
DBMind: A Self-Driving Platform in openGauss

Xuanhe Zhou§∗, Lianyuan Jin§∗, Ji Sun§, Xinyang Zhao§, Xiang Yu§, Jianhua Feng§, Shifu Li ♣,
Tianqing Wang ♣, Kun Li ♣, Luyang Liu ♣

§ Department of Computer Science,Tsinghua University, Beijing, China
♣ Gauss Department, Huawei Company, Beijing, China

{zhouxuan19,jinly20,sun-j16,xy-zhao20,x-yu17}@mails.tsinghua.edu.cn,fengjh@tsinghua.edu.cn,
{lishifu,wangtianqing2,likun75,liuluyang2}@huawei.com

ABSTRACT
We demonstrate a self-driving system DBMind, which pro-
vides three autonomous capabilities in database, including
self-monitoring, self-diagnosis and self-optimization.
First, self-monitoring judiciously collects database metrics and
detects anomalies (e.g., slow queries and IO contention), which
can profile database status while only slightly affecting system per-
formance (<5%). Then, self-diagnosis utilizes an LSTM model
to analyze the root causes of the anomalies and automatically
detect root causes from a pre-defined failure hierarchy. Next,
self-optimization automatically optimizes the database perfor-
mance using learning-based techniques, including deep reinforce-
ment learning based knob tuning, reinforcement learning based
index selection, and encoder-decoder based view selection. We have
implemented DBMind in an open source database openGauss and
demonstrated real scenarios.
PVLDB Reference Format:
Xuanhe Zhou, Lianyuan Jin, Ji Sun, Xinyang Zhao, Xiang Yu, Jianhua Feng,
Shifu Li, Tianqing Wang, Kun Li, Luyang Liu. DBMind: A Self-Driving
Platform in openGauss. PVLDB, 14(12): 2743 - 2746, 2021.
doi:10.14778/3476311.3476334

1 INTRODUCTION
Traditional databases rely on DBAs to diagnose and optimize the
databases in order to meet the high-performance requirements.
However, these manual methods cannot satisfy the requirements
for rapidly growing users, data, and workloads, and thus it calls for
a self-driving database management platform that automatically
monitors, diagnoses and optimizes databases. For example, suppose
a cloud database provider maintains 100,000 database instances
and one DBA can manage 100 database instances. It requires one
thousand DBAs to maintain these instances. To make the things
worse, some tricky problems (e.g., disk crash) require DBAs to take
hours to trace and recover the database.

Existing databases mainly have three limitations [3, 13]. First,
there are hundreds of system metrics, and current databases cannot
efficiently detect anomalies (e.g., slow query, IO contention) and
potential risks (e.g., insufficient disk space) with basic statistical
methods. Besides, it is expensive to rely on DBAs to detect large

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 12 ISSN 2150-8097.
doi:10.14778/3476311.3476334

scale statistical data, especially for cloud databases with millions
of instances. Second, existing databases cannot automatically diag-
nose the root causes of the detected anomalies, because there are
numerous highly correlated database modules and it is laborious
to rely on experts to label the anomaly cases. Third, the optimiza-
tion techniques (e.g., query rewrite, index suggestion) in current
databases are mainly heuristics and they may find sub-optimal so-
lutions under complex scenarios. For example, for a nested query,
openGauss creates a temporary table for the uncorrelated subquery
but cannot consider the optimization within the subquery.

To address these challenges, we propose learning-based tech-
niques, build a self-driving database platform DBMind and demon-
strate the following features (Figure 1).

(1) Self-monitoring monitors and collects the information of
database instances. The information includes (i) OS resource met-
rics, (ii) database status metrics, (iii) log alarm metrics. It monitors
each database instance and stores the collected information in a
storage system on the user side or time-series databases integrated
in the server side. Moreover, Self-monitoring detects anomalies
from the time-series data by (i) identifying abnormal indicators
with spectral residual algorithm [5] and (ii) utilizing prediction
algorithms (e.g., graph neural networks [14]) to predict future risks
(e.g., slow queries, resource anomaly, performance degradation, and
security anomaly).

