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ABSTRACT
Recently, a new horizon in data analytics, prescriptive analytics, is
becoming more and more important to make data-driven decisions.
As opposed to the progress of democratizing data acquisition and ac-
cess, making data-driven decisions remains a significant challenge
for people without technical expertise. In this regard, existing tools
for data analytics which were designed decades ago still present
a high bar for domain experts, and removing this bar requires a
fundamental rethinking of both interface and backend.

At Einblick, an MIT/Brown spin-off based on the Northstar
project, we have been building the next generation analytics tool
in the last few years. To overcome the shortcomings of existing
processing engines, we propose Davos, Einblick’s novel backend.
Davos combines aspects of progressive computation, approximate
query processing and sampling, with a specific focus on supporting
user-defined operations. Moreover, Davos optimizes multi-tenant
scenarios to promote collaboration. Both empirical evaluation and
user study verify that Davos can greatly empower data analytics
for new needs.
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1 INTRODUCTION
Over the last two decades the analytics space has drastically changed.
Data has gone from scarce to superabundant and the popularity of
data analytics as a means of making better decisions has exploded.
However, taking advantage of data is hard as it requires technical
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expertise in data management, visualization, machine learning, and
statistics, among other disciplines. This poses a significant chal-
lenge to decision makers, who usually have a deep understanding of
the domain and problem, but not necessarily the technical skills to
analyze all the available data. Despite the abundance of tools trying
to make data analytics easier, existing tools still severely restrict
domain experts from making data driven decisions on their own.
Surprisingly, fully empowering domain experts to make data-driven
decisions requires rethinking not only the interface of analytics
tools but also the entire backend. This is rooted in the facts that
(1) analytic interfaces are still based on two decades-old concepts,
dashboards and workflow engines, and that (2) current backends
do not aim to run complex often custom operations at the speed-
of-thought.

As part of Einblick, an MIT/Brown spin-off based on the North-
star research project, we are aiming to build the next generation
analytics tool for data-driven decision making. A key component
of Einblick is its novel user interface for interactive data science,
which won the VLDB demo award in 2015 [17] (see [7] for a more
recent demo video). Unfortunately, we found that existing data
processing engines and database systems are insufficient to fully
realize the collaborative and interactive environment Einblick is
aiming for. Existing systems were not designed to provide the inter-
active response times to enable live collaboration on data involving
complex analytics functions. Thus, we started to design Davos,
Einblick’s novel backend, which combines aspects of progressive
query processing, approximate query processing, and sampling.
Moreover, Davos focuses on running complex operations and user-
defined objects rather than standard SQL. Without Davos it would
be impossible to power Einblick’s user interface.

In this paper, we first motivate why there is a need for a new
analytics tool and why existing data backends fail to provide a true
collaboration environment for data science and data-driven decision
making. We then outline the overall Einblick architecture and the
design principle behind Einblick’s novel progressive computation
engine. To summarize, we have made the following contributions:

(1) We outline the shortcomings of existing tools for data-driven
decision making.
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(2) We present a novel system Davos, which works in a fully
progressive way by combining the data stream model, ap-
proximate query processing and sampling, with a specific
focus on supporting user-defined operations.

(3) The system has a latency-aware resource allocation frame-
work, including scheduling, storagemanagement and caching
to reduce the overall latency over multiple queries. We have
been co-designing the system with the frontend since day
one and propose various frontend-aware optimizations to
further improve user experience.

(4) Both empirical evaluation and user study verify that Davos
is able to greatly empower data analytics for new needs.

2 BACKGROUND
Current analytics tools can be roughly categorized into two groups1:
descriptive analytics and predictive analytics tools.

2.1 Descriptive: “What happened?”
Descriptive analytics tools, like Tableau, Qlik, Thoughtspot, etc.
help domain experts understand past data and are arguably the
foundation of any business. They are used to examine how sales
have developed and track manufacturing costs and numerous other
factors in the past. Traditionally, descriptive analytics was done
through reports, and the tools to create those were cumbersome,
requiring extensive knowledge of SQL. The advent of Business In-
telligence (BI) tools made it easier to understand past data. Broadly
speaking, this change came over three generations of BI tools. The
first generation moved users away from reports toward (interactive)
dashboards and easy-to-use visual editors. The second generation
lowered the barriers to entry even further by moving the software
from on-premise applications, that were hard to install, to the cloud.
The still-evolving third generation of BI tools, sometimes referred
to as augmented analytics, aims to increase the self-service aspect
of descriptive analytics by allowing users to ask “what happened”-
type questions using natural language, among other things.

Over these three generations, BI tools grew in power and func-
tionality, but their goal largely remained the same: create the best
visualization of past data. Moreover, the manner in which users
interact with BI tools has not changed much either. A single user
creates a single visualization using various dialogues over a sin-
gle dataset, then composes several of these visualizations into a
dashboard so that others can view it.

However, before the user creates a visualization, data integration
and cleaning are usually done with external tools, which sometimes
come bundled with the BI tool. Unfortunately, this separation of
cleaning and integrationmakes it hard to understand the underlying
assumptions behind a visualization. While this can cause serious
problems in some scenarios, this is not the case when dashboards
are carefully curated by an expert for consumption by others.

2.2 Predictive: “What might happen?”
While understanding what happened is key to any business, it is a
backward-looking approach. Often of equal interest is the question,
"What might happen?", also known as predictive analytics. Here,
machine learning (ML) and forecasting models are dominant. These
1Note, that this classification is based on the terminology introduced in [6]

technologies used to be the exclusive domain of highly trained
statisticians or data scientists. More recently, tools like Alteryx,
Data Robot, KNIME, etc. seek to make predictive analytics more
widely accessible. These tools, sometimes referred to as self-service
ML or Data Science platforms, provide visual user interfaces for
building models and/or creating entire machine learning pipelines.

Interestingly, the user interfaces of self-service ML/Data Science
tools are often quite different from the BI tools as they aim to
create the best possible model for a given scenario. Instead of than
dialogue-based interfaces, they are usually built on top of visual
workflow engines, where individual operations are represented by
boxes, which are then connected by the user to form an entire ML
pipeline. The advantage of this interface is that it makes it easier to
understand how the data “flows” from its source and raw format to
the final model to eventually create a prediction. This is particularly
important for ML as different ways of cleaning and encoding data
can have profound impacts on the final accuracy of the model.

