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ABSTRACT
Policy-aware differential privacy (DP) frameworks such as Blowfish
privacy enable more accurate query answers than standard DP. In
this work, we build the first policy-aware DP system for interactive
data exploration, BlowfishDB, that aims to (i) provide bounded
and flexible privacy guarantees to the data curators of sensitive
data and (ii) support accurate and efficient data exploration by data
analysts. However, the specification and processing of customized
privacy policies incur additional performance cost, especially for
datasets with a large domain. To address this challenge, we propose
dynamic Blowfish privacy which allows for the dynamic generation
of smaller privacy policies and their data representations at query
time. BlowfishDB ensures same levels of accuracy and privacy as
one would get working on the static privacy policy. In this demon-
stration of BlowfishDB, we show how a data curator can fine-tune
privacy policies for a sensitive dataset and how a data analyst can
retrieve accuracy-bounded query answers efficiently without being
a privacy expert.
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1 INTRODUCTION
Differential privacy (DP) [3] has arisen as the standard approach
for protecting data contributors from privacy violations that could
be caused through data exploration. Systems that implement DP
mechanisms [5, 8, 9, 12, 13] have been built to support private data
analysis. Under DP, the privacy loss is measured by a parameter, 𝜖 ,
which guarantees that any neighbouring databases differing in a
record have similar output distributions. The smaller the value of
𝜖 , the closer the output distributions, and hence the stronger the
privacy guarantee, usually with a degradation to utility.

However, DP is often too strict to offer useful answers in many
applications [1, 11], as relaxations of the privacy parameter 𝜖 do
not give meaningful utility improvements. A general approach
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Figure 1:𝐺full: a fully connected policy graph for DP;𝐺𝜃=1k:
a 𝜃-distance policy graph for Blowfish privacy, e.g., no edges
between (1k, 200k) or (1,200k); and 𝐺∗

𝜃=1k: a dynamic Blow-
fish graph based on a partition {[1, 100k], [100𝑘, 200k)}

that relaxes DP [1, 2, 7, 14] is to modify the notion of neighbouring
inputs by applying a distance metric over the database domain. This
relaxation gains a better privacy for utility trade-off. For example,
Blowfish privacy [7] includes a privacy “policy graph” over the
record domain that specifies which information must be kept secret
about individuals.

Example 1: Consider a database of individuals’ salary records.
Each record takes one value in the domain T = {1, 2, . . . , 200k}. A
DP algorithm ensures that an adversary cannot distinguish whether
an individual has a capital gain of 𝑥 or 𝑦, for any 𝑥,𝑦 ∈ T . The
corresponding policy graph is a complete graph 𝐺full as shown in
Figure 1. We also show a weaker privacy policy graph, a 𝜃 -distance
graph 𝐺𝜃=1k that connects all domain values that differ at most 𝜃 ,
where 𝜃 = 1k. This specification intends to prevent the adversary
from distinguishing close-by values, e.g. (1k vs. 1.2k), but not far-
away values, e.g. (1k vs. 200k). By relaxing this privacy guarantee,
the expected error per range query can be greatly improved from
𝑂 (log3 |T |) to 𝑂 (log3 𝜃 ).

Prior works [1, 6, 7, 14] only consider policy graphs over the
full domain of a database record. General mechanisms for policy-
aware DP [6] require the materialization of the policy graph in a
matrix form and hence incur additional storage cost, 𝑂 ( |T |3), and
computation cost, 𝑂 ( |T |3), where |T | is the domain size. These
additional costs lead to challenges when extending policy-aware
DP to explore queries over high-dimensional relational data. First,
it is unclear how to allow data curators the ability to specify privacy
policies over the full domain of a record. There is no tool that helps
data curators to understand the privacy-utility trade-offs before
setting the privacy policies. Second, though running a policy-aware
mechanism offers more accurate answers than the standard DP, the
additional storage and computation costs can hurt user experience
in the interactive setting.
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To address these concerns, we introduce BlowfishDB, a practical
data exploration system for policy-aware differential privacy over
high dimensional data. BlowfishDB implements a novel form of
Blowfish privacy, called dynamic Blowfish privacy, a class of privacy
policies that can be dynamically generated based on a new partition
of the full domain (e.g., 𝐺∗

