Demonstration of Apperception: A Database Management
System for Geospatial Video Data

Yongming Ge* Vanessa Lin* Maureen Daum
University of California, Berkeley University of California, Berkeley University of Washington
yongmg@berkeley.edu valin@berkeley.edu mdaum@cs.washington.edu
Brandon Haynes Alvin Cheung Magdalena Balazinska

Gray Systems Lab, Microsoft
brandon.haynes@microsoft.com

ABSTRACT

Many recent video applications—including traffic monitoring, drone
analytics, autonomous driving, and virtual reality—require piecing
together, combining, and operating over many related video streams.
Despite the massive data volumes involved and the need to jointly
reason (both spatially and temporally) about these videos, current
techniques to store and manipulate such data are often limited to
file systems and simple video processing frameworks that reason
about a single video in isolation.

We present Apperception, a new type of database management
system optimized for geospatial video applications. Apperception
comes with an easy to use data model to reason about multiple
geospatial video data streams, and a programming interface for
developers to collectively reason about the entities observed in
those videos. Our demo will let users write queries over video using
Apperception and retrieve (in real-time) both metadata and rendered
video data. Users can also compare results and observe speedups
achieved by using Apperception.

PVLDB Reference Format:

Yongming Ge, Vanessa Lin, Maureen Daum, Brandon Haynes, Alvin
Cheung, and Magdalena Balazinska. Demonstration of Apperception: A
Database Management System for Geospatial Video Data. PVLDB, 14(12):
2767 - 2770, 2021.

doi:10.14778/3476311.3476340

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://apperception-db.github.io/.

1 INTRODUCTION

Cameras are proliferating throughout our world (e.g., on mobile
devices, city-wide camera networks, drones, and autonomous vehi-
cles), and as a result we are accumulating an ever-increasing amount
of geospatial video data.For users and service providers who oper-
ate on this data, managing and querying it is becoming increasingly
challenging, especially given that existing mechanisms to do so are

* Equal Contributions

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 12 ISSN 2150-8097.
doi:10.14778/3476311.3476340

2767

University of California, Berkeley
akcheung@cs.berkeley.edu

University of Washington
magda@cs.washington.edu

limited to video processing libraries (e.g., FFmpeg [9]) and recent
video database management systems [1, 4, 7] that typically operate
on single video streams.

Querying data from multiple video streams remains a challeng-
ing task as existing systems either operate on each video stream
independently or attempt to operate on multiple videos by trading
off resources and accuracy [8]. For instance, consider building a
3D scene reconstruction application that takes in video streams
that capture the same object from multiple angles. To develop such
an application using existing VDBMSs, users must write code that
manually reads in multiple videos from the VDBMS, selects the
video frames of interest from the various streams, merges frames
using a reconstruction algorithm, and inserts the reconstructed
result back into the VDBMS. Doing so requires developers to un-
derstand how the VDBMS represents video data once loaded into
memory, devise their own data structures to store multiple video
streams, and manually invoke object recognition and reconstruc-
tion algorithms. Furthermore, developers must tediously tune their
data structures and implementation if application performance is
suboptimal, which is likely the case given the many libraries and
frameworks that are involved. Such a development flow is time-
consuming and tedious.

In this paper, we describe the prototype and demonstration of a
new geospatial video DBMS called Apperception. Building on our
earlier vision paper [7], Apperception frees developers from the
need to construct their own multi-video representation and process-
ing algorithms. Apperception takes in videos containing geospatial
information (i.e., when and where they were taken) and organizes
them into a four-dimensional (i.e., spatial and temporal) world. Users
manipulate and query video data stored in Apperception’s worlds
using a fluent Python application programming interface (API), and
Apperception provides results in common video and image formats.

This paper presents a demonstration of Apperception. Our demo
comes with a web interface representing an implementation of
an AMBER Alert application for vehicle tracking (to be described
in Section 2.1). Through this interface, users ingest different video
datasets into Apperception and select a vehicle to locate and op-
tionally specify spatiotemporal constraints. The interface will then
submit the query to Apperception and (i) overlay the located ve-
hicle’s trajectory on a map, and (ii) show video cropped to the
selected object. The key technical contribution of our system and
the focus of this demonstration is the query language that provides
the ability to easily query objects in a multi-camera world.

