
DatAgent: The Imminent Age of Intelligent Data Assistants
Antonis Mandamadiotis, Stavroula Eleftherakis, Apostolos Glenis

Dimitrios Skoutas, Yannis Stavrakas, Georgia Koutrika
Athena Research Center

Athens, Greece
{antonismand,seleftheraki,aglenis,dskoutas,ys,georgia}@athenarc.gr

ABSTRACT
In this demonstration, we present DatAgent, an intelligent data as-
sistant system that allows users to ask queries in natural language,
and can respond in natural language as well. Moreover, the system
actively guides the user using different types of recommendations
and hints, and learns from user actions. We will demonstrate dif-
ferent exploration scenarios that show how the system and the
user engage in a human-like interaction inspired by the interaction
paradigm of chatbots and virtual assistants.

PVLDB Reference Format:
Antonis Mandamadiotis, Stavroula Eleftherakis, Apostolos Glenis
Dimitrios Skoutas, Yannis Stavrakas, Georgia Koutrika. DatAgent: The
Imminent Age of Intelligent Data Assistants. PVLDB, 14(12): 2815 - 2818,
2021.
doi:10.14778/3476311.3476352

1 INTRODUCTION
For many, data is considered the 21𝑠𝑡 century’s most valuable com-
modity. Analysts exploring data sets for insight, scientists looking
for patterns, and consumers looking for information are just a few
examples of user groups that need to dig into data. At the same
time, data querying is often a non-trivial and time-consuming pro-
cess due to users’ unfamiliarity with the database contents as well
as with query languages such as SQL. Data exploration tools are
falling behind in bridging the gap between data and users, making
data exploration intended only for the few.

Recent years have witnessed the rise of human-like interaction
tools, i.e., chatbots and virtual assistants. Chatbots are automated
programs that interact with humans via textual or auditory means.
They are typically programmed to reply to a limited set of questions
or statements. A virtual assistant is a digital software-based agent
that, similarly to a personal human assistant, assists users in daily
activities like setting clock alarms, scheduling an appointment, and
so on. Following the trend for human-like interaction, the need for
human-like data exploration has naturally emerged. A first wave of
change has been brought by natural language interfaces to data
(such as industrial ThoughtSpot [9] as well as academic Precis [8],
NaLIR [5], and HydraNet [6]) that enable users to query data using
natural language instead of SQL. Recent efforts include Amazon

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 12 ISSN 2150-8097.
doi:10.14778/3476311.3476352

QuickSight Q1, DataChat2 and Google BigQuery Data QnA3. The
latter is based on Analyza [1] and returns an English interpretation
and the SQL query with the answer for a user NL query.

Inspired by chatbots and virtual assistants, we envision a new
generation of human-like data exploration tools, called intelligent
data assistants. An Intelligent Data Assistant:
(a) converses with the user in a more natural bilateral interaction,
(b) actively guides the user through recommendations,
(c) keeps track of the context and can respond and adapt accordingly,
(d) constantly learns and improves its behavior.

In this demonstration, we present DatAgent, our intelligent data
assistant system. DatAgent allows users to ask queries in natural
language, can talk back in natural language as well, provides differ-
ent types of recommendations at various steps taking into account
the current context, and learns from user actions. For enabling
natural language queries, we are currently leveraging NaLIR [5].

Challenges. In DatAgent, we are addressing the following chal-
lenges: (a) how to enable the system to talk back in natural lan-
guage, (b) how to enable active guidance (c) how to determine
which actions are relevant given the current exploration context.
Furthermore, at the user interface, the challenge is to come up with
a design that empowers human-like interactions, departing from
the classical form-based interfaces or dashboards.

Contributions. DatAgent is the first intelligent data assistant.
It combines technologies at the intersection of data management,
natural language processing (natural language queries and nat-
ural language generation), machine learning, query processing,
and probability theory (multi-armed bandits). It contributes novel
technology for natural language explanations as well as novel and
diverse query recommendations based on data analysis and user feed-
back. Finally, it comes with an intuitive user interface that enables a
conversational interaction with the user.

