinity rules). We use
two Kafka topics — one to publish events with 10 partitions; and
another to consume responses with 1 partition. Since we only use
one Kafka node, replication is set to 1. In both these experiments
the throughput is fixed at 500 ev/sec.

For the third experiment (Section 5.3), we simulate a more real-
istic scenario with multiple Railgun nodes and Kafka brokers. For
this, we use multiple m5.4xlarge AWS instances, with 16 vCPUs,
64GB of RAM, with only EBS storage. Again, we use Kubernetes
with anti-affinity rules to deploy multiple injector nodes, 30 Kafka
brokers, and between 1 and 50 Railgun nodes - each with a JVM
heap of 32GB - all in separate VMs. In all runs of this experiment,
each Railgun node is configured with 8 processor units. Injectors
publish events to a single topic, configured with a number of par-
titions that match the number of Railgun consumers of each run,
viz., # processor units X # Railgun nodes. In this case, Kafka repli-
cation is set to 3, and the injectors are configured with ack=all to
ensure delivery guarantees. We have one reply topic dedicated to
each producer with 6 partitions. For aggregation replies, since they
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are usually discarded by the upstream systems if the reply arrives
after our latency requirements, we set the topic replication to 1.
In opposition to the previous two experiments, here we vary the
injection throughput rate from a minimum of 25 thousand ev/sec to
a maximum of 1 million ev/sec, according to the number of Railgun
nodes in the cluster.

5.1 Comparing Flink with Railgun

On the first experiment we show the limitations stemming from
using hopping windows, as described in Section 2.2, and how they
compare with Railgun’s real-time sliding window. For this, we chose
Flink as it is one of the most performant [15, 27] and widely-used
stream processing systems, and the closest to our functional needs.
As mentioned above, we use a single-node deployment for this
experiment. The goal is to more fairly compare Railgun with Flink,
using a simple setup, where, under a sustained throughput of 500
ev/s, we compute a single metric — the sum(amount) per card over
a 60-min window. In Railgun we use a 60-min real-time sliding
window, while for Flink we use hopping windows, and vary their
hop size from 5 minutes to 1 second. Our goal is to show how
Flink latency distributions behave when we attempt to approximate
hopping windows to sliding windows. All experiment runs are of
35 minutes, where the first 5 minutes are for warmup, and ignored
for latency purposes. To optimize Flink for latency rather than
throughput, we set Flink’s Kafka Client to use a batch timeout of 0.
The results are shown in Figure 8, where we include Railgun’s
latency for the same query using its real-time sliding window.

Latency (ms)
100,0
Flink Hop Sizes
5s

Railgun

Percentile

Figure 8: Distribution of Flink’s latencies using hopping
windows vs. Railgun’s latencies using real-time sliding win-
dows, at a fixed throughput of 500 ev/sec.

5.1.1 Discussion. Figure 8 shows how Flink latencies are affected
when we increase the hop’s granularity, i.e., when we increase the
accuracy of the hopping window. Clearly, in this setup, with hops
of 10s or less, Flink is unable to keep with a 500 ev/s throughput.
Furthermore, recall that in most of our setups, we are required
to score events in less than 250ms in the 99.9% percentile (cf. M
requirement of Section 2.1). For those, we need hops of at least 1
minute, which would severely compromise accuracy, and violate
rules for our clients (cf. A requirement of Section 2.1). We would



expect that with larger hops, e.g., at 10-min, or 30-min hops, Flink
would have lower latencies than Railgun, but those hops would pro-
duce even bigger aggregation inaccuracies. Railgun solves all these
MAD requirements by using real-time sliding windows, accurate
for every event, with lower latencies than Flink on all percentiles,
on all windows using 1-min hops or less.

5.2 Scaling Railgun Windows

In our second set of experiments, we aim to demonstrate how
Railgun performs when we scale the size of the window, and the
number of windows, within a single machine. For this we designed
two different experiments. For the first experiment (a), we aim to
show our claim that the window length is irrelevant for Railgun’s
performance. For that, we compute the same metric as in Section 5.1,
but vary the window size from 5 minutes to 7 days. Since our
experiment runs are of 35 minutes (with 5 minute of warmup), and
our largest window has 7 days, we start these experiments after a
data checkpoint load, to ensure that windows are always iterating
events for both its head and tail iterator.