𝜃=1k in Figure 1). These privacy policies
achieve the same privacy guarantee over the full domain while
saving significant storage and computation cost. To use this, Blow-
fishDB includes a dynamic privacy policy generator that converts
high-level semantic privacy polices specified by the data curator
to lightweight representations for use in an 𝜖-DP mechanism. The
policy generator also allows a data curator to efficiently explore
the privacy-utility trade-off of their chosen policy, so they are able
to make more informed choices. Data analysts can also efficiently
query the sensitive data sets with accuracy requirements and even
make more queries using BlowfishDB than under a standard DP
system, such as APEx[5].

Two demo scenarios are presented for the attendees. They each
describe one aspect of the trade-off between privacy and utility
that are managed by the BlowfishDB system. The first allows the
attendee to act as a data curator and explore the effects of privacy
policy selection on the accuracy of the queries. The second scenario
allows the attendee to act as a data analyst, and explore how privacy
polices affect the utility of the query answers.

2 BACKGROUND
Notation.Consider a relation𝑅 = (𝑎𝑡𝑡1, · · · , 𝑎𝑡𝑡𝑑 )with𝑑 attributes.
Let 𝑑𝑜𝑚(𝑎𝑡𝑡 𝑗 ) denote the domain of attribute 𝑎𝑡𝑡 𝑗 , and T denote
the full domain of a record 𝑑𝑜𝑚(𝑎𝑡𝑡1) × · · · × 𝑑𝑜𝑚(𝑎𝑡𝑡𝑑 ). Let the
domain size |T | = 𝑘 , and 𝐷 be a database instance consisting of
𝑛 records {𝑡1, · · · , 𝑡𝑛}. Each record 𝑡𝑖 takes a value from T . We
can represent the database 𝐷 by a histogram 𝑥 ∈ R𝑘 over the full
domain T . A linear query can be expressed as a linear combina-
tion of the counts in 𝑥 , i.e., 𝑤𝑥 , where 𝑤 is a 𝑘-dimensional row
vector of real numbers. A workload of 𝑞 linear queries can be then
represented as𝑊 =

[
𝑤1,𝑤2, . . .𝑤𝑞

]𝑇 ∈ R𝑞×𝑘 .
Differential Privacy (DP). A randomized algorithmM satisfies
𝜖-DP if for all possible output set, and any pair of neighboring
databases (𝐷, 𝐷 ′) that differ in a record, we have S ∈ Range(M):
Pr [M(𝐷) ∈ S] ≤ 𝑒𝜖 Pr [M(𝐷 ′) ∈ S]. This has become the golden
standard privacy notion [8].

A common approach to achieve DP is to perturb the query an-
swers directly using such techniques as the Laplace and Gaussian
mechanisms [4]. However, this approach can cause in large errors
in the final output. For linear queries, the error of the query an-
swers can be optimized by using the matrix mechanism [10]. This
approach first privately answers a representative strategy query
workload 𝐴 as 𝐴𝑥 and then reconstructs a solution to the original
workload𝑊 .

Formally, let 𝐴 be a 𝑝 × 𝑘 matrix that supports the workload
𝑊 [10] such that𝑊𝑥 =𝑊𝐴+𝐴𝑥 , where 𝐴+ be the Moore-Penrose
pseudo-inverse of𝐴. Let 𝐿𝑎𝑝 (𝜎)𝑝 represents a 𝑝-dimensional vector
of independent samples, where each sample is drawn from 𝜂 ∼
1
2𝜎 exp( −|𝜂 |𝜎 ). Then the matrix mechanism can be written as:

M𝐴 (𝑊,𝑥) =𝑊𝐴+ (𝐴𝑥 + 𝐿𝑎𝑝 (Δ𝐴
𝜖

)𝑝 ) (1)

where Δ𝐴 denotes the sensitivity of a workload 𝐴, which is the
maximum difference in the answers to 𝐴 between neighboring
databases that differ in a record.

