
An Intermediate Representation for Hybrid Database and
Machine Learning Workloads

Amir Shaikhha
University of Edinburgh

amir.shaikhha@ed.ac.uk

Maximilian Schleich
University of Washington

schleich@cs.washington.edu

Dan Olteanu
University of Zurich

olteanu@ifi.uzh.ch

ABSTRACT

IFAQ is an intermediate representation and compilation framework

for hybrid database and machine learning workloads expressible

using iterative programs with functional aggregate queries. We

demonstrate IFAQ for several OLAP queries, linear algebra expres-

sions, and learning factorization machines over training datasets

defined by feature extraction queries over relational databases.

PVLDB Reference Format:

Amir Shaikhha, Maximilian Schleich, and Dan Olteanu. An Intermediate

Representation for Hybrid Database and Machine Learning Workloads.

PVLDB, 14(12): 2831 - 2834, 2021.

doi:10.14778/3476311.3476356

1 WHAT IS IFAQ?

The mainstream approach to machine learning over relational data

consists of two steps. The training dataset is first constructed via a

feature extraction query over the input database using a database

system or minimalistic query engines such as Pandas. The desired

model is then trained over the result of the query using a statistical

software package of choice such as R, scikit-learn, or TensorFlow.

IFAQ is a framework that (1) allows to specify in a unified domain

specific language (DSL) both aforementioned tasks and (2) provides

a unified optimization and compilation approach to programs in

this DSL [9]. Its DSL allows for Iterative computation of Functional

Aggregate Queries to express, e.g., gradient descent optimization

for linear regression and factorization machines.

Its optimizations benefit from and enrich three repertoires orig-

inally developed in isolation by the database, machine learning,

and compiler communities. Each DSL program is subject to several

layers of optimizations including: algebraic transformations such as

code and data factorization into nested dictionaries [6]; loop trans-

formations; schema specialization; data layout optimizations; and

compilation into efficient code specialized for the given workload.

Figure 1 gives a bird’s eye view of the IFAQ architecture. IFAQ can

interpret the program or generate low-level C++ or Scala code [8].

The latter can be further compiled using the existing backends of

Scala to lower-level JS, JVM, or LLVM code. The IFAQ framework

can therefore take advantage of existing compilation frameworks

that operate at a lower level with optimizations that are orthogonal

to IFAQ. The IFAQ code optimizations are applicable to both data-

base and machine learning workloads and tightly interleaves the

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 12 ISSN 2150-8097.
doi:10.14778/3476311.3476356

Relational

Data

Learned

Model

ML ModelFeature Extraction Query

Scala

C++

JS

JVM

LLVM

Interpreter

IFAQ

Figure 1: Bird’s Eye View of IFAQ Architecture.

two. They are layered in a sequence of four transformation blocks

as shown in Figure 3. Prior experiments show that they can lead to

orders of magnitude performance improvements over mainstream

solutions using TensorFlow and scikit-learn [9].

We demonstrate IFAQ for database, linear algebra, and hybrid

DB/ML workloads. For the latter, we demonstrate the learning

process of factorization machines (FMs) [4] for retail forecasting

scenarios using commercial and public datasets [1, 5]. FMs model

correlations between features as feature interactions, where the pa-

rameters for each feature interaction are factorized. They have been

successfully applied to retail forecasting [10] and were winning

solutions in several Kaggle competitions (e.g., [2]).

2 IFAQ BY EXAMPLE

In this section, we present the expressiveness and syntax of IFAQ

through examples.

IFAQ for Database Queries. IFAQ represents relations as dictio-

naries mapping tuples to their multiplicities. We are given a data-

base with three relations: Sales (item, store, units), StoRes(store, city),

Items(item, price). The join of the three relations Q = S ⊲⊳ R ⊲⊳ I

can be expressed as follows:

let Q =

Σ
𝑥𝑠 ∈dom(S)

Σ
𝑥𝑟 ∈dom(R)

Σ
𝑥𝑖 ∈dom(I)

