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ABSTRACT
GPU-accelerated database systems have been studied for more than
10 years, ranging from prototyping development to industry prod-
ucts serving in multiple domains of data applications. Existing GPU
database research solutions are often focused on specific aspects
in parallel algorithms and system implementations for specific fea-
tures, while industry product development generally concentrates
on delivering a whole system by considering its holistic perfor-
mance and cost. Aiming to fill this gap between academic research
and industry development, we present a comprehensive industry
product study on a complete CPU/GPU HTAP system, called Ra-
teupDB. We firmly believe “the art of balance" addresses major
issues in the development of RateupDB. Specifically, we consider
balancing multiple factors in the software development cycle, such
as the trade-off between OLAP and OLTP, the trade-off between
system performance and development productivity, and balanced
choices of algorithms in the product. We also present RateupDB’s
complete TPC-H test performance to demonstrate its significant
advantages over other existing GPU DBMS products.
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1 INTRODUCTION
In the past decade, GPU-accelerated database systems have grown
up rapidly from an early stage of concept proofing (e.g. [22]), in-
augurating and prototyping (e.g. GDB [48], GPUDB [115], Ocelot
[53]) and many individual projects in the academic community
(e.g, [18, 28, 44, 61, 78, 90, 95, 98, 99, 101, 105, 113]), to the stage of
making products in database industry for large-scale deployments
for various critical applications. Several commercial GPU DBMSs
have been built, either by GPU-customized designs, e.g. Kinetica
[6], OmniSci [9] (formerly known as MapD [84]), SQream [10],
or by extending existing database systems, e.g. the PostgreSQL-
based Brytlyt [2] and HeteroDB [4]. The design space for a GPU
database is large, where many optimizations can be done to of-
fer multiple possibilities to improve performance. However, the
system improvement in many research projects is not necessarily
achieved for the overall performance, but for isolated cases. Based
on our development experience of RateupDB, a high performance
GPU database product, we demonstrate that the essential issue is to
achieve an overall system balance by trading-off multiple important
performance factors. Only in this way, we are able to achieve high
performance, scalability and sustainability for a GPU database.

1.1 The Rise of GPU DBMSs
The rise of GPU database systems is mainly driven by real-world ap-
plication requirements. As the human society has entered the data
computing era, which is driven by increasingly more and diverse ap-
plications supported by new technologies and innovative concepts
in the society, such as mobile computing, digital content sharing,
shared economy and others, new application requirements are of-
ten beyond the scope of functionalities provided and optimized by
conventional database systems. Based on our collaborations with
data industry practitioners and customers, we summarize the new
requirements into the following three categories.

Requirement for Real-Time Business Insights: This is the
most important application need for users who need to obtain
instant business insights by applying various analytics on timely
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updated data (e.g., [33, 39, 106, 119]). A typical scenario is the real-
time vehicle position management as represented by the cases
of AresDB used in Uber [5] and Kinetica used in USPS [12]. We
have learned from a major global service company owning several
millions of operating vehicles that dynamic route planning and
deviation rate analytics based on real-time vehicle positions are
not only necessary to lower operational costs and improve user
experiences, but also vital for drivers and passengers to benefit
from on-time malicious behavior detection for criminal precaution.

Requirement for Extreme Computing Power: The explo-
sive trend to process an increasingly huge amount of non-structural
data seriously challenges the limited computing power in CPU-only
database systems, particularly in this post-Moore’s Law era. We
have witnessed a number of daily production cases that demand ul-
tra high-performance by hardware-accelerated solutions to process
unconventional and huge data sets in relational databases, which
are critically important for applications including but not limited
to DNA sequencing [14, 80], spatial data analytics [16, 35, 110],
and 3D structure analysis [79, 96]. We have surprisingly observed
that users still prefer to use a database product to manage their
data, although they are often unsatisfied with database system’s
performance for their tasks. This is because databases have an ad-
vantage of providing simple interfaces for users. If they use multiple
fractional software tools, they may have to manually manage them.

Requirement for One-Stop Data Management:With the de-
mand of real-time data analytics (from simple aggregations to
complex statistics analytics), users often demand to use a one-
stop solution to unify data writes, query processing, and machine
learning. Compared to the commonly used two-stage solution (e.g.,
RocksDB+Spark [29, 118]), a single database (e.g. [5][12]) can sig-
nificantly save users’ cost in usage and management, and can avoid
data transfers between separate systems. Other examples are Ter-
adata Vantage [71] and Google BigQuery cloud service [1] that
embed machine learning functionalities into their relational query
execution engines; thus the need of using a separate machine learn-
ing system for the in-database data is removed. However, the re-
quirements of performance isolation and service-level agreement
bring new challenges for the implementation of one-stop databases.

Rapid Hardware Advancement: The rapid development of
hardware technology allows GPUs to provide increasingly parallel
computing power and large memory space. With the NVLink pro-
tocol [8], a single server can provide a fast-accessing memory pool
of several hundreds of GBs to feed GPU cores for data processing.
Therefore, such a hardware advancement trend is creating a GPU-
Style In-Memory Computing environment, which has appeared in
recent database research work (e.g., [116][99][90]).

More than ten years ago (in 2010), when RAMCloud was pro-
posed to realize the concept of all-in-memory data storage [89],
the two key factors used to make the case were 64GB DRAM Ca-
pacity/Server and $60 Cost/GB DRAM. Today, such a concept has
become the reality for data processing, e.g., in main-memory data-
base system (e.g. [34, 64, 120]). Similarly, today’s GPU hardware
capabilities have already exceeded or stayed at the same level for
the configurations in RAMCloud in both capacity and price/capac-
ity. Even a single Nvidia A100 can have 80GB memory, which is
bigger than the DRAM capacity per server in RAMCloud. Regard-
ing the price, public GPU cards on Amazon.com (PNY NVIDIA

Quadro RTX 8000 with 48GB GDDR6 memory for $4,997 and EVGA
GeForce RTX 3090 WITH 24GB GDDR6 memory for $2,499) have
already provided a memory price at around $100 Cost/GB – even
if we only count the final price to the memory part. The com-
modity GPU development gives us a promising landscape, and we
can optimistically state that GPU’s computing power will be best
utilized with fast data accessing in large memory space.

1.2 Targeted Issues in Building a GPU DBMS
Although many academic research efforts have been made for opti-
mizing GPU database processing, (e.g, [18, 28, 44, 61, 90, 95, 98, 99,
101, 105]),they often focused on a single aspect, without giving a
complete reference for building a real database product. Here are
the three issues we attempt to address in this paper.

The Issue of Algorithm Choices: Various algorithms (e.g.,
hash join vs sort merge join) are available, but how to make a right
selection among them is a key issue for an industry product.

The Issue of SimpleDataAnalytics: In existing GPU database
literature, we often find that performance evaluations are conducted
by SSB-like (Star Schema Benchmark) workloads. However, an
industry product demands intensive performance evaluations by
complex data analytics workloads, such as TPC-H queries that
requre much more practical SQL features [11].

The Issue of Isolated Environments: In existing GPU data-
base literature, we often find that the query performance is evalu-
ated in an isolated environment, assuming there is no companion
data modifications. However, daily database operations in practice
are unavoidably involved with both reads and writes.

1.3 Contributions
This paper aims to address the above mentioned issues by present-
ing the basic structure, design choices and performance insights into
RateupDB. Attempting to fill the gap between academic research
and product development, we make the following contributions.

MakingRightChoices byTakingBalancedConsiderations:
We introduce a set of macro-level design choices for implementing
RateupDB, and why we make these choices. We present implemen-
tation techniques for several important parts, especially on how to
combine query executions and transaction processing.

