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ABSTRACT
Data preparation is still a major bottleneck for many data science
projects. Even though many sophisticated algorithms and tools
have been proposed in the research literature, it is difficult for
practitioners to integrate them into their data wrangling efforts. We
present openclean, a open-source Python library for data cleaning
and profiling. openclean integrates data profiling and cleaning
tools in a single environment that is easy and intuitive to use. We
designed openclean to be extensible and make it easy to add new
functionality. By doing so, it will not only become easier for users to
access state-of-the-art algorithms for their data wrangling efforts,
but also allow researchers to integrate their work and evaluate its
effectiveness in practice. We envision openclean as a first step to
build a community of practitioners and researchers in the field. In
our demo, we outline the main components and design decisions
in the development of openclean and demonstrate the current
functionality of the library on real-world use cases.
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1 MOTIVATION
The negative impact of poor data quality on the widespread and
profitable use of machine learning [17] makes data cleaning essen-
tial in many data science projects. Improving data quality requires
data profiling and exploration to gain an understanding of quality
issues, and data cleaning to transform the data into a state that is fit
for purpose. This process is tedious and costly. A frequently cited
survey in 2016 found that data scientists spend 60% of their time
on data cleaning and organizing data [16]. In the same survey 57%
of the data scientists also stated that they consider data cleaning
and organizing data as the least enjoyable task of their job.

Over the years, many tools for profiling, preparing, and cleaning
data have been developed, both in academia and industry (see [2, 7,
8] for overviews). These approaches were developed in isolation and
in different programming languageswith no standardized interfaces.
Thus, it is difficult for data scientists to combine existing tools in
their data processing pipelines.
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Inspired by the wide adoption of generic machine learning frame-
works such as scikit-learn [15], TensorFlow [1], and PyTorch [14],
we are currently developing openclean, an open-source Python
library for data profiling and data cleaning [11]. Our goals are
twofold. First, openclean aims to provide a unified framework for
practitioners that brings together open source data profiling and
data cleaning tools into an easy-to-use environment. By making
existing tools available to a large user-community, and through the
integration with the rich Python ecosystem, openclean has the
potential to simplify data cleaning tasks. Second, by providing a
structured, extensible framework, openclean can serve as a plat-
form with which researchers and developers can integrate their
techniques. We hope that by bringing together a community of
users, developers, and researchers, we will be in a better position
to attack the many challenges in dealing with data quality.

Overview of openclean. The source code for openclean is avail-
able on GitHub [11]. We chose Python to implement openclean
because of its growing popularity as well as the large number of
existing open-source libraries. Figure 1 shows the ecosystem of li-
braries that openclean currently leverages. openclean is organized
in a modular way to account for the large number of approaches
and techniques that fall into the areas of data profiling and data
cleaning and that we aim to integrate into openclean in the future.

At the center of openclean is the package openclean-core.
Within this package we define the relevant APIs for accessing and
processing data as well as some basic functionality. The core pack-
age depends on well-known Python libraries including pandas [23]
and scikit-learn [15] as well as on a set of libraries that were
developed in parallel to openclean to address specific needs regard-
ing access to reference data [12], provenance and version manage-
ment [10], and integration of tools with existing binaries that are
not implemented in Python or that require installation of additional
software systems [19].

On top of the core library are several extensions that make use of
the API’s and underlying base packages to provide additional func-
tionality. Current extensions include libraries to discover regular ex-
pressions, a Graphical User Interface that is integrated with Jupyter
Notebooks, as well as profiling functionality from the Metanome
project as one example of how existing tools that are not imple-
mented in Python can easily be integrated into openclean. We are
also in the process of integrating other tools like HoloClean [18]
and Ditto [9].

In this demo paper, we first introduce the openclean library
by giving an overview of the main concepts and the architecture
(Section 2). Then, we discuss our demonstration that will show how
to use the library based on a few real-world examples and how to
add new functionality to the library (Section 3).
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Figure 1: openclean architecture. The core library and exten-
sions depend on standard Python libraries and additional
packages that we developed for specific tasks.

