
A Demonstration of NoDA: Unified Access to NoSQL Stores
Nikolaos Koutroumanis
Dept. of Digital Systems
University of Piraeus

Piraeus, Greece
koutroumanis@unipi.gr

Nikolaos Kousathanas
Dept. of Digital Systems
University of Piraeus

Piraeus, Greece
nikolaos.kousathanas@gmail.com

Christos Doulkeridis
Dept. of Digital Systems
University of Piraeus

Piraeus, Greece
cdoulk@unipi.gr

Akrivi Vlachou
Dept.of Inf. & Com.Syst.Engineering

University of Aegean
Karlovasi, Greece

avlachou@aegean.gr

ABSTRACT
In this demo paper, we present a system prototype, called NoDA,
that unifies access to NoSQL stores, by exposing a single interface to
big data developers. This hides the heterogeneity of NoSQL stores,
in terms of different query languages, non-standardized access, and
different data models. NoDA comprises a layer positioned on top
of NoSQL stores that defines a set of basic data access operators
(filter, project, aggregate, etc.), implemented for different NoSQL
engines. The provision of generic data access operators enables a
declarative interface using SQL as query language. Furthermore,
NoDA is extended to provide more complex operators, such as
geospatial operators, which are only partially supported by NoSQL
stores. We demonstrate NoDA by showcasing that the exact same
query can be processed by different NoSQL stores, without any
modification or transformation whatsoever.

PVLDB Reference Format:
Nikolaos Koutroumanis, Nikolaos Kousathanas, Christos Doulkeridis,
and Akrivi Vlachou. A Demonstration of NoDA: Unified Access to NoSQL
Stores. PVLDB, 14(12): 2851 - 2854, 2021.
doi:10.14778/3476311.3476361

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/the-noda-project/NoDA-Demo.

1 INTRODUCTION
NoSQL stores [1, 2] support scalable data access using flexible data
models, thus comprising the storage backend of choice for several
modern applications and services. However, despite their popular-
ity, NoSQL stores still rely on heterogeneous languages, different
(non-standardized) data models, and properties. In turn, this de-
lays the development of big data applications, since developers
need to get acquainted with different languages, a factor that also
hinders the portability of an application to a different NoSQL stor-
age engine. This is in complete contrast with relational DBMSs

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 12 ISSN 2150-8097.
doi:10.14778/3476311.3476361

which use a common schema that allows for a clear separation and
independence between application and storage.

Motivated by this limitation, we present the system architecture
of NoDA [8], a prototype for unified data access to NoSQL stores.
NoDA acts as an intermediate abstraction layer between applica-
tion code and the underlying NoSQL store. Thus, NoDA offers a set
of generic data access operators (e.g., filter, project, sort) using a
familiar vocabulary for developers. These operators are internally
implemented for different stores, thus hiding the heterogeneous
languages from the developer. One advantage of using these op-
erators is that the same application code becomes portable across
NoSQL stores. In addition, we exploit the data access operators of
NoDA, in order to provide a declarative interface (in SQL). In the
background, SQL-like queries are translated in NoDA operators,
which facilitates query execution over NoSQL stores that do not
support SQL. As a result, data scientists and business analysts can
query different NoSQL stores using a standardized query language.

Related work. Multi-model databases support different data
models against a single, integrated backend [9]. ArangoDB inte-
grates document, key-value and graph data models in a single
system. It uses AQL as its query language which also supports
geospatial functions for querying spatial data. OrientDB combines
document, key-value, reactive and object-oriented models in a sin-
gle system. In contrast to these systems, NoDA is designed to be
used on top of any existing NoSQL store. Our work also relates
to polystores, database management systems that are built on top
of different, heterogeneous, integrated storage engines, e.g., Big-
DAWG [3, 4] and semantic approaches [6]. Such systems offer a
common (SQL-like) language like CloudMdsQL [7] for accessing
data from multiple stores, hiding any peculiarities of the targeted
databases. The integration of different databases is attained by using
the native mechanisms of each database for querying, as in NoDA.
Nonetheless, the main difference between polystores and NoDA is
that polystores constitute composite systems whose components
are orchestrated under a specific context for query optimization, ex-
ecution, monitoring, etc. Their architecture is much more complex
than NoDA, which makes extensibility to a new storage engine
difficult. Instead, NoDA adopts a more lightweight approach where
the incorporated components translate and execute the query on
the underlying NoSQL store by using its native mechanisms. Last,
but not least, GeoMesa provides spatio-temporal indexing [5] over

2851

https://doi.org/10.14778/3476311.3476361
https://github.com/the-noda-project/NoDA-Demo
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3476311.3476361

