
RealGraphWeb: A Graph Analysis Platform on the Web
Myung-Hwan Jang

Department of Computer Science
Hanyang University
Seoul, South Korea

sugichiin@hanyang.ac.kr

Yong-Yeon Jo
Department of Computer Science

Hanyang University
Seoul, South Korea

jyy0430@hanyang.ac.kr

Sang-Wook Kim∗

Department of Computer Science
Hanyang University
Seoul, South Korea

wook@hanyang.ac.kr

ABSTRACT
In this demo, we present RealGraphWeb, a web-based platform that
provides various kinds of graph analysis services. RealGraphWeb

is based on RealGraph, a graph engine that addresses the problem
of performance degradation in processing real-world big graphs,
achieving great performance improvement up to 44 times over
existing state-of-the-art graph engines. RealGraphWeb runs on a
single machine with a web-based interface, thereby allowing users
to easily and conveniently enjoy graph analysis services and per-
form various graph algorithms anywhere on the web. In this demo,
we present how a user can analyze a graph on RealGraphWeb in
three steps and get the analysis result quickly via a graphical user
interface.

PVLDB Reference Format:
Myung-Hwan Jang, Yong-Yeon Jo, and Sang-Wook Kim. RealGraphWeb: A
Graph Analysis Platform on the Web. PVLDB, 14(12): 2775-2778, 2021.
doi:10.14778/3476311.3476342

1 INTRODUCTION
A graph is a data structure widely used to model relationships
among objects in various domains. Many algorithms are used to
analyze graphs and discover interesting patterns from them such as
node ranking, community detection, and structural analysis [10, 13,
15–17]. The size of real-world graphs are increasing rapidly, which
makes an important demand to efficiently analyze such big graphs.

To help applications in analyzing large-scale graphs efficiently
and conveniently, various single-machine based graph engines have
been developed [4, 6, 8]. However, there are still some difficulties
for researchers to easily analyze graphs. From the naive user’s point
of view (i.e., a user with limited programming skills), developing an
application and its graphical interface based on the graph engine is
a difficult and time-consuming task.

To address this issue, we developed RealGraphWeb, a web-based
platform to provide convenient graph analysis services. It runs on
a single machine with an interactive web-based interface, thereby
allowing users to enjoy various graph analysis services anywhere
on the web. A user simply uploads her graph to a server and chooses
a graph algorithm along with its required parameters. Then, the
server performs the selected algorithm on the graph and represents

∗Corresponding author.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 12 ISSN 2150-8097.
doi:10.14778/3476311.3476342

the analysis result graphically in different forms such as tables,
charts, or graphs.

RealGraphWeb is based on our RealGraph [8], a single-machine
based graph engine employed for efficient graph analysis. Real-
Graph addresses the performance degradation problem when pro-
cessing real-world big graphs, thereby achieving significantly higher
speed in compare to those of the state-of-the-art engines such as
GraphChi, X-Stream, FlashGraph, and TurboGraph. The graph al-
gorithms already implemented in RealGraph allow users to quickly
analyze their graphs without programming them.

In this demo, we will present two main scenarios. The first one
is for a user to perform graph analysis easily and simply by clicking
some options through the web-based graphical user interface (GUI)
implemented in RealGraphWeb. The second one is to make the user
feel the performance improvement in the graph analysis by turning
on/off our optimization options employed in RealGraph.

There could be some users who want to see her analysis re-
sult visually via a graphical interface or some other users who
just want to get the analysis result only in a given data format
quickly without visualization. To make both demands satisfied, this
demo will also show simple and quick graph analysis by using the
command-line interface (CLI), in addition to the GUI implemented
in RealGraphWeb.

The organization of this paper is as follows. Section 2 briefly de-
scribes RealGraph, a single-machine based graph engine employed
for efficient graph analysis in RealGraphWeb. Section 3 illustrates
the overall demonstration scenario with RealGraphWeb. Finally,
Section 4 summarizes and concludes this paper.