2 MAIN FEATURES OF OPENCLEAN
2.1 Data Model and Operators

Datasets and Streams. openclean is primarily intended for tabu-
lar datasets, which are represented as data frames: a set of columns
with (not necessarily unique) names and a set of rows that contain
values for each of the columns.

openclean supports two modes for processing data frames: (i)
the data frame can either be loaded completely into main memory
(e.g., as a pandas.DataFrame [23]), or (ii) it can be streamed from
an external storage source, e.g., a comma-separated file. The latter is
particularly important for large datasets that cannot fit entirely into
main memory. Data streams in openclean are streams of dataset
rows. The streaming data processor allows the application of clean-
ing and profiling operations directly to the rows in the stream, e.g.,
to filter data of interest that can then be loaded into main memory.
Figure 2(b) shows an example in cell #7 using the NYC Parking
Violations dataset. The dataset contains over 9 million rows and
the data file is approx. 380 mb in size. In the example we first select
three columns from the dataset and rename column Registration
State to State. We then filter rows that contain a vehicle color
and convert the color values to all upper case. Finally, we take a
random sample of 1000 rows and return them as a data frame.

Operators. openclean implements two different types of opera-
tors: data profiling and data cleaning.

Data Profiling. Profiling operators are used to generate metadata
about the data at hand. The generated information can then be used
to determine the need for data cleaning or to guide the choice of the
cleaning operations. Data profiling operators are either applied on a
full data frame, e.g., for the discovery of constraints like functional
dependencies, or on sets of values, e.g., on a single column in a data
frame for the detection of anomalies (outlier values).

There is a wide variety of profiling operators (see [2] for a clas-
sification of profiling tasks). In openclean, we currently provide
interfaces and base implementations for the following tasks: com-
putation of basic statistics for dataset columns (e.g.,min/max values,
entropy, distinct values, etc.), classification of data types, anom-
aly detection, discovery of regular expressions, and discovery of
functional dependencies (FDs) and unique column combinations.

We decided not to standardize the results of profiling operators
due to the wide variety of operators and their result types. Instead,
a profiling operator either returns a list of values (or objects) or a
dictionary. For example, anomaly detection returns a list of values

(from a given input list) that were identified as outliers. A profil-
ing operator that computes statistics over the data will return a
dictionary with the different computed statistics.

Data Cleaning and Transformation. Data cleaning operators are
intended to transform data and they almost exclusively operate on
data frames. The following abstract operator types are defined in
openclean: transformer, mapper, reducer, and group filter.

A transformer maps a given data frame to a new data frame.
openclean comes with a set of built-in transformation operations
for filtering columns and rows, insertion of new columns and rows,
moving and renaming columns, updating of cell values, and for
sorting. A mapper returns a group of data frames for a given input
data frame. Each resulting group is identified by a unique key. The
default mapper in openclean is the groupby operator that groups
rows based on key values that are computed for each row using a
given evaluation function (see below). A reducer converts a group
of data frames into a single data frame. A common example are
operators that resolve conflicts when repairing violations of FDs. A
group filter operates on groups of data frames and transforms one
set of groups into a new set of groups.

Functions. Well-defined APIs are essential for a framework that
aims to be flexible and extensible. In openclean we define APIs for
common data wrangling tasks in a modular way that makes it easy
for a user to combine them as well as to include new functionality at
different levels of granularity. One means to ensure such flexibility
is the use of functions as arguments.

In openclean, many cleaning and transformation operators take
functions as their arguments. For example, the filter and update
operators shown in Figure 2(b) [#7] take functions IsNotEmpty
and str.upper as arguments to select and manipulate rows. By
having functions as operator arguments it becomes easy to change
and customize behavior. In the example, we can easily use any
(user defined) function with a single argument instead of the stan-
dard str.upper function to transform the data using the update
operator.