Modules

N
o
S

Q
L

 C
o
n

n
e
c
ti

o
n
 I

n
it

a
li

z
a
ti

o
n

NoDA

S
Q

L
 M

o
d

u
le

NoSQL Connectors

S
p

a
rk

In
it

ia
li

za
ti

o
n

SQL

Query

A
P

I

A
p
a
c
h

e
 S

p
a
rk

Dataframe

Results

MongoDB

Module

Redis

Module

HBase

Module

MongoDB

Connector

Redis

Connector

HBase

Connector

Neo4j

Connector

Neo4j

Module

NoSQL Operators

Filter Operators

Geoperators

Spatial

Operators

Spatio-

temporal

Operators

Comparison

Operators

Logical

Operators

Aggragate

Operators

Sort

Operators

Figure 1: System architecture of NoDA.

persistent storage, while supporting different backends (e.g., Accu-
mulo, Redis, HBase, Bigtable and Cassandra).

Contributions. In this demo paper, we present the system proto-
type of NoDA that: (i) supports the execution of simple and complex
queries over different NoSQL stores bymeans of a set of generic data
access operators, (ii) offers the capability of using declarative SQL
querying, and (iii) visualizes the results on a map-based interactive
web interface, for complex (spatio-temporal) queries.

2 THE NODA SYSTEM ARCHITECTURE
Figure 1 illustrates the high-level system architecture of NoDA.
Its main constituent parts include: (i) the NoSQL Connector, which
is responsible for establishing and managing the connection to a
NoSQL store, (ii) theNoSQLOperators, which specify the abstraction
of data access operators that need to be implemented as modules
for different stores, (iii) an Apache Spark session, which facilitates
the delivery of data in the form of Dataframe within a Spark con-
text for further processing, and (iv) the SQL module, which allows
declarative query formulation and its seamless translation to data
operators that will be eventually executed. Consequently, the user
has two options for querying a NoSQL store with NoDA: either by
writing code using the generic data access operators (suitable for
application developers), or by means of SQL queries (preferable for
data scientists and business analysts).

2.1 NoSQL Connectors
NoDA provides functionality for establishing connections to NoSQL
stores. For each NoSQL store, we develop a corresponding NoSQL

connector, which is initialized with information for establishing
the connection. Although the exact information type differs among
NoSQL stores, this typically includes the host’s IP address, running
port and database credentials (username, password).

A connector can be extended for encapsulating a specific type
of information that is not supported in another NoSQL database.
We use an object NoSqlDbSystem which corresponds to the
initialized connection. For instance, Listings 2.1 and 2.2 show a
connection setup for Redis and Neo4j respectively. The connection
to Redis store is attempted with a threshold that represents the
maximum waiting time of the client in case the connection is not
available. Instead, for the connection establishment to Neo4j, a
Base64 encoded ticket is set, passed in the kerberos authentication
mechanism. Note that the JedisPoolConfig and AuthTokens objects
in the corresponding Listings, are object types derived from the
native Java client libraries of these databases.

Listing 2.1: Setting a connection to Redis store.

1 JedisPoolConfig jp = new JedisPoolConfig();
2 jpc.setMaxWaitMillis(10000);
3 NoSqlDbSystem noSqlDbSystem = NoSqlDbSystem.Redis()
4 .Builder(jp).host("192.168.1.1").port(6379).build();

Listing 2.2: Setting a connection to Neo4j store.

1 String ticket = ...
2 NoSqlDbSystem noSqlDbSystem = NoSqlDbSystem.Neo4j()
3 .Builder(AuthTokens.kerberos(ticket))
4 .host("192.168.1.1").port(7687).build();

2.2 NoSQL Operators
NoDA is designed to support generic data access operators, sup-
porting both simple relational expressions as well as complex ones.

2.2.1 Simple Operators. These operators include filter,
project, sort, limit and aggregate. The filter oper-
ators consist of three subcategories: logical, comparison and geo-
operators. The logical operators are used to combine filter expres-
sions in general. The comparison operators provide the fundamental
filtering conditions (e.g., equality, inequality, etc.) on fields that han-
dle either alphanumeric or numeric type values. The geo-operators
provide filtering conditions that refer to spatial and temporal in-
formation. As a result, they can be exploited to apply spatial and
spatio-temporal constraints. Regarding data types, we support nu-
merical and alphanumerical data types, as well as more complex
data types, such as 2D/3D spatial data types for geographical data.

Moreover, the sort operator applies a specific order on the
records, based on a field or some fields. The limit operator re-
stricts the number of records in the result set of a query based a
user-specified value. The aggregate operators incorporate func-
tions so as to support specific aggregations on a number of field(s).
Apart from the aforementioned operators, additional operations on
data are also supported. Concretely, the project operator inter-
venes in the shape of the fetched data when accessed, indicating
the fields that are to be included in the query’s results.

2852

Listing 2.3: Query with generic filter operators.

