
Fangorn: Adaptive Execution Framework for Heterogeneous
Workloads on Shared Clusters

Yingda Chen, Jiamang Wang, Yifeng Lu, Ying Han, Zhiqiang Lv, Xuebin Min, Hua Cai, Wei Zhang,

Haochuan Fan, Chao Li, Tao Guan, Wei Lin, Yangqing Jia and Jingren Zhou

Alibaba Group Inc.

fangorn@list.alibaba-inc.com

ABSTRACT
Pervasive needs for data explorations at all scales have populated

modern distributed platforms with workloads of different charac-

teristics. The growing complexities and diversities have thereafter

imposed distinct challenges to execute them on shared clusters in

corporate or public clouds. This paper presents Fangorn, an adap-

tive execution framework built on an enriched graph model. As

the underlying infrastructure for core computation platforms at

Alibaba, Fangorn supports various execution modes and caters to

heterogeneous workloads. With the capability to orchestrate graph

executions with both long-running and requested-on-demand re-

sources at the same time, Fangorn allows exploration of tradeoffs

between latency and resource efficiency, for jobs of all scales. By

modeling distributed job executions as mutable graphs with plug-

gable components, Fangorn offers a systematic framework to adjust

job executions adaptively, according to data statistics collected dur-

ing run-time. Fangorn supports an array of different computation

engines ranging from relational to deep learning, and is fully de-

ployed on production clusters across Alibaba. It manages tens of

millions of distributed jobs daily, with job size scaling from one to

half-million.

PVLDB Reference Format:
Yingda Chen, Jiamang Wang, Yifeng Lu, Ying Han, Zhiqiang Lv, Xuebin

Min, Hua Cai, Wei Zhang, Haochuan Fan, Chao Li, Tao Guan, Wei Lin,

Yangqing Jia and Jingren Zhou. Fangorn: Adaptive Execution Framework

for Heterogeneous Workloads on Shared Clusters. PVLDB, 14(12): 2972 -

2985, 2021.

doi:10.14778/3476311.3476376

1 INTRODUCTION
Decades into the development of big data stacks, data-parallel com-

putations today encompass a much wider spectrum of applications

than before. The diversities of distributed workloads manifest them-

selves, not only in the various computation patterns (e.g., relational

vs machine learning), but also in the vastly different amount of data

processed per job and different SLA expectations. At one end of the

spectrum are batchworkloads challengedwith processing petabytes

of data, whose scales and complexities continue to grow. At the

other end, are interactive data analytics tasked with time-sensitive

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 12 ISSN 2150-8097.

doi:10.14778/3476311.3476376

data exploration, where latency is critical to support timely deci-

sion making. Characteristics associated with various workloads

entail distinct, sometimes conflicting, requirements on scheduling

and execution. For example, batch processing [2, 8, 11] usually

follows Bulk Synchronous Parallelism(BSP) [39] model, and place

scheduling barriers between data-flow stages, to ensure efficient re-

source usage and data-recovery in presence of failures. In contrast,

continuous data pipelining offers execution acceleration priori-

tized by time-sensitive interactive engines [4, 15, 38], which often

leverage gang-scheduling to fully enable data pipelining, and to

avoid process-launching overhead for various job components. In

addition, modern data processing such as deep learning [1, 24] re-

assembles computation patterns that may not be readily formulated

by acyclic data-flow [10, 14, 36]. The diverging requirements on

execution frameworks from different workloads, some as funda-

mental as scheduling granularities, resource types and lifespans,

have led to silo-solutions that host data processing on different

frameworks, based on input sizes and/or computation patterns.

Many such purposefully-built engines are developed with propri-

etary execution frameworks built-in, tailored to targeted scenarios.

Such choices, however, not only introduce engineering overhead

associated with duplicate development and maintenance, but may

also fall-short for workloads with scales and/or characteristics that

fall between sweet-spots targeted by different frameworks.

This paper presents Fangorn, the core execution framework at

Alibaba that supports the diverse workloads across the company,

and for its enterprise customers on public cloud services. Fangorn is

deployed on production clusters with a total of over 100, 000 physi-

cal machines. More than 15 million distributed jobs are orchestrated

daily to process Exabytes of data, with job scales ranging from 1 to

over half-million. It empowers a state-of-art proprietary big-data

platform MaxCompute [27] with multitudinous workloads that

span from agile interactive analytics, to massively-parallel batch

processing. In addition, it underpins Alibaba’s machine learning

and deep learning platform [26] that hosts multiple distributed

learning engines such as TensorFlow and PyTorch [1, 24]. Other

workloads on Fangorn come from distributed graph neural net-

work [49], automatic data placement[12], and many others. The

design and implementation of Fangorn are motivated by observa-

tions from production, to support the heterogeneous workloads

on multi-tenant clusters. For example, complex computations at

massive scale present common challenges against composing op-

timal execution plan beforehand, urging execution framework to

be able to adapt dynamically during job runtime. Additionally, jobs

composed by different computation engines may not fit into one

prescribed execution model, a versatile framework that accommo-

dates various computation patterns is therefore of vital importance.

2972

https://doi.org/10.14778/3476311.3476376
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3476311.3476376

Several notable characteristics distinguish Fangorn from previ-

ous works. Firstly, Fangorn is built upon a new graph model capable

of describing various workloads. Inspired by earlier works [3, 14,

36], Fangornmodels execution of a distributed job as a graph. Unlike

the directed acyclic graph (DAG) modeling where edges represent

data channels and execution is driven by data-flow [14], Fangorn

annotates edges and stages with enriched physical properties. It

provides native support for modern computation patterns in addi-

tion to legacy batch processing. For example, concurrent connection

inherently supported on Fangorn provides essential descriptions for

deep-learning workloads based on parameter server [20], in addi-

tion to providing a unified model for co-scheduling nodes to enable

data-pipelining. Secondly, Fangorn is adaptive. It extends beyond

canonical dynamic strategies such as parallelism adjustment based

on partition-collapsing. Instead, late bindings of both physical and

logical graphs are enabled on Fangorn. It facilitates real-time adjust-

ment of physical graph properties, and reconfiguration of logical

execution plan (e.g., lazy join algorithm selection). Finally, Fangorn

is hybrid in nature. The framework manages a pool of long-running

containers, in supplement to those spontaneously-requested from

resourcemanager. It can orchestrate jobs individually by a dedicated

job manager, or via a long running execution service. Fangorn’s

underlying graph model allows it to harness various resources

within one single job. This facilitates exploration of tradeoffs suit-

able for workloads of all scales. Fangorn is platform-agnostic and

can orchestrate jobs on Fuxi [47], YARN [40] and Kubernetes [30].

We summarize key contributions of this paper as follows:

• We present Fangorn as an adaptive execution framework

built on a descriptive graph model that extends beyond

canonical acyclic data-flow, with native support for work-

loads of different types, scales, and characteristics.

• We generalize dynamic graph reconfigurations to late bind-

ing of both physical and logical graphs during execution,

enabling new paradigms of adaptive executions that address

a broader class of practical challenges on distributed work-

loads. More importantly, they are resolved systematically

within the same unified framework, without manual inter-

ventions for each individual scenario.

• We present a hybrid architecture capable of leveraging both

long-running, and spontaneously-requested containers, within

one job. Explorations are made among various tradeoffs, for

workloads of all scales that prioritize different systemmetrics

and business SLAs. The architecture additionally enables for-

mulation of special scheduling strategies for heterogeneous

hardware (CPU, GPU, FPGA etc.).

• We evaluate performance by considering latency improve-

ment and resource-efficiency jointly, against standard bench-

marks and production workloads on enterprise platforms,

revealing how tradeoffs can be made on multi-tenant clus-

ters where resources are not abundantly available, and how

adaptive executions help address realistic production issues.

The rest of paper is structured as follows. Section 2 describes char-

acteristics of production workloads, which motivate the Fangorn

architecture presented in Section 3. Section 4 is dedicated to de-

scribing how graphs can adapt to runtime statistics and cluster

uncertainties on Fangorn, for optimal executions. Resource-aware

Figure 1: Characteristics of production workloads

hybrid executions are then discussed in Section 5. Finally, perfor-

mance over standard benchmarks and production workloads are

evaluated in Section 6, before we conclude the paper in Section 7.

2 WORKLOADS CHARACTERISTICS
In this section, we first set the stage by presenting important ob-

servations made from production workloads, and key challenges

faced by previous frameworks before Fangorn is developed. While

some observations may be attributed to unique characteristics of

workloads at Alibaba, we believe many of them, and the associated

challenges, resonate with technology companies hosting large-scale

multi-tenant clusters and/or providing cloud services [5, 41].

a) Job Scales and Categories: Fig. 1 profiles several important

characteristics of production workloads. Of the tens of millions job

executed per day, a remarkable fraction are of relatively small scales:

jobs of size 100 or less account for 80% of total job count. However,

for resource-related metrics, be it physical instance count, resource

consumption, or the amount of data processed, medium-to-large

workloads with scale between 1000 to 100, 000 are clearly domi-

nant. Many of these heavy-lifting workloads assist business-critical

decisions by aggregating large volume of data, while smaller work-

loads facilitate interactive processing and agile business analytics.