2 OVERVIEW OF REALGRAPH
2.1 Architecture
RealGraph [8] is a single-machine based graph engine to efficiently
analyze real-world graphs. RealGraph, illustrated in Figure 1, con-
sists of the four following layers: storage management, buffer man-
agement, object management, and thread management. The three
bottom layers basically follow the design concepts adopted in data-
base storage systems such as WiSS [3], EXODUS [2], and Shore [1].
The storage space is partitioned into blocks that are aligned with
I/O units; a block contains a number of objects, each of which
represents a node and its adjacency list (i.e., a node-id with its ad-
jacent node-ids). If an object cannot fit a given block, it could be
stored across multiple blocks. A thread management layer manages
a pool of threads and accesses/processes graph data using thread
pooling. It also manages attribute data that stores intermediate and
final results of a graph algorithm, and two indicators that store the
information about the nodes to be processed at the current/next
iterations.

2775

https://doi.org/10.14778/3476311.3476342
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3476311.3476342


Table 1: Performance comparison of RealGraph with various graph engines on Yahoo and Twitter data (Times in sec.) [8]

vs. single-machine
(on Yahoo)

Graph algorithms System environment
BFS WCC PageRank Machine #Cores Mem. Size Storage

RealGraph 19 385 269

Single PC with Intel i7 4 16G SSD

FlashGraph 122 O.O.M O.O.M
TurboGraph 843 2,709 441
GridGraph 12,415 3,673 14,078
GraphChi O.O.T 3,074 O.O.T
X-Stream O.O.T 8,016 O.O.T

vs. distributed-system
(on Twitter)

Graph algorithms System environment
BFS WCC PageRank Machine #Cores Mem. Size Storage

RealGraph 14 34 94 Single PC with Intel i7 4 16G SSD
PowerGraph - - 72 64 Amazon EC2 cc1.4xlarge 8 23G HDD
GraphLab - 244 249 16 Amazon EC2 m2.4xlarge 8 68G HDD
GraphX - 251 419 16 Amazon EC2 m2.4xlarge 8 68G HDD
Giraph - 200 596 16 Amazon EC2 m2.4xlarge 8 68G HDD

2.2 Features and Processing Steps
The important features of RealGraph for providing high perfor-
mance in big graph analysis are as follows:

Hierarchical indicator: RealGraph uses a hierarchical indica-
tor composed of multi-level bit vectors instead of a flat single-level
bit vector. Its lowest-level has a flat bit vector, each bit correspond-
ing to a node. A higher-level consists of a bit vector where each bit
compresses a range of a lower-level. Here, a bit set as 1 implies that
its lower-level range needs scanning; otherwise, the range does not
need scanning. Scanning with this hierarchical indicator starts from
the highest-level (i.e., root) and moves down to a lower-level only if
a bit in its higher-level is set as 1. As a result, most of ranges in the
sparse lowest-level are skipped, avoiding unnecessary scanning.

Block-wise workload allocation: RealGraph uses block-wise
workload allocation where each thread processes a fixed-size block
instead of a variable-size object. While a block hasmultiple objects of
variable sizes, the total size of objects in a block is almost identical.
This idea enables to have uniform distribution of workloads over
threads even when processing a big hub node in a graph.

Efficient data layout: RealGraph stores graphs by considering
data locality [7]. The data accessed together in graph algorithms
are placed in the same or adjacent locations in the storage. This idea
not only reduces the number of accessed blocks but also increases
the degree of sequential accesses of blocks.

RealGraph performs an algorithm on a graph as follows. First,
given some bits set as 1 in the indicator, corresponding to the nodes
in the graph to be processed, RealGraph identifies these nodes from
the indicator in the current iteration. It examines whether each
block containing the nodes is in the buffer. If the block does not exist
in the buffer, then it loads the block from storage to the buffer. Then,
it assigns the nodes in the loaded block to a thread for processing.
Threads perform the functions and update the results by accessing
the adjacency lists of the nodes and set the bits corresponding to
those nodes as 1 in the indicator for the next iteration. This process
is performed iteratively until no more bits set as 1 in the indicator.