Demonstration. We will demonstrate different exploration sce-
narios that show how the system and the user engage in a human-
like way to find the data the user is looking for. We will use two real-
life data sets: (a) CORDIS4 containing information about projects
funded by the European Union under the Horizon 2020 framework
programme, and (b) SDSS5 containing astrophysics data.

2 SYSTEM OVERVIEW
To enable users to ask queries in natural language, we are currently
employing NaLIR [5]. NaLIR parses a NL query using the Stanford

1https://aws.amazon.com/quicksight/q/
2https://datachat.ai
3https://cloud.google.com/blog/products/data-analytics/introducing-data-qna
4https://data.europa.eu/euodp/en/data/dataset/cordisH2020projects
5http://skyserver.sdss.org/dr16/en/home.aspx

2815

https://doi.org/10.14778/3476311.3476352
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3476311.3476352
https://aws.amazon.com/quicksight/q/
https://datachat.ai
https://cloud.google.com/blog/products/data-analytics/introducing-data-qna
https://data.europa.eu/euodp/en/data/dataset/cordisH2020projects
http://skyserver.sdss.org/dr16/en/home.aspx


parser to understand its grammatical structure andmaps the various
query parts to database elements and SQL query elements.

To enable the system to talk back, we build on our work called
Logos [4], which allows generating NL explanations for SQL queries.
DatAgent’s explanation capabilities are considerably improved in
two directions: query coverage and translation quality. We give an
overview of the core concepts and functionality and explain our
novel extensions in Section 2.1.

Providing guidance to the user is a challenging problem. What
type of guidance could work is shaped by the exploration con-
text: the user, the exploration goal, the domain, the user actions.
Recognizing this, we are equipping the system with different rec-
ommendation capabilities as described in Sections 2.2 and 2.3.

2.1 Natural Language Explanations
Database and querymodeling. Logos offers textual explanations
of SQL queries using a directed graph model, the database graph, de-
scribing the underlying database. The database graph captures the
relationships between the database relations and attributes (nodes
of the graph). Its edges are divided into three types: (a) member-
ship edges (attributes to relations) represent attribute projections
in queries, (b) selection edges (relations to attributes) represent
attributes in predicates, and (c) join edges (attribute to attribute)
represent joins. For a given query, Logos detects the part of the
database graph to which the query refers to, and (if necessary) it
enriches it with additional nodes (e.g., for functions) and edges
(e.g., for group-by’s) in order to capture the query meaning. The
produced graph is called query graph.

Templates and labels. Natural language explanations are cre-
ated by traversing the query graph accompanied with a template
mechanism [7]. The template mechanism uses labels provided ei-
ther by the database designer or by the system itself to annotate
the query graph. Those created by the designer are stored in special
tables in the database called designer tables. Template labels are
either node- or path-related. A template label 𝑙 (𝑢) or 𝑙 ((𝑢, 𝑣)) is
assigned to a node 𝑢 or a path (𝑢, 𝑣), respectively. For instance, join
template labels have the form 𝑙 ((𝑢, 𝑣)) = 𝑙 (𝑢) + 𝑙 (𝑢, 𝑣) + 𝑙 (𝑣), where
the default label 𝑙 (𝑢, 𝑣) by the system is “associated with”. However,
one may want to change it for a specific pair of tables. For example,
for the (people, projects) pair of relations in CORDIS, one could
specify that their connecting label is “principal investigators of”.

Novel extensions. Compared to the earlier Logos, our novel ex-
tensions in DatAgent are: (a) grammar-related ones (query parsing
and analysis) to cover more query types, and (b) translation-related
ones to improve the quality of NL explanations.

In terms of the first category, parser changes have been made for
the system to understand (lexical analysis) and also analyze (syn-
tactic analysis) queries containing SELECT top, LIMIT, (NOT) IN,
and (NOT) LIKE clauses. The parser was further developed in order
to generate query-graph parts corresponding to queries with the
aforementioned clauses.

Translation-related extensions include the ability of translating
lists of values, disjoint queries, the COUNT(*) function form, as
well as that of translating all of the above mentioned new clauses.
Moreover, a mini dictionary has been developed providing the
translation process with the plural form of all the attributes and

relations. Lastly, bridging tables are excluded from the translation
procedure leading to more natural translations.

