
PostCENN: PostgreSQL with Machine Learning Models for
Cardinality Estimation

Lucas Woltmann
Dominik Olwig

Claudio Hartmann
Dirk Habich

Wolfgang Lehner
Database Systems Group, TU Dresden

Dresden, Germany
firstname.lastname@tu-dresden.de

ABSTRACT
In this demo, we present PostCENN, an enhanced PostgreSQL data-
base system with an end-to-end integration of machine learning
(ML) models for cardinality estimation. In general, cardinality esti-
mation is a topic with a long history in the database community.
While traditional models like histograms are extensively used, re-
cent works mainly focus on developing new approaches using ML
models. However, traditional as well as ML models have their own
advantages and disadvantages. With PostCENN, we aim to combine
both to maximize their potentials for cardinality estimation by in-
troducing ML models as a novel means to increase the accuracy of
the cardinality estimation for certain parts of the database schema.
To achieve this, we integrate ML models as first class citizen in
PostgreSQL with a well-defined end-to-end life cycle. This life cy-
cle consists of creating ML models for different sub-parts of the
database schema, triggering the training, using ML models within
the query optimizer in a transparent way, and deleting ML models.

PVLDB Reference Format:
Lucas Woltmann, Dominik Olwig, Claudio Hartmann, Dirk Habich,
and Wolfgang Lehner. PostCENN : PostgreSQL with Machine Learning
Models for Cardinality Estimation. PVLDB, 14(12): 2715 - 2718, 2021.
doi:10.14778/3476311.3476327

1 INTRODUCTION
With the ever increasing amount of data, efficient query processing
in database management systems is still a major challenge. Thus,
optimizing query processing is an active research topic. Besides
many other aspects, the determination of an optimal query execu-
tion plan is particularly important. To find the optimal plan, query
optimizers typically rely on size estimations of base tables as well
as intermediate results. The quality of these estimates has a cru-
cial impact on the plan optimality and Leis et al. have shown that
traditional estimators like histograms cannot provide sufficiently
accurate estimates to make sure the optimal plan can be found [3].

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 12 ISSN 2150-8097.
doi:10.14778/3476311.3476327

To overcome this issue, current research successfully applies Ma-
chine Learning (ML) techniques. Especially, Neural Networks (NNs)
are capable to provide high quality cardinality estimates [2, 4, 8].

However, these works only show improvements by evaluating
their accuracy with the deviation of the estimates from the actual
cardinalities in an isolated way. Therefore, they do not provide
insights into the actual query performance gains. Some approaches
use their estimators as external tools, but also do not fully integrate
them into a database management system [1, 5]. This partial in-
tegration approach adds a not negligible overhead to the runtime
of a query since the call to the external estimator is usually slow
compared to the highly optimized query execution engines.

To overcome these shortcomings, we present PostCENN, an en-
hanced PostgreSQL database systemwith an end-to-end integration
of NNs for cardinality estimation in this demo. Moreover, this en-
ables users to dynamically switch between NNs and traditional
estimators to find whatever suits them best as shown in [6]. Our
integration is mainly driven by the core idea to introduce NNs as
first class citizen as a means to optimize the accuracy of the cardi-
nality estimation. Thus, our approach has many similarities to index
structures which can be flexibly created and utilized to speed up
data access. Our end-to-end integration covers all life cycle aspects:
from creating NNs over the database-optimized training of NNs
to the utilization of NNs during the query optimization phase. As
conceptual foundation, we use our local model approach for cardi-
nality estimation [8]. Local models are NNs covering only a certain
sub-part of the database schema as their model context enabling
flexible use. A main drawback of these NNs is the high construc-
tion cost by executing a lot of example queries within the model
context. To tackle this problem, we developed a novel approach
based on pre-aggregating the base data of the model context [7]
and executing the example queries on this pre-aggregated data.
To efficiently realize this pre-aggregation, we create a grouping set
within the database for storing and computing aggregated informa-
tion. Finally, we enhance the query optimizer to request cardinality
estimations from these NNs if an appropriate NN is available.

Based on this, the main contributions of this demo are:

• We introduce the implementation for our PostCENN system
by describing all aspects for an end-to-end integration of
NNs into PostgreSQL in Section 2.

• In our demonstration, we give a detailed explanation of all
PostCENN concepts. In particular, our demo —as described in

2715

https://doi.org/10.14778/3476311.3476327
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3476311.3476327


Section 3— shows (i) how to flexibly create NNs for specific
sub-parts of the database schema, (ii) how our improved
NN construction works and performs, and (iii) how single
queries as well as benchmarks improve with better estimates.

Finally, we briefly summarize our demo paper in Section 4.