(︁

let k = {𝑖 = 𝑥𝑠 .𝑖, 𝑠 = 𝑥𝑠 .𝑠, 𝑐 = 𝑥𝑟 .𝑐, 𝑝 = 𝑥𝑖 .𝑝} in

{{k→S(𝑥𝑠 )∗R(𝑥𝑟 )∗I(𝑥𝑖 ) ∗(𝑥𝑠 .i==𝑥𝑖 .i)∗(𝑥𝑠 .s==𝑥𝑟 .s)}}
)︁

This expression performs a multi-way join among the three rela-

tions, by nested iterations over the elements of each relation (using

Σ). The result of the join is expressed as a dictionary, which is

constructed using {{key→value}}, where key is the record (con-

structed using the syntax {𝑎 = 𝑒, ...}) and value is the multiplicity.

The join condition is expressed by multiplying the join predicate

with the multiplicity of each record. Alternatively, one can use

conditionals to express predicates as can be seen in Figure 2.

IFAQ for Linear Algebra Workloads. Vectors can be represented

as dictionaries from indices to values. Similarly, matrices are dic-

tionaries from indices to vectors. This means that matrices are

2831

https://doi.org/10.14778/3476311.3476356
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3476311.3476356


Figure 2: Screenshots of the IFAQ web user interface showing

the translation of SQL queries to IFAQ. Users can see themap-

ping between constructs by hovering over the code snippets.

basically nested dictionaries. As an example, the multiplication of

the matrix A and vector V is as follows:

𝜆
row∈dom(A)

Σ
col∈dom(A(row))

A(row)(col) ∗ V(col)

This expression performs an iteration over the domain of rows

of the matrix A, and constructs a dictionary with the same row

indices. The values of this dictionary are constructed by iterating

over the column index col of A and then multiplying each element

A(row)(col) by the col𝑡ℎ element of V, represented as V(col).

IFAQ for In-Database Machine Learning. The goal is to train a

machine learning model that predicts 𝑢 with features F = {𝑖, 𝑠, 𝑐, 𝑝},

where the training dataset is given by the join of the three relations

Q = S ⊲⊳ R ⊲⊳ I (cf. Section ??).

Model.We learn degree-2 factorization machines (FMs) [4] over Q.

FMs factorize the parameters for feature interactions and implicitly

learn a latent vector of rank 𝑟 for each feature. An FM for a given

record 𝑥 and features F is given by the following IFAQ expression:

𝐹𝑀 (𝑥) =
∑︁

𝑓1∈F
𝜽 (𝑓1) ∗ 𝑥 [𝑓1 ] +

∑︁

𝑓2∈F
∑︁

𝑓3∈F
(𝑓2< 𝑓3)∗

∑︁

𝑘∈L 𝝎 (𝑓2) (𝑘) ∗𝝎 (𝑓3) (𝑘) ∗ 𝑥 [𝑓2 ] ∗ 𝑥 [𝑓3 ]

L is the vector of integers from 1 to 𝑟 , 𝜽 is the vector of the linear

parameters, and 𝝎 is the array of the parameters for feature inter-

actions. The condition (𝑓2 < 𝑓3) ensures that each pairwise feature

interaction is considered once.

Batch Gradient Descent (BGD).We learn the model with BGD by

repeatedly updating the parameters in the direction of the gradient

until convergence. For simplicity of exposition, we make three sim-

plifications: (1) the learning rate is fixed to 1, (2) no regularization,

and (3) the convergence criterion is given by a fixed number of

BGD iterations. The learning algorithm can be expressed in IFAQ

as follows:

let L = [[1..𝑟]] let F = [[‘𝑖‘, ‘𝑠‘, ‘𝑐‘, ‘𝑝‘]]

𝑖𝑡𝑒𝑟𝑠 ← 0 𝜽 ← 𝜽0 𝝎 ← 𝝎0

while(𝑖𝑡𝑒𝑟𝑠 <𝑚𝑎𝑥𝐼𝑡𝑒𝑟𝑠) {

𝑖𝑡𝑒𝑟𝑠 = 𝑖𝑡𝑒𝑟𝑠 + 1

𝜽 = 𝜆
𝑓1∈F

𝜽 (𝑓1) − Σ
𝑥∈dom(Q)