1 noSqlDbSystem.operateOn("hotels")
2 .filter(and(
3 eq("star", 5), lte("price_per_day", 140)))
4 .count();

As an example, Listing 2.3 depicts a plain query on collection
“hotels”, which is specified by operateOn. The query retrieves
the number of objects having 5 stars and price at most 140, using
filter, count and constraints eq and lte. The operators are
combined together using method chaining.

2.2.2 Complex Operators. The complex operators currently sup-
ported by NoDA include geo-operators, that enable filtering of
spatial and spatio-temporal data. Unfortunately, not all NoSQL
stores support spatial queries, whereas most stores do not sup-
port spatio-temporal queries. Therefore, we adopt the concept of
space-filling curves to map the spatial information to 1D values.

In the case of spatial data, a mapping of locations to 1D values
is achieved based on the Hilbert space-filling curve. Practically, the
2D space is partitioned in grid cells, and each cell is mapped to a
1D key based on its order on the space-filling curve. In this way,
spatial objects are mapped to keys, and can be stored in any NoSQL
store that supports key-based access. Considering that MongoDB
and Neo4j provide built-in indexes for a single field and property
accordingly, we exploit these indexes for efficient access to the
generated keys. In the case of HBase, we inject the 1D value in the
row key, in order to exploit its support for efficient range scans
based on key. In the case of Redis, which is a key-value store, we
put the 1D values in a sorted set, which serves as index for efficient
retrieval of object identifiers in logarithmic time.

Listing 2.4: Spatial rectangle query.

1 Coordinates c1 = Coordinates.newCoordinates(23.69, 37.93);
2 Coordinates c2 = Coordinates.newCoordinates(23.81, 38.01);
3 int count = noSqlDbSystem.operateOn("movingObjects")
4 .filter(inGeoRectangle("location", c1, c2))
5 .count();

Listing 2.4 depicts the code for a spatial box query, which re-
trieves spatial objects from collection “movingObjects” by applying
the inGeoRectangle operator on field “location”.

In the case of spatio-temporal data, the Hilbert-based approach
is used too. In MongoDB, we build a compound index over the field
that stores the Hilbert key together with the field that stores the
temporal information. This enables spatio-temoral sharding which
is not supported yet by the built-in spatial indexes (ver. 5.0). An
alternative approach is adopted for Neo4j. Given a spatio-temporal
point, an index key is generated by taking into account both the
space and time information. This corresponds to 3D partitioning,
where each cell refers to a specific spatial cell within a time interval.
For HBase and Redis, the approach followed is similar to the case
of spatial (2D) data.

2.2.3 Extensibility. Our prototype NoDA is readily extensible for
operating over other NoSQL stores. The data access operators are
defined in interfaces and abstract classes, whose functionality can
be instantiated for different stores. In fact, they constitute a blue-
print, which is implemented by developing a new module for each

NoSQL store. The blueprint can be extended for operating on a
specific store, through the Java or Scala client library of the NoSQL
store. NoDA has been designed with the purpose of being exten-
sible with limited effort. This is achieved by the integration of a
new module under the NoDA project, which inherits from the core
module the template. The template is filled with the appropriate
commands, in the language of the new NoSQL store. In particular,
the filter, aggregate and sort operators should be materi-
alized by the database-oriented methods which apply the rationale
of the operators on the store. For instance, for the case of Mon-
goDB, the underlying methods that are utilized by the comparison
operators are the respective operators of MongoDB ($gte,$lte).

2.3 Spark Session
Data access from NoSQL stores may result in large result sets,
which require distributed processing. For this purpose, we integrate
NoDAwith a data-parallel processing framework, in order to enable
parallel processing. To this end, we opt to use Apache Spark and its
Dataframe abstraction. In more detail, the NoSQL connectors are
able to encapsulate a Spark session, which can be used for loading
the query results in Dataframe form. A Dataframe is a distributed
collection of data composed of rows with typed columns, similar to
a table. In the context of this demonstration, the Spark session also
facilitates the transformation of data for visualization, after having
been fetched from the data store. As the user interface presented in
Section 3 requires a standardized form for visualizing the spatio-
temporal information, we use the Dataframe for this purpose.

2.4 SQL Module
Even though NoDA provides a query language based on generic
data access operators that are easy to learn, it is still yet another
query language. To alleviate this shortcoming, we introduce a
declarative interface based on a SQL-like language. This is in accor-
dance with the current trend of providing declarative interfaces for
big data processing and storage solutions (e.g., Hive, Pig, SparkSQL,
Presto, etc.).

The SQLmodule takes an SQL statement as input, which is parsed
to validate its syntax. The SQL module is based on the ANTLR tool
(https://www.antlr.org/), which is used for accessing languages spec-
ified by a grammar. More specifically, given a grammar as an input,
ANTLR generates the necessary source code (parser, tree parser,
listener interface), which facilitates the recognition of phrases. The
source code is the core of the SQL module, having been generated
given the SQL grammar file of Presto (https://prestosql.io/).