Additionally, jobs from system pipelines tend to be executed in

larger scales, still a notable fraction of them are not necessarily

massively-parallel. Serving the heterogeneous workloads requires

the underlying execution framework to be capable of hosting a huge

amount of interactive workloads, while tackling challenges imposed

by large-scale jobs. The unification is not only desirable, but often-

times imperative, towards productive data processing systems. In

terms of workloads categories, relational queries dominate by job

count: accounting for over 90% of total. Meanwhile, non-relational

workloads such as machine learning/deep learning are often more

compute-intensive and account for a very notable portion of cluster

resource consumption, despite their relatively small number. They

also consume majority of GPU resources in production clusters.

b) Resource Contention: Fig. 2 profiles CPU usage on a typical

production cluster (with several thousand physical machines) from

21:00pm to 6:00am. We can see that, scheduled resource usage

quickly saturates and stays at around 100% after midnight, with

real CPU usage fluctuating around 80%
1
. This usage pattern is

quite typical for large enterprise clusters, since once a full day’s

data is available after mid-night, large-scale batch workloads are

launched to derive business-critical insights, with stringent SLAs

1
Note that due to co-existence of non-computational workloads on production clus-

ter, aggregated CPU usage in Fig. 2 spikes up before midnight, while the peak of

computation workloads may lag a bit.

2973

Figure 2: Characteristics of cluster resource usage

for reports to be available next morning. During peak hours, re-

quests queue up and anything released is immediately re-assigned.

Therefore, resource usage efficiency is extremely critical. Generally,

batch executions that request resource spontaneously are known to

be resource-efficient. However, the simple strategy of queuing up

things of all scales runs the risk of starving smaller workloads. More

often than not, meaningful business report relies on the output from

multiple distributed jobs of various scales, with complex inter-job

dependency. Determination of optimal workflow coordination is

a challenging problem in itself, however, it is unquestionable that

ability to balance resource usage and execution latency is of para-

mount importance in designing underlying execution framework.

Finally, modern data processing, such as deep learning, depends

on specialized hardwares with distinctly different characteristics,

which shall be addressed by execution framework as well.

c) Sub-optimal Execution Plans are just facts of life associated
with distributed workloads, no matter how sophisticated the appli-

cation optimizer is implemented. This is particularly true in produc-

tion where necessary statistics can be missing or incomplete, data

manipulation may be too complex for optimizer to reason about, or

sometimes completely imperceptible with user defined computation

logic (for example, UDF are found in over 20% of production jobs).

These are common challenges faced by various distributed engines

from relational to machine learning, and can lead to sub-optimal

plans that result in prolonged executions, inefficient resource usage,

or even failures. Meanwhile, the option to carefully fine-tune all

workloads quickly becomes infeasible with overwhelmingly large

job number. Thus it is particularly important for underlying exe-

cution framework to be able to take on a potentially sub-optimal

initial plan, and adapt dynamically throughout execution lifecycle,

as real-time data statistics become available.

3 THE FANGORN FRAMEWORK
To support the multitude of distributed applications, and the dif-

ferent computation patterns entailed, Fangorn embraces a hybrid

architecture capable of both individual job management and cen-

tralized multi-job services. Such hybrid framework is unified by

an underlying graph model capable of encapsulating the disparate

properties necessary to describe various execution characteristics

accurately. Each Fangorn job is modeled by a graph, composing

of multiple stages connected by directed edges. Edges in Fangorn

graph are not necessarily bound to data-flow, rather, it encapsulates

both scheduling order and data transportation (if any). A stage can

be materialized into multiple parallel tasks that jointly carry out

Figure 3: Overall architecture of Fangorn

the computation assigned. Each task is executedwithin a container,
which represents a slice of resource on physical machine. Heteroge-

neous resources are found on production clusters, referring to both

resources of different life-spans (e.g., short-lived resource requested

on-demand vs long-running ones) and resources associated with

different hardware types (e.g., CPU vs GPU).

3.1 Architectural Overview
The overall Fangorn architecture is depicted in Fig. 3. Particularly,

Fangorn framework consists of multiple components including Job

Manager(JM), Fangorn Service Admin(or simply Admin), Multi-

Graph Manager(MGM), and a pre-launched container pool
2
man-

aged by Admin. Client submissions first go through frontend, where

compilation and/or optimization
3
take place. Execution graphs are

built with Fangorn API before submitting for executions. Fangorn

exposed a rich set of graph-building APIs to facilitate accurate

descriptions of various workloads that may or may not be data-

flow driven. Frontend service leverages the APIs to build execution

graph that serves as input to Fangorn framework. At submission,

physical properties that materialize execution plan may be left va-

cant, such as stage parallelism; or specified as a place-holder subject

to runtime adjustment, such as edge shuffle pattern. The various

components in Fangorn framework all share the same graph model,

with unified graph semantics and state-machine implementation.

Such is the foundation for all Fangorn components to interact, and

to facilitate various execution modes and strategies.

A Fangorn JM manages execution of one single graph. With its

own dedicated resource quota, JM can accommodate computation

associated with sophisticated dynamic graph adjustment, and finer-

grained check-pointing to enable incremental failover recovery.

As such, JM is capable of managing more complex graph, and at

larger scales. Fangorn’s resource interface abstracts the interactions

between JM and cluster Resource Manager(RM). Additionally, it

also facilitates interactions with Fangorn Service Admin, allowing

resources to be requested from container pool.

Complementary to the one-manager-per-job model with JM, Fan-

gorn also offers execution acceleration for time-sensitive workloads

via dedicated Fangorn service. It consists of the service Admin that

manages a pool of pre-launched containers, and a number of MGMs.

As its name indicates, a MGM is capable of orchestrating multiple

graphs, simultaneously. This includes negotiating resources with

2
The pre-launched containers host long-running processes ready to accept new work-

loads, and only perform context-cleaning at the end of computation without exiting.

3
Workloads could differ slightly in submission or execution process. For example,

TensorFlow script compilation may be deferred until execution.

2974

Figure 4: Job submission for relational workload

Admin, managing graph state-machines, and interacting with exter-

nal system components such as storage service. On the other hand,

the Admin manages the pre-launched container pool, and is respon-

sible for delegating job submissions to one of Fangorn MGMs for

execution. Both Admin and MGMs are long-running processes. To-

gether they provide job orchestration service that avoids overhead

of launching one JM per job. The number of MGMs in a Fangorn

service can automatically adapt to cluster dynamics such as QPS,

size of container-pool, and complexity of graphs being executed,

as discussed in 3.4. It should also be noted that the pre-launched

containers in the pool are not reserved exclusively for interactive

workloads managed by MGMs. Instead, since different scheduling

components on Fangorn are all built upon a unified graph model,

JM may also request resource from this same pool to execute par-

tial graph segments, for hybrid executions. Conversely, MGM could

request resource from cluster RM too, which is less usual with

MGM though: since it typically targets interactive workloads and it

makes less sense to go through queuing and dispatching overhead

common at RM. For the rest of paper, we refer hybrid executions

mainly to the setup where a JM requests hybrid resources from

both RM and Admin for graph execution.

Finally, while Fangorn interacts closely with various computa-

tion engines to enable adaptive executions and to explore optimal

plans, components of these engines are not considered part of Fan-

gorn execution framework. Therefore although technical background

is provided when necessary, design and specifics of these compo-

nents, such as cost-based relational optimizer, or deep-learning

compiler, are beyond the scope of our discussions in this paper.

3.2 Job Submission
The decision to execute a graph via a dedicated JM or on the long-

running Fangorn service, is made jointly by Frontend and Fangorn.

Fig. 4 illustrates job submission flow for relational workloads: a

query is firstly compiled into query plan, graph builder then iter-

ates through the plan, and transforms it into annotated Fangorn

graph using Fangorn’s graph-building APIs. This graph plan carries

descriptions for stages and edges to be interpreted and dynamically

adjusted(when applicable) by Fangorn execution framework. This

decision whether the graph shall be submitted to Admin or cluster

RM (to launch dedicated JM), is made by weighting on several fac-

tors, including a) expected job size, b) real-time resource availability

in the container pool, c) graph admissibility to Admin, including

expected execution time, job priority, security requirements, etc.,

some of which are discussed in Section 5.

3.3 Graph Execution Models
To unify heterogeneous workloads, Fangorn is built upon a graph

model that provides accurate descriptions for various combinations

of both data-flow and execution-flow. While taking inspirations

Figure 5: Physical materializations of logical graph

from earlier works [14, 36] that modeled distributed executions

as DAG, Fangorn makes major extensions in graph modeling to

decouple edge connections from acyclic data-flow. In addition, gen-

eralization of edges and stages in Fangorn facilitates embodiment

of a logical graph into distinct physical materializations.

Table 1: Physical Edge Properties in Fangorn.

Physical Edge Property Annotation Values

Data-Transportation Persisted, Transient,

Stateless-Transient,

Buffered

Shuffle-Pattern None, Full, Customized

Scheduling-Trigger Source-Completion, Source-

Scheduled, Source-Started,

Source-Progress, Mixed

3.3.1 Edge and Stage Properties. Table 1 lists physical edge proper-
ties that can be used to annotate logical edges in Fangorn, where:

a) Data-Transportation describes the nature of physical data transfer,

including physical medium involved, across an annotated edge.

b) Shuffle Pattern describes routing of data across different tasks

between stages. The canonical all-to-all shuffle is described by Full

pattern, while Customized facilitates plugins to customize data

routing. Fangorn also allows a None pattern to describe either ab-

sence of data flow, or data exchange occurring “out of band”. As the

execution infrastructure, Fangorn is responsible for ensuring that

shuffle data is routed as intended. Engine runtime of each individual

task simply assumes that raw-bytes is ready upon launching and

can deserialize data according to its own specifications.

c) Scheduling-Trigger describes scheduling semantics. It extends

beyond conventional data-flow-driven scheduling, which was built

on assumption that launching of downstream task(s) is driven by

production of upstream output. Instead, stages connected by an

edge can execute sequentially or concurrently, with scheduling

triggered by non-data-driven event. This abstraction facilitates

unification of scheduling suitable for various workloads, including

batch, gang-scheduling, machine learning and many others.