To depict some of the new capabilities, consider the SQL query:
SELECT COUNT(p.title), t.title FROM topics t, project_topics pt, projects p
WHERE t.code = pt.topic AND pt.project = p.unics_id GROUP BY t.title;
/* DatAgent explanation */
Find the titles of topics and the number of projects on these topics
grouped by the titles of topics.
/* Logos explanation */
Create groups according to the title of topics. Find the number of projects
and the title of topics associated with project topics associated with
the projects.
In DatAgent’s explanation, the "title" attribute is in plural, the

bridging table "project_topics" is excluded from the translation, and
the translation of the GROUP BY clause is blended in the explanation.

2.2 Query Completion Recommendations
The user can start with a query and get recommendations on how
to refine the query. Essentially, DatAgent offers recommendations
on how to augment the query by adding/altering its WHERE clause,
each one focusing on some part of the results of the initial query.
The user can choose a recommendation and repeat this process
until reaching the desired data. In this way, users can progressively
zoom in on a part of the data that interests them.

Query recommendations are generated by leveraging attribute
correlations and clusters in the data. This approach is based on
the observation that people better understand patterns in low-
dimensional spaces, and offers recommendations from the data
perspective that require no query logs. We integrate our work
called PyExplore [2]. Recommendations are generated as follows.

Finding interesting attributes. Correlations highlight rela-
tionships between attributes of the data set. For example, the month-
of-the-year is correlated with the average daily temperature. We
compute the correlation of each pair of attributes in the query re-
sults. We use Pearson correlation for comparison between numerical
attributes, Cramer’s V 6 for categorical ones, and correlation ratio
for categorical-numerical. To make all correlation metrics in the
same range, i.e., [0, 1], we take the absolute value of Pearson Cor-
relation. Then, the inverse of the absolute value of the correlation
matrix is used as a distance matrix, which is given as input to a
clustering algorithm that creates clusters of correlated attributes.
In DatAgent, we use hierarchical clustering with complete linkage 7,
which takes as input the maximum number of attributes per cluster
and decides the number of clusters accordingly.

Generating top-k queries. For each subset of correlated at-
tributes, the initial query results are clustered using the values of
the attributes in the subset. To handle categorical data efficiently,
instead of encoding categorical values as dummy variables, we
use 𝑘-modes as extended in [3], which allows clustering objects
described by mixed numeric and categorical attributes. The param-
eter 𝑘 , i.e., the number of clusters, can be specified by the user. We
opt for a small number so that few queries will be generated.

6Harald Cramér. 1999. Mathematical methods of statistics. Vol. 43. Princeton University
Press.
7Mahamed Omran, Andries Engelbrecht, and Ayed Salman. 2007. An overview of
clustering methods. Intelligent Data Analysis. 11. 583-605. 10.3233/IDA-2007-11602.

2816



Then, for each subset, the resulting cluster labels are fed into
a decision tree classifier to produce the split points of the data.
The resulting split points are used to create the recommended SQL
queries. This is done by traversing the decision tree from the leaves
up to the root, and for each path from the starting leaf to the root,
the conditions of the WHERE clause to be added in the original query
are built. These conditions correspond to the cluster boundaries as
described by the path in the decision tree.

2.3 Identifier Recommendations
In order to assist users in the query formulation process, DatA-
gent provides identifier recommendations (relations and attributes)
leveraging a multi-armed bandit approach. The multi-armed bandit
problem is a classic reinforcement learning problem where given
a fixed number of actions, the algorithm must choose the optimal
ones in a way that the expected gain is maximized. Each action has
its own probability distribution of success, which the algorithm tries
to estimate using its strategy, by selecting each time an action and
receiving a reward. The main problem that the algorithm is trying
to solve is the dilemma of exploiting the current best known action
or exploring other actions to gain more information. In machine
learning, this trade-off is known as the exploration vs exploita-
tion dilemma. Bandit algorithms do not require any training data,
allowing for continuous learning, making them very popular for
recommendation problems.