Performance Insights into RateupDB by Complex Data
Analytics in aProductionEnvironment:Wepresent RateupDB’s
performance for a complete TPC-H test: (1) by using the official
benchmark specification and (2) by strictly satisfying the test re-
quirements. Our comprehensive evaluation results confirm the
value of the system balancing principle in RateupDB.

2 THE ARCHITECTURE
We first discuss several identified macro-level balancing points,
which lay the foundation for RateupDB’s overall design strategy.

2.1 Key Balancing Points in System Building
RateupDB is a Heterogeneous Hybrid Transactional and Analytical
Processing (simply called Heterogeneous HTAP, or H2TAP [18][95],
and we simplify the term as HTAP in this paper) database system,
which is designed to best utilize CPU, GPU, and large DRAM mem-
ory for co-running hybrid workloads. To achieve the goal for an
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industry product, the development of RateupDB is focused on the
following three key balancing points, which are related to both
technical challenges and engineering costs.

Balancing Point 1: Transaction vs Query. A major goal for
a HTAP system is to optimize both transaction processing and
query execution in a shared database platform while providing
performance isolation for satisfactory user experiences in quality
of service (QoS). This point is largely related to major system strate-
gies including hardware resource partitioning, data store formats
and access methods, and concurrency control methods. Making bal-
anced performance trade-offs in a large design space is challenging
due to various conflicting factors (e.g., the RUM conjecture [19][93]
or multi-source integration analytics [94]).

Balancing Point 2: Performance vs Engineering Cost. Un-
like an academic research project, the development of an industry
product must consider engineering cost that is a constraint from
both the budget of financial resources and the requirement of pro-
duction deadlines. Therefore system design choices and various
algorithm adoptions must balance multiple factors including perfor-
mance, adaptiveness, robustness, and implementation cost (e.g., the
independence degree to other system components). A typical ex-
ample for this balancing point is the choice of GPU join algorithms,
which will be discussed later in this paper.

Balancing Point 3: Performance vs Portability. To achieve
the goal of both high-performance and being-portable in software
development is challenging. Specifically, in high performance com-
puting, e.g., [92][46], we often aim at achieving two goals that
are conflicting: (1) to best utilize all the features in both hardware
platforms and software libraries, and (2) to maximize software adap-
tiveness if certain hardware features are not universally available.
This balancing point is important for the development of RateupDB
that often requires GPU hardware-conscious algorithms (e.g., the
memory management problem to be discussed later in this paper).

2.2 An Architectural Overview
Figure 1 shows an architectural overview of RateupDB. We sum-
marize RateupDB’s main features as follows.

Figure 1: An Overview of RateupDB Architecture.

Hardware-guaranteedPerformance Isolation:Amajor chal-
lenge of building HTAP systems is to minimize performance inter-
ference between co-running transaction workloads and analytical

workloads because the two types of workloads have distinct exe-
cution patterns, SLA (Service-Level Agreement) requirements, and
optimization policies. Achieving the dual goal of performance iso-
lation and frequent data-update is challenging in CPU-only HTAP
systems [95]. However, a GPU-based HTAP system has its unique
advantages to address this issue due to its capability of assigning
and running different workloads in separate hardware devices. As
shown in Figure 1, RateupDB uses CPU to execute OLTP workloads
(i.e., insert/delete/update) and uses GPU to execute various queries
of OLAP workloads in the shared data stores. Because the CPU and
the GPU are separate hardware devices, performance isolation can
be guaranteed if corresponding software is well defined.

MVCC-based Dual Data Stores: Data store as a persistent
repository plays an important and foundation role to both query
execution and transaction processing, particularly when the two
workloads are co-running together. Since RateupDB is built on both
CPU and GPU, the design and implementation of data store must
be in a way so that (1) query execution on GPU is efficient and (2)
performance interference is minimized. To achieve the two goals,
RateupDB uses “dual stores" in main memory, which consists of two
parts: AlphaStore and DeltaStore (see Figure 1). For a given time of
the database, AlphaStore stores the existing data in the database for
query processing, while DeltaStore stores the changes made to the
database by new transactions. A Multiversion Concurrency Control
(MVCC) is utilized to manage the two stores cooperatively. In this
way, the GPU device can process OLAP queries independently by
obtaining a snapshot of the database from combining AlphaStore
and DeltaStore, while the CPU can execute transactions to modify
the database states in DeltaStore. In addition, RateupDB uses a part
of GPU device memory (called AlphaCache) to cache frequently
used data items in AlphaStore in order to avoid unnecessary data
transfers from host memory to GPU device memory. Currently,
both AlphaStore and DeltaStore are in column store formats by
which each column of a table is stored independently.

3 DATA FORMAT
3.1 Data Store Format Matters!
Although the basic data format for a relational table is either row
store or column store, there are multiple choices in the design
space, e.g. (1) choosing one of the basic stores, (2) mixing them
to form a hybrid format (e.g. [15, 51, 58]), and (3) combining the
basic stores using multiple data stores. Table 1 lists several typical
database systems for each category of data stores, which shows
diverse design choices in different database systems.

3.2 The Necessity of Dual Stores
As a HTAP database system, RateupDB takes a dual store approach
(column+column) for several reasons. A conventional wisdom is
that row store is more suitable for transaction workloads (e.g.,
PostgreSQL) while column store is more suitable for analytical
workloads (e.g., MonetDB [27]). But for HTAP systems that have
to handle both transaction and analytical workloads, neither row
store nor column store is sufficient. Thus several HTAP systems
(Hyper [62], SAP HANA [100], Caldera [18], BatchDB [81]) use
different ways of combining the two stores. Basically, the four
systems fall into two categories: (1) Single-Store: allowing users to
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Table 1: Examples of data stores in several DBMSs.

Format/DB Postgres MonetDB HyPer SAP HANA Vertica Caldera BatchDB RateupDB
Unified Store: Row Yes Choice Choice
Unified Store: Column Yes Choice Choice
Unified Store: Hybrid Preferred
Dual Store: Row+Row Yes
Dual Store: Row+Column Yes (L1-L2) Yes Future Tried
Dual Store: Column+Column Yes (L2-Main) Tried Yes

choose either row store, column store, or a hybrid store; (2) Multi-
Store: combining two or even three stores to best serve transactions
and queries. CPU-based HyPer and GPU-based Caldera are typical
examples in the first category, while SAPHANA and BatchDB are in
the second one. For the first category, compared to HyPer, Caldera’s
performance results suggested that a hybrid data store be a more
effective choice than pure row store or pure column store. For the
second category, SAP HANA uses a three-level stores (L1 Delta,
L2 Delta, and main store), where the first level is in row store for
absorbing transactions and the last two levels are in column store
for query processing. BatchDB (as well as TiDB [59]) uses separate
stores (by replicas) to isolate OLTP and OLAP. Oracle Database
In-Memory (ODIM) [70, 91] is also in this category, which takes
a dual format in-memory stores (column store for OLAP and row
store for OLTP – caching disk data).

The unified single-store approach and the separate dual-store
approach in Table 1 have both pros and cons. First of all, to main-
tain separate stores needs extra cost to manage and merge multiple
data stores. However, separating stores for transactions and queries
can minimize the interference on the shared data, which is par-
ticularly suitable for CPU-GPU heterogeneous database systems,
where queries are executed on GPU and transactions are executed
on CPU. Ideally, when GPU begins to execute read-only queries,
it should minimize the interference to CPU by avoiding making
CPU execute too much on format parsing or on data preparations.
Furthermore, when CPU executes transactions, its write operations
and synchronization-related operations (locks or latches) should
not interfere with GPU processing. A dual store, if managed well,
is an effective solution to achieve these goals.

3.3 Why Column+Column?
Now the question is what data formats should be used in a dual
store. First, for analytical tasks, column store is the best choice for
its various performance advantages [103][13]. Therefore, almost
all the above mentioned HTAP systems use column store for their
analytical part. The only exception is BatchDB [81], which uses a
combination of row+row store because the purpose is to demon-
strate the necessity of use separate stores for OLTP and OLAP.
Nonetheless, the team of BatchDB admits the advantage of column
store for analytics, and plans to implement it in future versions.

