
SpeakNav: Voice-based Route Description Language
Understanding for Template-driven Path Search

Bolong Zheng
1
, Lei Bi

1
, Juan Cao

1
, Hua Chai

2
, Jun Fang

2
, Lu Chen

3
, Yunjun Gao

3

Xiaofang Zhou
4
, Christian S. Jensen

5

1
Huazhong University of Science and Technology,

2
Didi Chuxing,

3
Zhejiang University,

4
Hong Kong University of Science and Technology,

5
Aalborg University

bolongzheng@hust.edu.cn,leibi@hust.edu.cn,juancao@hust.edu.cn,chaihua@didiglobal.com

fangjun@didiglobal.com,luchen@zju.edu.cn,gaoyj@zju.edu.cn,zxf@cse.ust.hk,csj@cs.aau.dk

ABSTRACT
Many navigation applications take natural language speech as input,

which avoids users typing in words and thus improves traffic safety.

However, navigation applications often fail to understand a user’s

free-form description of a route. In addition, they only support in-

put of a specific source or destination, which does not enable users

to specify additional route requirements. We propose a SpeakNav

framework that enables users to describe intended routes via speech

and then recommends appropriate routes. Specifically, we propose a

novel Route Template based Bidirectional Encoder Representation

from Transformers (RT-BERT) model that supports the understand-

ing of natural language route descriptions. The model enables ex-

traction of information of intended POI keywords and related dis-

tances. Then we formalize a template-driven path query that uses

the extracted information. To enable efficient query processing, we

develop a hybrid label index for computing network distances be-

tween POIs, and we propose a branch-and-bound algorithm along

with a pivot reverse B-tree (PB-tree) index. Experiments with real

and synthetic data indicate that RT-BERT offers high accuracy and

that the proposed algorithm is capable of outperforming baseline

algorithms.

PVLDB Reference Format:
Bolong Zheng, Lei Bi, Juan Cao, Hua Chai, Jun Fang, Lu Chen, Yunjun Gao,

Xiaofang Zhou, Christian S. Jensen. SpeakNav: Voice-based Route

Description Language Understanding for Template-driven Path Search.

PVLDB, 14(12): 3056 - 3068, 2021.

doi:10.14778/3476311.3476383

1 INTRODUCTION
Due to the prevalence of GPS-equipped devices, navigation appli-

cations are used frequently by people as they travel as part of their

daily lives. Traditional navigation applications use a keyboard or a

touch pad to obtain input, requiring users to take their eyes off the

road and hands off the wheel, which can be dangerous when driving.

In contrast, voice-based human-machine interaction enables drivers

to better focus on driving, thus decreasing traffic accidents. Over

the past decades, mature speech recognition engines have been

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 12 ISSN 2150-8097.

doi:10.14778/3476311.3476383

Route description
language understanding

Template-driven
path querying

Find a route where … , then
proceed about eight kilometers
to a university, and finally go
five kilometers to reach an arts
center

Figure 1: The Components of SpeakNav

developed that convert speech into text. However, it remains chal-

lenging for existing voice-based navigation systems to understand

free-form natural language descriptions of desired route proper-

ties. Thus, users still need to provide speech input according to

designated sentence patterns; otherwise, existing systems fail.

The increasing availability of point of interest (POI) data pro-

vides an opportunity to enable users to describe locations when

retrieving desirable routes using navigation applications. In con-

trast, existing applications typically support only input of a single

source or destination and do not support the specification of addi-

tional desired route properties. We aim to support use cases such

as the following: a user wants to retrieve the route to a restaurant

with a theater within walking distance, so that the user can watch

a show after dinner. We also want to support use cases where a

user has only partial directions to a destination. For example, a user

may wish to issue a query like the following: “Find a route where

I go straight for about fifteen kilometers passing by a restaurant,

then proceed about eight kilometers to a university, and finally go

five kilometers to reach an arts center”. In both use cases, the query

results are routes that pass by different types of POIs within desired

distances. Existing navigation systems fail to support such queries.

To extend the use cases supported by navigation systems, we

propose the SpeakNav framework, shown in Fig. 1. SpeakNav pro-

vides two innovations: route description language understanding

3056

https://doi.org/10.14778/3476311.3476383
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3476311.3476383

and template-driven path querying. To the best of our knowledge,

SpeakNav is the first proposal that offers combined support for

these innovations. SpeakNav thus addresses two challenges:

• Route description language understanding. Users have
their own preferred natural language formulations of route

properties in terms of POIs and distances. Taking such de-

scriptions, with different sentence patterns, as input, the

proposed model must determine the intended order of spec-

ified POIs along the route. Specifically, the model needs

to capture accurately two relationships. The first is the re-

lation between POIs and distances, and the second is the

order relationship between POIs.

• Template-driven path querying.We consider a template

for route descriptions that includes POI keywords and dis-

tances between POIs. However, no direct topological rela-

tionships among the POIs in the road network are specified.

Thus, POIs must be mapped to the road network to measure

the network distances between them. Furthermore, road

networks come with large numbers of POIs, each of which

is described by multiple keywords. As candidate paths are

supposed to cover all POI keywords given by a user, the

number of candidate paths increases exponentially with

the number of query keywords, making it challenging to

find desired routes efficiently.

In SpeakNav, we propose a joint intent classification and slot

filling model based on Bidirectional Encoder Representation from

Transformers (BERT) [7], which we call Route Template based

BERT (RT-BERT), to extract POI keywords and to distinguish the

order of them. In addition, we introduce an intent-attention mech-

anism to model the dependencies between intent labels and slot

words, and we introduce a self-attention mechanism to strengthen

the order relations between POIs. In order to find POIs with ac-

companying distances, we first propose a hybrid label index to

measure the distances between POIs. To enable efficient route re-

trieval, we construct a pivot reverse B-tree (PB-tree) that preserves

POI keyword information and network distances. We then develop

a branch-and-bound (BAB) algorithm that exploits the PB-tree to

prune non-qualifying POIs.

The major contributions are summarized as follows.

• We propose a route template based BERT model, RT-BERT,

with an encoder-decoder framework for joint intent classi-

fication and slot filling.

• We construct a hybrid label index and a PB-tree index to

prune POIs. For the template driven path querying, we

develop a branch-and-bound algorithm to enable efficient

path retrieval.

• We generate the first annotated text dataset for the task of

Route Description Natural Language understanding, called

RDNL, which contains 4,900 sentences with different sen-

tence patterns.

• We conduct an extensive performance study on real datasets

and the generated dataset, which indicates that RT-BERT

is capable of outperforming the state-of-art baselines in

terms of accuracy, and that the BAB algorithm is capable

of outperforming the baselines in terms of efficiency.

The remainder of the paper is organized as follows. Related work

is covered in Section 2. We formulate the problem in Section 3. Sec-

tion 4 introduces our solution. Section 5 provides the experimental

results. Finally, Section 6 concludes the paper.

2 RELATEDWORK
2.1 Natural Language Understanding
Natural language understanding in our setting involves two tasks:

intent classification and slot filling. Early studies consider these

two tasks separately. Intent classification aims to determine the

semantics of a sentence and check if it is navigation-related. There-

fore, the popular classifiers can be easily applied, such as support

vector machines [12] and deep neural networks [16, 21]. Slot fill-

ing can be viewed as a sequence labeling task that maps an input

word sequence to the corresponding slot label sequence. Yao et al.

[29] present an adaptation of Recurrent Neural Network (RNN) to

predict the slot label, which outperforms traditional and previous

neural network based approaches. Unlike these works, we model

dependencies between the intent labels and slot tags to determine

the order relationship based on semantics.

Recent studies that consider the intent classification and slot

filling tasks jointly have achieved great progress. Goo et al. [10]

focus on learning explicit slot-intent relations by introducing a

slot-gated mechanism into an attention model, which improves

the performance of slot filling on the learned intent result. E et al.

[8] introduce an SF-ID network that establishes direct connections

between intent classification and slot filling, allowing the tasks to

promote each other. In addition, multi-task deep learning architec-

tures [11, 13] enable reinforcement among domain determination,

intent classification, and slot filling. However, these methods have

not been applied to navigation, and no large-scale human-labeled

training datasets exist, which results in poor generalization ca-

pabilities, especially for rare words. To address this problem, the

state-of-the-art models utilize pre-trained language models. Chen

et al. [5] propose a joint intent classification and slot filling model

based on the Bidirectional Encoder Representation from Transform-

ers (BERT) [7], which pre-trains deep bidirectional representations

using large-scale unlabeled texts. In this setting, we introduce mul-

tiple attention mechanisms to enhance the dependencies between

intent labels and slot tags.

2.2 Keyword-aware Route Search
Keyword-aware route search has received considerable attention.

Cao et al. [4] study a keyword-aware optimal route query that finds

an optimal route that covers a set of keywords and satisfies a budget

constraint. Yao et al. [28] study a multi-approximate-keyword rout-

ing (MAKR) problem that takes a source, a destination, and a set

of keyword-threshold pairs as input. The query returns the short-

est route that covers at least one matching POI per keyword with

similarity above the corresponding threshold. These algorithms do

not associate distance values with the query keywords. Zhao et

al. [30] study a group-based keyword-aware route (GKAR) query

problem that aims to find a route that passes by a sequence of POIs

that match a sequence of query keywords while minimizing the

route cost. However, our problem is different from these problems

so that their algorithms are not applicable. We introduce the notion

3057

Table 1: Summary of Notation

Notation Definition

𝑥 A route description text sequence

𝑦 A intent label

𝑦𝑠 A slot tag sequence

𝐻 Contextual semantic representation embedding

obtained by BERT

𝐻 𝐼
Hidden state vector after intent-attention mecha-

nism

𝐻𝑆
Hidden state vector after self-attention mecha-

nism

𝐻 ′ The concatenation of 𝐻 and 𝐻𝑆

𝐻𝐵
Hidden state vector of BiLSTM

𝐺 = (𝑉 , 𝐸,𝑊) A road network with vertices 𝑉 , edges 𝐸, and

weights𝑊

𝑝 = (𝑙,Φ) A POI with location 𝑝.𝑙 and a keyword set 𝑝.Φ
𝑡 (𝑤,𝑑) A template with keyword 𝑤 and distance 𝑑

P(𝑝0 .𝑙, . . . , 𝑝𝑘 .𝑙) A path from 𝑝0 .𝑙 to 𝑝𝑘 .𝑙

𝑑𝐺 (𝑙𝑖 , 𝑙 𝑗) Network distance between 𝑙𝑖 and 𝑙 𝑗

𝐿 (𝑣) Vertex label of 𝑣

𝐿𝑝 (𝑝) POI label of 𝑝

of route template distance, which quantifies the degree of matching

of a path to a query. As a result, the paths returned by our proposed

algorithm are able to match a user’s query more accurately. Zheng

et al. [31] investigate so-called clue-based route search (CRS) that

allows users to provide clues on the textual and spatial context

of a route. While related closely to our problem, they simply map

POIs to network vertices and do not consider the distances between

them, which yields reduced accuracy. In addition, the templates in

our work are extracted from natural language, and the distances in

templates can be set to default values, which is not supported by

Zheng et al. [31].