Multi-armed bandit algorithm. The problem of identifier rec-
ommendation can be modeled as a multi-armed bandit problem,
which is a novel approach to SQL query recommendations. The bandit
recommends a list of identifiers from a pool of candidates, receives
a reward that depicts the user’s satisfaction and updates its strategy
based on the observed rewards. The goal is to maximize the total
reward by choosing the most optimal identifiers, balancing between
exploration and exploitation. We focus on SPJ (select-project-join)
queries and recommend tables and columns. However, our algo-
rithm can be extended to any SQL query.We use one bandit instance
for each clause that we need recommendations for. This divides
our problem into smaller sub-problems. In the current version of
DatAgent, we focus on: (a) table recommendations (for the FROM
clause), and (b) attribute recommendation (for the SELECT clause).
We will see in Section 4 how these nicely complement the query
completion recommendations for building queries.

Generating top-k identifier recommendations. Our system
works in a iterative way, based on the feedback received from the
user. First, the user receives 𝑘 table recommendations, and selects
one or more tables from the recommendations or types the desired
tables manually. Then, the user receives 𝑘 attribute recommenda-
tions for the previously selected tables. The user choices are sent
to the system as feedback for the reward of each bandit.

The algorithm generating the recommendations is the UCB al-
gorithm (Upper Confidence Bound), which follows the principle of
optimism in the face of uncertainty. It uses the average perceived
reward of the identifiers, as well as a confidence interval, so that
uncertainty is also taken into account when choosing an action.
The UCB algorithm selects the items that maximize the follow-

ing function: 𝑞𝑎 +
√︂

𝑐 𝑙𝑛 (𝑡 )
𝑛𝑎

, where 𝑡 is the current timestamp, 𝑛𝑎
is the number of times arm (identifier) 𝑎 was selected, and 𝑞𝑎 is

the average reward received for this arm. The first term 𝑞𝑎 favors

exploitation, while the second term
√︂

𝑐 𝑙𝑛 (𝑡 )
𝑛𝑎

favors exploration
driven by uncertainty. Instead of choosing only the best action at a
time, we return the top-𝑘 ones, i.e., the ones with the highest UCB
values. The reward for the algorithm is a vector 𝑟�⃗� ∈ [0, 1]𝑘 , with
the 𝑖𝑡ℎ value indicating whether the user selected the 𝑖𝑡ℎ identifier
from the recommendation list. This reward is observed once the
user has finished choosing the most interesting identifiers.

3 USER INTERFACE
The challenge of the user interface is to come up with a design and
interaction that empowers human-like interactions. In that vein,
we designed our data assistant as follows:

The main user interface (Figure 1) resembles a chat layout, where
the user can type a (natural language or SQL) query in the input box
and send it to DatAgent 1○. The user can switch the target database
of a query using the select box located next to the input box 2○.
The interaction history is maintained and displayed to the user. The
user inputs as well as the responses received from DatAgent are
shown in the upper part of the interface in the form of a dialog
3○. The current state of the dialog between the user and DatAgent
defines a context which allows us to provide context-dependent
actions at each step. In that manner, we help the user interact more
effortlessly with our system. These hints are displayed above the
user input as blue buttons 4○. Observe Figures 1, 2, and 4 for some
examples of context-sensitive hints.

Figure 1: Main User Interface

Our system’s responses are not in simple text format, instead
they may contain SQL code or tabular data. For this reason, we
specifically designed three useful components:
• A code block that contains SQL queries with their equivalent

NL explanation. For each code block, the user has three options:
(a) to execute the query, (b) to edit and execute the new query,
and (c) to ask for query recommendations (Figure 2).

• A table containing the results for an executed query (Figure 2).
• An interactive query building tool where recommendations are

shown in the form of a button or a menu, and the corresponding
query is automatically built in the code block (Figure 4).

4 DEMONSTRATION
We will use two databases, CORDIS and SDSS, and we will demon-
strate different use cases and show how the user can explore the
data in each case with the help of DatAgent. Below, we describe
some demonstration examples. DatAgent is highly interactive and

2817



Figure 2: NL-to-SQL, SQL-to-NL, and results

intuitive and naturally lends itself for use by the conference partic-
ipants that can try out its capabilities for exploring the datasets.