The error of a DP mechanism M for a linear query 𝑤 is com-
monly measured using mean squared error (MSE) per query [10],
i.e., E((𝑤𝑥 −M(𝑤, 𝑥)2); or (𝛼, 𝛽)-accuracy [5], i.e., the query error
|𝑤𝑥 −M(𝑤, 𝑥) | is no more than 𝛼 with a high probability (1 − 𝛽).
Blowfish Privacy. Unlike DP that provides a blanket privacy guar-
antee for all values in the domain which can be too restrictive
to offer sufficient utility, Blowfish privacy [6, 7] specifies pairs of
domain values which the data curator wish to protect using a pol-
icy graph. A policy graph over T is a graph 𝐺 = (𝑉 , 𝐸), where
𝑉 = T and 𝐸 ⊆ 𝑉 ×𝑉 . Based on a given policy graph, neighboring
databases1 and Blowfish privacy can be defined as follows.

Definition 2.1 (Blowfish Privacy). Let 𝐺 = (𝑉 , 𝐸) be a policy
graph. An algorithmM satisfies (𝜖,𝐺)-Blowfish privacy if ∀ S ∈
Range(M): Pr [M(𝐷) ∈ S] ≤ 𝑒𝜖 Pr [M(𝐷 ′) ∈ S] for neighboring
databases (𝐷, 𝐷 ′) that differ in the value of exactly one record,
such that (𝑢, 𝑣) ∈ 𝐸 where 𝑢 is the record value in 𝐷 and 𝑣 is the
corresponding record value in 𝐷 ′.

A broad class of policy graphs are known as 𝜃 -distance-threshold
policy graphs [7], where the edges are defined as 𝐸 = {(𝑢, 𝑣) | 𝑑 (𝑢, 𝑣)
≤ 𝜃 } for a given distance metric 𝑑 (·, ·) (see Figure 1 for examples).
When 𝜃 = 1, it is a line-graph policy. More types of policy graphs
can be found in [7].

Given an arbitrary graph 𝐺 , rather than designing a (𝜖,𝐺)-
blowfish private mechanism from scratch, we can build such a
mechanism from an 𝜖-DP mechanism [6]. This requires the materi-
alization of the policy graph as a matrix form using 𝑃𝐺 of ( |𝑉 | − 1)
rows and |𝐸 | columns. Applying an optimal DPmechanism (e.g., ma-
trix mechanism Eqn. (1)) to the transformed workload𝑊𝐺 =𝑊𝑃𝐺
on the transformed data vector 𝑥𝐺 = 𝑃−1

𝐺
𝑥 , will result in an optimal

error for the given privacy policy graph𝐺 . Hence, the computation
overhead directly relates to the graph size.

3 SYSTEM DESIGN
We design and build the first prototype, BlowfishDB, for policy-
aware DP data exploration. This system ensures that (i) bounded
and flexible privacy guarantees for data curators; and (ii) accurate
and efficient query processing for data analysts. In this section,
we first present the system overview and then introduce dynamic
Blowfish privacy, a theoretical framework of Blowfish privacy that
allows for better performance in the interactive setting.
System Overview. BlowfishDB is designed as a flexible software
proxy to operate over any standard relational database system. Fig-
ure 2 shows the components of BlowfishDB and how it interacts
with both the database servers and its users. It connects to the
relational database through a SQL interface. Privacy policies are
specified by the data curator and are controlled through a policy
manager module. A privacy engine, which creates accuracy aware
private queries, allows data analysts the ability to explore the sensi-
tive data without requiring extensive privacy knowledge. Through

1This assumes known data size and no other database constraints. Variants of the
definition can be found in [6].
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Figure 2: BlowfishDB overview. (0) set privacy policy 𝐺 and
budget 𝐵; (1-2) generate dynamic policy and query; (3-4)
query over DBMS; (5-6) run DP mechanism that outputs 𝑜
with (𝛼, 𝛽)-accuracy guarantee.

its interfaces, BlowfishDB provides its users with an complete pri-
vate data exploration system.
Frontend Interfaces. When a data curator first saves sensitive
data 𝐷 , the privacy policy will default to DP, the strongest privacy
level. The data curator can then adjust the privacy policies at the
attribute level to a desired policy graph 𝐺 and set the total privacy
budget 𝐵 for the data exploration. BlowfishDB will save this infor-
mation to control the privacy loss when the data analyst queries
the sensitive data. In addition, the data curator is allowed to query
the databases and test the accuracy-privacy tradeoffs (Figure 3)
at different privacy policies and privacy budgets, so that they can
make informed decision on the policies based on the explorations.