3 PRELIMINARIES
SpeakNav solves two problems: (1) route description language un-

derstanding and (2) template-driven path querying. We introduce

relevant background knowledge and formulate the problems. Fre-

quently used notation is summarized in Table 1.

3.1 Route Description Language Understanding
The objective of the route description language understanding is

to extract template information for the expected route, i.e., POI

keywords and corresponding distances, from the speech input. It

consists of two tasks: intent classification and slot filling.

Definition 1 (Intent Classification). The intent classification
is a binary text classification problem. Given a path description text
sequence 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛), intent classification generates a tag
𝑦 ∈ {0, 1} for each 𝑥 indicating whether 𝑥 is a path description text
sequence.

Definition 2 (Slot Filling). Slot filling identifies template in-
formation from a path description. Slot filling annotates a path de-
scription 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) by slot tags 𝑦𝑠 = (𝑦𝑠

1
, 𝑦𝑠

2
, . . . , 𝑦𝑠𝑛), where

slot tag 𝑦𝑠
𝑖
corresponds to word 𝑥𝑖 and represents a POI keyword or a

distance value, or indicates that 𝑥𝑖 is irrelevant.

2

𝑣𝑣3

𝑣𝑣5

𝑣𝑣6

𝑣𝑣1

𝑣𝑣4

𝑣𝑣2

35

7 6

89

2

32

𝑝𝑝2

𝑤𝑤2, 𝑤𝑤4

𝑤𝑤2, 𝑤𝑤4

𝑤𝑤1, 𝑤𝑤3,𝑤𝑤4

𝑤𝑤2,𝑤𝑤3

𝑤𝑤3, 𝑤𝑤4

𝑤𝑤2𝑤𝑤1, 𝑤𝑤3

𝑝𝑝6

𝑝𝑝1

𝑝𝑝3 𝑝𝑝7

𝑝𝑝4
𝑣𝑣8

𝑣𝑣7

𝑣𝑣10

𝑣𝑣9

𝑝𝑝5

6

1 6

1

9

5

5

7

7

4 3

1

3

2

𝑤𝑤1: theater; 𝑤𝑤2: restaurant; 𝑤𝑤3: university; 𝑤𝑤4: arts center.

Figure 2: Running Road Network Example

3.2 Template-driven Path Querying
A template-driven path querying aims to find an optimal path based

on template information retrieved from input speech.

Definition 3 (POI). A point of interest (POI) 𝑝𝑖 = (𝑙,Φ) has a
location 𝑝𝑖 .𝑙 and a set of keywords 𝑝𝑖 .Φ.

For example in Fig. 2, we have a set of POIs 𝑃 = {𝑝1, 𝑝2, . . . 𝑝7}
with 𝑝1 .Φ = {𝑤2,𝑤3}, and 𝑝7 .Φ = {𝑤1,𝑤3,𝑤4}.

Definition 4 (Road Network). A road network is modeled as a
weighted, undirected graph𝐺 = (𝑉 , 𝐸,𝑊), where 𝑉 is a vertex set, 𝐸
is an edge set,𝑊 : 𝐸 → R assigns positive weights to all edges that
capture the edge lengths.

For any two locations 𝑙1 and 𝑙2, the network distance in 𝐺 be-

tween 𝑙1 and 𝑙2, denoted as 𝑑𝐺 (𝑙1, 𝑙2), is the length of the short-

est path between them. For example, we have 𝑑𝐺 (𝑣1, 𝑣5) = 9,

𝑑𝐺 (𝑝1 .𝑙, 𝑝6 .𝑙) = 13, and 𝑑𝐺 (𝑣1, 𝑝1 .𝑙) = 9.

Definition 5 (Template). We define a template as 𝑡 (𝑤,𝑑), where
𝑤 is a keyword and 𝑑 is a distance.

We use templates to specify types of POIs and distances that char-

acterize desirable routes. For example, the template 𝑡 (“restaurant”,

15 km) indicates that a route should pass by a POI with keyword

“restaurant” at about 15 kms into the route. Note that, the templates

correspond to the slot tags obtained from slot filling.

Definition 6 (Candidate path). A template-driven path query
(TPQ) is given byQ = (𝑙0,T), where 𝑙0 is the current user location, and
T = ⟨𝑡1 (𝑤1, 𝑑1), 𝑡2 (𝑤2, 𝑑2), . . . , 𝑡𝑘 (𝑤𝑘 , 𝑑𝑘)⟩ is a template sequence.
We consider a path P(𝑝0 .𝑙, 𝑝1 .𝑙, . . . , 𝑝𝑘 .𝑙) as a result candidate if it
satisfies the following conditions.

(1) For the POI sequence ⟨𝑝0, 𝑝1, . . . , 𝑝𝑘 ⟩, where 𝑝0 .𝑙 = 𝑙0, we
have𝑤𝑖 ∈ 𝑝𝑖 .Φ, 1 ≤ 𝑖 ≤ 𝑘 .

(2) For 1 ≤ 𝑖 ≤ 𝑘 , subpath P(𝑝𝑖−1 .𝑙, . . . , 𝑝𝑖 .𝑙) is a shortest path.
Definition 7 (Route Template Distance). In order to quantify

the degree of matching of a subpath P(𝑝𝑖−1 .𝑙, . . . , 𝑝𝑖 .𝑙) to a template
𝑡𝑖 (𝑤𝑖 , 𝑑𝑖), the route template distance is computed as follows.

𝑑𝑖𝑅 =
|𝑑𝐺 (𝑝𝑖−1 .𝑙, 𝑝𝑖 .𝑙) − 𝑑𝑖 |

𝜖 · 𝑑𝑖
, (1)

3058

Index Construction
Query

Processing

Dataset Generation Model Training
Template

RT-BERT

Hybrid Labels
PB-tree

Find a route where I go … ,
finally go five kilometers
to reach an arts center

Route Description Language Understanding

Template-driven Path Querying

RDNL

Data Colllection

Road Network
Point of interest

Figure 3: SpeakNav Framework Overview

where 𝜖 is a tolerance parameter that relaxes the network distance
threshold between 𝑝𝑖 and 𝑝𝑖−1 to the interval [𝑑𝑖 (1 − 𝜖), 𝑑𝑖 (1 + 𝜖)].
Here, any increasing function that normalizes the route template
distance to [0, 1] can be applied.

The overall route template distance between a candidate path P
and a query Q is computed as follows.

𝑑𝑅 (P,Q) = max
1≤𝑖≤𝑘 𝑑

𝑖
𝑅 (2)

The motivation for using Eq. 2 is that the maximum route tem-

plate distance of all templates naturally controls the overall quality

of the candidate path. It is a widely adopted method for the problem

of optimizing an objective score with multiple components.

Definition 8 (Template-driven path qerying (TPQ)). A
template driven path query (TPQ) Q = (𝑙0,T) returns the candidate
path with the smallest route template distance to the query.

Specifically, if there exists a template with no distance specified

in a query, the goal is to minimize the length of the candidate path.

Example 1. Consider the speech input “Find a route where I go
straight for about fifteen kilometers passing by a restaurant, then
proceed about eight kilometers to a university, and finally go five
kilometers to reach an arts center?” We first perform intent classifica-
tion, and then fill slot tags to obtain the following template sequence:
T = ⟨𝑡1 (“𝑟𝑒𝑠𝑡𝑎𝑢𝑟𝑎𝑛𝑡”, 15), 𝑡2 (“𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦”, 8), 𝑡3 (“𝑎𝑟𝑡𝑠 𝑐𝑒𝑛𝑡𝑒𝑟”, 5)⟩.
The words “restaurant", “university" and “arts center" correspond to
the keywords “𝑤2", “𝑤3" and “𝑤4" in Fig. 2.

Assume that the user’s current location 𝑙0 = 𝑝1 .𝑙 , and 𝜖 is set to 0.4.
Therefore, we have Q = (𝑝1 .𝑙,T). The paths P1 (𝑝1 .𝑙, 𝑝6 .𝑙, 𝑝5 .𝑙, 𝑝7 .𝑙)
and P2 (𝑝1 .𝑙, 𝑝3 .𝑙, 𝑝7 .𝑙, 𝑝5 .𝑙) are candidates with 𝑑𝑅 (P1,Q) = 0.333

and 𝑑𝑅 (P2,Q) = 0.625. Therefore, P1 is returned as the result.

3.3 Framework Overview
The SpeakNav framework, as shown in Fig. 3, consists of two com-

ponents, route description language understanding and template-

driven path querying. A demo is described elsewhere [3].

SpeakNav integrates the speech recognition engine iFLYTEK
1

to convert the speech to a text sequence. Then, we propose a route

template based BERT model (RT-BERT) that uses an encode-decode

framework to extract the template information in the text sequence.

The encoder generates feature vectors based on the pre-trained

1
https://www.xfyun.cn/

BERT model, which contain contextual semantics for the text se-

quence. The decoder utilizes the vector features to generate intent

labels and slot tags. The intent labels indicate whether the text se-

quence is a template based route description. The slot tags capture

that the words in a path description belong to the POI keywords,

are distance values, or are irrelevant words.

To enable efficient template-driven path query processing, we

develop a hybrid label index and a PB-tree index in offline prepro-

cessing phase. The hybrid label index computes network distances

between POIs efficiently. The PB-tree is used to accelerate the query

processing of a branch-and-bound algorithm.

4 PROPOSED SOLUTION
We proceed to solve the two sub-problems, route description lan-

guage understanding and template-driven path querying.

4.1 Route Template-based BERT
We propose a route description language understanding model,

called Route Template-based BERT (RT-BERT), based on an encoder-

decoder framework that enables joint intent classification and slot

filling. The structure of RT-BERT is shown in Fig. 4. Since the pre-

trained language model has significantly improved the performance

of natural language processing tasks, we use the Bidirectional En-

coder Representation from Transformer (BERT) [7] as the encoder

to generate pre-trained word vectors, while utilizing a Bidirectional

Long Short-Term Memory (BiLSTM) model [23] and a Conditional

Random Field (CRF) model [22] as the decoder. In order to capture

the different effects of intent labels on slot words and non-slot

words, we introduce an intent-attention mechanism. RT-BERT also

models the order relations between the user intended keywords in

the input text sequence using a self-attention mechanism.