The downside of workflow engines, however, is that they do not
provide any immediate feedback or interactivity. The user has to
press a “play” button after curating the pipeline, which then starts
the computation of the composed workflow, and it might take hours
until the first result is produced. While some tools try to overcome
this issue by providing more immediate feedback for parts of the
pipeline through specialized interfaces (e.g., for hyperparameter
tuning), they do so at the cost of ensuring that the user still sees
and understands the whole process.

2.3 Towards prescriptive: “What should we
do?”

While the focus of existing tools is on “What happened?” and “What
might happen?”, the real underlying question every organization
wants to answer is “What should we do?”. There are cases where the
right action can be found just by understanding the past (descriptive
analytics). For example, if the task is identifying the most under-
performing sales person, the right action might simply be to fire
them. However, in other cases, finding the right actionmight require
building a forecasting model (predictive analytics). For example,
a model can help to weigh the deals a salesperson might bring
in over the next year. Other cases may require evaluating several
scenarios and considering factors like the risk the salespersonmight
take some clients with them. Tools which help in these situations
include what-if analysis, optimization tools like constraint solvers,
and other techniques. Unfortunately, none of these techniques —
which were originally framed as prescriptive analytics — are easy to
use, and thus far can only be found in highly specialized verticals.

We believe that making the best decision cannot rely on what-
if analysis or linear solvers alone. Rather, finding the right ac-
tion requires understanding the past (descriptive analytics),
building models for the present and future (predictive ana-
lytics), and techniques to analyze different scenarios to op-
timize decisions (prescriptive analytics). It requires moving
quickly between these modalities, as all three are needed to
derive the best outcome. At the same time, good decisions gener-
ally require neither pixel-perfect dashboards nor the best possible
models. Instead, they need to be made in a timely fashion, and are
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Figure 1: Three users collaborate on analyzingmarketing campaign data in anEinblickworkspace performing various steps: (1)
importing data from different sources, (2) descriptive analytics through visualizations and statistical methods, (3) profiling of
a dataset, (4) automatedML prediction formarketing outcomes, (5) what-if analysis based onML pipeline of various scenarios.

often only made once. The focus should therefore be on fast proto-
typing and making sure that everyone understands and signs off
on the entire decision process, from data integration and cleaning,
to modeling, to the final decision optimization.

2.4 Why are current data engines insufficient
for prescriptive analytics?

Einblick aims to provide the first platform which combines, in one
intuitive interface, visualization UIs as used for descriptive analyt-
ics, with workflow UIs as used for predictive analytics. Figure 1
shows a screenshot of the UI. Our vision is that every operation
in Einblick immediately provides a visual response, regardless of
the complexity of the operation or data size. Only that way are
true collaboration and quick data-driven decision making possible.
Finally, users should have access to the power of prescriptive ana-
lytics techniques, like what-if analysis, in a visual manner with the
same interactive response times. Obviously, this poses a unique set
of challenges on the data processing engine.
Interactivity According to a study by Liu [26], if latencies are
greater than 500ms, user performance will degrade significantly.
However, traditional analytical DBMSs, which are used widely as
the backbone for descriptive and predictive tools, such as SAP
HANA [19] or MonetDB [14], often take seconds, or even minutes,
when computing results on increasingly large databases. Moreover,
database like MonetDB were not designed to run complex analytics
tasks. In contrast, systems like Spark can run complex analytics,

but even starting a single job on Spark can take seconds [16] and
running complex jobs over large data can take minutes to hours,
making it impossible to collaborate in real-time on data problems;
nobody wants to spend minute after minute waiting for a result
during a meeting.
Complex operation Since more data mining and machine learn-
ing techniques are being used as part of data-driven decision mak-
ing, the workflows are no longer limited to online analytical process-
ing (OLAP). Instead, they are becoming much more heterogeneous.
For example, almost all of our current customers frequently move
between simple data exploration, using common visualizations like
histograms, to performing key-driver analysis (a form of automatic
statistical testing for significant differences), frequent pattern min-
ing, building forecasting models, and performing what-if analysis.
This requires a fundamental rethinking of the computation model,
in a way that is flexible enough to accommodate for different com-
putation needs. Further, with the increasing popularity of Python
notebooks, users sometimes would like to integrate their custom
operations into the system, i.e., user-defined-operations (UDOs).
Multi-TenancyDecisions are rarelymade alone, and thus with Ein-
blick we made collaboration a first-class citizen. Most importantly,
Einblick supports Google-doc like sharing of workspaces with real-
time updates. That is, not only is the platform multi-tenancy, but
one data analytics session might have several users working on it.
This in turn poses a new set of resource management challenges
including allocating both the computation (i.e., CPU cores) and
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storage (e.g., memory and disk) resources across multiple queries
to maximize the overall user experience.

3 OVERVIEW

Client

Davos Interfaces

Programming 
InterfaceRPC

Davos Context

Stream Manager Sample Store

Storage Manager

Planner

Scheduler

Davos Workers

Data 
Sources

Figure 2: Davos Architecture: (1) Interface for submitting
queries and receiving responses; (2) Context for generating
and scheduling execution plans andmanaging streams, sam-
ples and storage; (3) Workers for executing the workloads.

Our goal with Davos is to build a data processing engine that ad-
dresses the above outlined challenges. We provide a brief overview
of the system and describe individual pieces in later sections. Fig-
ure 2 shows Davos’s overall architecture.

The Davos context serves as the infrastructure for the whole
system. It includes the stream manager which keeps track of the
data streams such that the operators can communicate with one
another. The sample store manages the data samples, e.g., which
data source a sample is built from, such that if another query reads
from the same data source, we can reuse the built samples. We
discuss the management of samples and streams in Section 4. The
planner optimizes queries and generates execution plans which we
discuss in Section 5.4 and Section 5.5. The scheduler is in charge of
scheduling jobs to the workers, which is covered in Section 6. The
storage manager is responsible for the allocation and monitoring of
memory and disk, and manages the cache for intermediate results
as well, which we describe in Section 7.

Davos queries are Directed Acyclic Graphs (DAG) of data sources
and steps, where each step specifies its operator (e.g., group, filter)
and its inputs (e.g., from a data source or from a step). Such queries
can be submitted to Davos through either Remote Procedure Calls
(RPC, for frontend) or a Programming API (for debugging and
development). Figure 3 shows an example query.

4 DATA STREAM
Data stream or dataflow is a natural solution for progressive com-
putation, that is, all operators in the system consume and produce
a sequence of data. The system as a whole sends a stream of re-
sponses back to the users, and the users can get the initial results
quickly and receive incremental updates.