Second, for the transaction tasks, we have observed that not all
systems consistently use row store despite its claimed advantages
for OLTP workloads. SAP HANA applies a hybrid approach to
bridging the transaction tasks and the analytical tasks by applying
a row-store L1-delta and a column-store L2-delta in front of its
column-oriented main memory store [100]. Two other system cases

(Hyper and Vertica) demonstrate the possibility of using column
stores for absorbing transaction writes to the database.HyPer [62]:
“HyPer can be configured as a row store or as a column store. For OLTP
we did not experience a significant performance difference.”Vertica
[72]: “The WOS has changed over time from row orientation to col-
umn orientation and back again. We did not find any significant
performance differences between these approaches and the changes
were driven primarily by software engineering considerations. ”

The fundamental reason of using column store for transactions
is that it can greatly accelerate query processing and table merging
operations, while its performance reduction for OLTP is negligible
or acceptable. Like Vertica, RateupDB began with a row+column
dual store, but it had been quickly changed to a column+column
dual store in order to accelerate analytics workloads while keeping
transactions at a level of acceptable performance.

3.4 RateupDB’s Data Store
AlphaStore: AlphaStore (meaning the main store) is a column-
oriented data store loaded into main memory from disks, by which
each table column is stored in continuous data chunks. When stored
on disks, AlphaStore does not contain anyMVCC information. After
loading, all tuples are read-only and visible to all later transactions,
unless they are deleted, which would be recorded by DeltaStore.
Essentially, when a query is executed, the data in AlphaStore will
be transferred into GPU for query processing. RateupDB uses a
zone in the GPU device memory, called AlphaCache (see Figure 1),
to store frequently used data in AlphaStore by an LRU algorithm.

DeltaStore: DeltaStore is a MVCC-based column store, which
records the changes to AlphaStore after each transaction is finished.
For an insert command, the newly inserted data will be appended
into corresponding columns of DeltaStore. For a delete command,
the IDs of rows being deleted will be recorded by DeltaStore into a
delete vector. For an update command, it is essentially converted
into an insert and a delete operation. Detailed concurrency control
of the stores will be presented in Section 5.

4 THE GPU QUERY PROCESSING
RateupDB uses a GPU-based query execution engine. In this section,
we focus on the following three aspects. (1) Engine Structure: It
essentially determines how a series of relational operations in a
query planning tree, are connected and executed onGPU devices; (2)
AlgorithmChoices: It concerns how to best utilize GPU hardware
to implement each concrete algorithm for various operators; (3)
Complex Query Handling: It addresses issues on how to execute
complex SQL queries with various subquery forms.
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4.1 On Query Engine Structure
RateupDB’s query engine structure applies an approach of operator-
at-a-time, which is inherited from its early prototype GPUDB [115].
Basically, all the operators in a query plan tree are finished in a
sequential order according to the tree structure. For each opera-
tor, after all its input data are transferred into GPU memory, a
set of GPU kernels are executed, while the final output results of
the operator are kept in the GPU device memory for consequent
operator executions. Although such a model has its advantage of
universally executing all SQL queries, it may not effectively execute
multiple operators that have correlations and thus can be finished
in a combination way. To address the problem, RateupDB takes an
approach of combinational operator to optimize certain important
OLAP query scenarios. RateupDB uses Star Join and Self Operator
to achieve the goal of best utilizing GPU computing resources while
minimizing data transfer overheads, which will be discussed later.

4.2 On Join and Grouping
A significant effort for RateupDB is focused on how to effectively
execute various relational operations in GPU, particularly for join
and grouping/aggregation. There has been a long history of debat-
ing on (1) how to implement the two operations and (2) what to
choose: sort-based algorithms vs hash-based algorithms. A thread
of existing research work to address the above two questions on
multi-core or many-core CPUs often gives different conclusions.
However, a widely accepted conclusion is that a complex cost model
by considering both data distributions and hardware parameters is
needed to compare these two categories of join algorithms. We face
a challenge on how to build a query engine by taking prior research
results into consideration in a large algorithm design space.

4.2.1 Sort vs. Hash Revisited. We first present a brief survey of
existing results for the issue of sort vs hash in both CPU and GPU
databases, which lays a foundation for our approach in algorithm
design and implementation. Kim et. al [63] proposed two SIMD-
optimized parallel join algorithms: a radix hash join algorithm and
a sort-merge join algorithm that uses bitonic merge networks and
multiway merging to implement the underlying sort operation [30].
Their performance analysis results project that the sort-merge join
could outperform hash join for future many-core hardware with
wider SIMD and smaller per-core memory bandwidth. Blanas et. al
[25] showed that non-partitioning hash join (using a shared hash
table) can outperform more complex partitioning-based hash join
algorithms including radix hash join. Albutiu et. al [17] proposed
NUMA-optimized, massively parallel sort-merge join algorithms
that use range-partitioning-based merge-join techniques with a
combination of multiple sorting algorithms including radix sort and
quick sort. Their performance comparisons show that sort-merge
join is faster than both radix hash join and non-partitioning hash
join. Balkesen et. al [21] proposed both optimized radix hash join
(by reducing cache misses and TLB misses) and SIMD-optimized
sort-merge join whose sorting utilizes sorting networks and bitonic
merge networks. In addition to demonstrating that their join im-
plementations are faster than the ones in both [25] and [17], they
also showed that their hash join is faster than their sort-merge join.
However, for large workloads, the performance is comparable.

Shifting from multicore to GPU brings a new debate on sort
vs. hash. He et. al [49] compared radix hash join and sort-merge
join using bitonic sort and quick sort on early GPU hardware, and
concluded that radix hash join is faster than sort-merge join. Yuan
et. al [115] proposed a non-partitioning hash join on GPU for star-
schema queries. A recent GPU related study by Shanbhag et. al [99]
also used such a non-partitioning strategy and indicated that an ad-
vantage of non-partitioning hash join compared to radix hash join
is its effective usage in pipelined multiple joins. Despite radix hash’s
single-join performance advantage over non-partitioning hash join
[21], its performance advantage compared to GPU-optimized sort-
merge join is weakened, considering GPU Merge Path algorithm
[45][87] for fast merging, and other radix sorting algorithms [102].
Rui and Tu [98] implemented an improved radix hash join by avoid-
ing twice hash probing and a sort-merge join that uses GPU Merge
Path for both the sorting stage and the merge-join stage. Their
performance analysis showed that sort-merge join outperforms
radix hash join on GPU. It is worth mentioning that their general-
purpose merge sorting is not the fastest radix-based sorting [102]
that has limitations for arbitrary data types. Siloulas et. al [101]
implemented hardware-conscious radix hash join and showed its
speedup over the non-partitioning hash join.

4.2.2 The RateupDB Approach. Ideally, all above mentioned join
algorithms should be implemented in a DBMS, and this system
further utilizes a query optimizer with precise cost models to select
the right algorithms for a given query. However, it is a non-trivial
task to implement such a query optimizer (e.g., [74]) that involves a
set of execution components including data distribution estimation
and runtime statistical information collecting. Nonetheless, its value
in practice may often be insignificant [77].

To balance the database performance and engineering efforts, our
RateupDB approach to implementing join algorithms is based on the
following three principles. (1) Implementing a default, general-
purpose join algorithm. We use sort-merge join to serve this
purpose. Its sort stage uses both radix sorting and merge path sort-
ing, depending on the join key characteristics, and its merge-join
stage uses the merge path algorithm. (2) Optimizing star joins
dominated data warehouse queries. We use non-partitioning
hash join for this purpose. Furthermore, it provides a star-hash join
for multiple joins based on the binary non-partitioning hash join.
(3) Using simple rules to select join algorithms.We do not use
any cost models, but use simple rules based schema information
only. Our join algorithm selection process is illustrated by Figure 2.