2 SYSTEM DESCRIPTION
Cardinality estimation is a topic with a long history in database
research and traditional approaches are histograms, sampling, and
sketching [3, 6]. However, these approaches are typically based
on statistical models with simplifying assumptions like uniformity
and independence [3]. This leads to erroneous estimates in situa-
tions with complex data dependencies and correlations between
attributes. As shown in [2, 3, 8], neural networks (NNs) can be used
to provide high accuracy estimates in such situations. However,
main shortcomings of NNs are the high construction costs rooted
in their supervised learning approach. So, traditional as well as NN
approaches have their own advantages and disadvantages. Thus, as
described in [6], our overall goal is to use the best of both worlds
and bring traditional and NN models together to maximize their
potential for cardinality estimation.

To achieve this goal and to foster further research in that direc-
tion, we developed PostCENN integrating our previous research
results [6–8] into the open-source database system PostgreSQL
in an end-to-end fashion. PostgreSQL usually uses a traditional
histogram-based approach for cardinality estimation and this es-
tablished approach remains the standard in PostCENN. To flexi-
bly improve the estimation quality for sub-parts of the database
schema, we integrated NNs as first class citizen using our local
model approach [8]. For our integration, we borrow a lot from in-
dex structures. Just like indexes, NNs are additional data structures
covering only a specific sub-part of the database schema. Hence,
we also mirror the life cycle of index structures to our NN models.

2.1 Local Model Foundation
As presented in [8], our local model approach improves cardinality
estimation for a sub-part of the database schema [8]. To do so, a
local model is defined for a specific context and the corresponding
NN model can only be used for that context. A context can be any
base table or any join of tables. For each context, a separate NN
model has to be trained with example queries. After training, the
NN can be used as a cardinality estimator through its forward pass
application. The advantage of our local models compared to other
ML-based approaches is their light structure, fast training, and
easy deployment. They are also capable of producing cardinality
estimates with high quality, i.e. low estimation errors (q-error).

2.2 Local Model Life Cycle
To have our local NN models as first class citizen in PostCENN, we
defined a unified life cycle for each local NN model as illustrated in
Figure 1. This life cycle consists of the following stages: (i) creating
a local context, (ii) triggering the training and therefore creating
a model, (iii) using local models within the query optimizer in
a transparent way, and (iv) deleting a context or model. In the
following sections, we describe each stage individually.

PostCENN-System

Frontend application

Model
(NN)

TRAIN

CREATE/TRAIN/DROP

Training 
queries

TRAIN

Request for TRAIN

enable_nn_est
Use

PostgreSQL

Meta data

CREATE/DROP

Python backend

DELETE

Model
(NN)

Import

Data 
Cube

Figure 1: PostCENN system architecture.

Creating a Local Context. This stage is equivalent to defining
a collection of tables, their columns, and their join attributes to
identify a context. A context is stored as a reference for every model
in it. The user can create contexts over all tables in a database
schema. Furthermore, the user can limit the context to a specific set
of columns. This is important if the user onlywants to examine parts
of a context or if the context’s tables are very large. All information
about the context, like total tuple count or column ranges, are stored
in meta information tables within the database. Just like an index,
we enable the user to create a model context by calling CREATE
CONTEXT:

CREATE CONTEXT context_name

ON table_name(column1 , column2 , ...)

[, table_name(column1 , column2 ,...)]

[USING join_ids ];

Using this statement, users only create a local context with a
unique context_name within the database. The corresponding NN
model is not automatically trained due to the required construction
time.

Training a Local NN Model. The training process is the most
time-consuming part of the usage of NNs for cardinality estimation.
Thus, this training should be done asynchronously and only if
triggered by the user with an explicit command. For creating a
trained local model, the users select a context for which they want
to train an NN. For this training, the user has to specify NN-specific
parameters such as width, depth, and number of example queries
as described in [8]. Then, an NN is configured and trained with
these parameters using the following statement:

TRAIN MODEL model_name

ON context_name

USING (model_width , model_depth ,

number_of_example_queries );

This TRAIN MODEL statement creates a static NN model on the
specified context. Static means, the NN model is trained once and

2716



kept as it is until a new training is triggered manually. The mainte-
nance of these local models is an interesting future research topic
and currently out-of-scope of this demo.

To efficiently train our NNs, we tightly coupled the underlying
PostgreSQL with a Python backend containing Tensorflow in Post-
CENN as illustrated in Figure 1. Therefore, the training of the NN
models is outsourced to Tensorflow, whereas our Python backend
is responsible (i) to query the necessary example data from the
database, (i) to conduct the necessary vectorization of the example
queries, and (iii) to manage the training on GPUs.