Demo Example 1: (NL to SQL - SQL to NL) Let us assume that we
have a user that is not an SQL expert. The user wants to query the
CORDIS database in order to find out which projects started before
2018. Therefore, as seen in Figure 2, she asks the DatAgent to "Find
projects that started before 2018" (step 1). The agent returns the
SQL interpretation that matches best the given NL query, along
with its corresponding NL explanation (step 2). Assuming that the
user is satisfied with the given query, she can choose to execute the
query and view the results (step 3). In case the user already knows
the exact SQL query which matches her criteria, all steps remain
the same except from step 1, where she would directly give the SQL
query instead of the NL one.

Demo Example 2: (Find similar queries) Continuing with the user
of Example 1, we now assume that the user is not satisfied with
the currently derived query (Figure 3). To combat this challenge,
DatAgent offers useful recommendations that augment the query
by adding/altering its WHERE clause. In the current example, the
user has clicked on the SQL query to open the menu and choose
the "Recommend" option (as shown in Figure 2). The user receives
three query recommendations from the system.

Demo Example 3: (Query Builder) Let us now consider the scenario
of an SQL user that has no knowledge about the underlying database
schema (or that lacks the experience to derive a starter query),
having trouble formulating a query. For this case, our system is able
to provide complete step-wise query building assistance. The two
recommendation components for identifier and query completion
recommendations work complementary for this process.

As seen in the left screenshot of Figure 4, the user first receives
table recommendations and selects the most interesting ones. Once
the user selects a recommended table, only the joinable tables will
be available for selection. Selecting a table will also change the SQL
query in the code block to reflect the user’s choices. In the second
step, the user has decided to retrieve column recommendations for
the selected tables. The recommended columns are only from the
previously selected tables. Additionally, the user can manually add
any table and attribute by typing the name of the desired identifier.

Figure 3: Query Recommendations

Figure 4: SQL Builder

Finally, the user may choose to get suggested WHERE conditions.
This can be seen in the right screenshot of Figure 4.

REFERENCES
[1] Kedar Dhamdhere, Kevin S. McCurley, Ralfi Nahmias, Mukund Sundararajan, and

Qiqi Yan. 2017. Analyza: Exploring Data with Conversation. ACM.
[2] Apostolos Glenis and Georgia Koutrika. 2021. PyExplore: Query Recommendations

for Data Exploration without Query Logs. In SIGMOD Conference 2021. ACM.
[3] Zhexue Huang. 1998. Extensions to the k-means algorithm for clustering large

data sets with categorical values. Data mining and knowledge discovery 2, 3 (1998),
283–304.

[4] Andreas Kokkalis, Panagiotis Vagenas, Alexandros Zervakis, Alkis Simitsis, Geor-
gia Koutrika, and Yannis Ioannidis. 2012. Logos: a system for translating queries
into narratives. In ACM SIGMOD, K. Selçuk Candan, Yi Chen, Richard T. Snodgrass,
Luis Gravano, and Ariel Fuxman (Eds.). ACM, 673–676.

[5] Fei Li and Hosagrahar V. Jagadish. 2014. Constructing an Interactive Natural
Language Interface for Relational Databases. PVLDB 8, 1 (Sept. 2014), 73–84.

[6] Qin Lyu, Kaushik Chakrabarti, Shobhit Hathi, Souvik Kundu, Jianwen
Zhang, and Zheng Chen. 2020. Hybrid Ranking Network for Text-to-SQL.
arXiv:2008.04759 [cs.CL]

[7] Alkis Simitsis, Georgia Koutrika, Yannis Alexandrakis, and Yannis Ioannidis. 2008.
Synthesizing structured text from logical database subsets. In 11th international
conference on Extending Database Technology. 428–439.

[8] Alkis Simitsis, Georgia Koutrika, and Yannis Ioannidis. 2008. Précis: from unstruc-
tured keywords as queries to structured databases as answers. The VLDB Journal
17, 1 (2008), 117–149.

[9] ThoughtSpot 2021. Search & AI-Driven Analytics Platform.
https://www.thoughtspot.com/product.

2818

https://arxiv.org/abs/2008.04759
https://www.thoughtspot.com/product