On the other hand, stages in Fangorn are associated with physi-

cal properties such as resource specifications and parallelism. To-

gether, they bind a logical graph to its physical presentation. Fig. 5

exemplifies how a simple logical graph shown in Fig. 5(a) can be ma-

terialized into various physical execution graphs corresponding to

different computation patterns. The canonical batch map-reduce in

2975

Fig. 5(b) is connected by an edge with triplet annotation {Persisted,

Full, Source-Completion}. It denotes that full-shuffled intermedi-

ate data is persisted on disk between stages, and is fully recoverable.

In terms of scheduling, Source-Completion indicates that down-

stream stage is scheduled after completion of upstream tasks. In

comparison, interactive map-reduce is described by Fig. 5(c), with

{Transient, Full, Source-Scheduled} triplet. The Transient im-

plies intermediate data is only consumable as being produced (e.g.,

pipelined via network). In addition, it carries subtle implication

that, failure in any of the tasks up- or downstream will lead to re-

run of both stages. Source-Scheduled indicates that downstream

stage is jointly-scheduled with its upstream source. Notably, gang

scheduling can be described by a graph whose edges are all anno-

tated with Source-Scheduled. Finally, Fig. 5(d) depicts parameter

server [20](PS) model with {Stateless-Transient, None, Source-

Started} triplet. One most distinct scheduling requirement for

such workload is that Workers must be running concurrently with

PS, and cannot progress meaningfully before all PS tasks are run-

ning. Such dependency is accurately described on Fangorn with

Source-Started scheduling trigger. During execution, data ex-

changed between PS and Worker contains mostly parameters not

managed by the framework. Fangorn models such exchange as “out

of band” by None shuffle. In addition, since data exchanges only

occur when both PS andWorker are running concurrently, it is tran-

sient in nature. Yet Transient transportation implies that a faulty

downstream will lead to upstream failure, while PS is in fact self-

sustainable against Worker failures. Therefore it is more accurately

annotated as Stateless-Transient. The scheduling strategies con-

veyed via the triplet corresponds to subtle yet important behaviors

that define characteristics of deep learning workloads.

3.3.2 Fault Tolerance. Fangorn’s graph modeling also encapsu-

lates various fault-tolerance strategies via physical edge and stage

properties. For example, fault-tolerance granularity can be inferred

from “Data Transportation” property of a stage’s connecting edge(s).

Task-level fault tolerance can be achieved for a stage whose con-

necting edges are all annotated with Persisted, since any failed

task can be rescheduled individually, by recovering from persisted

intermediate data. On the other hand, any failure within a stage con-

nected to Transient edge(will lead to rerun of all connected stages:

the failure radius extends until recoverable data is reached. Ad-

ditionally, Fangorn infers failover strategies from Shuffle-Pattern

and Scheduling-Trigger too: failure in a task shall only impact

downstream tasks that have been scheduled, and with specific data

dependency.

3.3.3 Execution Modes. Fangorn’s descriptive graph provides the

infrastructure to unify various execution strategies that explore

both long-running and spontaneously-requested containers. Fig. 6

exemplifies typical execution modes for relational workloads on

Fangorn. Fig. 6(a) describes batch workloads that persist all interme-

diate data before terminating any task, and only requests resources

after all upstream tasks complete. By doing so, it achieves high reli-

ability with efficient resource usage, making it especially suitable

for massively-parallel data processing. In contrast, time-sensitive

interactive workloads can opt for accelerating execution when-

ever possible. As such, they are gang-scheduled with pre-launched

containers, and leverage data pipelining to expedite processing, as

Figure 6: Graph execution modes on Fangorn

shown by Fig. 6(b). Such execution strategy entails rerun of entire

graph though, upon single task failure, which can be costly. Batch

execution and gang scheduling sit at the two extremes of the spec-

trum for distributed data processing. However, many workloads

can fall between these two extremes. Fig. 6(c) and (d) illustrates

two alternative execution modes enabled on Fangorn, namely bub-

ble execution and hybrid execution, that explore tradeoffs between

the extremes, to seek balance among execution latency, resource

efficiency and fault tolerance. Bubble execution relaxes job-level

gang scheduling, by dividing a graph into multiple “bubbles”, each

scheduled as (sub)gangs executed on pre-launched containers. In

comparison, hybrid execution leverages Fangorn’s unique architec-

ture and further relaxes the exclusiveness on resource type, thus

allowing co-existence of hybrid resources in the same graph. The

flexibility provided by hybrid execution facilitates its wide adoption

on workloads of various scales, and is discussed in Section 5.

3.4 Execution Framework At Scale
Serving multi-million jobs per day demands an execution frame-

work that scales with increasing job count. While JM faces its own

challenges of orchestratingmassive-scale job adaptively and respon-

sively, it scales naturally in terms of increasing job count: since one

JM is allocated per job. In contrast, the Fangorn Service is tasked

with orchestrating all admissible workloads on multi-tenant clus-

ters, therefore it must be able to scale horizontally with increasing

concurrent-job-count in the system and graph complexities.

For a job orchestration service, binding resource administra-

tion and job management into one single process simplifies overall

system design, and is adopted by distributed MPP platform [38].

However, it creates a single-point system bottle-neck, a vulnera-

bility that becomes more pronounced when deployed over large

clusters with dense computation capabilities. The decoupling of re-

source management by Admin, and job management by MGMs, is

a conscious design choice by Fangorn in recognition of such chal-

lenges, to offload the relatively compute-intensive duties of job

management to multiple MGMs. Meanwhile, the dispatching of

jobs is accomplished by load-balancing at Admin, according to real-

time loads at each MGM. The service is designed to scale up or

down automatically, in response to real-time service workloads.

Particularly, the Admin will spin up new MGM(s) in presence of

overwhelming influx of job submissions, or shut down existing

ones gradually when service load lowers. The job delegation by

Admin also provides means to resolve engineering challenges with

2976

version control and backward compatibility. As multiple MGMs

can be configured to manage jobs intended for different engineer-

ing releases, it offers mechanisms to facilitate migrations among

upgrades, even in the presence of breaking changes.

On the other hand, container-administration at Fangorn Ad-

min allows accurate resource management and optimal allocation

strategies to be achieved. Comparing to alternative approach that

partition resource pool vertically into multiple sub-pools each used

exclusively for part of job submissions [4], the solution adopted by

Fangorn avoids resource fragmentation, and preserves the frame-

work’s capability to offer seamless upgrade between releases. In ad-

dition, such architecture allows Admin to optimize task placement

globally, to avoid unnecessary IO and to accelerate graph execution

further. The responsiveness of Admin is achieved via a lightweight

event-driven implementation similar to Actor model [22], with

minimum blocking operations on scheduling decision-makings.

4 ADAPTIVE GRAPH EXECUTION
Crafting the optimal execution plan beforehand is a notoriously

hard problem [18, 19], even more so for production workloads. First

of all, qualities of plans rely heavily on accuracy of compile-time sta-

tistics, which may be incomplete or even missing for data ingested

via various inlets. Secondly, as data goes through complex trans-

formations throughout the graph, its characteristics can change

dramatically, obsoleting optimality of pre-composed plans. The

uncertainties can be further amplified in presence of user-defined

logic, which are mostly black-box to optimizer. Moreover, for mod-

ern workloads such as deep learning, characteristics of specialized

hardware can impose additional challenges against accurate plan-

ning before submission. The capability for execution framework to

adapt, throughout lifecycle of a distributed graph, is vital to offset

negative impacts from sub-optimal plans. With a fine statistics col-

lection framework, Fangorn incorporates run-time information on

intermediate data, such as record count, distribution statistics, and

operator metrics, to maintain up-to-date profiling of job execution.

This allows Fangorn to perform not only canonical physical graph

adjustment, such as dynamic parallelism [14, 32, 36], but also to

explore a much wider spectrum of dynamic reconfigurations on

both physical and logical execution graphs. In this section, we dis-

cuss dynamic graph adaptations in both categories, via concrete

examples implemented across multiple distributed engines.

4.1 Adaptive Handling of Data Skew
Skewness is arguably the most common cause for prolonged execu-

tion of distributed workloads, and can be mainly attributed to two

factors: execution skew caused by by stragglers [9] and data-skew

introduced by imbalance of data distribution. The former usually

results from hardware anomalies or resource contentions and can

be mitigated via speculative execution [36, 46]. Skewness in data,

on the other hand, is inherent within the workloads and can get

amplified throughout the graph, making it more challenging to pin-

down before execution. In this sub-section, we focus mainly on how

Fangorn detects and handles data skew automatically. Ever since

MapReduce era, data skew and techniques for its mitigation have

been studied extensively [13, 16, 17]. Some are built on tuning that

requires domain knowledge and user intervention, which is hard

to automate in production systems. Others rely on cost models de-

rived from accurate source data statistics, which unfortunately may

not always be available in production. In addition, for graph-based

executions that extend the legacy two-stage MapReduce paradigm,

quality of cost models can deteriorate quickly as execution graph

becomes deeper and data goes through more rounds of complex

transformations. To those ends, we believe that adaptivness in un-

derlying execution framework is essential for skew-mitigation to

be practical in production, and to be systematically-applicable.