To train an NN, or more specifically: to learn a supervised ML
model, many pairs consisting of (example_query, output_cardi-
nality) over the model context are required as input. To deter-
mine the correct output-cardinalities, the example queries are
rewritten with a count aggregate and executed individually. The
example queries are restricted to the model context, such that they
mainly differ in their predicates. To optimize the execution of all ex-
ample queries for a context, we develop a solution using a predicate-
independent pre-aggregation of the context data and execute the
example queries over this pre-aggregated data. Consequently, the
set of similar example queries has to read and process less data
because the pre-aggregation is a compact representation of the con-
text base data. To realize this pre-aggregation, we use the grouping
set construct, a special type of data cube, for storing and computing
aggregation information which is available in PostgreSQL. How-
ever, this pre-aggregation is only beneficial if the execution of the
example queries on the grouping set plus the time for creating the
grouping set is faster than the execution of the example queries
over the base data [7]. Thus, we internally evaluate the benefit and
the pre-aggregation is only conducted if it is advantageous. If this
is not the case, the example queries are executed on the context
base data.

After finishing the training, the meta data for the corresponding
context within the database is updated with an additional reference
to the trained model. The NN model is now available and can be
used. A context can have more than one trained model. This is
particularly important to the users if they want to train models
with different parameters for width, depth, or number of example
queries and compare the different resulting NNs to each other.

Usage of Local Models. The main application area of our NN
models is within the query optimizer. Here, the query optimizer
usually requests an estimated cardinality for a specific (sub-)query
from an NN model. This procedure is called forward pass. The
forward pass is pretty much encapsulated in the query optimizer,
so we decided to directly integrate tensorflow’s NN management
capabilities into PostgreSQL using the Tensorflow C API1 to achieve
the best performance. Moreover, Tensorflow models are exported
from the Python code in a cross-platform format.We use this feature
to import the model binary into the running PostgreSQL instance,
such that the forward pass is always executed within PostgreSQL
without touching any external tool.

To control the usage of NNs, we additionally introduced a pa-
rameter called enable_nn_est. It can be toggled via:

SET nn_enable_est TO [on/off];

1https://www.tensorflow.org/install/lang_c

If this parameter is set to on all available NNs will be used trans-
parently if their context is queried. This also applies for queries
where the context is only a part of a larger query construct or
for subqueries. If enable_nn_est is set to off, the standard Post-
greSQL estimator is used in all cases. This design choice arises from
the general property of local models that they are only initialized
where it appears beneficial to the user [6, 8]. Therefore, an individ-
ual decision for every single context is not required. However, we
give the users the control over which trained model they want to
use for a specific query if the query accesses the matching context.
This again helps to compare the potential of models with different
parameter configurations to each other.

Deleting a Local Model. Deleting a model or a context is rather
simple compared to the previous steps. To trigger the removal, the
user has two options:

DROP CONTEXT context_name;

DROP MODEL model_name;

If a user triggers the removal of a context by using the DROP CONTEXT
statement, PostCENN deletes all models associated to the context
as well as the context. If the user executes the DROP MODEL, only
the corresponding model will be removed from the system.

3 DEMONSTRATION DETAILS
The overall aim of our VLDB demo is to present PostCENN and its
end-to-end integration concept of NNs to improve the cardinality
estimation for sub-parts of the database schema. For this, we address
four aspects in our demo: (i) we introduce our PostCENN design
including all necessary concepts, (ii) we walk through the life cycle
of local models, (iii) we show the benefits of our best of both worlds
approach for query optimization, and (iv) we present open issues
for further research. Most importantly, we would like to give demo
visitors a comprehensive understanding of our entire PostCENN
approach. To achieve this, we provide an interactive graphical user
interface as a front-end for PostCENN. Throughout the demo, we
are using the IMDB2 data set and corresponding queries on it. Based
on this, a demo visitor experiences four steps.

Step 1 - Concept Explanation. At the beginning, every demo
visitor gets an explanation of all PostCENN concepts. This includes
the workings of local models, their construction and training, and
their use as a cardinality estimator in the query optimization phase.
Additionally, we explain our predicate-independent pre-aggregration
optimization for the training phase. For this explanation, we prepare
some slides as well as a poster to interactively present our concepts.
All these concepts can then be tested in our PostCENN prototype.