4.1.1 Encoder. To build a general model, we utilize BERT as the

encoder since it is pre-trained on large unlabeled text collections

with multiple language training tasks. BERT is composed of a stack

of multi-layer bidirectional Transformer encoders [24], which per-

form well in parallel computing settings and capture contextual

semantics. In order to learn the sequentiality and the semantic

similarity of sentences, we concatenate positional embeddings and

segment embeddings with WordPiece embeddings [27] in the input

representation.

3059

center

Transpose

Softmax
Attention

encoding maps

BERT
encoding maps

Attention
map

ℎ1𝐵𝐵

ℎ2𝐵𝐵

ℎ𝑛𝑛−1𝐵𝐵

ℎ𝑛𝑛𝐵𝐵

…

CRF

ℎ1′

ℎ2′

ℎ𝑛𝑛−1′

ℎ𝑛𝑛′

Concat

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

… …

afind[CLS] artsan

ℎ0

…

ℎ1 ℎ2 ℎ𝑛𝑛−2 ℎ𝑛𝑛−1 ℎ𝑛𝑛…

ℎ𝑛𝑛−2′

LSTM

LSTM
ℎ𝑛𝑛−2𝐵𝐵

𝐸𝐸0 𝐸𝐸1 𝐸𝐸2 𝐸𝐸𝑛𝑛−2 𝐸𝐸𝑛𝑛… 𝐸𝐸𝑛𝑛−1

Trm Trm Trm Trm Trm Trm…

𝑠𝑠0

𝑠𝑠1

𝑠𝑠𝑖𝑖−1

𝑠𝑠𝑖𝑖

SearchRoute

Q

K

V

O O … O B-third.loc
I-third.loc

Figure 4: Structure of RT-BERT

For intent classification, a special classification token [CLS] is

inserted before the input text sequence. The hidden state of the

token [CLS] can be used as the semantic representation of the whole

sentence, thus determining the intent. Specifically, given an input

text sequence 𝑥 = (𝑥1, . . . , 𝑥𝑛), we denote the token [CLS] as 𝑥0 and
concatenate it with the input sequence to obtain (𝑥0, 𝑥1, 𝑥2, . . . , 𝑥𝑛).
The encoder generates a pre-trained vector:

𝐻 = BERT(𝑥0, 𝑥1, 𝑥2, . . . , 𝑥𝑛), (3)

where 𝐻 = (ℎ0, ℎ1, ℎ2, . . . , ℎ𝑛) ∈ R(𝑛+1)×𝜆 , and 𝜆 is the dimension-

ality of the hidden state of a word.

The element ℎ0 is the hidden state of the special token ([CLS])

that is fed directly into a fully connected layer and a softmax layer

to generate the intent label as follows.

𝑦 = softmax(𝑊ℎ0 + 𝑏), (4)

where𝑊 is a weight matrix and 𝑏 is a bias term.

Each element ℎ𝑖 (1 ≤ 𝑖 ≤ 𝑛) is the contextualized representation

of input word 𝑥𝑖 for slot filling. In addition, we introduce multiple

attention mechanisms, BiLSTM, and CRF to decode the sequence

and fill the slot tags.

4.1.2 Attention Mechanism. Attention mechanisms have been

used widely for their support for parallel computation and depen-

dency modeling capabilities [9, 26]. Attention mechanisms make

it possible to focus more on important features and less on unim-

portant ones. Therefore, we incorporate intent-attention and self-

attention mechanisms into the framework to model dependencies

among intent labels and slot tags, and to model the order relations

between user intended keywords. In particular, a scaled dot-product

attention is used to compute attention scores as follows.

Attention(𝑄,𝐾,𝑉) = softmax(𝑄𝐾
⊤√︁
𝜆𝐾

)𝑉 , (5)

where 𝑄 (query) is the attention weight matrix that represents

the correlation between words, 𝐾 (key) is the weight index, and 𝑉

(value) is the word vector at the current training time step. Eq. 5

is equivalent to normalizing the attention distribution of all word

pairs in a sentence and attaching it to the word vector. Parameter

𝜆𝐾 represents the dimensionality of 𝐾 and is used to prevent the

gradient from disappearing.

Intent-attention.We observe that the intent contextual infor-

mation is more important for slot words than for non-slot words.

For example, the input text sequence “Find a route ... an arts center”

in Fig. 4 is a route description. Its intent label is set to ‘SearchRoute’

that is determined by the hidden state of the token [CLS]. The

intent label is supposed to have larger relevance to the slot words

‘arts’ and ‘center’ than the non-slot words ‘find’, ‘a’, etc. The intent-

attention mechanism is used for this purpose. We remove ℎ0 from

𝐻 to form 𝐻1 = (ℎ1, ℎ2, . . . , ℎ𝑛) ∈ R𝑛×𝜆 , where ℎ0 is the hidden
state of [CLS] characterizing the intent label to some extent. In the

intent-attention mechanism, we have 𝑄 = 𝐻0 = (ℎ0, ℎ0, . . . , ℎ0) ∈
R𝑛×𝜆, 𝐾 = 𝑉 = 𝐻1. The attention score 𝛼𝑖 between ℎ0 and the

hidden state ℎ𝑖 is computed as follows.

𝛼𝑖 = softmax(
ℎ0 · ℎ⊤𝑖√

𝜆
) (6)

Then, we compute the output vector ℎ𝐼
𝑖
of the intent-attention

mechanism according to the 𝛼𝑖 as follows.

ℎ𝐼𝑖 =

𝑛∑︁
𝑖=1

𝛼𝑖ℎ𝑖 (7)

Self-attention. Following the intent-attention layer, we apply a

self-attention mechanism. This mechanism enables the computa-

tion of attention weights between each pair of tokens in a single

sequence, so it works well when capturing long-range dependen-

cies. For a template-based route description text sequence, we use

3060

the self-attention mechanism to capture dependencies between

keywords that are far apart in a sentence. In the self-attention

mechanism, we have 𝑄 = 𝐾 = 𝑉 = 𝐻 𝐼 . The output vector ℎ𝑆
𝑖
is

computed as follows.

ℎ𝑆𝑖 =

𝑛∑︁
𝑖=1

softmax(
ℎ𝐼
𝑖
· (ℎ𝐼

𝑖
)⊤

√
𝜆
) · ℎ𝐼𝑖 (8)

To retain the powerful context-dependent sentence representa-

tion provided by the RT-BERT encoder, we concatenate ℎ𝑆
𝑖
after the

attention mechanism with ℎ𝑖 , that is, ℎ
′
𝑖
= [ℎ𝑖 , ℎ𝑆𝑖]. The decoder is

initiated with the final state 𝐻 ′ = (ℎ′
1
, ℎ′

2
, . . . , ℎ′𝑛).

4.1.3 Slot Filling Decoder. The decoder aims to output a slot tag

sequence by decoding the input vector𝐻 ′. To capture long-term de-

pendencies of POIs and to make use of both forward and backward

features, we decode𝐻 ′ = (ℎ′
1
, ℎ′

2
, . . . , ℎ′𝑛) using a Bidirectional Long

Short-Term Memory (BiLSTM) network that contains a forward

LSTM [15] and a backward LSTM. The BiLSTM reads the input

sequence 𝐻
′
in its original and reverse orders and generates two

hidden states in each time step. The final hidden state ℎ𝐵𝜏 at time

step 𝜏 is the concatenation of the forward state

−→
ℎ𝜏 and backward

state

←−
ℎ𝜏 : −→

ℎ𝜏 =
−−−−→
LSTM(ℎ

′
𝜏 ,
−−−→
ℎ𝜏−1)

←−
ℎ𝜏 =

←−−−−
LSTM(ℎ

′
𝜏 ,
←−−−
ℎ𝜏+1)

ℎ𝐵𝜏 = [−→ℎ𝜏 ,
←−
ℎ𝜏] ∈ R𝑚

(9)

Hence, we obtain a complete sequence of all hidden states: 𝐻𝐵 =

(ℎ𝐵
1
, ℎ𝐵

2
, . . . , ℎ𝐵𝑛) ∈ R𝑛×𝑚 , where𝑚 is the dimensionality of a hidden

state in BiLSTM. A linear layer is used to map each hidden state

vector in 𝐻𝐵 from𝑚 dimensions to 𝑧 dimensions, where 𝑧 is the

number of unique slot tags, and each slot tag is indexed in the range

[1, 𝑧]. Note that, the set of slot tags is obtained when generating

the dataset (See Section 5.1.1). As a result, the output of BiLSTM is

a matrix 𝐸 = (𝐸1, 𝐸2, . . . , 𝐸𝑛) ∈ R𝑛×𝑧 , where 𝐸𝑖, 𝑗 is the probability
that the slot tag of the 𝑖-th word is the 𝑗-th slot tag.

However, BiLSTM fails to capture dependencies between ad-

jacent slot tags. In Example 1, “arts center” is the third keyword

of the user’s desired route, so the slot tags of “arts” and “center”

should belong to a same category. It is incorrect that the slot tag of

“arts” represents one keyword and the slot tag of “center” represents

another keyword. Therefore, we add a CRF layer after BiLSTM that

takes advantage of the sequence-level label information offered by

CRF to obtain a better prediction sequence. The parameter of CRF

is a transition matrix 𝐴 ∈ R(𝑧+2)×(𝑧+2) that can be learned auto-

matically by the CRF layer during training, and 𝐴𝑖, 𝑗 denotes the

transition score from the 𝑖-th slot tag to the 𝑗-th slot tag. For a slot

tag sequence 𝑦𝑠 = (𝑦𝑠
1
, 𝑦𝑠

2
, . . . , 𝑦𝑠𝑛) of a sentence 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛),

the score function is computed as follows.

𝑠 (𝑥,𝑦𝑠) =
𝑛∑︁
𝑖=0

𝐴𝜇𝑖 ,𝜇𝑖+1 +
𝑛∑︁
𝑖=1

𝐸𝑖,𝜇𝑖 (10)

where 𝜇𝑖 and 𝜇𝑖+1 are the corresponding indexes of slot tags 𝑦𝑠𝑖 and
𝑦𝑠
𝑖+1. The score of the whole sequence equals the sum of the scores

of all words in the sentence, which is determined by the output

matrix 𝐸 of the BiLSTM and the transition matrix 𝐴 of CRF. Given

a sentence 𝑥 and its ground truth 𝑦𝑥 , the goal is to maximize the

score of𝑦𝑥 in all possible prediction sequences. Themodel is trained

using the negative log-likelihood loss function for backpropagation,

which is formalized as follows.