Q(𝑥) ∗ 𝑥 [𝑓1 ] ∗
(︁

Σ
𝑓2∈F

𝜽 (𝑓2) ∗ 𝑥 [𝑓2 ] +

Σ
𝑓3∈F

Σ
𝑓4∈F
(𝑓3 < 𝑓4) ∗ Σ

𝑘∈L
𝝎 (𝑓3) (𝑘) ∗𝝎 (𝑓4) (𝑘) ∗ 𝑥 [𝑓3 ] ∗ 𝑥 [𝑓4 ]

)︁

𝝎 = 𝜆
𝑓1∈F

𝜆
ℓ∈L

𝝎 (𝑓1) (ℓ) − Σ
𝑓2∈F
(𝑓1 ≠ 𝑓2)∗

Σ
𝑥∈dom(Q)

(︂

Q(𝑥) ∗ 𝑥 [𝑓1 ] ∗ 𝑥 [𝑓2 ] ∗ Σ
𝑓3∈F

𝜽 (𝑓3) ∗ 𝑥 [𝑓3 ]+

Σ
𝑓3∈F

Σ
𝑓4∈F
(𝑓3 < 𝑓4) ∗ Σ

𝑘∈L
𝝎 (𝑓3) (𝑘) ∗𝝎 (𝑓4) (𝑘) ∗ 𝑥 [𝑓3 ] ∗ 𝑥 [𝑓4 ]

)︂

}

(a) (left) after applying Loop Scheduling , (right) Factorization
moves the expression 𝜃 (𝑓2) outside the inner sum.

(b) (left) Static Memoization introduces the variable M, (right)

Code Motion moves this variable outside the loop.

Figure 3: Screenshots of the IFAQ web user interface showing

the impact of various high-level optimizations on an IFAQ

program representing the training of the linear component

of the factorization machine (not fully shown to avoid clut-

ter). Lower level optimizations are explained in Section 3.

3 OPTIMIZATIONS

We next show the transformation pipeline for our learning example.

High-Level Optimizations. IFAQ first normalizes the expression

by pushing products inside summations. This allows us to reorder

the loops in decreasing order of their support, and then factorize

the computation to move loop-invariant code out of the inner loops.

After these transformations, there is an opportunity to memoize

the data-intensive computation over 𝑸 and hoist it outside the

convergence loop. These computations are represented by 𝑴 , 𝑵 ,

and 𝑶 in the following expression:

let L = [[1..𝑟]] let F = [[‘𝑖‘, ‘𝑠‘, ‘𝑐‘, ‘𝑝‘]]

let 𝑴=𝜆
𝑓1∈F

𝜆
𝑓2∈F

Σ
𝑥∈dom(Q)

Q(𝑥) ∗ 𝑥 [𝑓1 ] ∗ 𝑥 [𝑓2 ]

let 𝑵=𝜆
𝑓1∈F

𝜆
𝑓2∈F

𝜆
𝑓3∈F

Σ
𝑥∈dom(Q)

Q(𝑥) ∗ 𝑥 [𝑓1 ] ∗ 𝑥 [𝑓2 ] ∗ 𝑥 [𝑓3 ]

let 𝑶=𝜆
𝑓1∈F

𝜆
𝑓2∈F

𝜆
𝑓3∈F

𝜆
𝑓4∈F

Σ
𝑥∈dom(Q)

Q(𝑥)∗𝑥 [𝑓1 ]∗𝑥 [𝑓2 ]∗𝑥 [𝑓3 ]∗𝑥 [𝑓4 ]

𝑖𝑡𝑒𝑟𝑠 ← 0 𝜽 ← 𝜽0 𝝎 ← 𝝎0

while(𝑖𝑡𝑒𝑟𝑠 <𝑚𝑎𝑥𝐼𝑡𝑒𝑟𝑠) {

𝑖𝑡𝑒𝑟𝑠 = 𝑖𝑡𝑒𝑟𝑠 + 1

𝜽 = 𝜆
𝑓1∈F

𝜽 (𝑓1) − Σ
𝑓2∈F

𝜽 (𝑓2)∗M(𝑓1) (𝑓2) +

Σ
𝑓3∈F

Σ
𝑓4∈F
(𝑓3 < 𝑓4)∗𝑵 (𝑓1) (𝑓3) (𝑓4)∗ Σ

𝑘∈L
𝝎 (𝑓3) (𝑘) ∗𝝎 (𝑓4) (𝑘)