4.1.1 Skewness with Dynamic Partition Insert. To start with, con-

sider dynamic partition insertion (DPI) that persists data according

to partition-keys determined during execution. DPI is commonly-

used in batch ETL workloads, a simple example can be given as:

INSERT OVERWRITE
TABLE partitioned_sales PARTITION(country)
SELECT item, price, country FROM sales;

It is important that for output fromDPI, data from the same partition

be co-located when persisting to disk. Otherwise, output fragmenta-

tion can create overwhelmingly-large number of files, in the order

of input parallelism times cardinality of partition keys. This large

number of (often small) files can be detrimental to underlying dis-

tributed file system. Appending a reshuffle stage mitigates such risk.

When output is evenly distributed, vanilla map-reduce paradigm

handles the problem efficiently, as illustrated by Fig. 7(a). How-

ever, when data skews towards particular key(s), sizes of partitions

can vary dramatically, creating imbalance among data assigned to

each reduce task and leads to prolonged executions, as exempli-

fied by Fig. 7(b). With adequate statistics, query optimizer may be

able to mitigate such skew with plan that offers fine-grained re-

partitioning [48]. Th optimizer-oriented approach, however, relies

on accurate histograms on data cardinality against specific parti-

tion keys. In general, this information is rarely readily-available

in production. Furthermore, for realistic workloads, DPI is usually

embedded in a complex query, and partitioned insertion only occurs

at the end of a deep graph. This hinders practicality of cost-based

solutions, since predicting accurate partitioning distribution far out

from source input can be very challenging.

In comparison, late-binding on Fangorn allows the partitioning

decision to be deferred until necessary data statistics have been

collected. By estimating cardinality associated with valid partition

keys, JM can infer optimal data partitioning strategies to ensure fair

amount of shuffle data be assigned to each downstream task, result-

ing in the “adaptive shuffle” illustrated in Fig. 7(c). In this example,

partition #0 and #1 are grouped to be processed by one single task,

while the skewed partition #2 is split into multiple segments, and

assigning to different tasks. Particularly for DPI, close-to-uniform

output distribution can result, even in the presence of single-key

skew. This is achievable since shuffle partitioning can be relaxed

in DPI, to the extent that output from the same partition can be

safely divided and distributed to different downstream tasks. Such

property is not universal and Fangorn depends on query optimizer

to annotate plan with such property. By leveraging Fangorn’s dy-

namic infrastructure, adaptive shuffle have been observed to resolve

skewness in range of tens to several-thousand folds in production,

without any manual interventions from end-users.

2977

Figure 7: Skew mitigation for dynamic partition insert

4.1.2 Adaptive Skew-Join. Data skewness associated with joins has

attracted extensive attention distributed relational data-processing

community [7, 21, 43, 44]. In particular, a taxonomy on exploring

graph topology to mitigate skew-joins is laid out in [7]. The em-

bodiment of these studies, however, requires specific solutions to

identify skew before determining optimal execution plans. In earlier

studies, such plans are usually pre-composed by additional aggre-

gation jobs [7], to collect necessary statistics. In contrast, Fangorn

offers the infrastructure to automate run-time skew detection and

dynamic plan adjustment, which is crucial for productionalizing

advanced join skew mitigation techniques.

Fig. 8 demonstrates how adaptive skew join is implemented on

Fangorn, which leverages B-SkewJoin [7] strategy (also known as

Partial Replication Partial Redistribution [44]) in a fully-automated

way. As statistics are collected and aggregated from multiple out-

put of join-sources during execution, Fangorn can infer potential

skewness in partitioned data. Once do, graph topology and shuf-

fle patterns adjustment will be triggered, to spread-out skewness

across multiple join tasks. In the two-way join example of Fig. 8, the

(left) skewed partition is split up and assigned to 3 parallel join tasks,

so that input size of each task is below a configurable threshold.

In the meantime, the corresponding non-skewed right partition is

broadcast to all 3 tasks, ensuring pair-wise joins to be correctly per-

formed. The implementation of adaptive skew join involves not only

dynamic decision-making during execution, but also adjustment

of data transportation strategies among physical edge connections.

This is enabled by Fangorn’s pluggable edge descriptor, which can

be tailored and dynamically adjusted to encapsulate appropriate

Customized shuffle patterns. As such, Fangorn can cater to a wide

class of join skew problems, including skews that occur at different

partitions and from multiple join inputs. In addition, alternative

strategies to mitigate join skews can be implemented as Fangorn

plugins. We evaluate performance for adaptive skew join later in

Section 6, against large-scale benchmark.

4.2 Conditional and Control Stages
Delaying some of the decision makings for plan optimization to

run-time and allowing execution framework to reconfigure plan as

needed, provides an effective means to rectify plans that may oth-

erwise be sub-optimal. While the methodology is well-recognized,

hitherto previous systems [14, 36]mostly consider adjusting graph’s

physical properties via late-binding, while the original logical graph

was deemed immutable after submission. Nevertheless, scenarios

that necessitate late-binding of logical graph are common for pro-

duction workloads as well. To this end, continuous optimization

is proposed [6] to explore dynamic interactions between query

optimizer and execution framework, such that a new query plan

Figure 8: Adaptive Join against join skewness

can be recompiled if needed. Alternatively, Fangorn adopts condi-

tional execution to address plan-uncertainties. It allows deferrals

of final plan binding by incorporating multiple (sub)plan-candidates

at job submission, which will be reconciled into the final plan dur-

ing execution. Particularly, when optimizer cannot determine the

optimal plan 𝑃∗ among possible candidate (sub)plans set A𝑃 , it

can construct a sub-plan selection function 𝑓 : V ↦→ A𝑃 , where V
describes the entire space that relevant runtime statistics can take

value from. For X ∈ V, 𝑓 describes the mapping with guarantee:

𝑓 (x, c) = 𝑃∗ : 𝐶 (𝑃∗ |X = x) ≤ 𝐶 (𝑃 |X = x),∀𝑃 ∈ A𝑃 ,

where c describes additional constant parameters, and𝐶 (·) denotes
cost function corresponding to a given plan, both supplied by op-

timizer. Once statistics necessary to finalize the cost function is

collected during execution, the optimal plan can be determined.

4.2.1 Conditional Join. Consider, for example, a query that corre-

lates user’s monetary spend, with shopping session duration, by
joining orders and activities, where orders is a terabyte table

and activities measures dozens of gigabytes:

SELECT a.spend, a.id, b.duration FROM (
SELECT spend,id FROM orders WHERE spend > 100)a
JOIN (SELECT userid,duration FROM activities
WHERE duration > 60)b
ON a.userid = b.userid;

Even for such a simple query, optimizer may face the dilemma of

join-algorithm selection. Primarily, selectivity of duration > 60
predicate determines whether broadcast hash join shall be used over

the canonical sort-merge join. With low selectivity, output would be

small enough (say, less than 100𝑀𝐵) to fit into memory assigned to

a single-task, thereby facilitating broadcast hash join that performs

join via in-memory hash-table lookup. It erases the necessity to sort

and shuffle entire orders table, and avoids any side-effects associ-

ated with shuffle operations (such as shuffle skew), which makes it a

more efficient distributed join algorithm, when applicable. However,

were the selectivity higher, output from the predicate will not fit

into a single task’s memory, causing out-of-memory(OOM) failure,

or frequent memory-disk swapping that significantly slows-down

execution.When facedwith the difficult decision of choosing among

plan candidates whose optimality depends on varying intermediate

output, optimizer tends to be more “conservative”, especially when

aggressive optimization bears unwelcoming consequences of job

failure that can break SLAs in production. Opting for conservative

plans, however, can lead to performance degradation associated

with sub-optimal choice.

Fangorn resolves such dilemmas with introduction of special

graph stages, namely control and conditional stage, to allow lazy

join-algorithm selection using conditional join. A control stage is

2978

Figure 9: Conditional join example

inserted into a graph to make control decisions that dynamically ad-

just downstream graph topology and execution. A control stage can

remain as a logical entity without being materialized into physical

task(s), or otherwise. Conditional stage is one that may be subject

to cancellation during execution. They are usually planned with

duplication, with the expectation that only one set of the duplicated

stages will be executed as selected, often by a control stage.

For the query discussed above, the resulting conditional join plan

is shown in Fig. 9, where shaded M2, J1, J2 are conditional stages

that, depending on out characteristics of M1, may or may not be

executed. Specifically,A𝑃 = {⟨𝑀2, 𝐽1⟩ , ⟨𝐽2⟩},X denotes cardinality

ofM1’s output, and c refers to threshold value that indicates whether
it may fit into single task memory. In this example, C0 is merely

a logical control entity, which collects runtime statistics (output

cardinality in this case) and decides on which set of downstream

conditional stages shall be executed. When X ≤ c, hash join is

selected with conditional path ⟨𝐽2⟩, otherwise ⟨𝑀2, 𝐽1⟩ is chosen
to perform merge join. Non-chosen conditional stage(s) will be

cancelled by Fangorn and removed from the execution graph.

Conditional join now applies to more than 40% of production

relational workloads with join operations, covering simple work-

loads such as the one illustrated in Fig. 9, as well as complex cases

where execution plan may not be finalized until multiple nested

decisions have been made. The ability to steer around occasional

bad cases allows optimizer to be less conservative, to explore more

optimized plans: 98% of conditional joins in production favor the

efficient hash joins, with OOM failure reducing to practically none.