Davos further enriches this by introducing the concept of version,
i.e., a data stream can have multiple versions. Each version is a

CSV
patients.csv

Patient 
data

Prediction

UDF
BMI = weight / 

(height * height)

Encoder

Projection
categorical 
attributes

Filter
age > 18

Projection
numerical 
attributes

Imputer

Scaler

Concat

Concat

Projection
diabetes

RamdomForest
Classifer

Model 
Executor

trained_model_id

trained_model_id

Predictive
Analytics

Prescriptive
Analytics

WhatIf
weight <- 

distribution

Figure 3: Two example queries (as DAGs): (1) Left shows a
query for training a classifier predicting diabetes with com-
plicated feature engineering; (2) Right shows a example of
prescriptive analytics where we use a what if operator to un-
derstand how BMI affects predictions.

complete result and a later version usually means better quality.
Therefore, we can achieve better progressiveness in two dimensions:
(1) the with-in-version progress; (2) the across-version progress. By
having this multi-version semantics, Davos achieves a more fine-
grained execution and response delivery mechanism to improve the
progressiveness, without affecting the flexibility nor complicating
the implementation, which we will show later. In later sections, we
will use stream and data stream interchangeably.

4.1 Data Abstraction
In Davos, each version of a data stream is a sequence of Record
Batch, which is a collection of equal-length Column Batches. Each
column batch is an array of consecutive values for a single column,
where we use the data layout of Apache Arrow [1]. It is a language-
agnostic columnar memory format for flat and hierarchical data,
organized for efficient analytic operations on modern hardware
like CPUs and GPUs. Both record and column batch are immutable,
i.e., we create new objects when modifying them. In later sections,
we will use batch and record batch interchangeably.

4.2 Data Stream Interface
Our data stream interface exposes the following statuses and sup-
ports both blocking and non-blocking calls to retrieve the next
Record Batch or the next version of the stream.

• HasNext, there are one or more record batches ready and
we can use Next to fetch the next record batch;

• Finished, the data stream has finished and there will be no
new versions;

• Deprecated, the current version has been deprecated and
we can use NextVersion to switch to the next version;

• Stopped, the producer has stopped, thus the stream has been
stopped and there will be no new batches;
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• Failed, the producer has failed, thus the stream is failed and
there will be no new batches;

• Blocking, the status is undetermined, and this is used by
the non-blocking call of Status.

4.3 Data Sample
A data sample is essentially a data stream with extra metadata
information, e.g., sample size, data source information, therefore
it can be reused for queries reading the same data source. In Fig-
ure 2, SampleStore manages all data samples, including supporting
querying samples, keeping tracking of sample memory/disk usage
and evicting expired samples. Each sample has a time-to-live (TTL)
and it will be removed once its TTL hits zero to keep its freshness.
Users can also forcefully refresh a data sample for latest updates.

4.4 Publish-Subscribe Pattern
We adopt the publish-subscribe pattern for streams, that is, a pro-
ducer (e.g., an operator) can publish a data stream and write batches
to it, the consumers can subscribe to this stream and read batches
out of it. By default the published data are not persistent, i.e., they
are sent to the active subscribers when being published and the
subscribers can only get data published after the subscription. Data
streams can be marked explicitly as persistent such that the late sub-
scribers can read the full history of published data, which is useful
for reusing and caching. For example, when we create a sample for
an expensive data source (e.g., executing a complicated query with
many joins in a database), we can persist the data stream of this
sample such that queries reading the same data source can reuse
this sample to avoid reading the data source again. For now, all the
persistent data streams are serialized to the disk and deserialized
when needed.

4.5 Use Case: Progressive Histogram
Weuse histogram as a use case to justify the flexibility of progressive
data stream semantic. Assume we want to reading from a large CSV
file and compute the average of a column:
First response As soon as we read the first record batch out of
the file, we will immediately publish it such that the aggregation
operator can work on this batch and return the first response as
fast as possible. Likewise for following record batches, therefore
users can get progressive updates.
Sampling The multi-version semantic allows us to adopt such a
complicated sampling strategy: while reading a file, we can take the
first 𝐾 rows and publish it as the first version, and at the same time
maintain a reservoir sample and publish it periodically as newer
versions. For example, whenever we have read every 10% of the
full data, we can publish the current reservoir sample as a newer
version. Subscribers will switch to the newer version once they find
out the status has been updated to Deprecated. This hybrid sampling
strategy provides a fast first response, while also providing better-
quality responses (since they are built from the reservoir samples
built over larger data) over time.
Final response While providing the results computed over the
samples, we can launch another query over the full data (which
is also running progressively over batches), and this ground truth

result can be the final response in case that users want an fully-
accurate result.

By combining the multi-version progressive data stream seman-
tic and sampling techniques, Davos is able to provide better pro-
gressiveness while not sacrificing accuracy. The actual sampling
strategy in Davos is more complicated. Please refer to Section 7.4
for more details.

5 EXECUTION
In this section, we first discuss the basic execution unit, operator. We
support two types of operators: User Defined Function (UDF) and
User Defined Aggregation (UDA). Further, we introduce the basic
management unit, job. Lastly, we discuss a hybrid execution scheme
to achieve a good trade-off between performance and flexibility, and
how Davos rewrites a query plan to utilize a data store’s internal
processing capabilities.

5.1 Operator
Davos executes a query by creating several execution units based
on the query and these execution units communicate with each
other through data streams, i.e., to read the outputs of an execution
unit, another execution unit can subscribe to its output data stream.
In Davos, we call these execution units operators.

Since data arrives as a sequence, all operators run in the same
manner, that is, an operator implements a processing function
taking record batches as inputs and producing record batches as
outputs. For example, for the filter operator, this function takes in
a record batch and produces a record batch with rows selected by
the filter. Another example is that for the horizontal concatena-
tion operator, its function takes into multiple record batches and
concatenates them horizontally (i.e., merging all columns) as the
output record batch.

Besides the function for processing batches, an operator might
want to take different actions when the status of input data streams
changes. For instance, for the aggregation operator, when the input
stream becomes deprecated, it has to reset all the aggregated results,
e.g., setting the accumulated sum as zero. To support this, Davos
provides multiple trigger functions (e.g., on inputs being deprecated,
on inputs being failed, on operator being stopped, etc) such that
operators can implement their own logic.

In this sense, Davos is a push-based query engine. When an
operator’s input stream’s status have been determined (i.e., not in
the status of Blocking), it will check the status (and record batches if
applicable) and apply the processing or trigger function accordingly.
This routine is the basic scheduling unit in Davos, which will be
covered in Section 6.