Figure 2(b) [#8] shows another example for the power of com-
posability in openclean. Here we use the fd_violations operator
(a combination of mapper and group filter) to get groups of rows
that violate a given functional dependency. We then define a repair
strategy using the function Longest knowing that violations are
caused by abbreviations like blk and brw for black and brown.
Again, it is easy for the user to define their own domain-specific
repair strategy by providing a custom data manipulation function
for the sets of rows that violate the functional dependency.

2.2 GUI - Integration with Jupyter Notebooks
Data profiling and cleaning are inherently exploratory tasks. In
many scenarios the user needs to visualize data and profiling re-
sults (statistics) to get a better understanding of data properties and
existing quality issues, or may identify a data quality issue by exam-
ining the predictions of a machine learning model. Many existing
cleaning tools like OpenRefine [5] or Trifacta Data Wrangler [22]
come with graphical user interfaces (GUIs) to make it easier for
users to explore and clean their data. Instead of relying on a dedi-
cated GUI, openclean can be used in many different environments,
including Jupyter Notebooks [6]. Working in a Python or notebook
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(a) (b)

Figure 2: (a) The openclean interface in a Jupyter Notebook allows users to inspect the contents of a dataset in the spreadsheet
view (B), including column statistics and data types. The recipe view (A) captures the series of operations applied to the data.
Users can register user-defined functions and later apply them through the visual interface. (b) Use of openclean for functional
dependency violation repair.

environment allows users to more easily integrate data cleaning
tasks with their data science pipelines. In addition to the ability to
leverage existing libraries, openclean provides a spreadsheet-like
GUI shown in Figure 2(a), which enables users to visualize and
interact with the data from a Jupyter Notebook.

Data Summary. The spreadsheet view provides easy-to-use vi-
sualizations for data analysis and exploration. It displays profil-
ing results for each column, including inferred data types (e.g., in
Figure 2, Water Condition is detected as a categorical attribute)
and statistical information such as mean, standard deviation, and
unique values, at different levels of detail (compact, detail, and col-
umn views) together with histograms of column values and inferred
column types. By default, profiling information is generated using
the datamart-profiler [21]. openclean also provides an API for
users to create and use their own data profilers.

Recipe. The GUI allows users to apply transformation operators
on the spreadsheet using a set of pre-defined evaluation functions.
The history of applied functions is shown as part of the spreadsheet
view, i.e., the recipe. openclean provides the ability to extend the
set of available functions. Figure 2(a) shows an example of how a
user-defined function can be registered using Python decorators
(cell [#97]). All registered functions can later be applied in the
user interface. openclean supports materialization of registered
functions, e.g., in Json files or using a relational database, which
makes it possible to re-use the functions in different notebooks or
share them among trusted users. Operations in a recipe can also be
exported as a new transformer that can be applied to other datasets.

2.3 Reference Data
Reference data is an important tool for data cleaning and openclean
supports the use of different reference datasets. For example, the
restcountries.eu project [20] provides a curated list of country
names for all countries in the world together with their official ISO
3166-1 abbreviation codes. This data can be used to identify invalid
values (e.g., misspellings) in a given dataset column with country

names. Using openclean’s string similarity search we can also find
possible replacements for misspelled names as close matches in the
curated list. The mappings of country names to different abbrevia-
tions can also be used to standardize representations for columns
containing a mix of two- and three-letter country codes.

We created the open-source library refdata [12] to provide ac-
cess to reference datasets on theWeb. Individual datasets are hosted
by data maintainers on the platform of their choice. Information
about available dataset is maintained in a central index (i.e., a Json
file) hosted on the Web. Users download copies of the datasets for
local access.

2.4 Data Provenance Management
Because cleaning is an exploratory task, it often is necessary to
undo operations, compare the current state of a dataset to a previ-
ous version, or view the history of how the values in a data cell were
changed by different cleaning operations. For openclean we devel-
oped histore [10], a library to maintain the history of a dataset.
histore is based on techniques that were developed in [4]. histore
maintains all snapshots of a dataset together with descriptors of
the operators that created them. Similar to popular version control
systems like git, histore provides the ability to commit, checkout,
and rollback different snapshots of a dataset.