2.3 Performance
Table 1 shows the performance comparison of RealGraph with
single-machine based graph engines on the biggest Yahoo1 dataset
having 1,413M nodes and 6.6B edges (top-half) and distributed-
system based graph engines on the Twitter2 dataset having 61M
nodes and 1.4B edges (bottom-half). In this table, "O.O.M" denotes
the out-of-memory case; "O.O.T" does the case when the experiment
does not finish in 24 hours; "-" does the absence of the experiment in
the corresponding original work. We observe that the performance
of RealGraph is an order-of-magnitude better than the state-of-the-
art single-machine based graph engines, such as TurboGraph [6]
and GridGraph [18], and does not cause out-of-memory cases like
FlashGraph [4]. Also, RealGraph equipped with low computing
power consistently performs better than distributed-system based
engines such as PowerGraph [5] and GraphLab [11].

3 DEMONSTRATION OF REALGRAPHWEB

RealGraphWeb is a web-based platform that provides an interactive
web-based interface, allowing users to access various graph analysis
services by performing graph algorithms easily and conveniently
anywhere on the web. Graph analysis services using RealGraphWeb

are performed in three steps: graph upload, algorithm execution,
and result visualization & download steps (Refer to Figure 1). In this
section, we present how a user analyzes a graph on RealGraphWeb

via these three steps.

3.1 Graph Upload
A user uploads her target graph to a RealGraphWeb server in the
graph upload step. RealGraphWeb provides the user with a sample
input graph; this allows the user to upload her own graph in the
correct format. Then, it converts the received graph to its own
structure and stores it in the storage of RealGraph.

1Yahoo: https://webscope.sandbox.yahoo.com
2Twitter: https://snap.stanford.edu/data/twitter-2010.html

2776

https://webscope.sandbox.yahoo.com
https://snap.stanford.edu/data/twitter-2010.html


S
um

m
ar

y

E
xe

cu
ti

on

P
ar

am
et

er
 li

st

V
al

ue
s

A
lg

or
it

hm
 li

st

S
el

ec
ti

on

Results

RealGraph

Visualization

Conversion

Binary CSV ARFF

Algorithmexecution

G
ra

ph
 d

at
a

Graph
upload

F
or

m
at

 li
st

F
or

m
at

 ty
pe

Im
ag

e

Result
visualization & download

G
ra

ph
 li

st

S
el

ec
ti

on

Disk

Memory

Graph
storage

(c)(b)(a) (d)

Web-based GUI

Client

Buffer

Graph Data

Buffer Index
IO

IndicatorAttribute

Thread Pool 
<Main, Worker>

Object Index

Table Chart Graph

Current Vector

Next Vector

Vector

Vector

F
il

e

Figure 1: An overview of RealGraphWeb.

3.2 Algorithm Execution
Figures 1-(a)∼(d) show the substeps of an algorithm execution step.
The server provides a list of graphs already stored in RealGraphWeb,
among which the user selects her target for analysis (Figure 1-(a)).
The user sees the characteristics of the graph, such as numbers of
nodes and edges. The server provides various graph algorithms
commonly implemented in many graph engines, such as Outde-
gree/Indegree distribution, breadth first search (BFS) [14], PageR-
ank [13], and weakly connected component (WCC) [15]. It also
provides additional graph algorithms, such as betweenness central-
ity (BC) [12], hypertext induced topic selection (HITS) [9], random
walk with restart (RWR) [17], and community detection (CD) [10],
among which a user selects one for her analysis (Figure 1-(b)). Each
algorithm has its own parameters: for instance, BFS requires the
starting node while PageRank does the number of iterations. A user
sets parameters as the values she wants (Figure 1-(c)). Then, she
requests the execution of the algorithm on the graph (Figure 1-(d)).
The server stores the result and the elapsed time of algorithm ex-
ecution in a binary file and prints them in text format after the
execution is completed.