The reasons why we take the sort-merge approach for the de-
fault join algorithm instead of radix hash join are both performance
related and development-cost related. Performance Considera-
tions: As pointed out in [98], if both are optimized by utilizing
GPUs, sort-merge join is faster than radix hash join. This conclu-
sion is consistent with the results provided by [21], which shows
sort-merge join is more favorable for large input tables. Engineer-
ing and Development-Cost Considerations: Sort-merge join
has certain advantages over radix hash join for both robustness to
handling data size variations and its symmetry nature of remov-
ing the necessity of a query optimizer to designate which table is
for hash building or probing. Furthermore, the sort stage, which
is a general parallel computing problem, can be separated from
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Figure 2: A Selection Process of Join Algorithms.

the merge join stage so that it can be independently optimized by
CUDA engineers without any database background knowledge.

For primary-foreign key join, we use non-partitioning hash join
[115][99]. Compared to radix hash join, the basic advantage of non-
partitioning join is that it allows a pipelined star join execution
among one fact table and multiple dimension tables. In our imple-
mentation, each tuple from the fact table probes the hash tables of
all the dimension tables. Our performance measurements show that
such a technique is critically important for improving performance
of executing typical warehousing queries, such as TPC-H queries.
Even for the binary join, where the fact table is often much larger
than the dimension table, the overhead of radix hash join’s parti-
tioning step for the fact table is unnecessarily high considering its
unavoidable random memory accesses [21][98].

For sort-merge join, we take a hybrid approach for the sort
stage. Its default choice is to use radix sort, if the data values are
suitable for being sorted lexicographically, such as a integer sorting.
Essentially, we use the CUDACUB header library [3] as the working
engine for radix sort. Because CUB can only execute sorting on
C++ numeric primitive types, it cannot be used to sort complex
data types, such as Decimal that often has a struct type wrapping
internal data representations. For such data types, we use a general
merge sort algorithm based on GPU Merge Path [98].

4.2.3 On Grouping. Like join, processing grouping in a GPU data-
base can also be hash-based (e.g., GPUDB [115]) or sort-based
(e.g., CoGaDB [28]). By default, RateupDB uses a sort-based group-
ing strategy. First, sort-based grouping outperforms hash-based
grouping when the number of groups is large. Prior research work
[61][105] reported that for grouping, when there are less than
200,000 groups, the hashing algorithm is faster. However, once
the hash table is too large for L2 cache to store, its performance
is significantly lower than that of the sorting algorithm. Such a
phenomenon is actually similar to the multicore CPU join scenario
[21]. Second, sort grouping can be implemented easily and better

optimized than hash grouping, considering that (1) sorting can be
implemented separately, and (2) it is a non-trivial task to implement
an efficient hash table on general data sets to minimize or remove
collision completely [53][105].

4.3 On Subquery Processing
Subquery processing is important for SQL performance in database
products, such as in SQL Server [37] and in Oracle Database [23].
RateupDB does not use general-purpose subquery processing al-
gorithms (e.g. [86] [41]). However, we implement commonly used
subquery unnesting techniques that can transform subqueries into
various joins and aggregations (e.g., the Kim method [65]), which
allows RateupDB to efficiently execute TPC-H-style queries.

4.3.1 An Example. Although giving a comprehensive overview of
subquery processing is out of the scope of this paper, we introduce
how we optimize an important subquery type: EXISTS and NOT
EXISTS. The following code is a part of TPC-H Q21, which essen-
tially uses two subqueries to filter out some records from 𝑙𝑖𝑛𝑒𝑖𝑡𝑒𝑚.
We take a typical subquery unnesting technique to execute the
query by: (1) using semi-join to execute the EXISTS subquery and
(2) using anti-join to execute the NOT EXISTS subquery.
SELECT ... FROM lineitem l1, ...
WHERE l1.l_receiptdate > l1.l_commitdate

AND EXISTS ( SELECT * FROM lineitem l2
WHERE l2.l_orderkey = l1.l_orderkey

AND l2.l_suppkey <> l1.l_suppkey)
AND NOT EXISTS ( SELECT * FROM lineitem l3

WHERE l3.l_orderkey = l1.l_orderkey
AND l3.l_suppkey <> l1.l_suppkey

AND l3.l_receiptdate > l3.l_commitdate)

4.3.2 Semi/Anti-join and Self. Implementing semi- and anti-join
is similar to equi-join, using either hash-based or sort-based algo-
rithms. Because each of the left table’s tuple is outputted either
once or not, the output buffer can be pre-allocated with the length
of the left table. Parallel threads can use AtomicAdd to write the
results to correct positions, without the need of twice probing in
hash equi-join or a prefix scan in sort equi-join.

However, considering the query semantics in Q21, naively ex-
ecuting the filter and two joins is slow because all the operations
are only conducted on the same table. To exploit such a correlation
[75][57], we implement a Self operator, which combinesmultiple op-
erations into a common stage. This is similar to the Super-Operator
concept in Microsoft SCOPE [76] and HorseQC [43]. If multiple op-
erations on the same table have the same partitioning opportunity,
i.e., the whole task can be partitioned into independent sub-tasks,
then the Self operator will be enabled. In the same example, Self will
partition 𝑙𝑖𝑛𝑒𝑖𝑡𝑒𝑚 by the shared join key 𝑙_𝑜𝑟𝑑𝑒𝑟𝑘𝑒𝑦 and execute
the three operations for each partition.

The Self operator can be hash-based or sort-based, depending
on whether the partitioning column has only unique values. For
the same example, Self is sort-based. Like sort-based grouping, the
table is grouped first. Inside a group, Self will execute the required
operations (by calling corresponding functions in other operator
modules), similar to the GROUP concept used by Pig Latin [88] to
allow users to execute arbitrary codes instead of only aggregations.
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5 TRANSACTION PROCESSING
5.1 The Basic MVCC Method
We use a PostgreSQL-style Multiple-Version Concurrency Control
(MVCC) to implement snapshot isolation in RateupDB. As illus-
trated in Figure 3, RateupDB uses a dual store mode, namely, Al-
phaStore and DeltaStore. Both stores are column store. AlphaStore
is read-only and backed up by permanent storage devices, while
DeltaStore only resides in main memory for both reads and writes.

Figure 3: AlphaStore and DeltaStore.

When RateupDB is turned on, it loads AlphaStore from perma-
nent storage devices into the main memory. For each table, Alpha-
Store contains only its columnar data without any MVCC informa-
tion. After loading, the columnar data become read only. RateupDB
will add a special header column for each table, which will be used
to record MVCC information of each tuple. However, since AlphaS-
tore is visible to all later transactions, the MVCC information stored
in the header column is incomplete, which only records the 𝑥𝑚𝑎𝑥

information (i.e., the transaction ID that deletes the tuple) without
the 𝑥𝑚𝑖𝑛 information (i.e., the transaction ID that creates the tuple).

DeltaStore stores data modifications by transactions, which can
have multiple blocks. When one block is full, another block will
be allocated and used, as shown in Figure 3. Although the overall
design of DeltaStore is similar to PostgreSQL, it has two unique
differences. First, it does not use a 𝑝𝑎𝑔𝑒 concept because DeltaStore
is only a main memory store [34]. Second, it uses a delete vector to
record AlphaStore-related deletion information. When inserting a
new tuple, its data will be appended into corresponding columns.
When deleting a tuple, the tuple will be set 𝑥𝑚𝑎𝑥 (same as from
AlphaStore and DeltaStore), while its tuple ID (only for AlphaStore)
will be appended into the delete vector. When updating an old
tuple with a new tuple, a delete and an insert are executed. In
DeltaStore, each new tuple and the delete record have complete
MVCC information (e.g., 𝑥𝑚𝑖𝑛 and𝑚𝑎𝑥 and other flags).