5.2 UDF & UDA
To ease the implementation of operators, Davos offers two more
detailed abstractions of operators:

• User Defined Function (UDF), which returns the stateless-
transformed results over the input batches, e.g., project, filter
in databases;

• UserDefinedAggregation (UDA), which returns the stateful-
aggregated results over the input batches, e.g., aggregation
in databases.
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For example, for a sequence of batches (A, B, C), a UDF out-
puts (func(A), func(B), func(C)), whereas a UDA outputs (func(A),
func(A+B), func(A+B+C)), where A+B is the vertical concatenation
of batch A and B.

Whether an operator is a UDF or UDA has a direct impact on
the version of its output data stream. For a UDF, it simply publishes
a output batch to the current version of the output stream. Instead
a UDA has to deprecate the current version of its output stream
and publishes the output batch to the new version, such that the
downstream operators will take actions (e.g., resetting its states)
accordingly. A UDA can be non-incremental or incremental, depend-
ing on whether they need to see all previous batches, for example,
computing the sum is incremental, while training a ML model can
be non-incremental.

UDFs or UDAs implement the following interface whose func-
tions are executed at different moments:

• Open, which is executed when being initialized;
• Reset, which is executed every time after the input streams
have been initialized or deprecated;

• Close, which is executed when being finalized;
• Process, which is executed every time when the inputs be-
come ready for processing.

5.3 Job
A job, as a DAG of operators, is analogous to the access plan for a
query in databases. It manages and coordinates the operators, for
instance, we schedule the execution (in the scheduler) and manage
the memory usage (in the memory manager) for each job.

To execute a job (i.e., computing the next result), we adopt a
bottom-up approach to traverse the DAG. That is, for an operator,
if its inputs are ready then we can run Process to produce outputs
and then go to its downstream operators (i.e., operators subscribing
to it), otherwise we go to the upstream operators and repeat the
procedure. By starting from the last operator, we are essentially
following the critical path to compute the next result.

5.4 Hybrid Execution
Davos supports executing operators written in C++ or Python. In
general, basic analytical operators (e.g., project, filter, aggregation)
are implemented in C++ and machine learning or data mining oper-
ators are implemented in Python (e.g., random forest classifier). The
decoupling of operators through data streams makes this possible,
and Apache Arrow’s zero-copy data access across languages makes
the serialization/deserialization cost negligible.

Aggregation
 1. SUM(income)
 2. UDA(age)

Aggregation
 1. SUM(income)

Logical Physical

Planner
Horizonal 

Concatenation
Aggregation

  2. UDA(age)

Figure 4: Hybrid execution: yellow operators are native C++
operators and green operators are running in Python run-
time. The dashed lines indicate that these operators don’t
communicate directly instead through data streams.

This hybrid scheme extends the functionality of Davos compared
with other engines, as well as allowing for more fine-grained exe-
cution to promote both efficiency and flexibility. For example, for
aggregation, we have some predefined aggregation methods imple-
mented in C++ (e.g., sum, count, average or so) and we can also
let the users provide their custom aggregation method written in
Python (as a UDA). This is done by leveraging query rewrite and
planning as in Figure 4. Given the description of the aggregation,
Davos extracts the predefined aggregation methods and creates
a new native operator for them and likewise it extracts the user-
defined aggregation methods and creates a user-defined operator.
The system further adds a horizontal concatenation operator to
merge the outputs of this pair of aggregation operators.

5.5 Pushdown
For certain data sources (e.g., DBMS), Davos can restructure a query
plan to utilize the internal processing capabilities of the underlying
data store. For example, we support push down sampling, predi-
cate and join to DBMS to leverage its efficient implementations of
indexes and algorithms.

6 SCHEDULING
We have discussed the execution scheme for a single job in the
previous section. Moreover, for a multi-tenant use case, it is crucial
to schedule jobs across multiple users. In this section, we will for-
mulate the scheduling framework in Davos and then propose the
adaptive scheduling strategy.

6.1 Framework
A scheduling task for interactive data systems should be small
(in terms of workloads) to allow for fine-grained control and fast
responses. On the other hand, if the tasks are too small, there will
be too many tasks for a single job, incurring overhead in scheduling.
As discussed in Section 5.1, we scope a scheduling task as a routine
function that pulls the input stream and applies a processing or
trigger function. For example, for filter, the routine pulls the input
stream and gets one record batch (if the status isHasNext), computes
a filtered batch and publishes it to the output stream. If the input
stream’s status is not HasNext (e.g., Failed), this routine applies
other trigger functions accordingly (e.g., OnFailed). The scheduling
framework assigns pending operators to workers in a pool which
in turn execute the operator’s routine function as a task.

6.2 Strategy
The adaptive scheduling strategy is priority-based. Ideally, the pri-
ority of a job should have a strong correlation with the overall
user experience, although the latter is hard to quantify, we believe
the following factors have a strong influence: (1) the first response
time, in that a user would like to get the first response as quickly as
possible; (2) the quality of responses over time, in that a user would
like to see the quality of response improve as much as possible.
Based on this, our scheduling strategy gives the highest priority to
a new job (i.e., a job without any computed results yet) and prefers
jobs with low quality.
Priority Considering the variety of operator semantics, it is dif-
ficult to measure the quality of a job by examining its outputs
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without operator-specific logic. Instead, we use the square root of
the average number of processed input rows as the approximation
for the overall quality of a job, that is, 𝑄 =

√
𝑅. This is based on

the observation that the error of many operators (e.g., aggregation)
is proportional to the inverse of the square root of the input size.
Between each result of the job, we have the quality change Δ𝑄

and the elapsed time Δ𝑇 , and Δ𝑄
Δ𝑇 approximates the relative quality

improvement for scheduling this job. However, if the job has made
good enough quality, we should dis-prioritize it to favor early-stage
jobs, therefore we further normalize the above value by dividing 𝑄 .

Besides, there are different types of jobs and wewant to prioritize
across types, for example, we might want to prefer analytical jobs
instead of dumping jobs (e.g., dumping the outputs to a CSV file),
because users usually have less patience for analytical results. As
another example, a job in the backend corresponds to a visualization
in the frontend, if the visualization is moved out of the screen by
the user, we shall dis-prioritize its corresponding job. To this end,
we define a weight𝑊 to adjust the priority based on job type and
visual status, e.g., a large weight for some jobs expected to have
very high priority. In summary, the priority of a job is now Δ𝑄 ·𝑊

Δ𝑇 ·𝑄 .
Task extraction By leveraging the adaptive scheduling strategy,
we are able to find the job with the highest priority. To extract
a task from job, we want to find the most useful task towards
computing the next result. To achieve this, we traverse its DAG
by a bottom-up approach (i.e., starting from the last operator, for
example, the aggregation operator in Figure 3) and find an idle
bottleneck" operator, whose inputs are ready and we can run its
Process to produce outputs. By starting from the last operator, we
make sure that we find the most pressing task for next result.
Implementation Similar with the BF scheduler[5], Davos has a
global job queue. To improve the concurrency, we employ a copy-
on-write queue, that is, each worker gets an immutable snapshot.
Furthermore, the priority of a job changes only when there is a
new result, therefore we store the priority with the job and let the
worker computing the next result update it, while other workers
can just use the stored value to avoid redundant computation.