𝝎 =𝜆
𝑓1∈F

𝜆
ℓ∈L

𝝎 (𝑓1) (ℓ) −Σ
𝑓2∈F
(𝑓1 ≠ 𝑓2)∗Σ

𝑓3∈F
𝜽 (𝑓3)∗𝑵 (𝑓1) (𝑓2) (𝑓3) +

Σ
𝑓3∈F

Σ
𝑓4∈F
(𝑓3 < 𝑓4)∗𝑶 (𝑓1) (𝑓2) (𝑓3) (𝑓4)∗Σ

𝑘∈L
𝝎 (𝑓3) (𝑘)∗𝝎 (𝑓4) (𝑘)

}

2832



Amore detailed impact of each individual optimization of this phase

is shown in Figure 3.

Schema Specialization. Dictionaries with statically-known keys

of field type can be converted into records in two stages.

During Loop Unrolling , IFAQ unrolls loops over statically-

known ranges. For example, 𝑴 is unrolled as follows:

let M = {{‘𝑖‘→ {{..., ‘𝑐‘→ Σ
𝑥∈dom(Q)

Q(𝑥)∗𝑥 [‘𝑖‘]∗𝑥 [‘𝑐‘], ...}}, ...}}

For Static Field Access , the unrolled dictionaries with keys of

field type are turned into records and all dynamic field accesses are

turned into static ones. For instance, 𝑴 is turned into the nested

record𝑀 :

let 𝑀 = {𝑖 = {..., 𝑐 = Σ
𝑥∈dom(Q)

Q(𝑥)∗𝑥.𝑖∗𝑥.𝑐, ...}, ...}

In the following, we focus on the data-intensive computation of

𝑀 , the records 𝑁 and 𝑂 are treated similarly.

Aggregate Optimization. Each entry in 𝑀 requires the compu-

tation of one aggregate over the join result (Q). To speedup the

computation of𝑀 , IFAQ interleaves the computation of the entire

aggregate batch and the join computation, which is reminiscent

of aggregate pushdown in database systems. To demonstrate how

IFAQ achieves this, we focus on the computation of one entry𝑀𝑐,𝑝

which is defined as:

let 𝑀𝑐,𝑝 = Σ
𝑥 ∈dom(Q)

Q(x) ∗ x.c ∗ x.p

let M = {c={..., p=𝑀𝑐,𝑝 ,...} ,...} ...

In Aggregate Pushdown , IFAQ first fuses the construction of

Q with its consumption as follows:

let 𝑀𝑐,𝑝 =

Σ
𝑥𝑠 ∈dom(S)

Σ
𝑥𝑟 ∈dom(R)

Σ
𝑥𝑖 ∈dom(I)

(︁

let k = {𝑖 = 𝑥𝑠 .𝑖, 𝑠 = 𝑥𝑠 .𝑠, 𝑐 = 𝑥𝑟 .𝑐, 𝑝 = 𝑥𝑖 .𝑝} in

let Q = {{k→S(𝑥𝑠 )∗R(𝑥𝑟 )∗I(𝑥𝑖 )∗

(𝑥𝑠 .i==𝑥𝑖 .i)∗(𝑥𝑠 .s==𝑥𝑟 .s)}} in

Σ
𝑥 ∈dom(Q)

Q(x) ∗ x.c ∗ x.p

)︁

As the inner sum iterates over a singleton dictionary, it can be

optimized as follows:

let 𝑀𝑐,𝑝 =

Σ
𝑥𝑠 ∈dom(S)

Σ
𝑥𝑟 ∈dom(R)

Σ
𝑥𝑖 ∈dom(I)