(2) Self-diagnosis trains an LSTM model to learn root causes
from both normal and abnormal data. Besides, it constructs a m
(which organizes the failure category-subcategory into a hierarchy)
to store representative metrics and root causes. For any abnor-
mal data, we compute an abnormal vector with the Kolmogorov-
Smirnov test and match the root cause in the failure hierarchy to
detect the root cause.

(3) Self-optimization proposes learning-based techniques to
optimize the databases, including reinforcement learning tech-
niques for index recommendation, deep reinforcement learning
techniques for knob tuning [4, 12], and encoder-decoder model for
materialized view recommendation [2].

DBMind differs from existing database systems in two main as-
pects: (1) DBMind designs effective learned methods to realize self-
monitoring, self-diagnosis, and self-optimization; (2) DBMind is in-
tegrated into an open source database opengauss and achieves both
high usability and robustness. Experiments on real datasets have
verified that DBMind can quickly discover slow SQL statements, give
optimization suggestions in real time, save DBA time by over 80%,
identifies and solves potential risks (e.g., disk crash).

* These authors contribute equally to this work

2743

https://doi.org/10.14778/3476311.3476334
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3476311.3476334

Data Collector

User SideServer Side
Server

Indicator
Forecast

Runtime
Prediction

Index
Advisor
……

buffer
Time-series Database

fetch
Agent
…

DB
metric1

metric2

pull sourceprocessor
fetch

Agent

DB

Web Service

detection

monitor

……

QPS Abnormal
High CPU Load High IO Load

Interface delay Interface failure IO waits

Request focus Slow queries Hardware issues

openGauss
parse
class

analyze

MV
rewrite
hint

tuning
algorithm

statistics

interaction

Self-Diagnosis Self-OptimizationSelf-Monitoring

slow

Large spill files No index
QPS

index
query

Figure 1: The Workflow of DBMind

2 SYSTEM IMPLEMENTATION
DBMind utilizes machine learning models [1, 2, 4–10, 14] to detect,
analyze, and resolve database problems efficiently and effectively.

2.1 System Overview
The DBMind system is composed of three main components: agent,
server, and web interface. Figure 1 shows the architecture of
our DBMind system.
Agent Module: We first provide abundant statistic information
for the users and following modules. Each agent in the data-
base instance places three different data exporters (data collection
units): os_exporter, database_exporter and alarm_log_exporter. (1)
os_exporter collects the resource metrics of the operation system
(e.g., CPU, memory, I/O); (2) database_exporter collects database
metrics (e.g., xact_commit); (3) alarm_log_exporter collects the log
alarm information of the database (e.g., slow queries). Some metrics
of exporters are shown as the Table 1. Note that the agent module
is extensible and we can easily add more exporters into it.
Web Service. We provide a web interface to help users easily
monitor the running states of the database instance (e.g., resource
utilization, overall health score). In the web interface, we pro-
vide three main functions: (i) demonstrate database status (e.g.,
resource metrics, slow SQLs, and abnormal log information) and
overall health score; (ii) when abnormal data occurs, DBMind calls
corresponding analysis and repair functions, demonstrates the op-
timization results (e.g., abnormality type, optimizations) and risks.
Server Module: To efficiently support the three autonomous ca-
pabilities, we devise an end-to-end optimization pipeline and ab-
normality detection/analysis/optimization algorithms. Section 2.2
introduces how to detect potential risks from a large amount of
time-series data, and Section 2.3 describes techniques for diagnosing
root causes of the detected risks. And we discuss how to judiciously
optimize the database problems in Section 2.4.
2.2 Self-Monitoring Module
There are two main challenges in self-monitoring. First,
databases generate a large amount of statistical data every day
and we need to efficiently detect anomaly from those data. Second,
there are noises in the logs (e.g., incompletely logged workload by
interrupts) and it is important to predict the performance. Hence,
the self-monitoring module periodically reads the latest data
from the local time-series database, and detects anomaly events

Table 1: Example metrics in self-monitoring

Exporters Metrics

OS_exporter CPU utility
disk space/IO utility

Database_exporter
index/table Information
SQL Information
buffer pool/lock information

Alarm_log_exporter alarm log information

with the Abnormal Discovery Service and Trend Analysis
Service (Figure 2).