A data analyst interface is provided, with a set of exploration
query templates to choose from. They can select a query𝑊 with its
accuracy requirement (𝛼, 𝛽). BlowfishDB will generate a projected
workload, data vector query, and privacy policy (𝑊 ∗, 𝑥∗,𝐺∗) based
on𝑊 and𝐺 which allows more efficient processing than the static
version (𝑊,𝑥,𝐺). Then BlowfishDB will construct and send a SQL
query 𝑞𝑇 (𝐷) that corresponds to answers for the partition on the
database 𝑥∗. The accuracy translation engine then determines an
(𝜖,𝐺∗)-blowfish private algorithm that runs on (𝑊 ∗, 𝑥∗) with an
(𝛼, 𝛽)-accuracy guarantee. In the prototype, BlowfishDB also offers
noisy plots of the query answers and provides a log of the previously
executed queries for comparison.
Dynamic Blowfish Policy Projection. To optimize performance,
BlowfishDB dynamically generates a policy graph based on the
query workload𝑊 and the static policy graph𝐺 . For example, given
a policy graph 𝐺 on a high-dimensional domain T = 𝑑𝑜𝑚(𝑎𝑡𝑡1) ×
· · · × 𝑑𝑜𝑚(𝑎𝑡𝑡𝑑 ), if a workload𝑊 only conditions on a single at-
tribute 𝑎𝑡𝑡𝑖 , we can project the workload, the data, and the policy
graph onto a partitioned domain based on 𝑎𝑡𝑡𝑖 . Thus, when storing
the policy graph, we only incur an additional 𝑂 ( |𝑑𝑜𝑚(𝑎𝑡𝑡𝑖 ) |3) cost
versus the 𝑂 ( |𝑇 |3) cost of a complete policy graph.

Definition 3.1. [Projected Privacy Policy] Let T ∗ be a partition
over T . Given a Blowfish privacy policy graph 𝐺 = (𝑉 , 𝐸) over
the full domain T , the projected privacy policy 𝐺 based on T ∗ is
defined as 𝐺∗ = (𝑉 ∗, 𝐸∗), where the node set 𝑉 ∗ is the partitioned
domain T ∗, and the edge set 𝐸∗ includes an edge (𝑣∗1, 𝑣

∗
2) if exists

an edge (𝑣𝑖1 , 𝑣𝑖2 ) ∈ 𝐸 such that 𝑣𝑖1 ∈ 𝑣∗1 and 𝑣𝑖2 ∈ 𝑣∗2 .

We can represent a partition T ∗ by a partition matrix 𝑇 , where
𝑇 [𝑖, 𝑗] = 1 if 𝑣 𝑗 ∈ T is a value in the 𝑖th bin of the partition T ∗.

Figure 3: A snapshot of data owner interface that displays
data schema, query template, true query answer plot, noisy
answer plot, utility-privacy tradeoff plot, and policy visual-
ization feature.

Then the projected data vector 𝑥∗ = 𝑇𝑥 represents the counts for
the bins in the partition, where 𝑥 is the histogram of the full domain
T . We say a partitionT ∗ supports a workload query𝑊 if each query
in𝑊 can be expressed as a linear combination of the counts in 𝑇𝑥 ,
in particular𝑊𝑇 +𝑇𝑥 =𝑊𝑥 . In practice, we can directly construct
the projected workload𝑊 ∗ =𝑊𝑇 + and the projected data vector
𝑥∗ = 𝑇𝑥 based on the new partition without materializing any of
𝑊,𝑥,𝑇 . Under Dynamic Blowfish, we are able to incur a smaller per-
formance overhead of 𝑂 ( |𝑥∗ |3) when compared to 𝑂 ( |T |3) under
Blowfish, where |𝑥∗ |3

|T |3 ≤ 1.