7 STORAGE
In this section, we discuss how we deal with data storage in Davos.
We first introduce the datamodel and illustrate thememory and disk
management mechanism, including streams, runtime and samples.
Lastly, we discuss the caching strategy.

7.1 Data Model
As discussed in Section 4.1, Davos uses a columnar format for the
data representation and adopts the underlying layout of Apache
Arrow [1], where data are stored as consecutive arrays. Arrow
leverages a memory pool to allocate the memory space and keep
track of the memory usage. Although this is a decent solution for
memory management, it requires that all data stay in the memory
and prevents us from using disk as a secondary storage. Therefore,
we add another layer of abstraction between the data abstraction
(i.e., record batch and column batch) and the actual Arrow array
data, that is, the array wrapper. Figure 5 gives an example.

Record Batch

Column Batch
Age

Column Batch
Height

Wrapper Wrapper

Figure 5: Arraywrapper: a record batch has two columns and
with thewrapper layer, one column can be stored inmemory
and the other one can be stored on disk.

To dump a in-memory array onto the disk to free some memory
space, we can call Serialize(). Conversely, to read the data out, we
can use data() to get the in-memory Arrow array, which reads
the data from the disk, deserialize it (only if the array has been
dumped before) and puts it back into memory. Besides, we have
memory and disk usage accounting, which are used for memory
and disk management. By having the wrapper layer, we achieve the
flexibility for data storage while keeping data access transparent to
the column and record batch.

It is straightforward to estimate memory or disk usage for a
column or record batch. Next, We explain how to estimate the
memory usage for a data stream and the estimation for disk usage
can be done likewise.
Data stream memory usage estimation Since we adopt the
publish-subscribe pattern for data streams, we can use publish-
ers to estimate the memory usage. That is, for a publisher, if it is
a persistent data stream (i.e., all the record batches are persistent
in memory or on disk), we just sum up the total memory usage of
all batches. Otherwise, because subscribers read data in the same
order as they are published, and the underlying data are shared be-
tween subscribers, we only need to consider the maximummemory
usage among all subscribers (i.e., the memory usage of the slowest
subscriber). The memory usage of a subscriber is simply the sum
of memory usages of all batches that are to be fetched.

7.2 Memory Management
Assume that a machine has a total memory capacity of 𝑋 , and we
reserve𝑀% of it as the memory space of Davos. In practice, we set
𝑀 = 90. There are three major usages of memory in Davos: (1) Data
Sample for storing the samples of loaded data sources (i.e., persistent
data streams), for whichwe allocate 𝑆% of the total memory; (2)Data
Stream for storing all data streams for the communications between
operators, for which we allocate 𝐷%; (3) Runtime for the memory
used by executing the operators (e.g., in-memory data structures,
MLmodel), for whichwe allocate𝑅%. Based on our own experiences
while tuning the system, we find that (𝑆, 𝐷, 𝑅) = (30, 30, 30) is a
reasonable configuration (where 𝑆 +𝐷 +𝑅 = 𝑀). We further discuss
how to estimate and control the memory usage for these purposes.
Data sample Since a data sample is merely a data stream plus some
metadata information, the memory usage of a data sample is simply
the sum. We discuss how to control both memory and disk usage
for samples in Section 7.4.
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Data stream The stream manager manages all publishers and sub-
scribers, therefore it is straightforward to compute the total mem-
ory usage of all data streams. Since operators produce data to the
data streams, we can limit the memory usage of data streams by
controlling the scheduling of operators. That is, if an operator’s
output stream has consumed too much memory (which means its
subscribers are relatively slow consumers), we shall not schedule it
until its downstream operators have consumed the data. In prac-
tice, we set the threshold as 256MB, considering that there can be
hundreds of operators running in Davos.

As an example, assume we have an operator reading a Parquet
file (i.e., reader) and another operator doing reservoir sampling from
the former’s outputs (i.e., sampler). Reservoir sampling is slower
and it is possible that the reader produces too much data for the
sampler to process. In this case, when the reader’s output stream
has more memory usage than the threshold, we will not schedule
the reader until the sampler has processed the data.
Runtime There are both C++ and Python operators running in
Davos simultaneously. To keep track of the memory usage of an
operator, memory profiling doesn’t always work without adding
too much overheads, especially in C++. Therefore we leverage a self-
reporting mechanism for the internal operators implemented by us.
That is, an operator can override a method GetMemoryUsageInBytes
to report its memory usage. For example, for a join operator, it can
compute the memory usage of its index in the method. For external
operators (i.e., user-defined ones), since they are Python-based, we
use Python’s memory profiling mechanism to estimate the memory
usage. If the total runtime memory usage is beyond the threshold,
we simply kill the job consuming the most memory.

7.3 Disk Management
The disk serves as the main storage for persisting data streams.
Persistent data streams are used for two purposes: (1) Data sam-
ple, a data sample will always be persistent on disk and it will be
deserialized into memory when being used, for which we allocate
𝑆% of the total disk space for Davos; (2) Intermediate result, that is,
caching the results of some operators because they are expensive
to compute, e.g., join and Python scripts, for which we allocate 𝐶%.
We find that (𝑆,𝐶) = (60, 40) is a good configuration based our
experience using the system.
Data sample Similarly, the disk usage for a data sample is straight-
forward to compute. We discuss how to manage the memory and
disk usage for data samples in Section 7.4.
Intermediate resultWe discuss the caching eviction strategy in
Section 7.5.

7.4 Sampling

Figure 6: Sampling strategy

Algorithm 1: Sample space reservation
Input: 𝑆𝑓 𝑟𝑒𝑒 , 𝑆𝑑𝑎𝑡𝑎

1 if 𝑆𝑑𝑎𝑡𝑎 ≤ 𝑆𝑓 𝑟𝑒𝑒 then
2 return 𝑆𝑑𝑎𝑡𝑎
3 𝑠 = min(𝑆𝑚𝑖𝑛, 𝑆𝑑𝑎𝑡𝑎);
4 while 𝑆𝑓 𝑟𝑒𝑒 < 𝑠 do
5 Break if the largest sample size is no larger than 𝑆𝑚𝑖𝑛 ;
6 Shrink the largest samples to the second largest samples

and update 𝑆𝑓 𝑟𝑒𝑒 ;

7 if 𝑆𝑓 𝑟𝑒𝑒 < 𝑠 then
8 return Error("No free space!")