(1) Anomaly Discovery Service analyzes and detects the key
indicators of the database periodically (e.g., every second). Since
there are numerous time-series data and we have few labeled data,
we utilize the spectral residual algorithm (an unsupervised method)
to conduct anomaly detection. The algorithm includes three steps:
(i) Utilize Fourier transform to convert the history data (e.g., re-
sources, OS interrupts) into amplitude spectrum and phase spec-
trum; (ii) Change the amplitude spectrum into logarithmic spec-
trum and obtain the significant part of the spectrum; (iii) Use the
inverse Fourier transform to obtain the correlation saliency map.

This way, we can shrink the normal part and enlarge the ab-
normal data. And by setting the abnormal threshold based on the
extreme value theory, we obtain the abnormal information (e.g.,
workload drop) and send it to the RCA module (Section 2.3).

(2) Trend Analysis Service analyzes the consumption of sys-
tem resources (e.g., CPU, memory, disk space), and predicts the
future consumption of resources based on the runtime prediction
algorithm. For example, we model the concurrent queries as a work-
load graph, where the vertices are operators and edges are their
relations, and apply graph embedding algorithm [14] to estimate
resource consumption (e.g., runtime, memory consumption). If a
resource is found to be insufficient to support incoming workloads,
an alarm message is sent, which reflects the overall health state of
the database and guides further optimization.

2.3 Self-Diagnosis Module
The Root Cause Analysis (RCA) Module accepts standardized anom-
aly alarms from the Self-monitoring module, and analyzes the
root cause of the anomaly. Existing databases usually employ ex-
perienced DBA to diagnose the root causes manually, which is
difficult since the state metrics are complex and lack of domain

2744

Self-Monitoring

Anomaly discovery

Trend Analysis

Spectrum-Based

Traditional method

Similarity-Based

Statistical-Based

Machine learning

Deep learning Feature
extraction K-S test

Failure Hierarchy

Vector-based Distance
Method

Self-Diagnosis Self-Optimization

Index advisor

Query rewriting

Knob tuning

Auto session killing

Hinter

Materialized view

Capability expansion

Anomaly
feature

RCA
Result

Agent
(Data Collection)

Receiver

Processor

Data

buffer

Time-Series History
anomaly data

SYSTEM

networkslow sqlanomaly

large table
full tbl scan

class

anomaly

cause

remedy

DATABASE

diskI/O
resource timeout

lock wait

unindexed
query

create index

lock
competition

…
…

class

Figure 2: Learning-based Algorithms in DBMind.
knowledge. Besides, existing automatic diagnosis methods rely on
expert knowledge heavily or introduce non-negligible extra cost. To
address this problem, we propose a system-level diagnosis method,
which builds a failure hierarchy for all anomalies where a tree node
is a failure category/sub-category, regards diagnosis as a classifi-
cation problem (classifying an anomaly to a failure category) and
finds root causes based on the metrics data. Moreover, it optimizes
the diagnosis model by analyzing historical data so that experts just
label a few anomaly cases. The framework consists of two stages.
Offline Stage. We collect two types of metrics: normal data and
abnormal data. First, we utilize normal data to train an LSTM-based
auto-encoder model, which helps to locate the abnormal areas.
Second, the abnormal data consist of database metrics, anomaly
cases and the root cause label, and so we extract representative
metrics based on the abnormal data and store them as a knowledge
base (the failure hierarchy). For any abnormal data, we use the
LSTM model to detect the abnormal area and apply Kolmogorov-
Smirnov test to encode the data into an anomaly vector and match
corresponding root cause in the failure hierarchy.
Online Stage. Once there is an anomaly detected by the
self-monitoringmodule, DBMind calls the self-diagnosismod-
ule. It first utilizes Kolmogorov-Smirnov test on each database met-
ric to generate the anomaly vector; and then finds similar anomaly
cases and locates the root cause from the failure hierarchy.