− log(Pr(𝑦𝑥 |𝑥)) = − log(𝑒𝑠 (𝑥,𝑦
𝑥)∑

𝑦′∈𝑌 𝑒𝑠 (𝑥,𝑦
′))

= −𝑠 (𝑥,𝑦𝑥) + log(
∑︁
𝑦′∈𝑌

𝑒𝑠 (𝑥,𝑦
′)),

(11)

where 𝑌 represents the set of all possible prediction sequences of

𝑥 . We obtain the optimal sequence 𝑦∗ from 𝑌 by using the Viterbi

algorithm [25], and the keywords and distances determined by 𝑦∗

are then used in a template-driven path query.

Example 2. For the text sequence “Find a route where I go straight
for about ..." in Example 1, we first determine that the intent label is
“SearchRoute", which is related to template-driven path search. Next,
we generate slot tags as follows: “O O O O O O O O O B-first.dis
I-first.dis O O O B-first.loc O O O B-second.dis I-second.dis O O B-
second.loc O O O B-third.dis I-third.dis O O O B-third.loc I-third.loc",
which is annotated by Begin-Inside-Outside (BIO, details are presented
in Section 5.1.1).

4.2 Template Driven Path Query Processing
The template driven path query (TPQ) returns the path that has

the smallest route template distance to the query extracted by

the RT-BERT model. First, we propose a hybrid label index that

enables efficient network distance computation between POIs. Next,

we develop a pivot reverse B-tree (PB-tree) on top of the hybrid

label index to locate POIs when finding the next matching POI.

Using these index structures, we design a branch-and-bound (BAB)

algorithm that uses the filter-and-refinement paradigm.

4.2.1 Hybrid Label Index. Since we aim to find a path passing

by a set of POIs, where the network distance between consecutive

POIs is close to a user-specified distance, it is important to be able

to compute the network distance between two POIs efficiently.

As there is no network topology of POIs on the road network,

we project POIs onto the nearest edges and consider the network

distances between them. Next, we adopt 2-hop labeling [1, 2, 18]

to compute network distances between vertices. Based on 2-hop

labeling, we develop a POI label index to compute the network

distances between POIs. The 2-hop label of a vertex is called a

vertex label to distinguish it from a POI label.

Vertex label. We use 2-hop labeling because it enables state-

of-the-art efficiency for computing distance in road networks. It

constructs labels for vertices such that a distance query for any

vertex pair (𝑢, 𝑣) can be answered by only looking up the common

vertices in their labels. For each vertex 𝑣 , we precompute a label,

denoted as 𝐿(𝑣), which is a set of label entries where each label

entry is a pair (𝑜, 𝑑𝐺 (𝑣, 𝑜)). We say that 𝑜 is a pivot in a label entry

if (𝑜, 𝑑𝐺 (𝑣, 𝑜)) ∈ 𝐿(𝑣). Given two vertices 𝑢 and 𝑣 , we can find a

common pivot 𝑜 such that (𝑜, 𝑑𝐺 (𝑢, 𝑜)) ∈ 𝐿(𝑢) and (𝑜, 𝑑𝐺 (𝑣, 𝑜)) ∈
𝐿(𝑣). Then we have:

𝑑𝐺 (𝑢, 𝑣) = min𝑜∈𝑉 {𝑑𝐺 (𝑢, 𝑜) + 𝑑𝐺 (𝑣, 𝑜)} (12)

3061

Table 2: Vertex Labels

Vertex Vertex label

𝑣1 {(𝑣1, 0), (𝑣3, 6), (𝑣5, 9)}
𝑣2 {(𝑣1, 7), (𝑣2, 0), (𝑣3, 5), (𝑣4, 9)}
𝑣3 {(𝑣3, 0)}
𝑣4 {(𝑣3, 8), (𝑣4, 0), (𝑣6, 7), (𝑣7, 11)}
𝑣5 {(𝑣3, 9), (𝑣5, 0), (𝑣7, 6)}
𝑣6 {(𝑣3, 5), (𝑣6, 0), (𝑣7, 4)}
𝑣7 {(𝑣3, 9), (𝑣7, 0)}
𝑣8 {(𝑣3, 11), (𝑣5, 4), (𝑣7, 2), (𝑣8, 0)}
𝑣9 {(𝑣3, 16), (𝑣5, 9), (𝑣7, 7), (𝑣8, 5), (𝑣9, 0)}
𝑣10 {(𝑣3, 12), (𝑣5, 16), (𝑣6, 7), (𝑣7, 11), (𝑣8, 12), (𝑣9, 7), (𝑣10, 0)}

Table 3: POI Labels

POI POI label

𝑝1 {(𝑣1, 9), (𝑣2, 2), (𝑣3, 3), (𝑣4, 11)}
𝑝2 {(𝑣1, 2), (𝑣3, 8), (𝑣5, 7), (𝑣7, 13)}
𝑝3 {(𝑣3, 9), (𝑣4, 1), (𝑣6, 6), (𝑣7, 10)}
𝑝4 {(𝑣1, 7), (𝑣3, 11), (𝑣5, 2), (𝑣7, 8)}
𝑝5 {(𝑣3, 6), (𝑣6, 1), (𝑣7, 3)}
𝑝6 {(𝑣3, 10), (𝑣5, 1), (𝑣7, 5), (𝑣8, 3)}
𝑝7 {(𝑣3, 9), (𝑣5, 19), (𝑣6, 4), (𝑣7, 8), (𝑣8, 15), (𝑣9, 10), (𝑣10, 3)}

We say that the pair (𝑢, 𝑣) is covered by 𝑜 . The distance query

𝑑𝐺 (𝑢, 𝑣) is then answered by 𝑜 as the smallest sum of 𝑑𝐺 (𝑢, 𝑜) and
𝑑𝐺 (𝑣, 𝑜). Therefore, we can compute 𝑑𝐺 (𝑢, 𝑣) in 𝑂 (|𝐿(𝑢) | + |𝐿(𝑣) |)
time by using a merge-join like algorithm. Since all pairs of vertices

are covered by the vertex labels, distance queries can be computed

correctly.

POI label. In general, POIs occur infrequently in the road net-

work. In order to reduce the space overhead, we only store labels

that are related to POIs. Specifically, based on the vertex label-

ing, we propose a POI label index that enables network distance

computation between POIs.

We denote the label of 𝑝𝑖 by 𝐿𝑝 (𝑝𝑖). Specifically, let 𝑒𝑖 be the edge
that 𝑝𝑖 is located on, and let 𝑣𝑖 , 𝑣

′
𝑖
be the two endpoints of 𝑒𝑖 . For

each entry (𝑜, 𝑑𝐺 (𝑣𝑖 , 𝑜)) ∈ 𝐿(𝑣𝑖), we add an entry (𝑜, 𝑑𝐺 (𝑝𝑖 .𝑙, 𝑜)) to
𝐿𝑝 (𝑝𝑖), where 𝑑𝐺 (𝑝𝑖 .𝑙, 𝑜) = 𝑑𝐺 (𝑝𝑖 .𝑙, 𝑣) + 𝑑𝐺 (𝑣, 𝑜). The label entries
in 𝐿(𝑣 ′

𝑖
) are processed in the same way. Note that if a vertex 𝑜

is the pivot in both 𝐿(𝑣) and 𝐿(𝑣 ′), i.e., (𝑜, 𝑑𝐺 (𝑣𝑖 , 𝑜)) ∈ 𝐿(𝑣𝑖) and
(𝑜, 𝑑𝐺 (𝑣 ′𝑖 , 𝑜)) ∈ 𝐿(𝑣

′
𝑖
), we only have to add an entry with the min-

imum distance, i.e., (𝑜,min{𝑑𝐺 (𝑝𝑖 .𝑙, 𝑣𝑖) + 𝑑𝐺 (𝑣𝑖 , 𝑜), 𝑑𝐺 (𝑝𝑖 .𝑙, 𝑣 ′𝑖) +
𝑑𝐺 (𝑣 ′𝑖 , 𝑜)}), to 𝐿𝑝 (𝑝𝑖). As a result, the network distance between

two POIs 𝑝𝑖 and 𝑝 𝑗 can be computed as follows.

𝑑𝐺 (𝑝𝑖 .𝑙, 𝑝 𝑗 .𝑙) = min𝑜∈𝑉 {𝑑𝐺 (𝑝𝑖 .𝑙, 𝑜) + 𝑑𝐺 (𝑜, 𝑝 𝑗 .𝑙)}, 𝑒𝑖 ≠ 𝑒 𝑗 , (13)

where (𝑜, 𝑑𝐺 (𝑝𝑖 .𝑙, 𝑜)) ∈ 𝐿𝑝 (𝑝𝑖), (𝑜, 𝑑𝐺 (𝑜, 𝑝 𝑗 .𝑙)) ∈ 𝐿𝑝 (𝑝 𝑗), and 𝑒𝑖 , 𝑒 𝑗
are the road segments that 𝑝𝑖 and 𝑝 𝑗 are located on, respectively.

Lemma 1. POI labeling enables computing the network distance
between any two POIs correctly.

Proof. We know that the pivots in 𝐿𝑝 (𝑝𝑖) are the union of the

pivots in 𝐿(𝑣𝑖) and 𝐿(𝑣 ′𝑖). The shortest path from 𝑝𝑖 to 𝑝 𝑗 must pass

through either endpoint of their road segments. Since the vertex

labels of any two endpoints can compute the network distance

(13)

1111
[9]

(0)

0110
[3]

(1)

1100
[6]

(7)

1110
[3]

(2)

0101
[8]

(3)

1010
[9]

(8)

1111
[8]

(4)

1101
[9]

(5)

1010
[10]

(9)

1111
[9]

(6)

0010
[11]

(10)

0010
[11]

(11)

1111
[6]

(12)

1111
[10]

𝑝𝑝6𝑝𝑝7𝑝𝑝3𝑝𝑝2𝑝𝑝5𝑝𝑝1 𝑝𝑝4

Figure 5: Structure of 𝑷𝑩(𝒗3)

between them correctly, the network distance between any two

POIs can be computed correctly by the POI label. □

Example 3. The vertex and POI labels for the example in Fig. 2
are shown in Tables 2 and 3, respectively. Suppose we are interested
in 𝐿𝑝 (𝑝5). The endpoints of the edge that 𝑝5 is located on are 𝑣6 and
𝑣7, and 𝑑𝐺 (𝑝5 .𝑙, 𝑣6) = 1, 𝑑𝐺 (𝑝5 .𝑙, 𝑣7) = 3. We first look up 𝐿(𝑣6)
and add (𝑣3, 5 + 1), (𝑣6, 0 + 1), (𝑣7, 4 + 1) to 𝐿𝑝 (𝑝5). So far, 𝐿𝑝 (𝑝5) =
{(𝑣3, 6), (𝑣6, 1), (𝑣7, 5)}. Then we process 𝐿(𝑣7). For the entry (𝑣3, 9),
we notice that 𝑣3 is already in 𝐿𝑝 (𝑝5) and 9 + 3 > 6, so we skip to the
next entry (𝑣7, 0). Since 0 + 3 < 5, we update the distance between
𝑝5 .𝑙 and 𝑣7, and obtain 𝐿𝑝 (𝑝5) = {(𝑣3, 6), (𝑣6, 1), (𝑣7, 3)}.