(︁

let k = {𝑖 = 𝑥𝑠 .𝑖, 𝑠 = 𝑥𝑠 .𝑠, 𝑐 = 𝑥𝑟 .𝑐, 𝑝 = 𝑥𝑖 .𝑝} in

let Q = {{k→S(𝑥𝑠 )∗R(𝑥𝑟 )∗I(𝑥𝑖 )∗

(𝑥𝑠 .i==𝑥𝑖 .i)∗(𝑥𝑠 .s==𝑥𝑟 .s)}} in

let x = k in Q(x) ∗ x.c ∗ x.p
)︁

Then, IFAQ applies partial evaluation transformations such as inlin-

ing field accesses and retrieving the value of a singleton dictionary,

which results in the following expression:

let 𝑀𝑐,𝑝 =

Σ
𝑥𝑠 ∈dom(S)

Σ
𝑥𝑟 ∈dom(R)

Σ
𝑥𝑖 ∈dom(I)

(︁

S(𝑥𝑠 )∗R(𝑥𝑟 )∗I(𝑥𝑖 )∗(𝑥𝑠 .i==𝑥𝑖 .i)∗(𝑥𝑠 .s==𝑥𝑟 .s) ∗ 𝑥𝑟 .c ∗ 𝑥𝑖 .p
)︁

As the next step, IFAQ leverages the distributivity of multiplica-

tion over addition and factorizes the operands of multiplication as

follows:

let 𝑀𝑐,𝑝 =

Σ
𝑥𝑠 ∈dom(S)

S(𝑥𝑠 )∗

Σ
𝑥𝑟 ∈dom(R)

R(𝑥𝑟 )∗ (𝑥𝑠 .s==𝑥𝑟 .s) ∗ 𝑥𝑟 .c ∗

Σ
𝑥𝑖 ∈dom(I)

I(𝑥𝑖 ) ∗(𝑥𝑠 .i==𝑥𝑖 .i) ∗ 𝑥𝑖 .p

By performing static memoization and loop-invariant code motion,

IFAQ creates the views 𝑽𝑅 and 𝑽𝐼 that are responsible for computing

partial aggregates before join:

let 𝑽𝑅 = Σ
𝑥𝑟 ∈dom(R)

R(𝑥𝑟 ) ∗ {{{s=𝑥𝑟 .s}→𝑥𝑟 .c}}

let 𝑽𝐼 = Σ
𝑥𝑖 ∈dom(I)

I(𝑥𝑖 ) ∗ {{{i=𝑥𝑖 .i}→𝑥𝑖 .p}}

let 𝑀𝑐,𝑝= Σ
𝑥𝑠 ∈dom(S)

S(𝑥𝑠 ) ∗ 𝑽𝑅 ({s=𝑥𝑠 .s}) ∗ 𝑽𝐼 ({i=𝑥𝑠 .i})

We perform a similar process for:

let 𝑀𝑐,𝑐 = Σ
𝑥 ∈dom(Q)

Q(x) ∗ x.c ∗ x.c

IFAQ similarly pushes the aggregates as follows:

let 𝑽 ′
𝑅
= Σ
𝑥𝑟 ∈dom(R)

R(𝑥𝑟 ) ∗ {{{s=𝑥𝑟 .s}→𝑥𝑟 .c * 𝑥𝑟 .c}}

let 𝑽 ′
𝐼
= Σ
𝑥𝑖 ∈dom(I)

I(𝑥𝑖 ) ∗ {{{i=𝑥𝑖 .i}→1}}

let 𝑀𝑐,𝑐 = Σ
𝑥𝑠 ∈dom(S)

S(𝑥𝑠 ) ∗ 𝑽
′
𝑅
({s=𝑥𝑠 .s}) ∗ 𝑽

′
𝐼
({i=𝑥𝑠 .i})

Aggregate Fusion merges the expressions for these two aggre-

gates, and results in the following expression:

let 𝑾𝑅 = Σ
𝑥𝑟 ∈dom(R)

R(𝑥𝑟 ) ∗

{{{s=𝑥𝑟 .s}→{𝑣𝑅=𝑥𝑟 .c, 𝑣
′
𝑅
=𝑥𝑟 .c * 𝑥𝑟 .c}}}

let 𝑾𝐼 = Σ
𝑥𝑖 ∈dom(I)