When executing a query, the CPUwill execute a MVCC scanning
of DeltaTable to generate two kinds of snapshot contents: (1) the IDs
of tuples in AlphaStore that are invisible to the query (i.e., already
deleted) and (2) the column data of all the tuples in DeltaStore that
are visible to the query. When GPU needs to process a column, the
CPU will send the two snapshot contents along with the original

column in AlphaStore to GPU. In this case, the GPU does not need
to handle any MVCC information, but only executes a simple kernel
to filter out unnecessary tuples (like a filter kernel) from the origi-
nal column and then combines the new data for consequent query
processing. If the original column is already cached in the GPU
device memory (AlphaCache), then only the two snapshot contents
are transferred from the host memory to GPU. Considering the rela-
tively much smaller size of DeltaStore than that of AlphaStore, such
a design can efficiently accelerate query execution on the GPU side.
However, MVCC scanning on the CPU side is not free of cost since
the PostgreSQL-style MVCC implementation uses a unified store,
where uncommitted tuples and committed tuples are mixed, and a
complex visibility check for each tuple according to MVCC informa-
tion (e.g., 𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥 ) is unavoidable. Accelerating the MVCC
visibility check is performance-critical, for example Netezza [42]
uses FPGA to do the check with the purpose of avoiding transfer-
ring invisible tuples. In RateupDB, we implement a special MVCC
invariant, aiming to accelerate the check.

5.2 Improvement for Fast Query Execution
As an implementation approach to snapshot isolation, how to im-
plement MVCC’s visibility check for a tuple can be different. In the
original paper introducing snapshot isolation [24], requirements
for physical implementations are not mentioned by the following
statement: “At any time, each data item might have multiple ver-
sions, created by active and committed transactions.”. Tuples written
by uncommitted transactions should be invisible to other transac-
tions. However, the invisibility check for such a tuple can mean
two methods in different implementations: (1) a transaction can
access the tuple and then finds it invisible; and (2) the transaction
cannot access the tuple at all. The former means that all tuples are
written into a public space no matter whether or not the transac-
tion is committed (e.g., PostgreSQL), while the latter means that
an uncommitted transaction can only keep its written tuples in its
private space, and until it commits those tuples are installed into
the public space. The second situation is implied in the re-defined
snapshot isolation in [40], which stated that a transaction “holds
the results of its own writes in local memory store”. Also, the sec-
ond method is more similar to the Optimistic Concurrency Control
(OCC) method [69] and other concurrency control algorithms and
implementations (e.g., [108, 117]).

The first method was used in an early version of RateupDB,
which has been changed to the second one to accelerate query
executions. For transaction executions, the second method’s dis-
advantage compared to the first one is that it has a double write
problem, which causes an inserted tuple to be written twice in
memory. However, its advantage is that it avoids scanning written
tuples of uncommitted transactions, particularly from transactions
that need to write a number of tuples in a batched mode, which is
more common in an analytics-oriented environment. Furthermore,
because DeltaStore only records tuples from committed transac-
tions, RateupDB can organize DeltaStore by the order of committed
transactions, by which each transaction commitment will be ap-
pended to DeltaStore. Therefore, when a query execution begins, it
only needs to scan the tuples by and before the latest committed
transaction and ignore any later tuples because they are invisible
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to the query. More importantly, the scan does not need to compare
𝑥𝑚𝑖𝑛 or 𝑥𝑚𝑎𝑥 . Of course, a tuple can still be invisible if it appears
in the delete vector, where only records committed deletes stay.
Another advantage of the second method is the easier merging of
DeltaStore into AlphaStore. For a DeltaStore chunk that is already
full, if the ID of the latest transaction that modifies the chunk has
already been surpassed by current transaction ID, then it means that
the tuples in the chunk is already visible to any future transactions,
and therefore the chunk can be appended into AlphaStore.

6 CPU TASKS VS GPU TASKS
6.1 On Query Executions on CPU
Currently RateupDB does not support CPU OLAP queries, but re-
lies on the CUDA-based GPU query engine only. Maintaining an
additional CPU query engine is a non-trivial engineering task due
to execution pattern differences between CPU and GPU. Our early
GPUDB prototype supports both CUDA andOpenCL so that queries
can be run on both CPU and GPU. However, we have learned from
our development experience that using OpenCL in a commercial
product may not be an effective choice based on a reliability con-
sideration. Without using OpenCL, a CPU query engine totally
different from a GPU CUDA query engine would require a large
effort of software development.

RateupDB does allow CPU and GPU to work together to process
some queries. This happens under two conditions: 1. When the
GPU device memory cannot hold all the input data, a partitioning-
based strategy is enabled. The CPU needs to execute necessary
pre-partitioning, merging, and materialization for the data in main
memory. 2. For certain SQL functions (e.g., the GROUP_CONCAT
function in MySQL), if the output sizes of parallel threads are not
predictable or they have non-uniform distributions, the function
will be executed on the CPU because it is difficult to effectively
pre-allocate GPU memory for each thread’s output data.

Currently RateupDB uses GPU to execute the where condition
part (which could have a subquery embedded) in an update state-
ment. Such a strategy is suitable for a TPC-H-style workload that
have two characteristics: (1) concurrent inserts, and (2) concurrent
batch updates that select multiple rows from a pre-defined table of
lookup keys. This approach benefits from avoiding index building
on the CPU side, subject to an acceptable query latency for the
updates. However, we are aware that a CPU-based index-scan is
unavoidable for heavy OLTP workloads with a lot of point queries
(i.e., key lookup). We plan to add such a feature in next version.

6.2 On Indexing
Currently RateupDB does not use any index for OLAP queries. But
it uses a special indexing method to accelerate constraint check for
OLTP workloads when inserting a new tuple into a table with a
primary key or a foreign key. In the case of a large table, the insert
operation will have to be dominated by the primary key check if no
auxiliary indexing structure is available. Unlike a conventional data-
base, for example PostgreSQL, which often utilizes a unified 𝐵+𝑡𝑟𝑒𝑒
to serve the check, RateupDB uses a hybrid indexing method for
the dual store. First, for DeltaStore, a hash index is built to quickly
locate the tuple IDs according to the primary key. Second, for Al-
phaStore, due to its read-only nature, the column of the primary

key is first sorted after being loaded, then whenever for a later
primary check, a binary search on the sorted column is executed
for ID locating. The sorting is actually executed on GPUs. Without
building a hash table for AlphaStore, memory space is greatly saved
while offering acceptable performance.

6.3 Further Possibilities
Currently the query optimizer and the transaction engine are on
CPU only. This could be done in GPU but we did not do it for
the following reasons. First, for the query optimizer, research ef-
forts have been done to investigate possibilities of using GPUs to
execute some critical query optimization tasks, such as selectiv-
ity estimation [52] and join order optimization [83]. Furthermore,
recently machine learning based query optimization work (e.g.,
[66–68, 82, 104, 107, 112, 114]) have shed light on automatic query
optimizing software using deep learning or reinforcement learning
algorithms, which can greatly benefit from GPU’s massively paral-
lel computing power. However, it is still unclear how to best utilize
those algorithms in a HTAP database with a balancing considera-
tion among overall benefits, performance isolation, and engineering
cost. Second, for the transaction engine that has distinct execution
patterns from read-only OLAP query processing, prior studies [50]
[121] [56] also demonstrated the possibilities of using GPUs to
execute transactions or to build an underlying key-value stores.
However, those systems have certain limitations (e.g., only sup-
porting pre-defined stored procedures or only being a data store
without a transaction support), thus they are not general-purpose
transaction engines on GPU.