User Queries Videos Query Results

| . !

Front-end User Interface
_______________ 4" Worlds, Queries — A=
Back-end Query Parser
\L Hybrid Query Plan
Tt TTTTTeTes s m T T e =3
] — !
‘ Query Optimizer :
Sl So—)
J Video Query Plan .
Video Data |:
Legend Store :
9 Query Executor -
i =~ 7 In Develop-

SESe ment

S
Metadata |:
Relational Query Plan Store :

Figure 1: Apperception demo architecture illustrating the
general flow of user queries and video data ingestion.

2 SYSTEM ARCHITECTURE

Apperception ingests multiple geospatial video files and organizes
them into a four-dimensional spatiotemporal world consisting of x,
y, z, and time. A world is the fundamental entity in Apperception.
Each world contains cameras and objects. The cameras contain
videos, which users specify, and objects are extracted from the
video data. Users may query a world for different types of data. First,
they may request objects that appear within the world, for example
objects within a specified 3D volume, visible to a set of cameras, or
at particular times. Second, they may retrieve video data, potentially
filtered by camera, objects, or spatiotemporal constraints. Finally,
they may query metadata associated with the entities in a world (e.g.,
an object’s trajectory; see Fig. 2). The metadata stored to achieve
this purpose consists of world and object metrics that include object
types, trajectories, and bounding polygons.

The architecture of Apperception is shown in Fig. 1. Appercep-
tion’s API is a Python interface that allows users to ingest video
data and query for information of interest in videos or raw data. For
the demonstration, users will interact with a front-end web user
interface. A user initially creates an empty world and populates it
by inserting cameras and video data. Apperception automatically
handles the conversion between video coordinates and its 3D en-
vironment, allowing the user to focus on submitting declarative
queries on objects in the 2D video domain. Apperception stores the
data associated with each world in its metadata store, which is a hy-
brid relational and geographic information system (GIS) store, and
sends video(s) to its video data store, which is a recently-developed
video data store [3, 6]. World and camera metadata are stored as
flat relations. Objects are partitioned into bounding polygons and
trajectories, which are persisted as GIS trajectories. Apperception
currently implements only 3D bounding boxes, but we plan to
support arbitrary convex polygons in the future.

Apperception accepts user queries in the Python user interface.
Queries are expressed in a fluent-like syntax, which allows predi-
cates over cameras and objects (e.g., via filter(...) as shown in
line 8), projections, and aggregates. Queries are composed lazily,
and execution is deferred until explicitly requested by the user.

2768

world = World(name='amber', units='metric')
.camera(position=p, orientation=o, lens=1)
.video('rtp://localhost/video")

world = world.recognize()

volume = Volume(world, ...)

query = world.filter(
lambda obj: obj.object_type =
obj.location in volume and
timestamp in obj.times)

trajectories = query.select(lambda obj: obj.trajectory)

.execute()

car' and

Figure 2: Code to retrieve car trajectories at an intersection.

Given a query, Apperception’s query parser (QP) constructs a
query plan for video data or metadata store. The query optimizer
(QO) then pushes down operations to the Video Data Store.

Finally, Apperception’s query executor (QE) takes video and
metadata queries and executes them on its metadata and video
data store (see subsection 2.2 for further detail). The data stores
return query output as either metadata types, like trajectories and
geometries, or videos, depending on what the user specified in their
original Apperception query.

2.1 Usage Scenario

In this section we demonstrate a scenario where an AMBER Alert [5]
has occurred and an analyst seeks to retrieve the trajectory of cars
which appeared in an intersection at a certain time range. In Ap-
perception, the query to retrieve these results is shown in Fig. 2. As
mentioned previously, the query is constructed lazily, and execution
is explicit, as shown in line 11.

Building the World: A user first defines a new world, as shown
on line 1. Next, the user attaches a camera to the world at a given
position (p) and orientation (0). A lens (1) is used to transform
between 2D camera and 3D world coordinates; if not specified, a
default transformation model, the pinhole camera model, is applied.