4.2.2 Late Resource and Strategy Binding. Most deep learning (DL)

engines offer a wide range of execution options to end users, such as

parallelism, resource specification, and distribution strategy. While

such flexibility allows expert-level users to more actively engage

in execution tuning, it also imposes challenges on average users

to configure execution parameters properly. With the uncertain-

ties associated with reasoning about optimal configurations for

DL workloads, we observe an apparent tendency for end-users

to over-configure, just to be “safe”. Take TensorFlow for example,

the ParameterServerStrategy distribute strategy [28] is almost

always chosen for distributed learning regardless of model size.

Over-requesting resources is quite common too. For example, a

user often requests 8 × 1 GPU while in reality the workload only

consumes a maximal of 8×0.25GPU cards. Onmulti-tenant clusters,

the discrepancy between requested resource and real usage leads to

the paradox of long job waiting queue and low cluster resource usage.

This is inevitable since resource quota is occupied by workloads

consuming much less GPU than claimed necessary.

Control stage and conditional execution offers a systematic ap-

proach to reconcile such discrepancy for DL workloads. Unlike con-

ditional join, the control stage here can be materialized physically

(usually into a singleton task).With DL binaries loaded, it can decide

on proper distributed strategy and resource specification for each

stage. Such decisions can be made by analyzing the operator-tree

generated from TensorFlow compiler, in conjunction with resource

usage profiling information collected from similar historical jobs.

Alternatively, control task can also do a “dry-run” on sample input to

gain insights on resource usage pattern. A possible conditional plan-

space can be given by A𝑃 = {⟨𝑃𝑆,𝑊𝑜𝑟𝑘𝑒𝑟 ⟩ , ⟨𝑊𝑜𝑟𝑘𝑒𝑟 ⟩}, in which

MultiWorkerMirroredStrategy is represented by the ⟨𝑊𝑜𝑟𝑘𝑒𝑟 ⟩
that describe scenarios when dedicated PS stage is deemed unneces-

sary, or when asynchronous training is unsuitable. Once the proper

distributed strategy is chosen, control task also determines, and

communicates to JM, the proper resource specifications. JM will

then update the execution plan accordingly. With late binding on

resource and distributed strategy, effective cluster-wide GPU utiliza-

tion increases by over 35%, with marginal performance degradation

and significant decrease in job queuing time.

4.3 Adaptive Modeling for Deep-Learning
In this sub-section, we share some observations and experiences

from hosting Alibaba’s core DL platform [26] on Fangorn. Particu-

larly, we discuss how an adaptive execution framework offers the

necessary flexibility to parallelize DL workloads effectively and

efficiently, on shared clusters with heterogeneous hardwares.

Unlike relational workloads that readily translate into graphs

of dozens, or even hundreds of stages, DL workloads are usually

presented by much simpler execution graph. For example, ring-

allreduce paradigm [37] is often presented as a one-stage graph,

and parameter server [20] presented by two stages. The simplified

representations can be largely attributed to lack of the need for

global operations (e.g., aggregation or sort) in DL workflows. It al-

lows complex DL operator-tree to be independently executed within

a process, without stages chaining. The relatively simple graph have

ushered attempts to parallelize DL workloads with map-only or

map-reduce paradigms. Such attempts under-fit the DL workloads

and ignore their unique data transportation and scheduling proper-

ties, as discussed in Section 3.3. Fangorn’s rich semantics facilitates

accurate modeling of DL executions by capturing their fundamen-

tal scheduling requirements, thereby enabling production-critical

features such as job elasticity and customizable failover strategies.

More importantly, it allows multi-mode DL workloads to be or-

chestrated in conformity of their unique properties. For example,

DL training may require co-scheduling of all workers, and is usu-

ally iterative in nature. Large-scale batch DL inferences, on the

other hand, finish in one epoch and each worker can be scheduled,

reused, and released individually. The flexibility allows inference

workloads leverage opportunistic scheduling with resources over-

subscription [5, 40, 47]. Fangorn recognizes the distinct difference

in scheduling various DL workloads, and decouples DL inference

2979

workloads from co-scheduling strategies that used to govern all DL

jobs. Substantial performance improvement is observed with this

upgrade, especially on busy clusters: idle duration spent waiting for

co-scheduling resources is reduced by orders of magnitude, while

overall job latency improves by over 40%.

Additionally, computation in distributed DL workloads is mostly

carried out by customized operators opaque to execution frame-

work, which makes it hard to guarantee idempotence. This breaks

execution “reentrancy” [14, 36], and hinders enabling fundamental

capabilities such as elasticity or failover. In contrast to platform-and-

algorithm-specific bare mental solutions [29, 33], Fangorn seeks

to enable interactive-adaptability by involving DL engine in the

decision makings, thereby achieving dynamic adjustment that can

be applied generally. For example, the control node described in

Section 4.2.2 introduces a secondary “master” in the graph. It can

incorporate DL-specific logic to facilitate coherent adjustment of

algorithmic parameters when graph structure, such as stage paral-

lelism, is being modified. Coordinated global check-pointing among

all workers is also made possible, to ensure that algorithmic conver-

gence and correctness remain intact with dynamic reconfigurations.

Finally, the specialized hardware commonly used in DL work-

loads introduces additional dimension in scheduling decisions. For

example, different placement strategies on NVLink [31] enabled

GPUs can result in dramatic performance difference for DL work-

loads. Additionally, the iterative DL computation produces pre-

dictable hardware usage patterns that can be exploited to enable

fine-grained resource sharing among various workloads, leading

to significant boost in hardware utilization. All of these challenges

call for a joint design of DL runtime, execution orchestration, and

cluster resource scheduler. Some of these joint efforts have been

reported in [42], but this remains largely an ongoing work that

continues to generate challenges for Fangorn.

5 HYBRID EXECUTION FRAMEWORK
Gang scheduling all tasks in a graph offers the potential benefits

of processing data immediately upon its production. Yet the bene-

fits are only fully attainable when computation can be efficiently

pipelined. In practice, data barriers, such as the commonly-used

sort-based operators, regularly present themselves in distributed

workloads, and pipeline-friendly operations rarely span across en-

tire graph for complex workloads. Unconditional gang scheduling

can thus lead to inefficient resource usage. On the other hand, lever-

aging pre-launched and long-running containers can noticeably

reduce scheduling and task-launching overhead, therefore it has

been widely adopted [4, 15, 38] for execution acceleration. However,

this may not always be an option, since there are usually practical

limitations imposed on admissibility to long-running containers:

a) Resource Usage Characteristics: A computation task may not be

suitable to be scheduled to a pre-launched container, due to the

task’s excessive CPU / Memory usages, or dependency on special

hardware (e.g., RDMA or FPGA device).

b) Security: Stringent security requirements may demand VM-based

isolation strategy for certain types of computation, such as tasks

containing UDF. The launching and disposing of VM can introduce

impact that affects availability of long-running containers.

c) Runtime Duration: The benefits of leveraging pre-launched re-

sources are especially noticeable for agile tasks that complete in

shorter duration. Such benefits diminish for tasks taking longer to

execute, making them unsuitable candidates to be admitted.

The ramifications of a task’s inadmissibility into pre-launched

container pool may differ with scheduling capabilities offered by

the underlying framework. For systems that require entire job to

use the same type of resources, gang scheduled or not, inadmissi-

bility of one single task will reject the entire graph. For example,

a seemingly straightforward relaxation from gang-scheduling is

bubble execution illustrated in Fig. 6(c), and a similar framework

was studied in [45]. However, bubble execution shares the same re-

striction as gang scheduling in terms of unanimous admissibility of

all tasks. Its exclusive binding with one singular resource type hin-

ders wide adoption in production. Firstly, one single task unsuitable

for executing in long-running containers would disqualify entire

graph from bubble execution. Secondly, it is generally unpractical

to reduce bubble boundary inside a logical stage. The entailed re-

quirement to rerun a massively-parallel stage on single task failure

is usually unacceptable in production. Finally, for graphs containing

stage(s) that can deplete entire container pool before its parallelism

is satisfied, bubble execution is not an option either.

As profiled in Section 2, the majority of production data is pro-

cessed by jobs of medium to large scales. It is therefore of paramount

importance to optimize workloads with scales that fall into this

range. However, gang-scheduling or bubble-scheduling these jobs

over pre-launched containers is unrealistic with practical concerns

such as failure cost, security, resource efficiency, or simply availabil-

ity of pre-launched containers. In comparison, by leveraging the

unique architecture of Fangorn, hybrid execution allows incorpo-

ration of various resource types and flexible scheduling strategies

in one execution graph. This allows regions of a large graph, espe-

cially those on critical execution path, to benefit from expedited

executions facilitated by “local” co-scheduling and data pipelining,

even though the entire graph may not be all suitable for one uni-

versal execution strategy. Hence the exploration of job acceleration

becomes possible for jobs of all scales with hybrid execution.

For hybrid execution, the graph shall be segmented so that sub-

graph(s) suitable for co-scheduling can be identified. To this end,

denote a graph as G = (𝑆, 𝐸), where 𝑆 is the set of stages and 𝐸

set of edges. Parallelism of stage 𝑠 ∈ 𝑆 is denoted by its cardinality

|𝑠 |. 𝑒𝑆 and 𝑒𝐷 denotes source and destination of an edge 𝑒 ∈ 𝐸.