7 THE HETEROGENEOUS MEMORY
7.1 A Tale of Two Memories
Since the rise of general-purpose GPU computing, significant efforts
in computer system research have been focused on solving problems
caused by a tale of two memories: the host memory (DDR DRAM)
for CPU cores and the GPU device memory (GDDR SDRAM) for
GPU cores, which are physically separated, but connected by a
communication link (PCIe or NVLink). Since the GPU cores can only
directly access the GPU’s device memory, its main disadvantages
are summarized as follows.

Too small to hold a large data set: The problem of limited
size of physical GPU memory is one of major GPU programming
challenges. From the hardware and systems’ perspective, various
efforts have been made to add virtual memory supports to provide
an illusion of unlimited memory space [73][109][122][20], or to
use hardware compression algorithms to save memory space [32].
From the applications’ perspective, the problem causes significantly
additional programming efforts by partitioning large input data into
multiple chunks for processing them separately, either by utilizing
multiple GPU devices for parallel processing or by transferring data
chunks between GPU memory and the host memory.

Too far to reach quickly:With two physically separated mem-
ories, the main bottleneck for GPU databases is the PCIe transfer-
ring, i.e., the so-called “Yin and Yang” problem [115]. A variety
of optimization techniques have been proposed, such as (1) uti-
lizing data compression to reduce transferred data size [38], (2)
caching transferred data in GPU memory for data reusing [111],
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(3) maximizing the data usage once transferred [43], (4) avoiding
unnecessary data movement by lazy and/or shared transfers [95],
and (5) overlapping transfers and computations to hide latency
[97, 111].

Too hard to program: The combination of the two above prob-
lems makes early stage GPU programming hard due to the lack
of a unified virtual memory that can release programmers from
manually managing two separate memories. Since Nvidia Pascal
GPU architecture (CUDA 8 for software) [47], a unified memory
programming model using the ManagedMemory APIs becomes
available, thus GPU programs can be developed with less memory
constraints. However, significant performance degradation is still
unavoidable in the case of GPU memory over-subscription due to
uncontrollable page faults and thrashing [47][32].

7.2 The Design Choice
Considering the availability of multiple memorymanagement meth-
ods for GPUs, a GPU database should balance multiple factors
including single query performance, concurrent query through-
put, and the cost of programming efforts. Before we introduce
RateupDB’s memory management implementation, we give the
following two goals as the foundation of our design.

Maximized Single Query Performance: The development of
RateupDB started with the GPUDB [115] prototype that treats
GPU as a co-processor with explicit GPU memory allocation and
data transfers. For each operator, a careful data partitioning step
is needed to determine how much data can be processed at one
time according to a predicted space allocation based on the running
tasks and the GPU memory size. However the difficulty of precisely
estimating the needed memory space makes this method hard to
implement concurrent query processing.

Maximized Programming Simplicity: AlphaStore is fully im-
plemented by the unified memory that is initially allocated using
𝑐𝑢𝑑𝑎𝑀𝑎𝑙𝑙𝑜𝑐𝑀𝑎𝑛𝑎𝑔𝑒𝑑 . Thus, consequent query executions are di-
rectly implied on AlphaStore without any explicit data transfers.
All the temporary data structures (e.g., intermediate results or hash
tables) are also implemented in this way. Such a programming sim-
plicity allows us to develop RateupDB without any measures on the
available physical GPU size. However, uncontrolled data thrashing
for large workloads can cause performance degradation.

7.3 Memory Management in RateupDB
With the consideration of the issues discussed earlier and possible
design options, we take a hybrid approach for RateupDB’s memory
management. First, as a database server application, RateupDB par-
titions the GPU device memory into two zones: (1) the AlphaCache
zone that is used to cache hot data in AlphaStore (currently a LRU
algorithm is used for cache replacement) and (2) the work zone
that provides space for kernel executions (i.e., storing necessary
data structures and results of kernel executions). Second, the work
zone is used in a way that needs explicit memory allocations and
transfers (if needed) without using ManagedMemory APIs. Finally,
RateupDB uses ManagedMemory only in some special situations
where required memory space is not easily estimated, such as a
bad area for hash table building even after several rehashing due
to collision, or the output for a Cartesian product of two tables.

Such cases are rare in practice, so that using ManagedMemory for
them does not hurt performance, which can significantly reduce
the programming effort.

RateupDB’s hybrid memory management implementation is a
result of balancing performance and implementation simplicity.
First, as a major performance factor for server applications, locality
in memory hierarchy plays the most important role for concurrent
data accesses. However, letting CUDA’s unifiedmemorymechanism
manage locality is unrealistic due to its inefficiency of handling
typical memory system issues, such as thrashing [31]. Second, the
approach to maximizing single query performance completely ig-
nores inter-query locality so that each query can use all the GPU
device memory for its peak performance. However, this approach
is not optimized for the overall throughput considering the data
reusing opportunities. Third, since thework zone is exclusively used
during a query piece’s execution, explicit memory management
without involving any automatic mechanism by ManagedMemory
can highly guarantee query performance. Finally, totally disabling
the usage of the unified memory is unnecessary and inefficient. For
example, pre-allocating space for data with unknown sizes in many
algorithms is often achieved by a twice execution approach, which
means that the algorithm (e.g., a hash probing operation) executes
the first time to determine how much space could be, and then with
the allocated memory size in the second time execution to write the
output results [49, 98]. ManagedMemory can simplify the approach
that dynamically allocates memory.

7.4 On the size of AlphaCache
RateupDB uses a configurable parameter to designate the size of
AlphaCache. As shown in existing studies on auto-tuning database
system parameters [36][55], reaching to a sweet spot for optimiza-
tion of both the cache size and performance is hard and is often
empirically based. For RateupDB, the size of AlphaCache is related
to multiple factors, and the dominating ones include the GPU mem-
ory size, the working set size, and the sizes of the most important
data structures (e.g., commonly used hash tables for either join or
aggregation). By default, RateupDB recommends a 50% size of the
GPU memory for AlphaCache.

When the input table data set is much larger (by an order of
magnitude) than the size of GPU device memory, a partitioning-
based execute strategy has to be used so that the whole device
memory is arranged to execute operations on one partition at one
time. In this case, AlphaCache should be set to 0 in order to allow a
single partition execution to fully utilize all the GPU device memory
space. Because even a single query has to sequentially scan multiple
partitions, AlphaCache cannot hold the working set to provide
effective caching for concurrent query executions.

8 PERFORMANCE EVALUATION
In this section, we present a detailed performance analysis of Rate-
upDB 1.0 version. We first present its pure OLAP performance by
executing each of 22 TPC-H queries. Then we present its holistic
performance by strictly executing the complete TPC-H benchmark.

SystemConfiguration.Weused a Supermicro 743TQ-X11work-
station to conduct all the experiments. The CPU is an Intel Xeon Sil-
ver 4215 with a 2.50 GHz frequency, 8 cores (with Hyper-Threading
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disabled), and 11MB Last-Level Cache. The GPU is anNvidia Quadro
RTX 8000 with 48GB GDDR6 memory and 4,608 CUDA parallel-
processing cores [7], which is connected through a PCIe 3.0 bus.
The machine has 256GB DDR4 DRAM, and two mirrored 1 TB SSDs.
We used Ubuntu 18.04 LTS OS and CUDA Toolkit 10.0.

Workloads and Software.We implemented TPC-H 2.18.0 with
three scale factors (1, 10, and 100). To compare RateupDB to the
state of the art of commercial GPU database product, we selected
the most recent version of OmniSci by considering its wide usage
in recent research literatures [44, 90, 99].

8.1 Query Performance

Table 2: Execution times (in seconds) of TPC-H queries by
RateupDB and OmniSci. TPC-H scale factors used: 1, 10, and
100. (R: RateupDB, O: OmniSci, DNF: Did Not Finish.)