4.2.2 Pivot Reverse POI Label. Suppose that we have already
obtained a candidate POI 𝑝𝑖−1 with respect to 𝑡𝑖−1 in the tem-

plate sequence and that we now aim to find the next candidate

POI 𝑝𝑖 that contains the keyword 𝑤𝑖 and has the network dis-

tance 𝑑𝐺 (𝑝𝑖−1 .𝑙, 𝑝𝑖 .𝑙) that is closest to the user specified distance 𝑑𝑖 .
Based on Eq. 13, we know that 𝑑𝐺 (𝑝𝑖−1 .𝑙, 𝑝𝑖 .𝑙) can be divided into

𝑑𝐺 (𝑝𝑖−1 .𝑙, 𝑜) and 𝑑𝐺 (𝑜, 𝑝𝑖 .𝑙) by a common pivot 𝑜 in 𝐿𝑝 (𝑝𝑖−1) and
𝐿𝑝 (𝑝𝑖). The first term 𝑑𝐺 (𝑝𝑖−1 .𝑙, 𝑜) can be obtained directly from

𝐿𝑝 (𝑝𝑖−1). However, we cannot obtain the second term since the tar-

get POI 𝑝𝑖 is unknown. Therefore, we propose a pivot reverse (PR)

POI label so that the second term and the target POI can be retrieved

from 𝑃𝑅(𝑜), where 𝑃𝑅(𝑜) is the pivot reverse label of 𝑜 . This label
reverses the directions of all label entries (𝑜, 𝑑𝐺 (𝑝.𝑙, 𝑜)) ∈ ∪𝐿𝑝 (𝑝)
that regard 𝑜 as the pivot, i.e., (𝑝, 𝑑𝐺 (𝑝.𝑙, 𝑜)) ∈ 𝑃𝑅(𝑜). For example,

we have (𝑣1, 9) ∈ 𝐿𝑝 (𝑝1), (𝑣1, 2) ∈ 𝐿𝑝 (𝑝2) and (𝑣1, 7) ∈ 𝐿𝑝 (𝑝4). For
pivot 𝑣1, we then have 𝑃𝑅(𝑣1) = {(𝑝1, 9), (𝑝2, 2), (𝑝4, 7)}.

Based on the POI label and PR label indexes, we first find all

pivots in 𝐿𝑝 (𝑝𝑖−1). Then, for each pivot 𝑜 , we turn to 𝑃𝑅(𝑜) to
retrieve a matching POI 𝑝𝑖 . To avoid enumerating all label entries

of 𝑃𝑅(𝑜), we organize the entries of 𝑃𝑅(𝑜) in a B-tree (PB-tree),

denoted as 𝑃𝐵(𝑜).
PB-tree Construction. For each vertex 𝑣 ∈ 𝑉 , we construct

a PB-tree 𝑃𝐵(𝑣) that contains the information on keywords and

network distances. The structure of 𝑃𝐵(𝑣3) is shown in Fig. 5.

Each PB-tree is a 𝐵+-tree with fanout 𝑓 = 2, and the structure is

determined by the network distances in the PR index. To construct

𝑃𝐵(𝑣), we first obtain a POI list 𝑆 from 𝑃𝑅(𝑣) that is sorted in

ascending order of the network distance to 𝑣 . Each leaf node in

𝑃𝐵(𝑣) contains a POI 𝑝 ∈ 𝑆 and the network distance 𝑑𝐺 (𝑝.𝑙, 𝑣).

3062

We recursively generate non-leaf nodes in a bottom-up manner.

The network distance of each non-leaf node equals the maximum

network distance of its left subtree.

To store keyword information, we use a hash function 𝐻 to map

each keyword to a binary code with ℎ bits. For a keyword𝑤 , one

bit of𝐻 (𝑤) is set to 1. Therefore, the binary code of a leaf node that
represents 𝑝 is the superposition of 𝐻 (𝑤) for all𝑤 that 𝑝 contains,

i.e., 𝐻 (𝑝) = ∨𝑤∈𝑝.Φ𝐻 (𝑤), where 𝑝.Φ is the keyword set of 𝑝 . The

binary code of each non-leaf node is the superimposition of those

of its child nodes.

We observe that POIs are divided into fragments by utilizing

the tree structure so that the network distances of the POIs in the

same fragment are similar, which speeds up the retrieval of POIs

by network distance. Meanwhile, the keyword information helps

to filter out irrelevant fragments.

Basic Operations on the PB-tree. We discuss two operations

on the PB-tree, called predecessor and successor operations.

(1) Given 𝑃𝐵(𝑢) and a template 𝑡 (𝑤,𝑑), the predecessor op-

eration (Pred()) finds a POI 𝑝 that contains 𝑤 and where

𝑑𝐺 (𝑢, 𝑝.𝑙) is no larger than and closest to 𝑑 of all POIs in

𝑃𝐵(𝑢). For a non-leaf node 𝑒 , if 𝐻 (𝑤) ∧ 𝐻 (𝑒) ≠ 0, we com-

pare the network distance stored in 𝑒 with 𝑑 . If the network

distance is no larger than 𝑑 , we search its right subtree and

then consider the left subtree if no suitable POI exists in

the right subtree. If the network distance exceeds 𝑑 , we

only consider the left subtree. For a leaf node 𝑒 , we directly

check if 𝑒 contains𝑤 and if 𝑑𝐺 (𝑢, 𝑛.𝑙) is no larger than 𝑑 .

(2) Given 𝑃𝐵(𝑢) and a template 𝑡 (𝑤,𝑑), the successor operation
(Succ()) finds a POI 𝑝 that contains𝑤 and where 𝑑𝐺 (𝑢, 𝑝.𝑙)
is no smaller than and closest to 𝑑 . For a non-leaf node 𝑒 ,

if 𝐻 (𝑤) ∧ 𝐻 (𝑒) ≠ 0, we continue to search its subtree. If

the network distance stored in 𝑒 is no smaller than 𝑑 , we

check if we can find a POI in its left subtree. If we can not,

we turn to search the right subtree. Otherwise, we simply

search its right subtree. A leaf node 𝑒 that contains𝑤 and

where 𝑑𝐺 (𝑢, 𝑛.𝑙) is no smaller than 𝑑 is returned as result.

4.2.3 Branch and Bound Algorithm. Since the number of can-

didate paths increases exponentially with the number of templates,

we develop a branch-and-bound (BAB) algorithm that avoids enu-

merating all candidate paths. The key idea of BAB is to utilize the

upper bound of the route template distance so that the algorithm

can terminate early.

Before we introduce the details of BAB, we present a greedy

algorithm whose result can be used to initialize the upper bound

𝑈𝐵. Given a query Q = (𝑙0,T), we first add 𝑙0 to the candidate

path and then call a procedure called template-based POI search

(TPS, details are presented in Section 4.2.4) that finds the next best

matching POI 𝑝1, where 𝑝1 contains keyword𝑤1 and the distance

𝑑1
𝑅
between (𝑙0, 𝑝1 .𝑙) and 𝑡1 is minimized. Then we insert 𝑝1 .𝑙 into

the candidate path and continue to find the next POI. We repeat

this process until all mathcing POIs are found. Finally, we use the

route template distance 𝑑𝑅 (P,Q) of the path P returned by the

greedy algorithm as the initial𝑈𝐵.

The algorithm’s pruning condition works as follows. Assuming

that we have obtained a partial candidate path P(𝑙0, 𝑝1 .𝑙, ..., 𝑝𝑖 .𝑙),
we call Procedure TPS to find a next best matching POI 𝑝𝑖+1. If the

Algorithm 1: Branch and Bound Algorithm

Input: Q = (𝑙0,T)
Output: An optimal CP with 𝑑𝑅 (CP,Q)
Initialize stackP, stackD, tolerance parameter 𝜖 , and

hierarchical lower bound 𝜃 ;

stackP.push(𝑙0);

UB← 𝐺𝑟𝑒𝑒𝑑𝑦𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚;

while stackP is not empty do
𝑖 ← stackP.size();

if TPS(𝑝𝑖−1, 𝑑𝑖 ,𝑤𝑖 , 𝜃,UB, 𝜖) = true then
Obtain 𝑝𝑖 and 𝑑

𝑖
𝑅
;

𝜃 ← 0.0;

stackP.push(𝑝𝑖 .𝑙);

stackD.push(𝑑𝑖
𝑅
);

if 𝑖 = 𝑘 then
if max{𝑠𝑡𝑎𝑐𝑘𝐷} ≤ UB then

UB← max{𝑠𝑡𝑎𝑐𝑘𝐷};
CP ← stackP;

Update 𝜃 by top of stackD;

stackP.pop();

stackD.pop();

else
Update 𝜃 by top of stackD;

stackP.pop();

stackD.pop();

return CP, 𝑑𝑅 (CP,Q) ← UB;

route template distance 𝑑𝑖+1
𝑅

between (𝑝𝑖 , 𝑝𝑖+1) and 𝑡𝑖+1 exceeds
𝑈𝐵, 𝑝𝑖 .𝑙 and 𝑝𝑖+1 .𝑙 can be removed safely from the current can-

didate path. Since 𝑝𝑖+1 is the next best matching POI after 𝑝𝑖 , it

is impossible to obtain a complete candidate path that passes 𝑝𝑖 .𝑙

and has route template distance smaller than 𝑈𝐵. When we find

a complete candidate path, we update 𝑈𝐵 with its route template

distance to the query.

For a query with T = ⟨𝑡1 (𝑤1, 𝑑1), . . . , 𝑡𝑘 (𝑤𝑘 , 𝑑𝑘)⟩, BAB searches

from the first to the 𝑘-th template to obtain a complete candidate

path CP. First, for the user’s location 𝑙0, we generate its corre-

sponding label 𝐿𝑝 (𝑙0) for computing the network distance, which

is similar to the process of generating the POI label. We maintain

two stacks, stackP and stackD, to store the current partial candidate

path and the corresponding route template distance, respectively.

Initially, we insert the origin 𝑙0 into stackP. Then we continue to

locate the remaining matching POIs by calling Procedure TPS.
When we obtain a partial candidate path P(𝑙0, 𝑝1 .𝑙, . . . , 𝑝𝑖 .𝑙), we

call TPS to find the next matching POI 𝑝𝑖+1. Once 𝑝𝑖+1 is found, we
compute 𝑑𝑖+1

𝑅
between (𝑝𝑖 , 𝑝𝑖+1) and the template 𝑡𝑖+1. We consider

two cases when verifying 𝑝𝑖+1:

(1) If 𝑑𝑖+1
𝑅

is no larger than the current 𝑈𝐵, 𝑝𝑖+1 .𝑙 and 𝑑𝑖+1𝑅 are

inserted into stackP and stackD, respectively.