A graph G can be decomposed into a set of disjoint sub-graphs

G𝑖 , s.t. G𝑖 = (𝑆𝑖 , 𝐸𝑖), where
⋃︁

𝑖 𝑆𝑖 = 𝑆 and 𝑆𝑖 ∩ 𝑆 𝑗 = ∅,∀𝑖 ≠ 𝑗 . For

co-scheduled sub-graphs specially denoted by G⃗𝑖 =
(︂
𝑆𝑖 , �⃗�𝑖

)︂
, each

edge 𝑒 ∈ �⃗�𝑖 has the property of 𝑒𝑆 , 𝑒𝐷 ∈ 𝑆𝑖 , and can be anno-

tated with physical properties {Transient, ∗, Source-Scheduled}.
Here ∗ suggests the irrelevance of Shuffle-Pattern entry. In contrast,

physical properties {Persisted, ∗, Source-Completed} apply to

any edge 𝑒 ∈ 𝐸𝐶 = 𝐸\
(︂⋃︁

𝑖 �⃗�𝑖

)︂
. For briefness of discussion, we

refer to co-scheduled sub-graph simply as sub-graph hereon. A sub-

graph segmentation algorithm iterates through G to identify all

co-scheduled G⃗𝑖s and is depicted in Algorithm 1.

Overall, acceleration offered by co-scheduling (sub)graphs can

be attributed to two factors:a) removal of task launching overhead,

including resource queuing, binaries download/loading, task ini-

tialization, and b) expedition offered by pipelining between stages.

2980

Conversely, “imperfect” data pipeling introduces side-effects of

resource inefficiency with co-scheduling. Algorithm 1 reflects a

heuristic two-phased segmentation strategies. It allows Fangorn to

work together with optimizer in a loosely-coupled way, in deter-

mining final sub-graph segmentation. Particularly, the input from

optimizer is encapsulated in hints 𝐻 , which may contain infor-

mation regarding whether a barrier exists on output edge, or the

complexity of operations hosted by a stage. For example, existence

of sort-based operator in a stage is considered to create output bar-

rier. In this regard, honoring the data barrier hint reduces possibility

of idle-spinning in downstream tasks. Although such decision may

not be most aggressive towards execution acceleration, it results in

plans that promote more efficient resource usage.

Fangorn JM acts as the final arbitrator of graph segmentation,

with empirical observations from workloads characteristics taken

into account when determinating implementation details. For exam-

ple, ascending or descending sorting on stages during initialization

of Algorithm 1 corresponds to bottom-up vs top-down segmenta-

tion. Caeteris paribus, bottom-up approach is usually chosen since

analytical workloads oftentimes translate into inverted-triangle-

shaped graphs, therefore, it tends to include more pipeling-eligible

stages. In addition, Fangorn incorporates information that may

not be available during cost-based optimization, before arriving at

final sub-graph segmentation. It makes judicious tradeoff decisions

among various performance metrics based on real-time cluster sta-

tistics and workload SLAs. For instance, JM may allow a job with

stringent latency-SLA to be segmented with partial data barrier

within co-scheduling subgraphs, to tradeoff resource-efficiency for

execution latency. Impact of different strategies is evaluated in

Section 6.

Algorithm 1: Sub-graph Segmentation Algorithm

input :G = (𝑆, 𝐸)
output : segmented G, with each of G⃗𝑖 =

(︂
𝑆𝑖 , �⃗�𝑖

)︂
identified

param :max sub-graph size 𝐶𝑚𝑎𝑥 , hints set 𝐻

initialization: 𝐸𝑐 ← ∅; 𝑖, 𝑗 ← 0; 𝐶0 = 0

𝑆𝑠𝑜𝑟𝑡 ← sort(𝑆), by distance to root

while not all stages visited do
𝑠 𝑗 ← 𝑆𝑠𝑜𝑟𝑡 [𝑗 + +]
if CanAddToSubgraph(𝑠 𝑗 , 𝑆𝑖) then

do BFS starting from 𝑠 𝑗 : for connecting stage 𝑠 ′,
add to 𝑆𝑖 until CanAddToSubgraph(𝑠

′, 𝑆𝑖) returns
false

𝑖 ← 𝑖 + 1
else

do: ∀𝑒 with 𝑒𝐷 = 𝑠 𝑗 , add 𝑒 into 𝐸
𝑐

end
end

function CanAddToSubgraph(𝑠, 𝑆𝑖)

if |𝑠 | + |𝑆𝑖 | > 𝐶𝑚𝑎𝑥 or ∃𝑒 ∈ 𝐸𝐶 , s.t. 𝑒𝐷 ∈ 𝑆𝑖 or any hints in

𝐻 implies task(s) in 𝑠 unsuitable for 𝑆𝑖 then
return false

else
return true

end
end function

Figure 10: TPCH 1TB executed in various modes

6 PERFORMANCE EVALUATION
6.1 Performance with Resource Awareness
Evaluations of parallel data processing oftentimes focus on latency

as the performance metric, since it reflects important system ca-

pabilities to finish computation as soon as possible. Real-world

workloads, however, are subject to resource constraints. In fact,

resource efficiency can sometimes be more critical than latency,

since they usually translates to monetary cost. This is particular

true for enterprise workloads at large scales.

Fangorn’s flexible graph modeling facilitates versatile execution

strategies to attain different tradeoff-points in the joint space of

resource-efficiency and execution latency. In Fig. 10 we evaluate

both metrics together for different execution modes against TPCH

benchmark at 1TB scale. The evaluation is setup on a dedicated clus-

ter with 15 machines, each having 96 cores, 256Gb RAM and 100T

hard-drive. In addition to gang scheduling and batch scheduling, the

hybrid executions are evaluated with two subgraph segmentation

strategies. The first naïve size-based strategy with 𝐻 = ∅, which fa-

vors more “aggressive” subgraph segmentation that aims to include

as many tasks in the subgraph, as long as total task count does

not exceed allowable size 𝐶𝑚𝑎𝑥 . The second is a resource-aware

strategy that takes into account the “effectiveness” of data-pipeling

within segmented subgraphs, so that stages with barrier operator(s)

may not be included in a subgraph, with hints 𝐻 constructed to

assist this decision. Both hybrid execution setups are bound by a

max sub-graph size of 𝐶𝑚𝑎𝑥 = 500.

As revealed by Fig. 10, with enough resource quota, gang sched-

uling entire graph erases overhead associated with tasks launching

and allows pipeline acceleration whenever possible. However, the

aggressive latency optimization is achieved at a significant pre-

mium on resource usage, since many query plans in TPCH are

represented by deep graphs. Additionally, at 1TB scale, sort-based

operators enacting pipeline barriers are commonly presented in

execution plans. Both would increase probabilities of idle-spinning

and are unfavorable for efficient resource usage. Meanwhile, batch

execution consumes the least resource on the same workloads, but

over a much longer duration. The two strategies adopted by hy-

brid executions deliver different tradeoff points between the two

extremes. In particular, the resource-aware hybrid executions only

co-schedule sub-graphs when doing so attains both benefits of effi-

cient data pipeling, and reduction of overhead in task launching.

Therefore, such strategy achieves notable performance improve-

ment with marginal cost in resource consumption, when comparing

to batch execution. The naïve size-based strategy, on the other hand,

2981

Figure 11: Q21 Execution plan and subgraph segmentation

produces segmented subgraphs larger in both number and size, pos-

sibly with blocking barriers inside subgraphs. Consequently, it is

not surprising that performance improvement is achieved with

noticeably more resource usage.

To gain more insight on the impact of different execution strate-

gies, we evaluate below the execution patterns of a typical query,

namely TPCH-Q21. Particularly, we show how resource consump-

tion and job latency differ with batch, gang, and resource-aware

hybrid executions. Fig. 11 illustrates the query plan, with a total

of 6 stages. The plan is generated with hints on which operators

are blocking, to allow Graph Builder to annotate pipelinable edges.

With that Fangorn JM groups 𝑀1, 𝑀2, 𝑀3 as a subgraph accord-

ing to Algorithm 1. On the other hand, Fig.12 illustrates execution

timelines in different modes. Several observations can be made:

a) Overhead of launching JM or spontaneously-requested task mea-

sures 1 ∼ 2s or less, which can be avoided with MGM and pre-

lauched containers. Although the launch overhead may seem insub-

stantial, it can be notable for interactive scenarios. Additionally, the

task launching overhead also accumulates across multiple stages.

b) Effective pipelining between stages can significantly accelerate

execution, which can be noted in the execution of M1, M2 and M3

in different modes. Even root stage M1 finishes much faster when

it is co-scheduled with M2 with data pipeling: partially due to the

avoidance of data persisting phase at the end of computation.

c) Substantial amount of idling is introduced when gang scheduling

stages that cannot be efficiently-pipelined, especially those located

deeper in the graph. For example, execution of R6 (and J5) span the

entire job duration(23𝑠) in gang execution mode. It only runs for a

fraction of that duration in batch mode (∼ 3𝑠). Obviously, in this

case the majority of time is spent idle waiting for upstream inputs,

which leads to considerable resource waste. Gang scheduling also

prohibits possibility of dynamic parallelism adjustment, which takes

effect on R6 for both hybrid and batch executions.

In addition to standard benchmarking, hybrid execution is now

fully enabled on all production clusters at Alibaba, with resource-

aware subgraph segmentation as the default execution strategy.

Every day about 2.5 million distributed jobs are executed with at

Figure 12: Q21 execution-timeline and resource usage

Figure 13: Impact of Hybrid-Executions in production

least one subgraph, switching from the canonical batch executions.