Users next associate one or more videos with each camera (line 3).
While videos may be prerecorded on disk or (potentially live)
streamed, our prototype currently supports only persisted video.

Having populated the world with video data, a user samples
objects every few frames within the world (line 4). Recognized
objects are incorporated into the 4D world at the places and times
they are detected. Users may extend Apperception to support their
preferred detection model or use a built-in model. Our prototype
currently leverages YOLOvV4 [2] as its default model, and we plan
to incorporate support for other models.

Querying: To locate the cars that appear in the intersection in
question, a user applies a predicate filtering on the desired object
type (‘car’ in this example; see line 7) and the spatial and temporal
region of interest (respectively volume at line 8 and timestamp in
line 9 of Fig. 2). As mentioned, queries are accumulated lazily, and
additional criteria may be specified prior to execution.

Like similar fluent frameworks (e.g., Pandas), the return type
of each call is the associated world instance, allowing worlds (and
queries over worlds) to be reused as needed.

Retrieving Results: Query results could include world objects,
object metadata, or video data and or a combination of data types.
The result shown in Fig. 2 is of metadata type and consists of a

World(“amber”, ...)

Video Context Metadata Context

(Camera(“‘cam_1"...)) (Project) (Scan J Filter
(Video(“rtp://...")) (trajectory) (/1 o.o.loc € vo\ume)) (/l 0. o.type = "car"))
: (Recognize("voL0")) 5(GIs.get_coords) (_ Metadata) ((Aotimee o.times))

4 ¥

Video Context Metadata Context
Executor Executor

SELECT GIS.get_coords(md.trajectory)
FROM metadata AS md
WHERE metadata.type = “car”

Sl ?:JJJ,?E?T?T"'WNZSI%ZE%
VALUES (“amber”, ..);
3 70 Camera(..) AND overlap(md.location, volume)
ES(“cam_1”, ..); AND md.time = timestamp;
— objects INTO Metadata | <
Store __Store
Figure 3: The top half structures the output from the Query
Parser of the example query from Fig. 2. The bottom half
visualizes the pipeline of the Query Executor.
sequence of trajectories of automobiles within the specified inter-
section at the specified time. Apperception surfaces these results as
Python data types (e.g., NumPy arrays) to represent each trajectory.
This approach allows for easy interoperation with other Python
frameworks (e.g., a user might visualize trajectories on a map; see
section 3). If a user is also interested in the actual video frames, she
could issue a subsequent query, e.g., query.video.execute() to

view complete frames or query . select (lambda obj: obj.video)
for video cropped to the selected objects.

2.2 Implementation

Query Parser. The query parser (QP) parses world definitions and
queries into a plan consisting of a video context and metadata context.
The QP emulates an object-oriented programming setting in the
context of a world, where the function calls are translated to SQL
queries in the back-end. By abstracting away the data retrieval SQL
syntax, the user can easily conceptualize objects as entities of the
world, through calling easy-to-follow functions, like recognize()
and filter().

The top half of Fig. 3 displays the query plan that corresponds to
the program in Fig. 2. When parsing world- and video-related data
modification statements (e.g., world creation in line 1), the QP adds
the relevant details into the plan’s video context. The process is
identical for camera creation, video ingestion, and object recognition.

For world queries (e.g., lines 6—10), the QP creates a filter operator
for the predicate of the filter call in line 6. It also identifies the
table (metadata table in this case) on which the filter’s predicate
acts on. The QP also maps properties and methods in the Python
code to their GIS equivalent (e.g., line 10 maps trajectory to the
GIS operation get_coords applied on the trajectory data in our
metadata store.) Table scans and projections are handled similarly.

The example in Figure 2 requests object trajectories, which are
retrieved from the metadata store. If the user instead requested a
video (e.g., video of the automobiles in the intersection at a particu-
lar time), the QP would project on time and use this information to
fetch video data.