I(𝑥𝑖 ) ∗

{{{i=𝑥𝑖 .i}→{𝑣𝐼=𝑥𝑖 .p, 𝑣
′
𝐼
=1}}}

let 𝑀𝑐𝑐,𝑝𝑐 = Σ
𝑥𝑠 ∈dom(S)

S(𝑥𝑠 ) ∗
(︁

let 𝑤𝑅 =𝑾𝑅 ({s=𝑥𝑠 .s})

let 𝑤𝐼 =𝑾𝐼 ({i=𝑥𝑠 .i})

{𝑚𝑐,𝑝 = 𝑤𝑅 .𝑣𝑅∗𝑤𝐼 .𝑣𝐼 , 𝑚𝑐,𝑐 = 𝑤𝑅 .𝑣
′
𝑅
∗𝑤𝐼 .𝑣

′
𝐼
}
)︁

let 𝑀𝑐,𝑝 =𝑀𝑐𝑐,𝑝𝑐 .𝑚𝑐,𝑝 let 𝑀𝑐,𝑐 =𝑀𝑐𝑐,𝑝𝑐 .𝑚𝑐,𝑐

Trie Conversion. Instead of representing each relation and inter-

mediate view as a listing representation, IFAQ represents them as

nested collections, which represent tries that are nested by join

attributes. Let us focus on the computation of𝑀𝑐𝑐,𝑝𝑐 .

2833



Figure 4: Screenshots of the IFAQ web user interface for code

generation. Users can choose different data-layout options,

and inspect the generated C++ code.

Dictionary Nesting represents 𝑺 as a nested dictionary 𝑺 ′ instead

of iterating over the domain of the keys of 𝑺 . The nested dictionary

𝑺 ′ contains the domain of the field 𝑠 at its first level, and the domain

of field 𝑖 at its second level. We then iterate over it following the

hierarchy in the key:

let 𝑀𝑐𝑐,𝑝𝑐 =

Σ
𝑥𝑠 ∈dom(𝑺′)

Σ
𝑥𝑖 ∈dom(𝑺′ (𝑥𝑠 ))

𝑺 ′(𝑥𝑠 )(𝑥𝑖 ) ∗
(︁

let 𝑤𝑅 =𝑾𝑅 ({s=𝑥𝑠 .s})

let 𝑤𝐼 =𝑾𝐼 ({i=𝑥𝑖 .i})

{𝑚𝑐,𝑝 = 𝑤𝑅 .𝑣𝑅∗𝑤𝐼 .𝑣𝐼 ,

𝑚𝑐,𝑐 = 𝑤𝑅 .𝑣
′
𝑅
∗𝑤𝐼 .𝑣

′
𝐼
}
)︁

Factorization / Code Motion This transformation enables more

opportunities for factorizing and then hoisting the computation

outside the introduced nested summations. For instance, we can

hoist the let binding forW𝑅 and the computation over𝑤𝑅 out of

the loop over 𝑥𝑖 :

let 𝑀𝑐𝑐,𝑝𝑐 =

Σ
𝑥𝑠 ∈dom(𝑺′)

let 𝑤𝑅 =𝑾𝑅 ({s=𝑥𝑠 .s})

{𝑚𝑐,𝑝 = 𝑤𝑅 .𝑣𝑅,𝑚𝑐,𝑐 = 𝑤𝑅 .𝑣
′
𝑅
} ∗

Σ
𝑥𝑖 ∈dom(𝑺′ (𝑥𝑠 ))

𝑺 ′(𝑥𝑠 )(𝑥𝑖 ) ∗
(︁

let 𝑤𝐼 =𝑾𝐼 ({i=𝑥𝑖 .i})

{𝑚𝑐,𝑝 = 𝑤𝐼 .𝑣𝐼 ,𝑚𝑐,𝑐 = 𝑤𝐼 .𝑣
′
𝐼
}
)︁

Data-Layout Synthesis. As the final step, IFAQ chooses the data

layout and generates low-level C++ or Scala code similarly to exist-

ing query compilers [7, 8]. IFAQ makes low-level design decisions,

including choosing the physical data structure for each dictionary.