2.4 Self-Optimization Module
The Self-optimization module aims to optimize the database
automatically. It accepts the diagnosis result from RCA, enables
corresponding optimization methods. Self-optimization mainly
supports three optimization scenarios: SQL optimization, database
tuning, and operation and maintenance management tuning: (i)
SQL optimization involves learned query rewrite, index advisor,
materialized view advisor. (ii) Database tuning involves auto-
matic knob tuning, session killing, connection flow restriction. (iii)
Operation and maintenance tuning involves automatic disk
expansion, backup and recovery. Here we showcase some methods
using different optimization algorithms.
Learned query rewriter. A slow SQL query (due to redundant or
inefficient operations) can be speeded up by orders of magnitude
with an appropriate rewrite order. However, it is prohibitively ex-
pensive to enumerate the orders. Hence, Query Rewriter inputs a

query, uses Monte Carlo tree search to find a near-optimal rewrite
order, and rewrites into an equivalent yet more efficient query.
Learned query advisors. It automatically optimizes the
databases [2, 11], e.g., index/view advisor, for a workload. Learned
Index Advisor uses deep reinforcement learning to automatically
recommends indexes. Learned View Advisor proposes an
encoder-decoder model to recommend views.
Learned knob tuner adopts a deep reinforcement learning tech-
nique to tune the knobs [4]. We use an actor-critic model to au-
tomatically select appropriate knob values, including SQL-level,
session-level and system-level knob tuning.

3 DEMONSTRATION OVERVIEW
Next we showcase the interfaces of DBMind (e.g., the monitoring
dashboard, anomaly events, optimization actions). Note that we
will release more self-driving functions for public access 1.
Datasets. openGauss has been applied in banking, insurance, e-
commerce fields. To verify the effectiveness, DBMind was tested in
the bank’s core transaction business scenarios. This service’s data
volume is about 2TB, and the peak concurrency is about 10K QPS.
End-to-End Experience. Figure 3 is a screenshot of the front-end
of DBMind. The user can observe database activities and health
states and pose optimization requests with the following steps.
1) Monitor Database Performance. Users can browse the monitoring
metrics (e.g., CPU usage, memory usage) on the web page. Mean-
while, DBMind scores the database based on the occurring rate of
potential risks (Figure 3- 1).
2) Detect Root Causes. DBMind automatically monitors the abnormal
status of the database instance and highlights the abnormal points
on the curve (Figure 3- 2). The user can interactively check the
results. She puts the cursor onto the curve, and a text box will occur
to show the root cause of the event, i.e., an I/O intensive event
caused the workload performance abruptly decreased (Figure 3- 2).
3) Check Self-Optimization History. Besides the root causes, users
can check the repair behaviors in the selected time period. As shown
in Figure 3- 3 , the self-optimization history panel displays the past
repair behaviors. Users can check these behaviors. And if they think
some behavior is incorrect (e.g., unnecessary index), they can undo
the behavior by clicking the “withdraw” button. And if they want to
1http://admin.dbmind.cn

2745

Figure 3: A Screenshot of DBMind

learn more about the created index, they can click the “more details”
button and it will jump to the Index Advisor page.
4) Check Potential Risks. Moreover, users can check the potential
risks that DBMind proactively found, like configuration/workload-
/resource problems. In Figure 3- 4 , DBMind identifies the problems
that may occur in future and some non-emergency risks (e.g., insuffi-
cient disk space). With the risk, users can reassess the employment.
5) Utilize Database Optimization Tools. DBMind offers many useful
self-optimization tools. To simplify utilization, there are two
access ways. (i) Users directly click the “more details” buttons in
the history panel (Figure 3- 4) and jump to the corresponding tool
page; (ii) Users click the corresponding tool button in Figure 3- 5 .
Scenario 1 - Slow SQL Diagnosis.