Query Optimizer. Apperception’s query optimizer is in early de-
velopment. Apperception currently pushes temporal filtering and

2769

spatial cropping into the video data store to leverage these systems’
optimized processing of compressed videos. We plan on exploring
additional opportunities to increase the number of operations pushed
down to both the video (e.g., framerate selections) and metadata (e.g.,
additional GIS-related operations) stores. We also plan on exploring
optimizations over joins between the two constituent systems.

Query Executor. When users invoke execute() on a query, the
query executor (QE) executes its parsed representation. When data
modification is required (e.g., when a world or camera is created
or video is ingested), the QE first checks to see if the query neces-
sitates object recognition (i.e., a “Recognize” node is in the plan),
and, if so, executes the specified algorithm (or YOLOv4 [2] as a
default). It then persists any new video. Finally, the QE assembles
and executes SQL batches to persist any new metadata (e.g., worlds,
cameras, or objects). For data retrieval, the QE translates the plan
into executable SQL queries. The QE traverses filter predicates in a
top-to-bottom order and nests the operations applied to the column.
It then translates the resulting abstract syntax tree for the predicates
and translates it to SQL constraint syntax. For queries that retrieve
video, the QF loads the relevant time data from the metadata store
and uses this information to retrieve video frames for the requested
timestamps. The result is outputted in a user-specified format.

Storage. Apperception’s storage system comprises the following:
Metadata Store. Apperception stores the metadata mentioned in
section 2 in MobilityDB [10] which offers geometric convenience
functions satisfying the needs of Apperception queries.

Video Data Store. Apperception leverages VSS [6] and TASM [3]
for video storage and retrieval. Both offer a simple read/write in-
terface over individual videos. VSS focuses on general video I/O
performance, whereas TASM emphasizes efficient retrieval of video
regions that contain objects of interest.

Apperception’s video context executor ensures data consistency
between the storage systems. Further, it invokes VSS or TASM
depending on the type of query being executed. When a query
requires (potentially spatiotemporally cropped) video frames, it
issues calls to VSS for those regions. When possible, it pushes down
operations into VSS (e.g., when only a particular time range is
needed, Apperception reads only the relevant frames rather than
the entire video). On the other hand, when a query requires video
of specific objects (e.g., to view a particular object throughout its
trajectory), it instead invokes TASM to execute the read.

3 DEMO WALK-THROUGH

For the demonstration, we will highlight the usage scenario on
car trajectories—discussed in Section 2.1—using the user interface
shown in Fig. 4. This interface is a web application consisting of
a video panel, a world configuration view, and a query panel. The
video panel shows the list of videos that the user has ingested into
Apperception so far and allows the user to preview these videos.
The world configuration view accepts user input to define and
initialize a new world in Apperception, which contain cameras that
captured the videos and objects that have been recognized. The
query panel also accepts user input to form a query of their choice.

An end-user first ingests several traffic videos that she would like
to analyze. These then appear in the “selected video” window. After

® 58 ppperception x

& > C localhostssss/

i Apps

World Configuration Query
Name amber Select outputtype Trajectory s
Units metric UEEEY
Cameras
Constraints
D eCieetovTehRoan Item ID street_view_cam |
Lens pinhole lens
Overlap Select volume

Use default recognition

Add another camera

Create world

Timestamps Select timestamps

AAdd more constraints

Query to Execute

Selected Video viov2 V8

Figure 5: The left is a visualization of the user specified con-
straints. The top right are frames from the output video. The
bottom right is a map overlay of the returned trajectory.

the user uploads the videos, they then define a new world, give it a
name, and associate the videos with it. For example, Fig. 4 shows
a user who has defined their world to be called traffic_world,
selected metric units, associated one camera with it (called cam_1),
and attach a video to the camera. The user can define cameras by
a particular ID and lens type through the various text boxes. In
Fig. 4, we show a camera named cam_1 with a pinhole lens. After
populating the world features, the user clicks “Create world” to
execute the world creation process in Apperception.