(2) If 𝑑𝑖+1
𝑅

exceeds the current 𝑈𝐵, 𝑝𝑖 satisfies the previously

mentioned pruning condition, so we remove 𝑝𝑖 .𝑙 and 𝑑
𝑖
𝑅

from stackP and stackD, respectively. We set a hierarchical

lower bound 𝜃 to 𝑑𝑖
𝑅
. Unlike 𝑈𝐵 that is the upper bound

between the query and the candidate path, 𝜃 is used to relax

3063

the lower bound of the current 𝑑𝑖
𝑅
to find an alternative 𝑝 ′

𝑖

to 𝑝𝑖 . The route template distance 𝑑𝑖
′
𝑅
between (𝑝𝑖−1, 𝑝 ′𝑖)

and 𝑡𝑖 is the minimum among all the untouched POIs. If 𝑝 ′
𝑖

is valid, we continue to find the subsequent POIs.

The pruning proceeds from low level to high level, that is, from

𝑘 to 1, until the stacks become empty. The algorithm returns a com-

plete candidate path and its corresponding route template distance.

4.2.4 Template based POI Search (TPS). TPS is applied to lo-

cate the next best matching POI 𝑝𝑖+1 with respect to the template

𝑡𝑖+1 (𝑤𝑖+1, 𝑑𝑖+1). Based on whether the user specifies the distance

𝑑𝑖+1, we consider the following two cases to process the query.

(1) Specified distance. As mentioned in Section 4.2.3, we know

that the route template distance 𝑑𝑖+1
𝑅

must be no larger than the cur-

rent upper bound𝑈𝐵 and no less than the hierarchical lower bound

𝜃 . Based on Eq. 1, we obtain the value range of 𝑑𝐺 (𝑝𝑖 .𝑙, 𝑝𝑖+1 .𝑙):

𝑙𝐵 ≤ 𝑑𝐺 (𝑝𝑖 .𝑙, 𝑝𝑖+1 .𝑙) ≤ 𝑙𝐷
𝑜𝑟

𝑟𝐷 ≤ 𝑑𝐺 (𝑝𝑖 .𝑙, 𝑝𝑖+1 .𝑙) ≤ 𝑟𝐵,
(14)

where 𝑙𝐵 = 𝑑𝑖+1 − 𝑈𝐵 · 𝑑𝑖+1 · 𝜖 , 𝑙𝐷 = 𝑑𝑖+1 − 𝜃 · 𝑑𝑖+1 · 𝜖 , 𝑟𝐷 =

𝑑𝑖+1 + 𝜃 · 𝑑𝑖+1 · 𝜖 and 𝑟𝐵 = 𝑑𝑖+1 +𝑈𝐵 · 𝑑𝑖+1 · 𝜖 .
It is easy to see that the distance between POI pairs can be

computed correctly through a common pivot 𝑜 . In other words,

𝑑𝐺 (𝑝𝑖 .𝑙, 𝑝𝑖+1 .𝑙) is divided into terms 𝑑𝐺 (𝑝𝑖 .𝑙, 𝑜) and 𝑑𝐺 (𝑜, 𝑝𝑖+1 .𝑙),
where 𝑜 is in 𝐿𝑝 (𝑝𝑖) and 𝐿𝑝 (𝑝𝑖+1). Therefore, we first obtain the

POI label 𝐿𝑝 (𝑝𝑖) to get the pivot set. Since the POI label stores the

distance from the POI to the pivot, for each vertex 𝑜 in the pivot

set, we compute the feasible range of 𝑑𝐺 (𝑜, 𝑝𝑖+1 .𝑙) as follows.

𝑙𝐵𝑜 ≤ 𝑑𝐺 (𝑜, 𝑝𝑖+1 .𝑙) ≤ 𝑙𝐷𝑜
𝑜𝑟

𝑟𝐷𝑜 ≤ 𝑑𝐺 (𝑜, 𝑝𝑖+1 .𝑙) ≤ 𝑟𝐵𝑜 ,
(15)

where 𝑙𝐵𝑜 , 𝑙𝐷𝑜 , 𝑟𝐷𝑜 , and 𝑟𝐵𝑜 are obtained by subtracting𝑑𝐺 (𝑝𝑖 .𝑙, 𝑜)
from 𝑙𝐵, 𝑙𝐷 , 𝑟𝐷 , and 𝑟𝐵. Note that, the smaller the route template

distance is, the better the POI matches the query. Therefore, 𝑑𝑖+1
𝑅

between (𝑝𝑖 , 𝑝𝑖+1) and 𝑡𝑖+1 is slightly larger than and closest to

𝜃 . As a result, it is better that 𝑑𝐺 (𝑜, 𝑝𝑖+1 .𝑙) is closer to 𝑙𝐷𝑜 or 𝑟𝐷𝑜
within the range in Eq. 15. Thus, we utilize 𝑟𝐷𝑜 and 𝑤𝑖+1 to ap-

ply a successor operation Succ() on 𝑃𝐵(𝑜), while ensuring that

𝑑𝐺 (𝑜, 𝑝𝑖+1 .𝑙) is no larger than 𝑟𝐵𝑜 . Next, a predecessor operation

Pred() on 𝑃𝐵(𝑜) is carried out with 𝑙𝐷𝑜 and 𝑤𝑖+1 as input, while
ensuring that 𝑑𝐺 (𝑜, 𝑝𝑖+1 .𝑙) is no smaller than 𝑙𝐵𝑜 . We compare the

route template distances that correspond to the results of Succ()
and Pred(), and choose the smaller one to further reduce the search

space by updating 𝑙𝐵 and 𝑟𝐵. Then we continue to process the next

pivot.

(2) Unspecified distance.Whenwe explore the next best match-

ing POI 𝑝𝑖+1, it is possible that the distance that corresponds to
𝑤𝑖+1 is not extracted by RT-BERT and is thus missing. In this case,

we aim to minimize the network distances for all templates with-

out specified distances. The idea underlying unspecified distance

search is similar to that underlying specified distance search. In

the unspecified distance case, we still utilize the PB-tree to find the

next POI. Procedure TPS finds the next candidate 𝑝𝑖+1 that contains

Table 4: Route Description Sentence and Ground Truth.

Route description sentence Ground truth

I want to find a route first passing

a restaurant then walk about four

hundred meters to an atm and an-

other one kilometer to a fast food

O O O O O O O O O B-first.loc O

O O B-second.dis I-second.dis I-sec-

ond.dis O O B-second.loc O O B-

third.dis I-third.dis O O B-third.loc

I-third.loc

Get directions to the university five

hundred meters away from me and

then turn to a library six hundred

meters away

O O O O B-first.loc B-first.dis I-

first.dis I-first.dis O O O O O O O

O B-second.loc B-second.dis I-sec-

ond.dis I-second.dis O

Pick a route to the airport passing

a fuel station

O O O O O B-second.loc O O B-

first.loc I-first.loc

Search for a bar three kilometers

away from here

O O O B-first.loc B-first.dis I-

first.dis O O O

the query keyword𝑤𝑖+1 and where 𝑑𝐺 (𝑝𝑖 .𝑙, 𝑝𝑖+1 .𝑙) is the smallest:

min𝑤𝑖+1∈𝑝𝑖+1 .Φ 𝑑𝐺 (𝑝𝑖 .𝑙, 𝑝𝑖+1 .𝑙) (16)

Note that the sub-path returned by the algorithm contributes 0 to

the overall route template distance of the complete candidate path.

5 EXPERIMENTS
5.1 Experimental Settings
The RT-BERT model is implemented in Python3 with PyTorch, and

the BAB algorithm is implemented in Java. All experiments are

performed on a MacOS machine with an AMD 2.7GHz CPU and

8GB memory.

5.1.1 Datasets. To evaluate the RT-BERT model, we use two pub-

lic datasets, ATIS [14] and Snips [6]. In addition, we generate a

new dataset, called Route Description Natural Language (RDNL).

The ATIS dataset is the most widely used single-domain dataset for

natural language understanding tasks. It consists of audio record-

ings of people making flight reservations. ATIS contains around 5K

sentences. The training, validation, and testing sets contain 4,478,

500, and 893 sentences, respectively, with a total of 21 intent types

and 120 slot tags. The Snips dataset is collected using crowdsourc-

ing through the SNIPS voice platform. Compared with the ATIS

dataset, the Snips dataset is more complex due to its large vocab-

ulary and cross-domain intents, making Snips a benchmark for

natural language understanding evaluations. With Snips, we use

13,084 sentences for training, 700 for validation, and 700 for testing.

The numbers of intent types and slot tags are 7 and 72, respectively.

To the best of our knowledge, no open dataset exists for route

description natural language understanding. Therefore, we provide

the dataset RDNL. This dataset is generated as follows.

(1) We write 300 route description sentences with different

patterns and fill in templates with specific placeholders,

such as ‘w1’ for the first POI keyword and ‘d2’ for the

second specified distance. (e.g., Find a route where I go

straight for about d1 passing by w1, then proceed about d2

to w2, and finally go d3 to reach w3).

3064

(2) With these sentences as input, we fine-tune the GPT-2 [20]

model to generate more expected route description sen-

tences. To increase the diversity, the so-called temperature

parameter that controls the randomness is set to 0.9.

(3) To ensure that the grammar is correct, we check all sen-

tences generated by the GPT-2 model. A total of 3,976 sen-

tences are obtained, and the intent labels of all sentences

are annotated as ‘SearchRoute’.

(4) We replace the placeholders in the generated sentences

with words belonging to their respective categories. We

first bind POI keyword placeholders, ‘w1’, ‘w2’, . . . , using

check-in data
2
. For the placeholders ‘d1’, ‘d2’, . . . , we make

random substitutions with distances in a specified range.

(e.g., Find a route where I go straight for about fifteen kilo-

meters passing by a restaurant, then proceed about eight

kilometers to a university, and finally go five kilometers to

reach an arts center).

(5) We annotate each sequence with a ground-truth sequence.

In particular, we employ Begin-Inside-Outside (BIO) anno-

tation that is also used in ATIS and Snips. More specifically,

in the ground truth of a route description sentence, each

word is labeled by ‘O’, ‘B-X.Y’, or ‘I-X.Y’ that represent an

irrelevant noun phrase, the beginning of a template noun

phrase, or the rest of a template noun phrase, respectively.