For the second experiment (b), we compute three different met-
rics: sum, average and count, over the amount field grouped by
card. Then, we vary the number of windows on which we com-
pute these three metrics, to enforce a different number of reservoir
iterators. Recall from Section 4.1.1 that a reservoir iterator is what
hold event chunks in-memory for a given window. As depicted in
Figure 5, normally, each iterator will hold two chunks in-memory.
The window’s head iterator, receiving incoming events, holds the
open chunk on which new events are being appended, and might
still hold one* closed chunk which is being written to disk asyn-
chronously. Likewise, the window’s tail iterator, iterating over the
window’s expiring events, necessarily holds the current chunk be-
ing iterated in-memory, and if possible, preemptively requests the
following chunk to be loaded in the reservoir cache. Chunks might
not be loaded if the reservoir cache is full. This might happen, if
there are many iterators simultaneously reading reservoir chunks.
Accessing a chunk not from cache can cause tail latency spikes. In
the best scenario, these chunks are in the OS page cache and we
only pay the cost for decompressing and deserializing. In the worst
case, we also pay the full I/O seek cost.

The number of unique iterators depends on the number of win-
dows configured in the system and how they are aligned. When
two windows are aligned, either at the beginning or at the end,
they share the same iterator. As such, for experiment (b), we force
iterator misalignment by using windows with different window
sizes and window delays. Namely, to vary from 20 to 240 iterators,
in this experiment, we vary from 10 to 120 misaligned windows.

The results from both experiments can be seen in Figure 9.

5.2.1 Discussion. On experiment (a), we clearly show that the win-
dow size is irrelevant to Railgun’s latency performance. This is
expected since for any window we have two iterators, indepen-
dently of the window size. Additional benchmarks have shown us
that variations in the higher percentiles (i.e., >99.9%), are due to
Kafka communication, rather than Railgun (and something that

“more closed chunks might still be in-memory, if the reservoir is configured for

extensive support of out-of-order events, or if there is contention on the disk I/O.
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Figure 9: Distribution of Railgun’s latencies when scaling
the window size and the number of windows, within a single
machine, at a fixed throughput of 500 ev/s.

also affects Flink in Figure 8). Hence, in some runs we have 150ms
in 99.99% percentile, while in others 75ms.

For experiment (b), we show that as long as the iterators can
retrieve the next chunk from cache, the impact on latencies is almost
irrelevant. Each iterator requires a chunk in-memory, and, in this
experiment, we used 220 chunk elements in Railgun’s cache. This
means that for most values used in this experiment (viz. between
20-210 iterators), whenever the iterator requests the next chunk, it
is already available for iteration in the cache. Hence, we only start
to see some latency degradation when we have almost the same
elements in cache as the number of iterators, i.e., when we increase
the probability of a cache-miss. On the run where we have 240
iterators, we also start to see Garbage Collection (GC) problems due
to memory pressure, which then leads to higher latencies. This is as



expected since the actual heap usage is very close to the maximum
JVM heap (10GB).

5.3 Scaling Railgun Nodes

In the last set of experiments, we aim to demonstrate how Railgun
scales to address higher throughputs in multi-node setup, while still
respecting our target Msec latency requirement at high percentiles
(<250ms @ 99.9%). Here we compute the same three metrics: sum,
average and count of amount field grouped by card over a 5-min
window, and configured Railgun node to process as much load as
possible, in a sustained way, without breaching the M requirement.
For these machines (AWS mb5.4xlarge with 16 vCPUs and 64GB
of RAM) we found the best performance using 8 Railgun proces-
sors per node and a JVM heap of 32GB (to take best advantage
of compressed object pointers [40]), where we could comfortably
handle loads of 25 thousand ev/sec. Afterwards, we set our target
to 1 million ev/sec, and increased our Railgun nodes gradually to
achieve this target. The results are shown in Figure 10.
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Figure 10: Evolution of the average throughput per node,
when varying the throughput from 25 thousand ev/sec to 1
million ev/sec, and the number of nodes from 1 to 50.