After successful parsing and validation, the clauses are read
individually, and the SQL query is transformed into a sequence
of NoSQL operators that will be executed. Although we have not
implemented a query optimizer yet, we apply some basic rules
during this transformation. For example, we apply selection and
projection push-down to avoid processing unnecessary records in
the pipeline.

3 DEMONSTRATION SCENARIO
The web user interface runs as an application on Spring Boot and
has been developed in the Angular web framework. It also uses the
Leaflet Javascript library for the interactive map. Figure 2 shows

2853

https://www.antlr.org/
https://prestosql.io/

Figure 2: The graphical user interface of NoDA for geospatial queries: connection details for the NoSQL store and database
contents (left), query builder for easier query formulation, SQL editor, and illustration of the final query to be executed in the
language of the NoSQL store (middle), map-based visualization for query results (right).

the GUI of the demonstration, focusing on geospatial and spatio-
temporal queries. It consists of three main parts: (a) the targeted
NoSQL store, (b) the query builder, and (c) the map visualization.

Initially, the user can use the combo box (top left) to select the
NoSQL that will be queried using NoDA (in the figure, Neo4J is
selected). The user can switch easily from one store to another via
the combo box, and the query will be sent to the corresponding
store. In the background, NoDA establishes a connection to the
selected NoSQL store and fetches some information regarding the
data. In the depicted example, nodes and properties from Neo4J
are shown on the screen, in order to assist the user during query
formulation. As soon as the connection has been established, the
user can formulate a query in two different ways: by means of
the query builder or by writing a SQL query. The query builder
currently supports a subset of the possible queries, mainly focusing
on geospatial filter/project operators. However, the SQL editor
supports the full repertoire offered by the declarative interface of
NoDA. Also, note that the spatial constraint can be set by drawing
a circle on the map, and this updates the query editor. When the
execute button is pressed, the formulated SQL query is transformed
to the query language of the NoSQL store. This final query is shown
at the bottom for clarity.

Last, but not least, the retrieved results are rendered on the map,
which supports basic functionality, such as zooming. Also, in case
of spatio-temporal data (e.g., trajectories of moving objects), the
GUI is equipped with a “player” that can be used to show how
the locations change with time, thereby showing the movement of
objects on the map.

4 CONCLUSIONS AND FUTUREWORK
In this paper, we presented a system prototype of NoDA that pro-
vides access to different NoSQL stores using a set of generic data

access operators, thus hiding the heterogeneity of different stores.
Also, we demonstrate the use of a declarative interface built on
top of the operators. The design of our prototype is extensible to
support other NoSQL stores in the future. In our future work, we
intend to extend our prototype to support a larger variety of NoSQL
stores. Furthermore, we will explore query processing over multi-
ple NoSQL stores (in a polystore setting), by combining data from
different stores.

ACKNOWLEDGMENTS
This researchwork has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant
agreement No 780754 (Track&Know project), and from the Hellenic
Foundation for Research and Innovation (HFRI) and the General
Secretariat for Research and Technology (GSRT), under grant agree-
ments No 1667 and No HFRI-FM17-81.

REFERENCES
[1] Rick Cattell. 2010. Scalable SQL and NoSQL data stores. SIGMOD Record 39, 4

(2010), 12–27.
[2] Ali Davoudian, Liu Chen, and Mengchi Liu. 2018. A Survey on NoSQL Stores.

ACM Comput. Surv. 51, 2 (2018), 40:1–40:43.
[3] Jennie Duggan et al. 2015. The BigDAWG Polystore System. SIGMOD Record 44, 2

(2015), 11–16.
[4] Aaron J. Elmore et al. 2015. A Demonstration of the BigDAWG Polystore System.

Proc. VLDB Endow. 8, 12 (2015), 1908–1911.
[5] Anthony D. Fox, Christopher N. Eichelberger, James N. Hughes, and Skylar Lyon.

2013. Spatio-temporal Indexing in Non-relational Distributed Databases. In Proc.
of IEEE Big Data. 291–299.

[6] Evgeny Kharlamov et al. 2016. A semantic approach to polystores. In Proc. of IEEE
Big Data. 2565–2573.

[7] Boyan Kolev et al. 2016. CloudMdsQL: Querying Heterogeneous Cloud Data Stores
with a Common Language. Distributed Parallel Databases 34, 4 (2016), 463–503.

[8] Nikolaos Koutroumanis et al. 2019. NoDA: Unified NoSQL Data Access Operators
for Mobility Data. In Proc. of SSTD. 174–177.

[9] Jiaheng Lu and Irena Holubová. 2019. Multi-model Databases: A New Journey to
Handle the Variety of Data. ACM Comput. Surv. 52, 3 (2019), 55:1–55:38.

2854