Example 2: Continuing from Example 1. A cumulative workload
𝑊 at granularity of 100𝑘 , i.e., {[1,100k), [1, 200k)}, can be supported
by a partition {[1,100k) and [100k, 200k)}. We can directly construct
the projected data vector 𝑥∗ using 2 selection queries and mate-

rialize the corresponding projected workload𝑊 ∗ =

(
1 0
1 1

)
. The

projected policy graph 𝐺∗
𝜃=1𝑘 for 𝐺𝜃=1𝑘 will involve only 2 nodes

as shown in Figure 1. It is not hard to verify that𝑊𝑥 =𝑊𝑇 +𝑇𝑥 =

𝑊 ∗𝑥∗, where𝑊 =

(
1 · · · 1 0 · · · 0
1 · · · 1 1 · · · 1

)
and 𝑇 =

(
1 · · · 1 0 · · · 0
0 · · · 0 1 · · · 1

)
.

When the partition size is much smaller than the full domain size,
the projected set of data vector, workload, and graph (𝑥∗,𝑊 ∗,𝐺∗)
will have a smaller representation than (𝑥,𝑊 ,𝐺), and results in a
much faster computation time. In addition, directly applying an
optimal 𝜖-DP matrix mechanism (e.g., Eqn. (1)) on (𝑥∗,𝑊 ∗,𝐺∗)
achieves (𝜖,𝐺)-Blowfish privacy with the same accuracy guarantee
as on (𝑥,𝑊 ,𝐺) (See Theorem 3 in the full version2).
Dynamic Blowfish Policy Composition. To allow flexible speci-
fications of privacy policies for data curators, BlowfishDB considers
a class of Blowfish privacy policies that can be composed from a
set of attribute-based privacy policies.

Definition 3.2 (Attribute Composability). Given a policy 𝐺 (𝑉 , 𝐸),
let 𝐺𝑎𝑡𝑡1 (𝑉1, 𝐸1), . . . ,𝐺𝑎𝑡𝑡𝑑 (𝑉𝑑 , 𝐸𝑑 ) denote the projected privacy
policies from 𝐺 onto the respective attribute partitions. We say 𝐺
is attribute composable if𝐺 (𝑉 , 𝐸) = 𝐺𝑐 (𝑉𝑐 , 𝐸𝑐 ), where𝑉𝑐 = 𝑉1×· · ·×
𝑉𝑑 and𝐸𝑐 includes edge (𝑢, 𝑣) ∈ 𝑉𝑐×𝑉𝑐 if

∑𝑑
𝑗=1 𝑑𝑖𝑠𝑡𝐺𝑎𝑡𝑡𝑗

(𝑢.𝐴𝑗, 𝑣 .𝐴𝑗) =
1, and the distance function 𝑑𝑖𝑠𝑡𝐺𝑎𝑡𝑡𝑗

(𝑢.𝐴𝑗, 𝑣 .𝐴𝑗) denotes the short-
est distance between 𝑢 and 𝑣 in 𝐺𝑎𝑡𝑡 𝑗 .

An example for attribute composition is illustrated in Figure 4.
Note this is not the only possible composition function. For this
2https://github.com/BlowfishDB/DemoPaper
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Figure 4: Compositing attribute-based policies 𝐺𝑎𝑡𝑡1 and
𝐺𝑎𝑡𝑡2 gives 𝐶 (𝐺𝑎𝑡𝑡1 ,𝐺𝑎𝑡𝑡2 ).

class of attribute composable privacy policies, the data curator can
customize the privacy policy of each attribute. For a given workload
query 𝑊 supported by the partition over a subset of attributes
𝑇 ∗ = {𝑎𝑡𝑡𝑖1 , . . . , 𝑎𝑡𝑡𝑖 𝑗 }, we can project the workload and data over
𝑇 ∗ and form the corresponding policy graph𝐺𝑇 ∗ by composing the
relevant attribute policies 𝐶 (𝐺𝑎𝑡𝑡𝑖1

, . . . ,𝐺𝑎𝑡𝑡𝑖 𝑗
). In an interactive

setting, each query workload works with different dynamic privacy
policies, but the total privacy loss can be bounded as follows.