5.3.1 Discussion. On this experiment, we show that Railgun scales
almost linearly, where we only start to see some small degradation
with 35 nodes at a combined throughput of 750 thousand of ev/sec.
Our target load of 1 million ev/sec can be achieved using a Railgun
cluster with 50 nodes, where each node is processing, on average,
20 thousand ev/sec.

When analyzing this experiment results for a single node, we un-
derstood that our main bottleneck when handling these high loads
is memory pressure and GC performance. Namely, at 25 thousand
ev/sec, we are creating objects at a rate of about 5GB/sec. Although
our heap of live objects occupies less than 7GB, at this creation
rate, the GC struggles to keep up. To achieve higher throughputs
per node we need to change our system to use off-heap memory
management optimizations, as frequently done in other streaming
engines [42, 51, 52]. Moreover, when scaling the cluster with multi-
ple nodes, we start to see a bottleneck in Kafka, probably caused by
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the increased number of partitions needed to support the concur-
rent consumption of messages from the multiple nodes’ processors.
This is something to be improved in the future with a more careful
tuning of Kafka configurations, and broker setup.

6 CONCLUSIONS

In this paper we propose Railgun, a novel distributed streaming
engine that supports aggregations over real-time sliding windows,
while providing crucial non-functional requirements: high through-
put, tail low latency, horizontal scalability and fault tolerance.

One of Railgun’s most important enablers is the event reservoir.
Since accurate metrics require considering all events, the reservoir
efficiently persists them to disk, while fetching chunks of events
ahead of time as they are needed by windows. This allows Railgun
to support time-windows spanning years with the same memory
usage as windows of seconds. To reduce storage costs, the reservoir
uses cheap local HDDs or network-attached disks, and exploits the
events’ immutability to aggressively compress and serialize them.

Another central piece of Railgun’s performance is how it takes ad-
vantage of Kafka to achieve a distributed, scalable and fault-tolerant
system. In particular, we use the concept of (topic, partition) to dele-
gate tasks among the several Railgun processors and exploit Kafka
consumer’s group guarantees to safeguard tasks assignment to a
Railgun processors. Finally, to optimize recovery, we also provide a
custom rebalance assignment strategy that minimizes data shuffle
and maximizes load distribution across the cluster.

Railgun is still under development, and some work lies ahead
to validate some components of our design. Namely, we need to
certify that: 1) rebalance and recovery can be done respecting our
latency requirements over the 99.9 percentile, especially when a
task is assigned to a processor that has no previous data for that
task; 2) we can efficiently support metrics backfill, i.e., the ability
to add a new metric and fill it from old event data.

Although still a prototype, our experiments provide sound prom-
ises for Railgun. Particularly, we show that Railgun has lower laten-
cies per event than Flink, even when Flink is configured for a low
metric accuracy (e.g., a 5-min hop size for a 60-min window). In
addition, we show that our performance is unaffected by the win-
dow size, and that Railgun scales reasonably well with the number
of windows and metrics, as we are able to prevent I/O calls on the
critical path of event processing, by pro-actively loading reservoir
chunks into memory, ahead of time.

Lastly, we demonstrate that Railgun can scale nearly linearly
and process throughputs of million of events per second. Surely,
there are many streaming engine systems achieving higher through-
puts per node than Railgun, including Flink [11], Spade [23], Kafka
Streaming [7] or Spark Streaming [7]. However, to achieve it, these
systems have to degrade latency at high percentiles, or make sig-
nificant compromises on sliding window aggregation precision. To
the best of our knowledge, Railgun is the first distributed streaming
engine able to deliver accurate real-time sliding window aggrega-
tions, with millisecond-level latencies at high percentiles, thereby
making it the first of MAD systems.
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