9 return min(𝑆𝑓 𝑟𝑒𝑒 , 𝑆𝑑𝑎𝑡𝑎);

Sampling strategy Figure 6 shows the sampling strategy. For a
data source, if we can know its size upfront and it fully fits in the
available sample space, we use the full data and create the first
version of the sample by reading sequentially. Next, we use the
batch-shuffled data as the next version, which only shuffles the
order of batches (thus much faster). Finally we use the fully shuffled
data as the final version.

Otherwise, either the data source’s size is unknown or it cannot
fit fully, we create a down-sized sample. First we return the first
𝐾 rows as the first version, where 𝐾 is decided by the sample
space reserved, this is a greedy sample. We maintain a reservoir
sample simultaneously and publish it as a newer versionwith a fixed
interval, where in practice we do that after reading every 10% of
data, such that we have multiple versions for the reservoir samples
and later versions have better quality because they are built over
larger data. In practice, we use different methods to compute the
progress, for example, for databases, this is easily done by checking
the row counts; for a file-based data source (e.g., CSV or Parquet),
this can be estimated by comparing the position of file pointer and
the total file size.
Sample space reservationAlgorithm 1 presents the sample space
reservation algorithm. First of all, given a data source, we need
to determine the sample space we want to reserve. Assume that
the current free sample space is 𝑆𝑓 𝑟𝑒𝑒 and the size of the data
source is 𝑆𝑑𝑎𝑡𝑎 , if we have enough space for the full data source
(i.e., 𝑆𝑑𝑎𝑡𝑎 ≤ 𝑆𝑓 𝑟𝑒𝑒 ), we just store the full data. Otherwise, we have a
threshold for a reasonable sample size 𝑆𝑚𝑖𝑛 , which is 1GB currently,
and we use the lower value of these two as the minimum sample
size 𝑠 , which is the sample size we would like to reserve.

Our sample space reservation algorithm aims to treat each sam-
ple fairly and make samples have comparable spaces. To this end,
we adopt the idea of diminishing return, that is, we keep shrinking
the largest sample down to the second largest sample while keeping
the sample size beyond 𝑆𝑚𝑖𝑛 , until we have enough free space or
we cannot shrink any more. If we still cannot find enough space,
we will return an out of capacity error to let users know.

We use Algorithm 1 to reserve the disk space for samples. Since
a sample is always stored on the disk, we employ the least recently
used (LRU) strategy to evict samples in memory.
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7.5 Caching
There are two aspects about caching, i.e., what to cache and what
to evict. For the latter aspect, we simply use the LRU strategy. For
the former one, we adopt an adaptive approach to provide hints.
When a job is finished, we check the whole DAG and find the
sub-graphs that fulfill the cost, frequency and space constraint: (1)
Cost constraint is that this sub-graph must be costly (in terms of
time) enough to compute and currently we take 5 seconds as the
minimum threshold; (2) Frequency constraint is that this sub-graph
must be used frequently recently (e.g., used 5 ore more times), and
we maintain a frequency table and reset it periodically to keep its
freshness; (3) Space constraint is that the sub-graph must not take
too much space and currently we enforce that it cannot take more
than 10% of the total space for caching.

After getting the hint, Davos will cache this sub-graph next time
and later queries with the same sub-graph can reuse the cached
intermediate results.

8 FRONTEND-AWARE OPTIMIZATIONS
Being co-designed with frontend since day one, Davos has several
optimizations for improving the user experience.
Stopping mechanism One important observation is that users
usually do a lot of operations back and forth in a short period of time
at the frontend, i.e., the trial-and-error process. The frontend sends
a stop query request toDavoswhen a query is no longer needed (e.g.,
the user changes the parameter or removes the operation). At the
backend, we carefully design and implement a fast stop mechanism,
that is, we have a signal variable for each job and the operators
will periodically check it while executing and stop the execution
as soon as possible when the stop signal is up. Besides, we assign
a being-stopped job with the highest priority in scheduling, such
that it can finish up the stopping (e.g., some clean ups) as soon as
possible. By having such a fast stopping mechanism, we can save
much more resources by not executing unnecessary jobs.
Skipping responses Considering the responses sent from Davos
will be visualized in some way at the frontend and then perceived
by the users, we can safely skip some responses when there are
too many of them generated in a short period of time, since the
users would not notice it. For example, when we have a response to
send in Davos, if the previous response was sent 100 milliseconds
ago, we can wait for another 100 milliseconds and see if there are
newer responses produced. If there are, we can simply send the
newest response and skip the responses in between, such that we
can save more network bandwidth and also reduce the pressure of
visualization at the frontend.
Utilizing frontend feedbacks To better improve the overall user
satisfaction, the frontend can send some feedbacks to Davos to help
it make better decisions in many aspects through user interactions.
For example, the frontend can give Davos a hint for scheduling
priority in the following scenario. When a user drags a ongoing
operation out of the screen, the frontend can then let Davos know it
should decrease its priority in scheduling to favor other on-screen
jobs.

9 IMPLEMENTATIONS
Weuse C++ and Python extensively for buildingDavos, with roughly
19,000 lines in C++ and 9,000 lines in Python. In this section, we
discuss several implementation highlights.
Secure UDF/UDA sandboxUsers are able to implement their own
UDF/UDA operators through the frontend, which we call external
operators. Although it provides great flexibility for users, it brings
up some potential security issues. Users might write malicious code
either intentionally or unintentionally, or a operator might con-
sume too much resources (e.g., disk or network) that are hard to
keep track of and limit. We implement a secure sandbox mecha-
nism by utilizing Docker and Arrow Flight (a RPC framework for
exchanging Arrow data). When we initialize an external operator,
we create a Docker container running the Flight server, and when
the operator is scheduled to run a function (e.g, Open, Process), we
send an action from the main process to the container through RPC,
the container executes the action and sends the results back to the
main process. Besides, the operator in the main process monitors
the container statistics and kills the container when it overuses the
predefined resources.
User-defined-expression Besides the external UDF/UDA opera-
tors, users can write one-line expression to create new columns or
filter rows in Python syntax. For example, they can easily calculate
BodyMass Index (BMI) withweight / (height * height) or get the first
name of a customer with FullName.split(’ ’)[0]. We use the hybrid
execution scheme again to achieve the trade-off between flexibility
and efficiency, that is, during the query rewrite phase, if a expres-
sion can be efficiently executed in C++, we create a C++ operator
for it, otherwise we use its Python counterpart. For C++, we im-
plemented a parser for the C++-compatible expression (which is a
subset of Python), which creates LLVM expressions using Gandiva,
a LLVM-based expression compiler for Apache Arrow.