R(1) R(10) R(100) O(1) O(10) O(100)
Q1 0.10 0.73 7.38 0.28 0.44 2.38
Q2 0.05 0.10 0.33 DNF DNF DNF
Q3 0.04 0.17 0.62 0.31 0.82 DNF
Q4 0.02 0.05 0.37 DNF DNF DNF
Q5 0.03 0.07 0.87 0.24 0.27 DNF
Q6 0.02 0.08 0.69 0.22 0.23 0.25
Q7 0.04 0.08 0.48 0.23 0.28 DNF
Q8 0.04 0.07 0.40 0.28 0.33 DNF
Q9 0.05 0.19 1.95 0.31 0.34 DNF
Q10 0.13 0.95 1.71 0.67 DNF DNF
Q11 0.03 0.04 0.18 DNF DNF DNF
Q12 0.03 0.08 0.50 0.24 0.25 DNF
Q13 0.03 0.09 1.40 DNF DNF DNF
Q14 0.03 0.05 0.27 DNF DNF DNF
Q15 0.03 0.09 0.62 0.31 0.40 0.66
Q16 0.06 0.08 0.23 0.97 DNF DNF
Q17 0.02 0.04 0.39 DNF DNF DNF
Q18 0.04 0.24 4.27 0.64 4.82 DNF
Q19 0.03 0.06 0.20 0.23 0.27 0.68
Q20 0.04 0.13 1.35 DNF DNF DNF
Q21 0.04 0.13 3.28 DNF DNF DNF
Q22 0.03 0.03 0.13 DNF DNF DNF

We first measure the read-only query execution performance
of RateupDB and OmniSci. Table 2 lists the execution times of all
the 22 queries with the three TPC-H scale factors. Each query was
executed four times, and the results in the table are the ones at the
fourth time execution. In the next several subsections, we look into
performance insights into our our observations in experiments.

8.1.1 Overall Analysis. RateupDB can finish all the queries with
the three scale factors. However, OmniSci can only finish 13 queries
when using scale factor 1. This observation is consistent with a
prior study conducted in [44]. It then has more failure cases when
increasing to factor 10 and 100. The results show the effectiveness
of RateupDB by the subquery optimizations for complex queries .

With scale factor 1, i.e., the total data size is 1GB, RateupDB
executed most of queries in less than 0.1s. When increasing to scale

factor 10, all query execution times are correspondingly increased,
but still less than 1s. OmniSci’s performance results are diverse:
Some queries’ times are almost unchanged from scale factor 1 to 10,
for example Q5-Q8; Some queries cannot be finished (Q10, Q16);
And some queries have significant long execution times (Q18).

When using scale factor 100, RateupDB has several exceptional
queries that cannot be finished in less than 1s. The longest query
executions occurred to Q1, Q18, Q21, and Q9, which we will analyze
specifically later. For OmniSci, it can only finish 4 out of 22 queries
(Q1, Q6, Q15, Q19). By examining the error information, we found
most of failed cases are related to three exceptions: (1) too large
hash table, which is related to multiple joins (e.g., Q9), (2) too large
memory usage (e.g., Q18), and (3) type not serializable, which are
often occurred in subqueries handling (e.g., Q2).

8.1.2 Query with heavy aggregation: TPC-H Q1. TPC-H Q1 is a
typical query that needs to execute multiple aggregations on a
large number of records. RateupDB’s execution times for the three
scale factors are 0.10s, 0.73s and 7.38s, respectively, which basically
reflects a linear time increment with the input data sizes. However,
after making careful time breakdowns using a set of micro exper-
iments, we found such an increment is not really caused by the
operations like grouping or filtering in Q1, but by the implemen-
tation of fixed-point arithmetic operations, which is required for
finance-related database workloads (e.g., TPC-H) [85].

Because we cannot use double precision to execute TPC-H, GPU’s
high TFLOPS cannot be easily converted into high performance of
fixed-point arithmetic operations. We implement a general-purpose
GPU library for decimal representations and calculations, which
uses a fixed 20-byte design to support a (36, 30) precision/scale,
while OmniSci supports a much smaller precision using a design
with 2-8 bytes with the maximized 18 digits for precision. We did
not implement any TPC-H-specific optimizations for its decimal
type (e.g., [26]) in RateupDB. Therefore its Q1 performance (as well
as a part of Q18 that has a subquery with heavy aggregation) is
dominated by fixed-point arithmetic operations.

8.1.3 Query with heavy join: TPC-H Q9. As a typical example to
OLAP query involving multiple joins, Q9 is often a key performance
indicator for database OLAP performance. Due to its optimization
for star-join, RateupDB consistently outperforms OmniSci for Q9
by all the three scale factors. RateupDB uses its Star Join operator to
execute the multiple joins in the query. In this way, tuples from the
fact table can iteratively probe multiple hash tables so that it can
achieve the goal of maximized data usage in GPU memory [44, 90].
Although RateupDB does not yet take a JIT compiling-based kernel
execution approach, its usage of Star Join operator can effectively
make a similar effect. Since a star-like join is a major join pattern in
OLAP workloads, RateupDB’s implementation can be widely used.
In fact, Star Join is also used to execute other TPC-H queries in
RateupDB, including Q5, Q7, Q8, and Q10.

8.1.4 Query with complex subquery: TPC-H Q21. Subquery opti-
mization is an important measure for RateupDB to handle various
OLAP queries. We also believe that the ability of handling various
subqueries is a major leap for a GPU DBMS to become an industry
product because academic research prototypes may often focus on
simple analytics [41, 90, 115]. As show in Table 2, RateupDB can
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effectively execute all the TPC-H queries that contain subqueries
by using corresponding unnesting techniques.

As a classical case in TPC-H queries, we need to make a sig-
nificant effort to optimize Q21, which challenges a database sys-
tem’s query optimizer and engine implementation. As introduced
in Section 4.3.2, RateupDB uses a Self operator to execute all the
subqueries in the query. Reflected by both the Self operator and the
Star Join operator used in Q9 (also in Q21), orchestrating multiple
operations into a combinational one is a key optimization.

8.2 On Memory Management
We conducted an experiment to examine how two different mem-
ory management methods can affect query performance when
executing all the 22 TPC-H queries. The first one is RateupDB’s
old solution only using ManagedMemory, and the second one is
RateupDB’s new solution with AlphaCache. In this experiment,
AlphaCache takes 50% of GPU device memory, i.e., 24GB. Figure 4
shows the speedups of the new solution over the old one for all the
22 queries, which shows that the execution of most of queries are
significantly accelerated, and the average speedup is 1.22X.

Figure 4: Performance comparison between RateupDB’s
hybrid memory management solution and default
ManagedMemory-based solution.

With ManagedMemory, the query processing on both intermedi-
ate data and the input table data are automatically managed by the
GPU VM mechanism. However, the disadvantage of this approach
is that the database cannot control the memory space contention be-
tween these two kinds of data. With the new solution, we explicitly
divide the memory space into the table zone (AlphaCache) to cache
the shared table data and the work zone to store non-shared query
intermediate data. Therefore, we can guarantee that the intermedi-
ate data are kept in GPU device memory during query execution
and cache replacement can only occur among input table data.