Fig. 13 shows the impact of this upgrade, in terms of both latency

and resource usage. For fair comparison, queries were chosen from

production work-flows repeatedly executed every day, with relative

input size fluctuation < 10%. As we can see, no notable increase

in resource consumption is observed after the upgrade, while re-

markably performance improvement is achieved. Actually, given

the reduction in execution latency, overall resource consumption

(as measured by cpu × time) declines after switching to hybrid exe-

cutions. Evidently, the chosen subgraph segmentation strategy has

produced plans favoring local gangs in which data can be efficiently

pipelined and resource effectively leveraged. It can also be noted

that latency improvement with hybrid execution on production

clusters is more notable than benchmarking results (such as those

studied in Fig. 10). This can be contributed to the distinct charac-

teristics of resource availability and plans in production workloads.

In many cases, hybrid execution avoid excessive latency of waiting

for small amount of resource in resource-hungry clusters, which

is different from controlled benchmarking. In addition, production

workloads overall benefit more from hybrid execution, since large

fraction of them contains pipelinable data-flow.

6.2 Scalability and Adaptability
With the amount of data processed daily measured by Exabytes, the

ability to scale and accommodate various workloads is a fundamen-

tal requirement for the underlying execution framework to upholds

the parallel data processing at Alibaba. Fangorn’s scalability and

versatility are recognized and attested by its full deployment across

2982

Figure 14: Time distribution among join tasks, TPCx-BBQ19

Figure 15: Runtime for TPCx-BB Q19 in different settings

the company, as well as being one of the few contestants to com-

plete TPCx-BB suites on one single execution framework. As a newer

benchmark suite, TPCx-BB measures comprehensive competency

and performance of modern big-data systems, by incorporating

various workloads including relational queries for structured data,

and machine learning for semi-structured and unstructured data.

At 30TB scale [35], Fangorn supports QPM (query per min) per-

formance almost 3 times faster than runner-up submission, at less

than
1

3
the cost. In addition, it is the only system that scales to

100TB [34] as of July 2021. Evidently, the outstanding performance

at such massive scale cannot be achieved without joint efforts from

execution framework and the highly-optimized engines built-atop

Fangorn. Both 100-TB and GB-scale workloads are executed on

one unified framework, as Fangorn adapts to the scale, input vol-

ume, computation complexities of different workloads, choosing

appropriate execution strategies automatically. We refer readers to

official reports [34, 35] for complete evaluation setups.

Here we evaluate, as an example, how adaptability built within

Fangorn helps significantly improve performance of TPCx-BB Q19,

a query with data skewness that echoes with challenges observed

on production workloads. Q19 explores relationship between high

return and negative reviews, by joining reviews and items tables.

The filtered reviews data fed into join, however, is notably skewed

on several partitions, creating join skewness discussed in Sec. 4.1.

The skewness is further amplified with compute-intensive UDF

applied against join outcome that performs semantic analysis on

review entries. On 100TB category, the time distribution on tasks

execution, with and without Adaptive Join, is illustrated in Fig. 14.

For the latter, several most-skewed tasks taking more than 90 mins

to complete (as labeled), while most other tasks finished in less than

10 mins. In comparison, when Adaptive Join is enabled, with skew

threshold set to be default value of 64𝑀𝐵, the skew is automati-

cally detected and handled by balancing out the skewed partition,

which accelerate the join stage by more than 10 folds. In addition,

Fig. 15 provides insight on impact of adaptive join on overall job

latency, with split thresholds of 64𝑀𝐵 and 128𝑀𝐵. Although Q19 is

executed on Fangorn as a graph of more than 10 stages, the skewed

join dominates overall job latency, and significant improvement is

achieved once that is addressed by adaptive join handling. We find

Figure 16: SSB and TPCDS results at various scales

this representative of production workloads as well, since joins are

typically compute-intensive and time consuming in production too.

Finally, we compare performance of Fangorn-empowered re-

lational engine on smaller-to-medium size dataset, against Star

Schema Benchmark [23] and TPC-DS [25], at various scales. Fig. 16

shows the overall latency of executing both benchmarks with Fan-

gorn, against Presto (v 0.224) on the same cluster. With latency

being the evaluation metric, gang scheduling is chosen on Fangorn,

and it compares favorably at all data-scales, especially when input

size scales up to TB. It should be noted that performance on both

systems are evaluated with default configurations at all scales, with

no modification or user interventions in-between. Apparently, the

end results is highly contingent on the implementation specifics

of the relational engines, and both can potentially be fine-tuned

for (possibly significant) further improvement. For example, using

different settings and plugins at different scales is known to yield

optimized results on Presto [38]. However, we present this evalua-

tion result with two major takeaways: Firstly, as a general execution

framework, Fangorn is not only capable of supporting efficient ex-

ecutions for massively-parallel workloads, but can also facilitate

interactive queries. Remarkably, the sub-second average latency for

SSB/TPCDS queries at 1GB scale, compares Fangorn favorably with

those tailored for the state-of-art MPP engines, even at GB scales.

Secondly, the adaptability of Fangorn, backed by various resources

and versatile execution strategies, allows it to accommodate work-

loads of various scales, automatically.

7 CONCLUSION AND FUTUREWORKS
In this paper, we present Fangorn, the new generation of execution

framework at Alibaba that orchestrates, every day, tens of millions

of distributed jobs with multiple computation engines. With a de-

scriptive graph model, Fangorn adapts to characteristics of various

workloads and copes with uncertainties commonly presented on

production clusters, by dynamically adjusting both physical and log-

ical graphs during executions. The flexibility to leverage resources

of different kinds in one single job allows Fangorn to explore a

new class of hybrid-executions and battle-test them on produc-

tion workloads. The adaptability and hybrid capabilities offered

by Fangorn allow tradeoffs to be explored between performance

and resource usage for heterogeneous workloads of all scales, and

resolve practical challenges on production multi-tenant clusters.

Many dynamic adjustments discussed herein rely on Fangorn

as an execution framework to adapt automatically. While it allows

optimal transformations in many cases, the unilateral decision by

Fangorn is not without its limits. Interactions between execution

framework and computational engines are currently being actively

explored, to allow cooperative adaptability that involves coherent

adjustments among various components in the distributed system.

2983

REFERENCES
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.

2016. Tensorflow: A system for large-scale machine learning. In 12th USENIX

symposium on operating systems design and implementation (OSDI’ 16). 265–283.

[2] Michael Armbrust, Reynold S Xin, Cheng Lian, Yin Huai, Davies Liu, Joseph K

Bradley, Xiangrui Meng, Tomer Kaftan, Michael J Franklin, Ali Ghodsi, et al. 2015.

Spark SQL: Relational data processing in Spark. In Proceedings of the 2015 ACM

SIGMOD international conference on management of data. 1383–1394.

[3] Dominic Battré, Stephan Ewen, Fabian Hueske, Odej Kao, Volker Markl, and

Daniel Warneke. 2010. Nephele/PACTs: a programming model and execution

framework for web-scale analytical processing. In Proceedings of the 1st ACM

symposium on Cloud computing. 119–130.

[4] Eric Boutin, Paul Brett, Xiaoyu Chen, Jaliya Ekanayake, Tao Guan, Anna Korsun,

Zhicheng Yin, Nan Zhang, and Jingren Zhou. 2015. JetScope: Reliable and inter-

active analytics at cloud scale. Proceedings of the VLDB Endowment 8, 12 (2015),

1680–1691.

[5] Eric Boutin, Jaliya Ekanayake, Wei Lin, Bing Shi, Jingren Zhou, Zhengping Qian,

Ming Wu, and Lidong Zhou. 2014. Apollo: Scalable and coordinated scheduling

for cloud-scale computing. In 11th USENIX Symposium on Operating Systems

Design and Implementation (OSDI’ 14). 285–300.

[6] Nicolas Bruno, Sapna Jain, and Jingren Zhou. 2013. Continuous cloud-scale query

optimization and processing. Proceedings of the VLDB Endowment 6, 11 (2013),

961–972.

[7] Nicolas Bruno, YongChul Kwon, and Ming-Chuan Wu. 2014. Advanced join

strategies for large-scale distributed computation. Proceedings of the VLDB

Endowment 7, 13 (2014), 1484–1495.

[8] Ronnie Chaiken, Bob Jenkins, Per-Åke Larson, Bill Ramsey, Darren Shakib, Simon

Weaver, and Jingren Zhou. 2008. SCOPE: easy and efficient parallel processing of

massive data sets. Proceedings of the VLDB Endowment 1, 2 (2008), 1265–1276.

[9] Qi Chen, Cheng Liu, and Zhen Xiao. 2013. Improving MapReduce performance

using smart speculative execution strategy. IEEE Trans. Comput. 63, 4 (2013),

954–967.

[10] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: simplified data processing

on large clusters. Commun. ACM 51, 1 (2008), 107–113.

[11] Yin Huai, Ashutosh Chauhan, Alan Gates, Gunther Hagleitner, Eric N Hanson,

Owen O’Malley, Jitendra Pandey, Yuan Yuan, Rubao Lee, and Xiaodong Zhang.

2014. Major technical advancements in Apache Hive. In Proceedings of the 2014

ACM SIGMOD international conference on Management of data. 1235–1246.

[12] Yuzhen Huang, Yingjie Shi, Zheng Zhong, Yihui Feng, James Cheng, Jiwei Li,

Haochuan Fan, Chao Li, Tao Guan, and Jingren Zhou. 2019. Yugong: Geo-

Distributed data and job placement at scale. Proceedings of the VLDB Endowment

12, 12 (2019), 2155–2169.

[13] Shadi Ibrahim, Hai Jin, Lu Lu, Song Wu, Bingsheng He, and Li Qi. 2010. Leen:

Locality/fairness-aware key partitioning for mapreduce in the cloud. In 2010

IEEE Second International Conference on Cloud Computing Technology and Science.

IEEE, 17–24.

[14] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly. 2007.