X denotes the specified order of the template, and Y de-

notes the word as a POI keyword (loc) or a distance (dis)

in the template. Thus, we replace the placeholders with

corresponding slot tags in sentences and label all other

words ‘O’. Table 4 shows route description sentences and

corresponding ground truth annotations, with keywords

and distances in yellow and pink, respectively.

(6) To observe whether RT-BERT can recognize ‘SearchRoute’

sentences, we randomly add ‘NotSearchRoute’ sentences

to the dataset. We annotate all words in these sentences as

‘O’, and their intent types are recorded as ‘NotSearchRoute’.

The RDNL dataset contains 4,900 sentences.

(7) We partition RDNL according to the ratios 8:1:1 to obtain

training, validation, and testing sets that contain 3,824, 492,

and 584 sentences, respectively. There are 15 slot tags and

2 intent types, i.e., ‘SearchRoute’ or ‘NotSearchRoute’.

For the template-driven path query, we use two real datasets to

evaluate the hybrid label index and the BAB algorithm. Shenzhen

contains 1,943 POIs, 77,599 vertices, and 104,660 edges. New York

contains 35,677 POIs, 451,631 vertices and 594,714 edges. All POIs

are extracted from OpenStreetMap
3
.

5.1.2 Baselines. We compare RT-BERT with the following.

• Attention BiRNN: Liu et al. [19] model intent classifica-

tion and slot filling jointly using an attention based encoder-

decoder neural network architecture.

• Slot-Gated Full Attention: Goo et al. [10] introduce a

slot gate that focuses on learning the relationships between

intent and slot attention vectors in order to obtain better

semantic frame results by means of global optimization.

2
https://foursquare.com/

3
https://www.openstreetmap.org/

• Joint BERT: Chen et al. [5] propose a joint intent classi-

fication and slot filling model based on BERT that takes

advantage of the correlation between intent classification

and slot filling and of the strong generalization abilities of

BERT.

• SF-ID network: E et al. [8] integrate the contexts of slots

and intent using an attention mechanism and then present

an SF-ID network to establish the direct connections be-

tween intents and slots.

Since there is no existing methods for TPQ, we use a dynamic

programming algorithm as baseline which achieves an exact an-

swer, but has low efficiency. The dynamic programming algorithm

works as follows. For each keyword𝑤 , we create a list of POIs that

correspond to𝑤 . Given a query Q = (𝑙0,T), we retrieve the corre-
sponding POI lists according to the order of the POI keywords in T .
Specifically, for POI 𝑝𝑖 that contains𝑤𝑖 , we compute 𝐷 (𝑤𝑖 , 𝑝𝑖) that
represents the minimum possible route template distance of a route

that passes POIs with the keywords from𝑤1 to𝑤𝑖 consistent with

the order in T and stops at 𝑝𝑖 .𝑙 . After all keywords are processed

recursively, we find the minimum𝐷 (𝑤𝑘 , 𝑝𝑘) and backtrace through
the corresponding POIs to construct a final path.

5.1.3 Parameter Settings. Our RT-BERT model is built on an

English uncased BERT-Base model
4
that has 12 layers, 768 hidden

states, and 12 heads. The maximum length of a sentence is 50, and

the batch size is 128. During training, Adam [17] is applied for

optimization with an initial learning rate of 5e-5.

For the template driven path query, Table 6 summarizes the

parameter settings of the branch and bound algorithm. The default

values are highlighted in bold. The ratio of UDT to SDT refers to

the ratio of templates without specified distances to templates with

specified distances.

5.2 Performance Evaluation
5.2.1 Route Description Language Understanding. To study

the route description language understanding, we utilize three

well-adopted metrics. The intent classification and slot filling tasks

are evaluated using accuracy and the F1-score, respectively. In

addition, the sentence-level semantic frame accuracy (sentence

accuracy) is used to represent the overall performance of both

tasks. It is defined as the proportion of the sentence whose slots

and intents are both predicted correctly in the whole corpus. To

evaluate the performance of RT-BERT, we first compare RT-BERT

with baselinemodels. Then, we perform an ablation study to explore

the contributions of key factors of the proposed model.

Overall results. Table 5 shows the experimental results. We

observe that our RT-BERT model outperforms the previous state-

of-the-art models on all three datasets, where all tasks (slot filling,

intent classification, and semantic frame) show improvement. In

particular, on the RDNL dataset, RT-BERT outperforms the baselines

and achieves an intent classification accuracy of 99.90%, a slot

filling F1-score of 94.81%, and a sentence-level semantic frame

accuracy of 90.44%. We attribute the improvement of our model

to the following reasons: 1) We use a pre-trained language model

in RT-BERT that embodies general language knowledge. 2) The

4
https://github.com/google-research/bert

3065

Table 5: Comparison with Baselines

Method

ATIS Snips RDNL

Slot (F1) Intent (Acc) Sen. (Acc) Slot (F1) Intent (Acc) Sen. (Acc) Slot (F1) Intent (Acc) Sen. (Acc)

Attention BiRNN 94.20 91.10 78.90 87.80 96.70 74.10 91.52 98.82 84.67

Slot-Gated Full Attention 95.42 95.41 83.73 89.27 96.86 76.43 92.46 99.69 89.63

SF-ID Network 95.75 97.76 86.79 91.43 97.43 80.57 92.46 99.89 86.89

Joint BERT 96.10 97.50 84.20 97.00 98.60 92.80 93.76 99.90 84.91

RT-BERT 97.18 98.02 89.84 97.61 98.84 93.92 94.81 99.90 90.44

BAB DynamicProgramming

2 3 40

50

100

150

200

250

R
es

po
ns

e
tim

e
(m

s)

(a) Number of templates

2 4 6 8 100

50

100

150

200

250

R
es

po
ns

e
tim

e
(m

s)

(b) Average specified distance (km)

0.2 0.4 0.6 0.8 1.00

50

100

150

200

250

R
es

po
ns

e
tim

e
(m

s)

(c) Average tolerance factor

0:3 1:2 2:1 3:00

50

100

150

200

R
es

po
ns

e
tim

e
(m

s)

(d) The ratio of UDT to SDT

Figure 6: Query Time

Table 6: Parameters of BAB

Parameters Values

The number of templates 2, 3, 4
Average distance (km) 2, 4, 6, 8, 10
Average tolerance factor 0.2, 0.4, 0.6, 0.8, 1.0
The ratio of UDT to SDT 0:3, 1:2, 2:1, 3:0

Table 7: Comparison with Variants of RT-BERT

Removed component

RDNL

Slot (F1) Intent (Acc) Sen. (Acc)

Self-attention 94.32 99.90 89.91

Intent-attention 94.41 99.90 90.02

BiLSTM 94.75 99.90 90.17

CRF 94.57 99.90 87.82

RT-BERT 94.81 99.90 90.44

intent-attention mechanism makes the intent classification and slot

filling tasks highly correlated, and the intent classification boosts

the slot filling. 3) We leverage a self-attention mechanism to capture

global dependencies in a full sentence and learn the inner structural

features of sentences in the slot filling subtask. 4)We utilize BiLSTM

with CRF as our decoder, which makes efficient use of both past

and future input features and also considers correlations between

the labels in neighborhoods.

Ablation study. The experiments reported on so far demon-

strate that the RT-BERT model is capable of significant improve-

ments. To gain insight into the contribution of each part in the

model for route description language understanding, we present

a detailed ablation study using the RDNL dataset. Specifically, we

compare the following variants of RT-BERT:

(1) Removing the self-attention

(2) Removing the intent-attention

(3) Replacing BiLSTM with a softmax layer

(4) Removing the CRF layer

The results are shown in Table 7. We have four observations.

First, removing any component has no effect on the intent accuracy,

but decreases the F1-score and sentence accuracy. That is because

the components in our model are mainly designed for the slot

filling subtask. Second, without self attention or slot attention,

the performance of our model drops. We believe that the main

reason is the lack of global dependency of the whole sentence

and information interactions between intent and slot labels. Third,

compared to using a softmax layer, use of the BiLSTM improves the

performance of our model. We attribute this to the fact that BiLSTM

is excellent in processing long-distance sequence information and

can capture both forward and backward input features. Fourth, the

CRF layer has a positive effect on the model performance. This is

because the CRF layer can obtain the maximum possible sequence

on sentence level.

5.2.2 Template Driven Path Query. To study the template-

driven path query, we first compare the performance of the pro-

posed algorithmwith the dynamic programming algorithm in terms

of time and space cost on the two datasets (New York and Shen-

zhen). Then we study the efficiency of both algorithms when vary-

ing important parameters. Due to the space limit, we only show the

performance on the Shenzhen dataset in the second experiment,

where the performance on New York is similar to that on Shenzhen.

3066

Query set. We randomly generate 100 template driven path

queries for each experiment. In the experiment of evaluating the

overall performance of the algorithms, the parameters of template

sequences are default values as mentioned in Section 5.1.3. To detect

the influence of a certain parameter on the performance of the

algorithms, we vary it and the other parameters are also set to their

default values.

Overall performance. We first evaluate the query time, index

size, and index construction time of the BAB and the dynamic

programming algorithms. As vertex labeling performance has been

studied in existing works, we only consider POI labeling and the PB-

tree in our study. Table 8 shows that although the BAB algorithm

has a larger index size and construction time due to using the PB-

tree, it outperforms the dynamic programming algorithm clearly

in terms of query time.

Varying the number of templates. Fig. 6(a) shows the query
times of the algorithms when we vary the number of templates.

Not surprisingly, the query time of both algorithms increase when

the number of templates increases since more combinations are

available to form candidate paths. With more templates, more iter-

ations are triggered for the dynamic programming algorithm, and

candidate POIs and paths increase for the BAB algorithm.

Varying the average specified distance. Fig. 6(b) shows the
query times of the algorithms when we vary the average distance

specified by users. We can see that the dynamic programming

algorithm has little dependency on the query distance. The main

reason is that it utilizes label to compute network distances between

POIs, the query time of which only depends on the label size. For

the BAB algorithm, one function of distance is to prune POIs when

searching in the PB-tree. Therefore, if the distance is small, only few

POIs are left after filtering which helps locate the next candidate

more quickly.

Varying the tolerance factor 𝜖. Fig. 6(c) reports the query

times of the algorithms when varying the tolerance factor 𝜖 from

0.2 to 1.0. The time costs of both algorithms increase when we

enlarge 𝜖 . The reason is that the tolerance factor determines the

distance range when searching for the next matching POI. When

𝜖 becomes larger, the distance range is increased, and thus more

POIs are considered as candidates.