3.3 Result Visualization & Download
The server provides visualization and download functions in a result
visualization & download step. It visualizes the execution result in
a binary file in terms of a table, a chart, or a graph by using the
libraries such as Matplotlib, Echarts, and Shingle.js. The server
allows the user to download the image of a visualized result and
also the whole binary file that contains the execution result. It
provides an option to transform a binary file to a CSV file or an

ARFF file for compatibility because some tools such as Matlab, R,
and Weka require those formats.

Figure 2 shows some examples of visualizing the results of differ-
ent graph algorithms. For example, in the case of degree distribution,
the frequencies of nodes having different degrees are presented in a
chart (Figure 2-(a)). In the case of PageRank, it visualizes the graph
in such a way that the size of a node is proportional to its PageRank
score and the nodes with top-N PageRank scores are highlighted
with different colors (Figure 2-(b)); in the case of HITS, where there
exist two kinds of scores (e.g., hub score and authority score), graph
visualization is similar to the previous PageRank case, but having
the two kinds of result graphs for the two scores (Figure 2-(c));
in the case of CD, it visualizes the graph in such a way that the
nodes belonging to the same community have the same color and
the nodes belonging to different communities have different colors
(Figure 2-(d)).

3.4 Demo Scenarios
We will present two main scenarios in this demo. The first scenario
will show how a naive user performs graph analysis just by clicking
some options through the web-based GUI of RealGraphWeb. A user
will upload graphs, analyze them, and visualize/download results,
simply following the three steps provided by RealGraphWeb. The
second scenario will make the user feel efficiency of RealGraphWeb;
specifically, during the graph analysis, she will realize the effect
of performance improvement obtained by the optimization tech-
niques employed in RealGraph through turning on/off the provided
optimization options.

In addition to the main scenarios, users will enjoy performing
various algorithms on different graphs provided in RealGraphWeb.

2777



(a) Degree distribution (b) PageRank (c) HITS (hub scores) (d) Community detection

Figure 2: Visualization examples.

(a) Graphical user interface (b) Command-line interface

Figure 3: RealGraphWeb interface.

Sometimes, users just want to get the analysis result quickly with-
out visualization because the visualization takes very long time
in the case of analyzing big graphs. For this case, we will use a
simple interactive command-line interface (CLI) implemented in
RealGraphWeb. This CLI allows users to perform fast graph anal-
ysis and produce the result in various data formats supported by
RealGraphWeb. Figure 3 shows the GUI and CLI implemented in
RealGraphWeb.

4 CONCLUSIONS
In this demo, we presented RealGraphWeb, a web-based platform
that allows a user to utilize various graph analysis services without
requiring programming. With two demo scenarios, we showed that
the web-based GUI of RealGraphWeb makes it easy and convenient
for users to experience those services anywhere and anytime on
the web and that the graph analysis performed in RealGraphWeb is
very efficient, thanks to the optimization techniques employed in
RealGraph, our single-machine based graph engine.

ACKNOWLEDGMENTS
This work was supported by Institute of Information & Communi-
cations Technology Planning & Evaluation (IITP) and the National
Research Foundation of Korea (NRF) grants funded by the Korea
government (Ministry of Science and ICT, MSIT) (No. 2020-0-01373,
No. NRF-2020R1A2B5B03001960, and No. 2018R1A5A7059549), and
supported by Samsung Electronics Co., Ltd (Project No. IO201209-
07876-01).

REFERENCES
[1] Michael J Carey, David J DeWitt, Michael J Franklin, Nancy E Hall, Mark L

McAuliffe, Jeffrey F Naughton, Daniel T Schuh, Marvin H Solomon, CK Tan,
Odysseas G Tsatalos, Seth J White, and Michael J Zwilling. 1994. Shoring up
persistent applications. In Proceedings of the ACM International Conference on
Management of Data. ACM, 383–394.