Physical Data-Structure IFAQ currently supports hash tables, tree-

based, and sorted dictionaries. Each of these data structures show

advantages for different workloads.

4 DEMONSTRATION SCENARIOS

Users can interact with the IFAQ web interface.

REPL. To better familiarize users with the syntax and semantics of

IFAQ, we provide an interactive read-eval-print loop (REPL). Sev-

eral sample IFAQ programs (DB queries and LA expressions) are

provided as starting point. The user can modify these programs in

the textbox, and the LATEX representation of that program is shown

Figure 5: IFAQ programs can be authored ad hoc and are

evaluated in an interactive read-eval-print loop (REPL) in

the web browser.

(using the MathJax library). Furthermore, as the IFAQ framework is

implemented in Scala, the program is parsed, type-checked, and in-

terpreted in the web-browser thanks to Scala.JS. Finally, the output

result of interpreting the program is shown to the user (Figure 5).

SQL and LA to IFAQ. We showcase the expressive power of IFAQ

for database and linear algebra workloads by demonstrating the

translation of a handful of SQL queries (Figure 2) and simple linear

algebra expressions such as vector and matrix operations.

Optimizations. The multi-layer optimizations of IFAQ are demon-

strated using a web interface (Figure 3). These optimizations are

presented on IFAQ expressions for the feature extraction query

and the gradient descent optimization for training factorization ma-

chines. To avoid the clutter, we demonstrate the linear components

of this model only, which is the same as linear regression. The web

interface shows the IFAQ expression before and after applying each

optimization. As optimizations require additional dataset informa-

tion (e.g., variable ordering [9]), we only show these optimizations

for the dataset used in Section 2.

The web interface uses code provenance across transformations.

When a user hovers over a snippet of code before the optimization,

the corresponding code snippet after applying the optimization is

highlighted. Similarly, users can interact with the web interface for

SQL and LA translations.

Code Generation. The users can select different data-layout syn-

thesis options, and inspect the generated C++ code (Figure 4). We

use the predefined IFAQ programs of training factorization ma-

chines and linear regression models over relational data. We con-

sider two real-world datasets used in retail forecasting scenarios: 1)

Favorita [1], a publicly available Kaggle dataset, and 2) Retailer, a

dataset from a commercial retailer [5].

REFERENCES
[1] C. Favorita. Corp. Favorita Grocery Sales Forecasting: Can you accurately predict

sales for a large grocery chain?, October 2017.
[2] Y. Juan, Y. Zhuang, W.-S. Chin, and C.-J. Lin. Field-aware factorization machines

for ctr prediction. In RecSys, pages 43ś50, 2016.
[3] T. Neumann. Efficiently Compiling Efficient Query Plans for Modern Hardware.

PVLDB, 4(9):539ś550, 2011.
[4] S. Rendle. Factorization machines. In ICDM, pages 995ś1000. IEEE, 2010.
[5] M. Schleich, D. Olteanu, M. Abo Khamis, H. Ngo, and X. Nguyen. A layered

aggregate engine for analytics workloads. In SIGMOD, pages 1642ś1659, 2019.
[6] A. Shaikhha, M. Huot, J. Smith, and D. Olteanu. Functional collection program-

ming with semi-ring dictionaries. arXiv preprint arXiv:2103.06376, 2021.
[7] A. Shaikhha, Y. Klonatos, and C. Koch. Building efficient query engines in a

high-level language. TODS, 43(1):1ś45, 2018.
[8] A. Shaikhha, Y. Klonatos, L. Parreaux, L. Brown, M. Dashti, and C. Koch. How to

architect a query compiler. In SIGMOD, pages 1907ś1922, 2016.
[9] A. Shaikhha, M. Schleich, A. Ghita, and D. Olteanu. Multi-layer optimizations

for end-to-end data analytics. In CGO, page 145ś157, 2020.
[10] M. Yurochkin, X. Nguyen, and N. Vasiloglou. Multi-way interacting regression

via factorization machines. In NIPS, pages 2598ś2606, 2017.

2834