8.3 Transaction Performance
TPC-H requires two refresh functions (RF1 and RF2) to execute
concurrent inserts and deletes to 𝑂𝑅𝐷𝐸𝑅𝑆 and 𝐿𝐼𝑁𝐸𝐼𝑇𝐸𝑀 . We
have implemented the two functions using two Snapshot Isolation
transactions in RateupDB. The new inserted data items and the

keys for deleted data items are first stored in several temporary
tables, which are then used by the transactions. The code sections
of RF1 and RF2 illustrates their logic flows, where 𝑡1 − 𝑡4 are the
temporary tables. For TPC-H scale factor 100, the number of rows
being inserted or deleted is 150,000 for 𝑂𝑅𝐷𝐸𝑅𝑆 and (1-7) times
more for 𝐿𝐼𝑁𝐸𝐼𝑇𝐸𝑀 . We use primary keys for the two tables but do
not use any foreign key connecting the two tables. This is allowable
by the TPC-H specification. When executing RF1, the insert will
execute additional constraint check for primary key conflicts.
RF1:
begin transaction;
insert into ORDERS select * from t1;
insert into LINEITEM select * from t2;
commit;
RF2:
begin transaction;
delete from LINEITEM

where L_ORDERKEY in (select orderkey from t3);
delete from ORDERS

where O_ORDERKEY in (select orderkey from t4);
commit;

According to OmniSci’s document, transactions are not sup-
ported. So we cannot compare its performance with RateupDB
for this workload. Furthermore, there is no public TPC-H results
for any GPU-accelerated database products. Therefore we select
published performance results of CPU databases for performance
comparisons. Since RateupDB is a non-cluster system, we choose
the fastest non-cluster result on TPC website for the same scale
factor (Actian VectorWise 3.0.0). Table 3 lists the execution times of
RF1 and RF2 by the two systems for the TPC-H Power Test, in which
the transactions are executed solely without any interference. The
results show that the execution times are comparable. However,
the implementation of RF1 and RF2 in the two systems are not
necessarily the same, considering multiple factors such as index
building, constrain checking, and transaction implementations.

Table 3: Execution times (s) of TPC-H RF1 and RF2 by Rate-
upDB and VectorWise for TPC-H Power Test.

RateupDB 1.0 VectorWise 3.0.0
RF1 4.06 6.5
RF2 1.71 2.1

8.4 RateupDB for Complete TPC-H Test
After presenting the OLAP performance and the transaction per-
formance, we are now in a position to examine how RateupDB can
handle hybrid workloads with both OLAP and OLTP operations.
We use a complete, industry-standard TPC-H benchmark execu-
tion as the workload, which has three distinct features compared
to the commonly used performance characterization workload in
various research literature. First, its power test part applies a strict
order of sequential executions of the 22 queries. Second, its through-
put test part requires explicit transaction execution streams along
with query execution streams in order to examine the effects of
co-running OLAP and OLTP. Third, it requires a minimum streams
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Table 4: Complete TPC-H results compared to representative published results (TPC-H Scale Factor 100).

Database Hardware Power Throughput Composite Report Date
EXASOL EXASolution 5.0 6-node cluster, 120 cores 1,265,179.1 1,980,000.0 1,582,736.4 09/23/14
Actian VectorWise 3.0.0 non-cluster, 16 cores 458,664.5 384,764.9 420,092.4 05/13/13
RateupDB 1.0 non-cluster, 8 cores, RTX8000 354,183.3 296,476.0 324,047.6 Not Yet
Goldilocks v3.1 6-node cluster, 216 cores 6,569.7 87,954.7 243,07.0 12/19/18

of concurrent OLAP query so that the query engine must balance
both the overall throughout and single query response time.

Table 4 shows RateupDB’s complete TPC-H performance com-
pared to the published results of three other database systems,
which are publicly available on the TPC website. We choose (1)
the fastest one (EXASOL EXASolution 5.0) regardless hardware
configurations, (2) the fastest single-node non-cluster system (Ac-
tian VectorWise 3.0.0), and (3) the most recently published one
for the scale (Goldilocks v3.1). Compared to the three CPU-only
database systems, RateupDB currently is in a position between
the highly-optimized analytical database (i.e., VectorWise) and the
hybrid database (i.e., Goldilocks). Detailed analysis is out of the
scope of the paper due to the page limit. RateupDB’s TPC-H perfor-
mance in Table 4 is limited by its unoptimized fixed-point arithmetic
implementation and its usage of a single GPU device.

9 AN EXCHANGE OF OPPOSITE VIEWS
We follow a critical thinking style by discussing the fallacy and the
pitfall [54, 60], which are based on the lessons and insights about
issues that matter from our experiences of building RateupDB.

9.1 Fallacies
Fallacy (1): An algorithm’s adoption in products only depends
on its performance. In practice, the selection of an algorithm is
underlying systems dependent and development cost dependent.
Specifically, we must consider multiple factors, including its execu-
tion performance, its adaptiveness to different dynamic situations
(e.g., data distributions and hardware parameters), implementation
easiness and the decoupling degree to other system components.
Another challenge is to develop a clear and standing-the-test rule
to judge under what conditions the algorithm should be used.
Fallacy (2): A HTAP DBMS only needs a unified hybrid data
format. Despite the existence of various unified hybrid data for-
mats that combine the advantages for both row store and column
store, the rise of Heterogeneous HTAP (H2TAP) DBMS brings new
challenges to data store with a set of new requirements including
hardware efficiency, performance isolation, and engineering cost.
As shown by a set of industry-level HTAP database products, a
partitioned, multi-staged, and combined data store can effectively
support hybrid workloads, particularly in GPU-accelerated systems.
Fallacy (3): A GPU DBMS’s performance depends only on
how to execute database operations onGPU. Existing research-
oriented GPU database projects are often focused on how to best
utilize GPUs to accelerate certain database operations. However,
significant performance improvements are often made at a logic
level of the database, which are independent of the GPU implemen-
tations. TPC-H Q21 is such an example, which demonstrates the
benefit of best utilizing the intra-query correlation information.

9.2 Pitfalls
Pitfall (1): Determining when to use an algorithm is even
harder than how to implement it. The role of query optimiza-
tion has been studied for decades, but unsolved issues still exist
now. There are multiple factors to be considered in an unified cost
function to estimate the execution cost of a physical operator. How-
ever, achieving this goal is a non-trivial task due to the existence of
different dynamic factors. RateupDB’s experience tends to avoid
this problem (if possible) instead of directly solving it.
Pitfall (2): GPU query performance is closely related to the
underlying data type. GPU data type implementation must con-
sider storage overhead and computing efficiency. Performance of
CUDA primitive data types and user-defined complex data types
are very different, for example the decimal type, which requires
fixed-point arithmetic operations instead of GPU-inherent floating
point support. Comparing GPU performance without considering
data type implementations can make misleading conclusions.
Pitfall (3): A GPU query engine cannot only rely on wrap-
ping various CUDA libraries. The rapid development of Nvidia
CUDA ecosystem has provided effective functions, such as the Uni-
fied Memory APIs and other library functions (e.g., CUB or Thrust).
However, these CUDA libraries cannot fully satisfy key require-
ments of a complete database, for example, handling arbitrary data
sizes and types. A GPU query engine should have its own solutions
without solely relying on CUDA libraries.
Pitfall (4): Advanced GPU’s VM facilities are not sufficient to
manage device memory locality. The separation between the
device memory and the host memory creates a challenge of GPU
memory management. A query engine only using GPU’s VM facili-
ties can have uncontrolled performance degradations. RateupDB’s
solution is to manually manage device memory space for both data
locality and query performance.

10 CONCLUSION
We present a comprehensive study of RateupDB, a high perfor-
mance database system for both OLAP and OLTP workloads by
CPU/GPU. A major contribution of this paper is to have identified
a large spectrum of design possibilities for RateupDB, aiming to
justify the art of balance in its design and implementation. Based on
our product development experiences, we provide a set of critical
discussions on multiple fallacies and pitfalls. To the best of our
knowledge, this is the first paper to systematically explain a GPU
HTAP system on its design and implementation, and its holistic per-
formance by the industry-standard database benchmark (TPC-H).
We believe that our experience of building and evaluating RateupDB
would benefit the research and development of high performance
databases for both academia and industries.
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