10 EVALUATION
We aim to answer the following questions: (1) By adopting the idea
of progressive computation in many aspects, how much advantages
we can achieve for different queries individually and for the whole
workloads? (2) How the quality of query results change over time?
(3) By optimizing for themulti-tenancy scenario, howmuch benefits
in terms of the distribution of latencies we can acquire?

10.1 Experimental Setup
WorkloadsWe formulate three workloads to evaluate Davos: (1)
Micro, which is a set of representative queries we create for each
operation at the frontend, e.g., histogram, machine learning and
correlation. We demonstrate the flexibility, efficiency and progres-
siveness of Davos in a single-tenant scenario through this workload.
(2) Synthesized, which we utilize IDEBench [18] to generate the
workloads. More specifically, we use its data generator to scale up
the datasets (with preserving the distributions and relationships
between attributes) and its workload generator to generate a larger
number of queries. Using this workload, we create some extreme
cases to verify the scalability and robustness of Davos and evaluate
the effectiveness of different design choices for the multi-tenant
scenario. (3) Real, which we collect by having six people using the
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platform simultaneously with different tasks for an hour. With this
workload, we are able to understand the system’s performance in
the real world.
DatasetsWe collected two real world datasets forMicro and Synthe-
sized: (1) MIMIC, which is a medical dataset for patients, including
their demographic information (e.g., age and gender) and medical
records (e.g., blood glucose and the diagnosis of diabetes). (2) Flight,
a dataset containing U.S. domestic flights from the IDEBench paper
[18]. We utilized the data scaler tool in [18] to create a scale-up
version for each datasets, including MIMIC-1000 and Flight-100.
Table 1 describe the characteristics of these datasets. For Real, the
users collected 27 datasets on their own, with size ranging from
several KB to 959 MB and the average size is 40MB.

Table 1: Dataset Overview

Dataset Size Rows Columns
MIMIC-1000 9.9 GB 33,827,000 71
Flight-100 27 GB 500,000,000 12

Measurements There are two aspects matter: (1) Latency, which
includes the first response time for a quick initial result and the
last response time for the final result; (2) Quality, which is the
result quality over time. However, the definition of quality varies
across different operations(e.g., histogram, machine learning). In
this evaluation, we focus on the quality of the histogram operation
(i.e., the accuracy of the aggregation result) and AutoML operation
(i.e., the predictive power of the returned model).
Baselines Per the unique characteristics of Davos, there doesn’t
exist a similar system to compare with. To verify the effectiveness
of progressive computation, we compare Davos with its blocking-
execution variant Blocking, that is, running the computation over
the full data to completion. For certain analytical workloads (i.e.,
histogram), we compare with MonetDB [9], a state-of-the-art open-
source analytical column-oriented DBMS, and with Pandas [10],
which is an open source data analysis and manipulation tool built
on top of Python with great popularity in data science.
Hardware environment All experiments were conducted on a
c2-standard-16 node running on Google Cloud[8]. It has 16 3.10
GHz virtual CPUs and 64 GB RAM running 64-bit Ubuntu 18.04
with Linux kernel 5.4.0, GCC 7.5.0 and LLVM 10.0.

10.2 Progressive Computation
Single query response time Figure 7 describes the response times
for different queries on MIMIC-1000 and Flight-100, including the
first and last response of Davos, and its blocking-execution variant.
We have the following observations. (1) For all queries, Davos is
able to deliver the first results within the first 10 seconds, which
is much faster than Blocking; (2) For some queries, Blocking and
Davos returns the last response at almost the same time, because
those queries are incremental (i.e., aggregation) and don’t incur
too much overheads with progressive computation. (2) For some
queries, Blocking returns a faster response than the last response
of Davos, because for non-incremental queries, progressive com-
putation triggers more executions thus more overheads; (3) For
some queries, Davos returns a faster last response, because a query

usually contains numerous operators, with proper progressive com-
putation, the execution is pipelined and every operator is running
in parallel with little idle time. While for the blocking execution, an
operator has to wait for its upstream operators to complete before
start executing.
Optimistic and pessimistic Based on the real world workload
Real, we measure the benefits for the whole workload by adopting
progressive computation. That is, we consider two cases for the
waiting time between each query in the user interactions, that
is, (1) optimistic, in which the user submits the next query after
the first response of the previous query arrives; (2) pessimistic, in
which the user submits the next query after the previous query
completes. Figure 8 compares these two cases, and we find that
the progressive computation streamlines the user interactions and
thus greatly improves the interactivity of the system. Moreover,
the performance gap increases over the data scale, which means
progressive computation have more advantages for larger data.

10.3 Quality Analysis
A quick first result only matters with good quality. To understand
how the quality of result changes over time, we pick two represen-
tative jobs: histogram and automl, because their qualities can be
clear-defined and quantified. For histogram, we define the quality
as one minus the relative error to the ground truth. For automl,
it automatically finds a sequence of good models given a task de-
scription and train/test split, therefore we use the F1 score (for
classification) or the minus mean-squared error (for regression)
over the test dataset as the quality. Figure 9 shows the change of
quality over time under different circumstances.
Quality: end-to-end Figure 9(a)(e) show the end-to-end case, where
the dataset is not loaded in advance and the computation and data
loading starts in parallel. The quality goes up over time as the
system has processed more data and eventually achieves perfect
quality. This exhibits a great advantage of progressive computation,
that is, we get a quick initial result and results are refined over
time, such that users are able to get a general idea of the results
without waiting for the completion. On the other hand, it provides
opportunities for early-stop if results are are already acceptable.
Please note that for both datasets, we sort them by some attributes
and let histogram aggregate over these attributes. This creates a
much more "difficult" case for progressive computation because
the system has to almost fully scan the data to get highly-accurate
results for the sorted-attributes.
Quality: sampling Figure 9(b)(f) verify the effectiveness of sam-
pling. SinceMIMIC-1000 can fully fit into the sample memory space,
Davos creates two versions of full samples (sequential and shuffled).
For Flight-100, because the full dataset is not able to be stored in
memory (the sample memory space is around 0.3 ∗ 64 = 19 GB),
Davos creates multiple versions of reservoir samples. As we can
see, samples can greatly speed up the increase of quality compared
to the original data, and later versions of samples can offer better
quality because they are created based on larger data.
Quality: preloaded Figure 9(c)(g) illustrates the quality over time
for preloaded datasets, i.e., Davos have created samples in advance.
They are essentially a "zoomed-in" version of the last samples in
Figure 9(b)(f). With samples, we are able to converge within 10
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Figure 8: Comparison between optimistic and pessimistic
computation: x-axis shows the scale of the datasets and y-
axis shows the total execution time.