Next, a user issues queries on the world she has created. To do
s0, the user enters an output type and defines various constraints in
the query panel. Assume that the user is looking for the trajectory
of a blue car that passed by the intersection shown. She first selects
“trajectory” as the output type. She then specifies the blue car’s
identifier, selects the volume of interest (e.g., the traffic intersec-
tion) by drawing a polygon on a video frame, and indicates the
time interval under consideration. Fig. 4 only shows the Trajectory,
Geometry, Count, and Video as output types, but users can add
additional custom output types to the query panel. The user can
also include constraints on their query by pressing “Add more con-
straints” After adding all the desired constraints, the user obtains
results by clicking the “Execute” button, which will in turn submit
the query to Apperception and obtain the requested information or
video results.

2770

Fig. 5 shows the visualization for the resulting output in our
example. If the user queries for the locations of the objects, the top
right frames are from the resulting video that mark the bounding
boxes of objects. In our demo for the example use case in Fig. 1, the
returned trajectory of the object can be plotted on a real map as
shown in the bottom right of Fig. 5.

4 RELATED WORK

Video data management—especially in the context of applied deep
learning—has gained increasing popularity over the past few years.
Many recent systems (e.g., [1, 4]) target efficient and expressive
query processing over videos. So far, these systems target two-
dimensional, independent video analytics, which forces developers
to manually map 3D environments onto 2D videos and results
in applications that are difficult to reason about, maintain, and
evolve. Rekall [4] introduces a programming model to reason about
video events but does not support geospatial queries and Vaas [1]
supports the construction of efficient workflows to analyze videos.
Apperception can also leverage Vaas to optimize the population of
its metadata store.

5 CONCLUSION

This paper described a demonstration of Apperception, a novel
video DBMS optimized for querying multi-perspective geospatial
videos. Apperception captures a world of video streams that contain
visual objects collected by many cameras. Through its world data
model, users can express queries over these entities, visualize the
results through our user interface, and compare query performance
with a standard video processing library.

ACKNOWLEDGMENTS

This work is supported in part by the National Science Foundation
through grants IIS-1546083, IIS-1955488, 11S-2027575, CCF-1723352,
CCF-1703051, DOE award DE-SC0016260, and ONR award N00014-
21-1-2724; the Intel-NSF CAPA center, and gifts from Adobe, Face-
book, Google, and VMware.

REFERENCES

[1] Favyen Bastani et al. 2020. Vaas: Video Analytics At Scale. VLDB 13, 12 (2020),
2877-2880.

[2] Alexey Bochkovskiy et al. 2020. YOLOv4: Optimal Speed and Accuracy of Object
Detection. CoRR abs/2004.10934 (2020).

[3] Maureen Daum, Brandon Haynes, Dong He, Amrita Mazumdar, and Magdalena
Balazinska. 2021. TASM: A Tile-Based Storage Manager for Video Analytics. In
37th IEEE International Conference on Data Engineering, ICDE. IEEE, 1775-1786.

[4] Daniel Y. Fu et al. 2019. Rekall: Specifying Video Events using Compositions of
Spatiotemporal Labels. CoRR abs/1910.02993 (2019).

[5] Timothy Griffin and Monica K Miller. 2008. Child abduction, AMBER alert, and
crime control theater. Criminal Justice Review 33, 2 (2008), 159-176.

[6] Brandon Haynes, Maureen Daum, Dong He, Amrita Mazumdar, Magdalena
Balazinska, Alvin Cheung, and Luis Ceze. 2021. VSS: A Storage System for Video
Analytics. In SIGMOD °21: International Conference on Management of Data. ACM,
685-696.

[7] Brandon Haynes, Maureen Daum, Amrita Mazumdar, Magdalena Balazinska,
Luis Ceze, and Alvin Cheung. 2020. VisualWorldDB: A DBMS for the Visual
World. CIDR (2020).

[8] Chien-Chun Hung et al. 2018. VideoEdge: Processing Camera Streams using
Hierarchical Clusters. IEEE, 115-131.

[9] Suramya Tomar. 2006. Converting video formats with FFmpeg. Linux Journal
2006, 146 (2006), 10.

[10] Esteban Zimanyi et al. 2020. MobilityDB: A Mobility Database Based on Post-
greSQL and PostGIS. TODS 45, 4 (2020), 19:1-19:42.