[2] Michael J Carey, David J DeWitt, Joel E Richardson, and Eugene J Shekita. 1986.
Object and file management in the EXODUS extensible database system. University
of Wisconsin-Madison. Computer Sciences Department.

[3] H-T Chou, David J Dewitt, Randy H Katz, and Anthony C Klug. 1985. Design
and implementation of the Wisconsin storage system. Software: Practice and
Experience 15, 10 (1985), 943–962.

[4] Zheng Da, Disa Mhembere, Randal Burns, Joshua Vogelstein, Carey E Priebe,
and Alexander S Szalay. 2015. FlashGraph: Processing billion-node graphs on an
array of commodity SSDs. In Proceedings of the USENIX International Conference
on File and Storage Technologies. 45–58.

[5] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin. 2012. Powergraph:
Distributed graph-parallel computation on natural graphs. In Proceedings of the
10th USENIX Symposium on Operating Systems Design and Implementation. 17–30.

[6] Wook-Shin Han, Sangyeon Lee, Kyungyeol Park, Jeong-Hoon Lee, Min-Soo Kim,
Jinha Kim, and Hwanjo Yu. 2013. TurboGraph: A fast parallel graph engine han-
dling billion-scale graphs in a single PC. In Proceedings of the ACM International
Conference on Knowledge Discovery and Data Mining. ACM, 77–85.

[7] Yong-Yeon Jo, Jiwon Hong, Myung-Hwan Jang, Jae-Geun Bang, and Sang-Wook
Kim. 2016. Data locality in graph engines: Implications and preliminary experi-
mental results. In Proceedings of the ACM International Conference on Information
and Knowledge Management. ACM, 1885–1888.

[8] Yong-Yeon Jo, Myung-Hwan Jang, Sang-Wook Kim, and Sunju Park. 2019. Re-
alGraph: A graph engine leveraging the power-law distribution of real-world
graphs. In Proceedings of the World Wide Web Conference. ACM, 807–817.

[9] Jon M Kleinberg. 1999. Authoritative sources in a hyperlinked environment. J.
ACM 46, 5 (1999), 604–632.

[10] Xin Liu and Tsuyoshi Murata. 2010. Advanced modularity-specialized label prop-
agation algorithm for detecting communities in networks. Physica A: Statistical
Mechanics and its Applications 389, 7 (2010), 1493–1500.

[11] Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos Guestrin, Aapo Kyrola,
and Joseph M Hellerstein. 2012. Distributed GraphLab: A framework for machine
learning and data mining in the cloud. Proceedings of the Very Large Databases
Endowment 5, 8 (2012), 716–727.

[12] Mark EJ Newman. 2005. A measure of betweenness centrality based on random
walks. Social Networks 27, 1 (2005), 39–54.

[13] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The
PageRank citation ranking: Bringing order to the web. Technical Report. Stanford
InfoLab.

[14] Robert Sedgewick and Kevin Wayne. 2011. Algorithms. Addison-Wesley profes-
sional.

[15] Kenji Suzuki, Isao Horiba, and Noboru Sugie. 2003. Linear-time connected-
component labeling based on sequential local operations. Computer Vision and
Image Understanding 89, 1 (2003), 1–23.

[16] Gábor Takács and Domonkos Tikk. 2012. Alternating least squares for person-
alized ranking. In Proceedings of the ACM Conference on Recommender Systems.
ACM, 83–90.

[17] Hilmi Yildirim and Mukkai S Krishnamoorthy. 2008. A random walk method for
alleviating the sparsity problem in collaborative filtering. In Proceedings of the
ACM Conference on Recommender Systems. ACM, 131–138.

[18] Xiaowei Zhu, Wentao Han, and Wenguang Chen. 2015. Gridgraph: Large-scale
graph processing on a single machine using 2-level hierarchical partitioning. In
USENIX Annual Technical Conference. 375–386.

2778