As shown in Figure 3, if DBMind found that the throughput sud-
denly dropped (Self-monitoring), the RCA module received the
anomaly, matched the anomaly in the failure hierarchy, and found
the root cause, i.e., lack of index. Hence, we enable index advisor
function. For the whole workload, we vectorize query features and
use reinforcement learning to recommend a set of indexes. Besides,
for some extremely slow queries, we analyze the semantic informa-
tion of the query statement and gather the statistical information
of the database. Then, we calculate the selectivity of the predicates
and recommend indexes based on the high cost predicates.
Scenario 2 - Knob Tuning.

As shown in Figure 3, since high I/O usage can also be caused by
improper knob values, DBMind conducts knob tuning in workload
level, including offline tuning and online tuning. For offline tuning,
users can trigger the tuning function by selecting the Knob Tuner
function, which occupies a certain amount of system resources for
model training and testing. Note that, while training the model, a
user-specified benchmark is repeatedly executed on a synchronous

database to feed back the reward. For online tuning, DBMind rec-
ommends knobs based on the performance metrics (extracted by
self-monitoring). This process only takes seconds to finish. And
then the user can check whether these knobs are correctly recom-
mended and (optional) commit the adjustment (Figure 3- 4). If the
recommendation is unsatisfying, the use can restore the default
configuration by clicking the “withdraw” button.
ACKNOWLEDGMENTS
This work was supported by NSF of China (61925205, 61632016),
Beijing National Research Center for Information Science and Tech-
nology, Huawei, TAL education.
REFERENCES
[1] Z. Gharibshah, X. Zhu, A. Hainline, and M. Conway. Deep learning for user

interest and response prediction in online display advertising. Data Science and
Engineering, 5(1):12–26, 2020.

[2] Y. Han, G. Li, H. Yuan, and J. Sun. An autonomous materialized viewmanagement
system with deep reinforcement learning. In ICDE, 2021.

[3] G. Li and et al. AI meets database: AI4DB and DB4AI. In SIGMOD, 2021.
[4] G. Li, X. Zhou, B. Gao, and S. Li. Qtune: A query-aware database tuning system

with deep reinforcement learning. In VLDB, 2019.
[5] G. Li, X. Zhou, S. Ji, X. Yu, Y. Han, L. Jin, W. Li, T. Wang, and S. Li. opengauss:

An autonomous database system. VLDB, 2021.
[6] G. Li, X. Zhou, and S. Li. Xuanyuan: An ai-native database. Data Eng. Bull., 2019.
[7] M. Li, H. Wang, and J. Li. Mining conditional functional dependency rules on big

data. Big Data Mining and Analytics, 03(01):68, 2020.
[8] J. Sun and G. Li. An end-to-end learning-based cost estimator. VLDB, 2019.
[9] S. Tian, S. Mo, L. Wang, and et al. Deep reinforcement learning-based approach

to tackle topic-aware influence maximization. Data Science and Engineering, 2020.
[10] X. Yu, G. Li, C. Chai, and N. Tang. Reinforcement learning with tree-lstm for join

order selection. In ICDE, pages 1297–1308, 2020.
[11] H. Yuan, G. Li, L. Feng, J. Sun, and Y. Han. Automatic view generation with deep

learning and reinforcement learning. In ICDE, pages 1501–1512. IEEE, 2020.
[12] J. Zhang, Y. Liu, K. Zhou, G. Li, and et al. An end-to-end automatic cloud database

tuning system using deep reinforcement learning. In SIGMOD, 2019.
[13] X. Zhou, C. Chai, G. Li, and J. Sun. Database meets artificial intelligence: A survey.

TKDE, 2020.
[14] X. Zhou, J. Sun, G. Li, and et al. Query performance prediction for concurrent

queries using graph embedding. VLDB, 2020.

2746