Dryad: distributed data-parallel programs from sequential building blocks. In

Proceedings of the 2nd ACM SIGOPS/EuroSys European Conference on Computer

Systems 2007. 59–72.

[15] Marcel Kornacker, Alexander Behm, Victor Bittorf, Taras Bobrovytsky, Casey

Ching, Alan Choi, Justin Erickson, Martin Grund, Daniel Hecht, Matthew Jacobs,

et al. 2015. Impala: A Modern, Open-Source SQL Engine for Hadoop. In Cidr,

Vol. 1. 9.

[16] YongChul Kwon, Magdalena Balazinska, Bill Howe, and Jerome Rolia. 2010. Skew-

resistant parallel processing of feature-extracting scientific user-defined functions.

In Proceedings of the 1st ACM symposium on Cloud computing. 75–86.

[17] YongChul Kwon, Magdalena Balazinska, Bill Howe, and Jerome Rolia. 2012. Skew-

tune: mitigating skew in MapReduce applications. In Proceedings of the 2012 ACM

SIGMOD International Conference on Management of Data. 25–36.

[18] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper, and

Thomas Neumann. 2015. How good are query optimizers, really? Proceedings of

the VLDB Endowment 9, 3 (2015), 204–215.

[19] Viktor Leis, Bernhard Radke, Andrey Gubichev, Atanas Mirchev, Peter Boncz,

Alfons Kemper, and Thomas Neumann. 2018. Query optimization through the

looking glass, and what we found running the join order benchmark. The VLDB

Journal 27, 5 (2018), 643–668.

[20] Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr Ahmed, Vanja

Josifovski, James Long, Eugene J Shekita, and Bor-Yiing Su. 2014. Scaling dis-

tributed machine learning with the parameter server. In 11th USENIX Symposium

on Operating Systems Design and Implementation (OSDI’ 14). 583–598.

[21] Wei Li, Dengfeng Gao, and Richard Thomas Snodgrass. 2002. Skew handling tech-

niques in sort-merge join. In Proceedings of the 2002 ACM SIGMOD international

conference on Management of data. 169–180.

[22] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard

Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul, Michael I Jordan,

et al. 2018. Ray: A distributed framework for emerging AI applications. In 13th

USENIX Symposium on Operating Systems Design and Implementation (OSDI’ 18).

561–577.

[23] Patrick O’Neil, Elizabeth O’Neil, Xuedong Chen, and Stephen Revilak. 2009.

The star schema benchmark and augmented fact table indexing. In Technology

Conference on Performance Evaluation and Benchmarking. Springer, 237–252.

[24] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-

maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan

Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith

Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning

Library. In Advances in Neural Information Processing Systems, Vol. 32. Curran

Associates, Inc.

[25] Meikel Poess, Bryan Smith, Lubor Kollar, and Paul Larson. 2002. TPC-DS, taking

decision support benchmarking to the next level. In Proceedings of the 2002 ACM

SIGMOD international conference on Management of data. 582–587.

[26] Alibaba Machine Learning Platform for AI. Accessed July 2021. https://www.

alibabacloud.com/product/machine-learning.

[27] Alibaba MaxCompute. Accessed July 2021. https://www.alibabacloud.com/

product/maxcompute.

[28] Distributed Strategy for Training on TensorFlow. Accessed July 2021. https:

//www.tensorflow.org/guide/distributed_training/.

[29] ElasticDL. Accessed July 2021. https://elasticdl.github.io/.

[30] Kubernetes. Accessed July 2021. https://kubernetes.io/.

[31] NVLink. Accessed July 2021. https://www.nvidia.com/en-us/data-center/nvlink/.

[32] Spark 3.0. Accessed July 2021. https://spark.apache.org/releases/spark-release-3-

0-0.html.

[33] TorchElastic. Accessed July 2021. https://github.com/pytorch/elastic/.

[34] TPCx-BB 100TB Benchmark. Accessed July 2021. Official report, based on com-

putation platform build on Fangorn. http://www.tpc.org/tpcx-bb/results/tpcxbb_

result_detail5.asp?id=120100202.

[35] TPCx-BB 30TB Benchmark. Accessed July 2021. Official report, based on compu-

tation platform build on Fangorn. http://www.tpc.org/tpcx-bb/results/tpcxbb_

result_detail5.asp?id=120100201.

[36] Bikas Saha, Hitesh Shah, Siddharth Seth, Gopal Vijayaraghavan, Arun Murthy,

and Carlo Curino. 2015. Apache TEZ: A unifying framework for modeling and

building data processing applications. In Proceedings of the 2015 ACM SIGMOD

international conference on Management of Data. 1357–1369.

[37] Alexander Sergeev and Mike Del Balso. 2018. Horovod: fast and easy distributed

deep learning in TensorFlow. arXiv preprint arXiv:1802.05799 (2018).

[38] Raghav Sethi, Martin Traverso, Dain Sundstrom, David Phillips, Wenlei Xie,

Yutian Sun, Nezih Yegitbasi, Haozhun Jin, Eric Hwang, Nileema Shingte, et al.

2019. Presto: SQL on everything. In 2019 IEEE 35th International Conference on

Data Engineering (ICDE). IEEE, 1802–1813.

[39] Leslie G Valiant. 1990. A bridging model for parallel computation. Commun.

ACM 33, 8 (1990), 103–111.

[40] Vinod Kumar Vavilapalli, Arun C Murthy, Chris Douglas, Sharad Agarwal, Ma-

hadev Konar, Robert Evans, Thomas Graves, Jason Lowe, Hitesh Shah, Siddharth

Seth, et al. 2013. Apache Hadoop Yarn: Yet another resource negotiator. In

Proceedings of the 4th annual Symposium on Cloud Computing. 1–16.

[41] Midhul Vuppalapati, Justin Miron, Rachit Agarwal, Dan Truong, Ashish Motivala,

and Thierry Cruanes. 2020. Building an elastic query engine on disaggregated

storage. In 17th USENIX Symposium on Networked Systems Design and Implemen-

tation (NSDI’ 20). 449–462.

[42] Wencong Xiao, Shiru Ren, Yong Li, Yang Zhang, Pengyang Hou, Zhi Li, Yihui

Feng, Wei Lin, and Yangqing Jia. 2020. AntMan: Dynamic Scaling on GPU

Clusters for Deep Learning. In 14th USENIX Symposium on Operating Systems

Design and Implementation (OSDI’ 20). USENIX Association, 533–548. https:

//www.usenix.org/conference/osdi20/presentation/xiao

[43] Yu Xu and Pekka Kostamaa. 2009. Efficient outer join data skew handling in

parallel DBMS. Proceedings of the VLDB Endowment 2, 2 (2009), 1390–1396.

[44] Yu Xu, Pekka Kostamaa, Xin Zhou, and Liang Chen. 2008. Handling data skew in

parallel joins in shared-nothing systems. In Proceedings of the 2008 ACM SIGMOD

international conference on Management of data. 1043–1052.

[45] Zhicheng Yint, Jin Sun, Ming Li, Jaliya Ekanayake, Haibo Lin, Marc Friedman,

José A Blakeley, Clemens Szyperski, and Nikhil R Devanur. 2018. Bubble execu-

tion: resource-aware reliable analytics at cloud scale. Proceedings of the VLDB

Endowment 11, 7 (2018), 746–758.

[46] Matei Zaharia, Andy Konwinski, Anthony D Joseph, Randy H Katz, and Ion Stoica.

2008. Improving MapReduce performance in heterogeneous environments.. In

Osdi, Vol. 8. 7.

[47] Zhuo Zhang, Chao Li, Yangyu Tao, Renyu Yang, Hong Tang, and Jie Xu. 2014.

Fuxi: a fault-tolerant resource management and job scheduling system at internet

scale. Proceedings of the VLDB Endowment 7, 13 (2014), 1393–1404.

[48] Jingren Zhou, Per-Ake Larson, and Ronnie Chaiken. 2010. Incorporating partition-

ing and parallel plans into the SCOPE optimizer. In 2010 IEEE 26th International

Conference on Data Engineering (ICDE 2010). IEEE, 1060–1071.

2984

https://www.alibabacloud.com/product/machine-learning
https://www.alibabacloud.com/product/machine-learning
https://www.alibabacloud.com/product/maxcompute
https://www.alibabacloud.com/product/maxcompute
https://www.tensorflow.org/guide/distributed_training/
https://www.tensorflow.org/guide/distributed_training/
https://elasticdl.github.io/
https://kubernetes.io/
https://www.nvidia.com/en-us/data-center/nvlink/
https://spark.apache.org/releases/spark-release-3-0-0.html
https://spark.apache.org/releases/spark-release-3-0-0.html
https://github.com/pytorch/elastic/
http://www.tpc.org/tpcx-bb/results/tpcxbb_result_detail5.asp?id=120100202
http://www.tpc.org/tpcx-bb/results/tpcxbb_result_detail5.asp?id=120100202
http://www.tpc.org/tpcx-bb/results/tpcxbb_result_detail5.asp?id=120100201
http://www.tpc.org/tpcx-bb/results/tpcxbb_result_detail5.asp?id=120100201
https://www.usenix.org/conference/osdi20/presentation/xiao
https://www.usenix.org/conference/osdi20/presentation/xiao

[49] Rong Zhu, Kun Zhao, Hongxia Yang, Wei Lin, Chang Zhou, Baole Ai, Yong Li, and

Jingren Zhou. 2019. Aligraph: A comprehensive graph neural network platform.

In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge

Discovery & Data Mining. 3165–3166.

2985