Theorem 1. If 𝐺 is attribute composable, let M1, . . . ,M𝑙 be a
sequence of algorithms, if each M𝑖 satisfies (𝜖𝑖 ,𝐺𝑇 ∗

𝑖
)-Blowfish pri-

vacy for a partition 𝑇 ∗
𝑖
, then the overall privacy loss is (∑𝑙

𝑖=1 𝜖𝑖 ,𝐺)-
Blowfish privacy.

Limitations and FutureWork. The prototype of BlowfishDB pro-
vided for the demonstration only supports (i) 1-D or 2-D histogram
queries and cumulative histogram queries and (ii) threshold policy
graphs. The query templates supported by BlowfishDB also sug-
gest a good partition choice. Besides expanding the scope of the
queries and privacy policies, we will optimize the performance and
accuracy over different choices of partitions and mechanisms.

4 DEMO EXPERIENCE
An attendee can choose from two demo scenarios for the Blow-
fishDB system, which are presented as tabs on the interface. The
first takes the perspective of a data curator, who wishes to explore
the accuracy vs privacy policy trade-off. They will be able to explore
the affect of private mechanisms on query outputs, and will be able
to explore the dataset so they can set an appropriate privacy policy.
The second scenario takes the perspective of a data analyst, who
wishes to explore the privacy vs utility trade-off. They will be able
to run a variety of queries to see how a fixed privacy policy is able
to affect the quality of their data exploration.
Demo Scenario 1: Data Curator Interface.Wewill provide a set
of datasets in .csv format that attendees can explore. The attendee,
acting as a data curator will select one of these datasets, prompting
a menu listing the data set attributes to appear. The attendee will
then select one of these attributes, as well as a query type. The true
answers to the chosen query will be displayed as a bar chart as
shown in Figure 3.

The attendee can then begin the trade-off exploration by choos-
ing a privacy parameter 𝜖 . This will cause a noisy answer under
𝜖-differential privacy to be calculated. The result will be plotted
besides the true answer plot, so a direct comparison can be made.

The data curator can then choose to display the current privacy
policy, to allow for visual exploration. By default, the policy is
equivalent to DP so a fully connect graph over the chosen attribute
is displayed. It is then possible to relax this policy by specifying a

threshold value, which will update the display. The attendee can
then select a set of possible threshold values, for which the total
privacy loss will be calculated. Thesewill be displayed as a line chart,
where the attendee can then select a node representing a specific
threshold value to display a noisy answer under that threshold
policy as a histogram plot. By carrying out these steps, the attendee
will be able to interactively explore the affect of privacy policies on
the queries accuracy, and will be able to make an informed decision
on how they would set an appropriate policy to protect their data.
Demo Scenario 2: Data Analyst Interface. Similarly to the pre-
vious demo, the attendee, acting as a data analyst, will select one
of these datasets, prompting a menu listing the data set attributes
to appear. The attendee will then select one of these attributes, as
well as a query type and granularity of the query. The analyst will
also be asked to specify a set of accuracy requirements, 𝛼 and 𝛽 ,
for their queries. A plot of the noisy answer to the chosen query
will be displayed.

The analyst can then see their remaining privacy budget and
chose to make another query if there is sufficient budget to do so.
This process can be repeated using different attributes or query
types. The analyst is restricted to 1-D histogram, 1-D cumulative
histogram and 2-D histogram queries in the prototype. All prior
query results are stored in a table that is visible to the data analyst.
They are able to display the results of up to two previous noisy
queries, so they are able to compare the results.

If a policy was specified for an attribute using the data curator
demo scenario, then it will be applied in this demo. Otherwise, a
default differential privacy policy will be used. An attendee can
then run this scenario under different policies to be able to see the
difference in privacy consumption, as well as the difference in the
accuracy of the noisy answers.
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