In the spreadsheet view shown in Figure 2(a), for example, the
user can click on any of the operations in the recipe to view the
dataset snapshot as it was after the execution of the respective
operation. At this point the user has the option to rollback all
changes that occurred after the selected operation.

2.5 Integration of External Tools
openclean provides mechanisms to integrate and execute existing
tools (binaries) from within Python scripts. Some tools are imple-
mented in different programming languages, e.g.,Metanome [13] is
implemented in Java, while others require installations of additional
software systems, e.g., HoloClean [18] requires an installation of
PostgreSQL. Our aim is to avoid re-implementing existing tools
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while giving users a choice of how to run them in case that they do
not have the ability or privileges to install additional software.

To this end, openclean makes use of flowserv, a library that
allows to define wrappers for existing tools and run them from
within Python. A typical scenario for running an external program
on a given dataset is as follows: (i) write the dataset to a file on disk,
(ii) run the binary using the dataset file plus other user-provided
parameters from the command line, and (iii) read results (e.g., a
modified dataset output file) and convert them into Python objects.

The first and the third step can easily be executed within the
same thread that is running the openclean script. The second step
could be executed using Python’s subprocess package if the user
has the required runtime environment (e.g., Java JRE) and binaries
(e.g., Jar file) installed on their machine. As an alternative, external
programs can be run using container engines like Docker. In this
case, the user needs to have Docker installed locally but could easily
run many programs that are implemented in different languages
without further installations.

flowserv allows developers to define workflows like the one
above as a Python script. Users can then configure the system to
allow them to choose if individual workflow steps are executed as
sub-processes or as Docker containers. In addition, we are currently
working on options to run workflow steps that require a large
amount of resources on High-performance computing clusters or
using commercial cloud service providers.

Figure 2(b) [#10] shows an example from the user perspective
for the seamless integration of existing profiling operators from
Metanome into openclean using the Aircraft Tail Numbers and
Models at SFO dataset.

3 DEMONSTRATION
We will demonstrate openclean’s abilities to profile and clean data
using different datasets. All examples shown will be made available
as Jupyter Notebooks together with other use cases that are already
in the openclean GitHub repository and which will be available
on Google Colab. This will enable attendees and those that cannot
attend in person to experiment with openclean on their computers.

In what follows, we describe two use cases we plan to show
during the demo. We note that openclean includes an adaptor for
the Socrata Open Data API [3] which gives us immediate access to
thousands of datasets that can be used during the demo.

NYC Parking Violations. Parking Violations Issuance datasets
for New York City contain violations issued during a fiscal year.
The datasets are available from the Socrata API and contain, among
other information, details about parking meters,e.g., their ID and
street address, and the vehicle that was involved in the violation.

In our demo we use the dataset for the year 2014 that contains
over 9 million rows. We first show how to filter data columns and
rows using the streaming operator, e.g., remove rows with missing
Meter ID. We then identify violations of functional dependencies,
e.g., Meter ID→ Address, and show how to define violation repair
strategies in openclean, e.g., using themost frequent value involved
in a violation. We further show how reference data on street types
is used to standardize street addresses, e.g., W35 Street vs. West
35 Str. Finally, we demonstrate the use of openclean-pattern
to discover patterns for column Meter ID that are then used to
identify outliers that do not meet the expected value format.

Ethiopia Vaccination Data. Ethiopia Vaccine Delivery dataset
contains monthly vaccine deliveries to various administrative levels
of the Oromia region in Ethiopia over a time period of 2 years.

We demonstrate openclean’s extensibility by first computing
the equivalent Gregorian dates from Ethiopic calendar values span-
ning multiple columns by implementing a new reusable operator.
We then showcase built-in standardization support by identifying
and fixing misspelled ’Woreda’ names in the dataset by comparing
them with a master vocabulary of official spellings after building a
Mapping using openclean’s string matching operators. The demo
also stresses the importance of having a user with domain knowl-
edge in the loop to resolve conflicts in any standardization and
cleaning process.
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