seconds for both datasets. For Flight-100, since it is a down-sized
sample, Davos doesn’t produce a perfect result, which might require
more complicated sampling mechanisms like stratified sampling.
Quality: AutoML In Figure 9(d)(h), for automl queries, Davos gen-
erates the first better-than-naive solution within 10 seconds, fol-
lowed by a sequence of better results within 30 seconds.
Comparison with MonetDB and Pandas For histogram, we
compare with MonetDB to understand the performance difference
between Davos and a state-of-the-art analytical database employ-
ing a blocking execution model such that users have to wait until
an exact query result is computed. Simultaneously, we compare
with Pandas since Pandas is widely used by data scientists for data
analytics. Besides the execution time, we measure the time that it
takes to load the dataset as the loading time.

(1) As we can see from Table 2, it takes several minutes for
MonetDB and Pandas to load the whole dataset before starting any
computation. Instead, Davos can immediately start the computation
and stream progressive results back to the users while loading the
dataset. (2) MonetDB is extraordinarily fast because it has been
designed and optimized towards analytical queries However, if
we compare it with Davos (assuming the data has been loaded),

the gap is not huge. Considering Davos doesn’t implement intra-
operator parallelism (while MonetDB can use all the cores), the
single-threaded performance of Davos is impressive. Further, Mon-
etDB’s performance will degrade dramatically when the dataset
doesn’t fit in memory, as verified by Flight-100. (3) Pandas is the
slowest for both datasets. It cannot handle Flight-100 and we have
to read into chunks. At the opposite, Davos automatically creates
samples and if the users would like to get a accurate result over the
full data, Davos is able to perform progressive computation without
caching samples, which doesn’t require full data to fit into memory.

Table 2: Performance ofMonetDB and Pandas

System Dataset Loading Time (s) Execution Time (s)
MonetDB MIMIC-1000 243.04 2.973
Pandas MIMIC-1000 177.06 14.53
Davos MIMIC-1000 187.48 6.00
MonetDB Flight-100 662.18 32.614
Pandas Flight-100 366.00 146.93
Davos Flight-100 295.86 10.25

10.4 Multi-tenancy
We ran the multi-tenant experiments using Synthesized, which in-
cludes 120 analytical queries (e.g., filtering, sorting, aggregation and
join), 20 AutoML queries and 20 user-defined queries. To simulate
a user’s interaction, we assume each interaction takes 60 seconds
and a user might send 1 to 3 queries. We have 16 threads running
the interactions at the same, where each thread runs 5 interactions
sequentially, therefore the whole experiment runs for 5 minutes.

Figure 10 shows the distribution of response times for all queries.
Each query gets its first result within half an minute, and for the
analytical queries each query gets its first response within 1 second.
More than 85% queries are done within the first 10 seconds.

10.5 User Study
We empirically evaluated the benefits of using a progressive com-
putation engine like Davos with a user study. We recruited four
participants from the popular freelancing platform Upwork and
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Figure 9: (a)(b)(c)(e)(f)(g): Quality over Time for Histogram, where the quality is measured by one minus the relative error to
the ground truth. (d)(h): Quality over time for AutoML, where the quality is measured by the F1 score over the test split.
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Figure 10: Latency distribution for multi-tenant

asked them to solve the same task based on a Kaggle challenge,
using either Einblick or Jupyter Notebook. All the participants had
formal training in data science and programming and between one
to five years of experience in the field.

We had univocal positive feedback by the Einblick users that re-
ported, "it is really easy to use. After 3 hours you can do everything
you want... fantastic" and "The application is fantastic. It allowed
me to visualize and understand a dataset I knew nothing about.". For
more details about the user study, please refer to our full technical
report.

11 RELATEDWORK
Interactive Data Exploration. There are many data systems for
interactive analytics, e.g., Dremel [27], Drill [20], Presto[29] and
Druid [30]. However, most of them only support OLAP analytics,
while Davos is highly extensible for machine learning, data mining
and user-defined workloads. Besides, they still adopt the traditional
blocking query model (i.e., the user has to wait for the completion
of the whole query), while the computation in Davos is progressive
and the results are refined over time.
Streaming systems. Streaming systems, including Spark Stream-
ing [31], Storm [4] and Flink [2], adopt a stateful computation
model to enable incremental and continuous computation over data

streams. But these streaming systems are not optimized for a multi-
tenant scenario, e.g., they leave the scheduling across different jobs
to some cluster-level generic resource management frameworks
like Apache Hadoop YARN [3]. Further, despite they provide real-
time response over continuous queries, they don’t have a native
support for data samples.
Approximate Query Processing. There have been two major cat-
egories for AQP techniques: (1) stratified or biased sampling [11]
and (2) online aggregation [22]. For stratified sampling, most sys-
tems aim to build better samples based on the query workloads
(e.g., AQUA [12], BlinkDB[13], DICE [25] and AQP++[28]). These
systems typically require knowledge about future workloads or
expensive preprocessing of samples, which goes against the ad hoc
nature of interactive data exploration. Online aggregation systems
(e.g., CONTROL [21], DBO [23], HOP [15], FluoDB [32] and Swift-
Tuna [24]) sample data incrementally produce a confidence interval
of estimated results, and this interval converges as the query is
computed progressively. Davos is similar with them at first glance,
as both output refined results progressively. However, these sys-
tems are optimized towards the most frequent queries, whereas the
most valuable insights are more likely to be extracted from the tails
of distributions. Furthermore, all these AQP systems execute each
query in separate, which is not suitable for a multi-user fitting.

12 CONCLUSION
In this paper, we have presented Davos, Einblick’s novel backend
system. To overcome the shortcomings of existing data analytical
systems, Davos combines multiple aspects, including progressive
computation, approximate query processing and sampling. More-
over, considering the complexity of prescriptive analytics, Davos in
particular focuses on supporting user-defined operations and has a
latency-aware framework to optimize multi-tenant scenarios. Our
evaluation shows that Davos greatly empowers users in making
data driven decisions.
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