Varying the ratio of UDT to SDT.We study the performance of

the algorithms when processing unspecified distance templates by

varying the ratio of UDTs to SDTs. As shown in Fig. 6(d), when we

increase the ratio of UDTs to SDTs, the query time of the dynamic

programming algorithm fluctuates slightly. That is because the

algorithm needs to retrieve all POIs that contain the user-specified

keyword for UDTs and SDTs. However, the BAB algorithm can

not apply the pruning strategy when searching the matching POI

without user-specific distance, which decreases the query time.

Performance of the greedy algorithm. For the greedy algo-

rithm, we study the accuracy of its query results in addition the

efficiency. The accuracy indicates how close it is to the optimal can-

didate path, which can be measured by two criteria: the matching

ratio Δ𝑚𝑎𝑡𝑐ℎ and the hitting ratio Δℎ𝑖𝑡 :

Δ𝑚𝑎𝑡𝑐ℎ =
𝑑𝑅 (Q,P𝑔𝑟𝑒𝑒𝑑𝑦)
𝑑𝑅 (Q,P𝑜𝑝𝑡𝑖𝑚𝑎𝑙)

, (17)

Table 8: Performance Overview of Proposed Algorithms on
QT (Query Time), IT (Index Time), and IS (Index Size)

Dataset BAB

Dynamic

programming

Shenzhen

QT (ms) 105.31 213.39

IT (s) 1.88 0.23

IS (MB) 37.86 11.02

New York

QT (ms) 367.02 877.86

IT (s) 85.33 10.40

IS (MB) 1369.14 294.21

Table 9: Performance of Greedy Algorithm on QT, IT, IS, MR
(Matching Ratio), and HR (Hitting Ratio)

Dataset QT (ms) IT (s) IS (MB) MR HR

Shenzhen 11.42 1.88 37.86 1.16 0.49

New York 39.07 85.33 1369.14 1.99 0.22

Δℎ𝑖𝑡 =
|P𝑔𝑟𝑒𝑒𝑑𝑦 ∩ P𝑜𝑝𝑡𝑖𝑚𝑎𝑙 |

|T | , (18)

where P𝑔𝑟𝑒𝑒𝑑𝑦 is the candidate path of greedy algorithm, P𝑜𝑝𝑡𝑖𝑚𝑎𝑙
is the optimal candidate path, and |T | is the number of templates.

Next, Δ𝑚𝑎𝑡𝑐ℎ represents the ratio of the route template distance of

the greedy algorithm to the route template distance of the optimal

route, while Δℎ𝑖𝑡 focuses on the percentage of matching POIs in

P𝑔𝑟𝑒𝑒𝑑𝑦 contained by P𝑜𝑝𝑡𝑖𝑚𝑎𝑙 . A smaller Δ𝑚𝑎𝑡𝑐ℎ and a larger Δℎ𝑖𝑡
yield better accuracy. The results in Table 9 show that the greedy

algorithm has a short response time, but it offers no accuracy guar-

antees. On the New York dataset, both the efficiency and accuracy

decrease due to its larger size and more candidate POIs.

6 CONCLUSION
We propose the SpeakNav framework that enables a new form of

template driven path querying via a voice interface. Specifically,

SpeakNav enables voice input of a sequence of keywords and associ-

ated distances. It then returns a route that, as best as possible, visits

points of interest thatmatch the keywords and are located according

to the distances. To enable natural language interaction, SpeakNav

provides a joint intent classification and slot filling model, called

RT-BERT, that extracts keyword-distance pairs and distinguishes

the order of them. Next, SpeakNav features a branch-and-bound

algorithm and an accompanying PB-tree index that return accurate

answers and also reduce the computational overhead. The experi-

mental study shows that the proposed RT-BERTmodel outperforms

the state-of-the-art approaches in terms of both intent classifica-

tion and slot filling that relate to language understanding, and that

the proposed branch-and-bound algorithm is capable of answering

template driven path queries efficiently.

ACKNOWLEDGMENTS
This research is supported in part by the NSFC (Grants No. 61902134,

62011530437), the Hubei Natural Science Foundation (Grant No.

2020CFB871), and the Fundamental Research Funds for the Central

Universities (HUST: Grants No. 2019kfyXKJC021, 2019kfyXJJS091).

3067

REFERENCES
[1] Ittai Abraham, Daniel Delling, Andrew V. Goldberg, and Renato Fonseca F.

Werneck. 2011. A Hub-Based Labeling Algorithm for Shortest Paths in Road

Networks. In SEA (Lecture Notes in Computer Science, Vol. 6630). Springer, 230–
241.

[2] Takuya Akiba, Yoichi Iwata, and Yuichi Yoshida. 2013. Fast exact shortest-path

distance queries on large networks by pruned landmark labeling. In SIGMOD
Conference. ACM, 349–360.

[3] Lei Bi, Juan Cao, GuoHui Li, Nguyen Quoc Viet Hung, Christian S. Jensen, and

Bolong Zheng. 2021. SpeakNav: A Voice-based Navigation System via Route

Description Language Understanding. In ICDE. IEEE, 2669–2672.
[4] Xin Cao, Lisi Chen, Gao Cong, and Xiaokui Xiao. 2012. Keyword-aware Optimal

Route Search. PVLDB 5, 11 (2012), 1136–1147.

[5] Qian Chen, Zhu Zhuo, and Wen Wang. 2019. BERT for Joint Intent Classification

and Slot Filling. CoRR abs/1902.10909 (2019).

[6] Alice Coucke, Alaa Saade, Adrien Ball, Théodore Bluche, Alexandre Caulier,

David Leroy, Clément Doumouro, Thibault Gisselbrecht, Francesco Caltagirone,

Thibaut Lavril, Maël Primet, and Joseph Dureau. 2018. Snips Voice Platform: an

embedded Spoken Language Understanding system for private-by-design voice

interfaces. CoRR abs/1805.10190 (2018).

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:

Pre-training of Deep Bidirectional Transformers for Language Understanding.

In NAACL-HLT. 4171–4186.
[8] Haihong E, Peiqing Niu, Zhongfu Chen, and Meina Song. 2019. A Novel Bi-

directional Interrelated Model for Joint Intent Detection and Slot Filling. In ACL
(1). Association for Computational Linguistics, 5467–5471.

[9] Hiroshi Fukui, Tsubasa Hirakawa, Takayoshi Yamashita, and Hironobu Fujiyoshi.

2019. Attention Branch Network: Learning of Attention Mechanism for Visual

Explanation. In CVPR. Computer Vision Foundation / IEEE, 10705–10714.

[10] Chih-Wen Goo, Guang Gao, Yun-Kai Hsu, Chih-Li Huo, Tsung-Chieh Chen,

Keng-Wei Hsu, and Yun-Nung Chen. 2018. Slot-Gated Modeling for Joint Slot

Filling and Intent Prediction. In NAACL-HLT (2). Association for Computational

Linguistics, 753–757.

[11] Daniel Guo, Gökhan Tür, Wen-tau Yih, and Geoffrey Zweig. 2014. Joint semantic

utterance classification and slot filling with recursive neural networks. In SLT.
IEEE, 554–559.

[12] Patrick Haffner, Gökhan Tür, and Jerry H. Wright. 2003. Optimizing SVMs for

complex call classification. In ICASSP (1). IEEE, 632–635.
[13] Dilek Hakkani-Tür, Gökhan Tür, Asli Çelikyilmaz, Yun-Nung Chen, Jianfeng

Gao, Li Deng, and Ye-YiWang. 2016. Multi-Domain Joint Semantic Frame Parsing

Using Bi-Directional RNN-LSTM. In INTERSPEECH. ISCA, 715–719.
[14] Charles T. Hemphill, John J. Godfrey, and George R. Doddington. 1990. The ATIS

Spoken Language Systems Pilot Corpus. In HLT. Morgan Kaufmann.

[15] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term Memory.

Neural Comput. 9, 8 (1997), 1735–1780.

[16] Yoon Kim. 2014. Convolutional Neural Networks for Sentence Classification. In

EMNLP. ACL, 1746–1751.
[17] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-

mization. In ICLR (Poster).
[18] Ye Li, Leong Hou U, Man Lung Yiu, and Ngai Meng Kou. 2017. An Experimental

Study on Hub Labeling based Shortest Path Algorithms. Proc. VLDB Endow. 11, 4
(2017), 445–457.

[19] Bing Liu and Ian Lane. 2016. Attention-Based Recurrent Neural Network Models

for Joint Intent Detection and Slot Filling. In INTERSPEECH. ISCA, 685–689.
[20] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya

Sutskever. 2019. Language models are unsupervised multitask learners. OpenAI
blog 1, 8 (2019), 9.

[21] Suman V. Ravuri and Andreas Stolcke. 2015. Recurrent neural network and LSTM

models for lexical utterance classification. In INTERSPEECH. ISCA, 135–139.
[22] Christian Raymond and Giuseppe Riccardi. 2007. Generative and discriminative

algorithms for spoken language understanding. In INTERSPEECH. ISCA, 1605–
1608.

[23] Mike Schuster and Kuldip K. Paliwal. 1997. Bidirectional recurrent neural net-

works. IEEE Trans. Signal Process. 45, 11 (1997), 2673–2681.
[24] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All

you Need. In NIPS. 5998–6008.
[25] Andrew J. Viterbi. 1967. Error bounds for convolutional codes and an asymp-

totically optimum decoding algorithm. IEEE Trans. Inf. Theory 13, 2 (1967),

260–269.

[26] Yude Wang, Jie Zhang, Meina Kan, Shiguang Shan, and Xilin Chen. 2020. Self-

Supervised Equivariant Attention Mechanism for Weakly Supervised Semantic

Segmentation. In CVPR. IEEE, 12272–12281.
[27] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi,

Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff

Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu, Lukasz Kaiser, Stephan

Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith Stevens, George

Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa, Alex

Rudnick, Oriol Vinyals, Greg Corrado, Macduff Hughes, and Jeffrey Dean. 2016.

Google’s Neural Machine Translation System: Bridging the Gap between Human

and Machine Translation. CoRR abs/1609.08144 (2016).

[28] Bin Yao, Mingwang Tang, and Feifei Li. 2011. Multi-approximate-keyword

routing in GIS data. In GIS. ACM, 201–210.

[29] Kaisheng Yao, Geoffrey Zweig, Mei-Yuh Hwang, Yangyang Shi, and Dong Yu.

2013. Recurrent neural networks for language understanding. In INTERSPEECH.
ISCA, 2524–2528.

[30] Sen Zhao, Lei Zhao, Sen Su, Xiang Cheng, and Li Xiong. 2018. Group-based

keyword-aware route querying in road networks. Inf. Sci. 450 (2018), 343–360.
[31] Bolong Zheng, Han Su, Wen Hua, Kai Zheng, Xiaofang Zhou, and Guohui Li.

2017. Efficient Clue-Based Route Search on Road Networks. TKDE 29, 9 (2017),

1846–1859.

3068