Step 2 - Life CycleWalk-Through. Next, we guide demo visitors
through the life cycle of local models to mainly demonstrate our
integration of the local model management into SQL. Here, visitors
have the opportunity to create, train, and delete predefined local
models in our front-end as shown in Figure 2. Additionally, they
can setup their own contexts within the IMDB database and train
models on a limited scale. Then, our front-end reports progress and
results of the integration. Moreover, visitors can retrace our opti-
mization approach for the model training. We also use this step, to
2ftp://ftp.fu-berlin.de/pub/misc/movies/database/frozendata/

2717



Context

PostCENN – Current Context: Con1

Con1 Tables Columns Join-IDs

title, movie_info production_year,

kind_id

title.id,

movie_info.id

Model Mod1 Width Depth #Queries

512 2 100,000

New context

New model

SELECT * 
FROM title t, movie_info mi 
WHERE t.id = mi.id AND t.kind_id = 5

Execute

True Histogram Local NN

Cardinality 24 100 32

Q-error - 4.2 1.3

Runtime - 1.0s 0.8s

Benchmark 1m queries

Histogram Local NN

Q-error (avg) 5.4 1.5

Q-error (max) 1222.0 805.1

Runtime (avg) 1.1s 0.7s

0

20

40

60

Q-error distributions

Step 2

Step 3

Figure 2: The interactive graphical user interface of our demonstration (Step 2 and 3).

explain the interaction of the main PostCENN system components
PostgreSQL and Python backend in detail. Furthermore, we open
the evaluation of the training process to the user by revealing the
optimization of the example query generation as presented in [7].
Furthermore, all hyperparameters of the specific local NNs [8] are
adjustable to improve the training process quality. So, different
models, with and without our optimization, can be examined re-
garding their q-errors and resulting query runtimes for both single
queries and workloads.

Step 3 - Benefit forQueryOptimization. In this step, we would
like to convey demo visitors an understanding on the benefit of
our approach for query optimization. Visitors can directly compare
cardinality estimates of histograms and NNs for a single query, its
quality, and its impact on the plan, and the query runtime (including
the overhead of NNs) as highlighted in Figure 2. We provide inter-
esting IMDB queries and predefined NN models, so that visitors are
able to pick a query over a context where there is a trained model.
Visitors also have the opportunity to submit their own queries to
the IMDB to explore with PostCENN. Then, our front-end reports
the estimates, plans, and runtimes for each estimator. The user is
also able to evaluate the overhead introduced by the NNs.

Lastly, there is the end-to-end comparison with the whole IMDB-
benchmark testing the capability of PostCENN. There, a workload
is executed under both estimators and the distribution of q-errors
and runtimes of both approaches can be compared. This gives a
large scale overview of the effectiveness of NNs as estimators by
presenting statistical features, like mean or median, for a collection
of q-errors and runtimes. This part is rounded off by a distribution
chart for all q-errors in the benchmark.

Step 4 - Open Issues. Last but not least, we would like to discuss
open issues with our demo visitors. For example, current research
suggests that NNs are not always the superior estimator, but that
histograms can sometimes outperform ML models [6]. This is due
to the fact that NNs can introduce an overhead which cannot be
compensated. With PostCENN, we can examine in depth which

query and data properties lead to such cases. Furthermore, an ad-
viser for when to use which estimator or the retraining of NNs if
data changes are interesting open issues for further research.

4 SUMMARY
In this demo, we present PostCENN, an enhanced PostgreSQL data-
base system with an end-to-end integration of machine learning
(ML) models for cardinality estimation. Just like indexes to optimize
the data access, we integrate ML models as a novel means to im-
prove the accuracy quality of cardinality estimation for sub-parts
of the database schema. PostCENN is a result of our research activi-
ties over the past few years. Moreover, PostCENN opens up future
research topics like ML advisor or maintenance of ML models.

ACKNOWLEDGMENTS
This work was supported by the German Federal Ministry of Edu-
cation and Research (BMBF, 01/S18026A-F) by funding the compe-
tence center for Big Data and AI “ScaDS.AI Dresden/Leipzig”.

REFERENCES
[1] Walter Cai, Magdalena Balazinska, and Dan Suciu. 2019. Pessimistic cardinality

estimation: Tighter upper bounds for intermediate join cardinalities. In SIGMOD.
18–35.

[2] Andreas Kipf, Dimitri Vorona, Jonas Müller, Thomas Kipf, Bernhard Radke, Vik-
tor Leis, Peter Boncz, Thomas Neumann, and Alfons Kemper. 2019. Estimating
cardinalities with deep sketches. In SIGMOD. 1937–1940.

[3] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper, and
Thomas Neumann. 2015. How good are query optimizers, really? PVLDB 9, 3,
204–215.

[4] Henry Liu, Mingbin Xu, Ziting Yu, Vincent Corvinelli, and Calisto Zuzarte. 2015.
Cardinality estimation using neural networks. In ICSE. 53–59.

[5] Jennifer Ortiz, Magdalena Balazinska, Johannes Gehrke, and S Sathiya Keerthi.
2019. An empirical analysis of deep learning for cardinality estimation. arXiv
preprint arXiv:1905.06425 (2019).

[6] Lucas Woltmann, Claudio Hartmann, Dirk Habich, and Wolfgang Lehner. 2020.
Best of both worlds: combining traditional and machine learning models for
cardinality estimation. In aiDM@SIGMOD. 1–8.

[7] Lucas Woltmann, Claudio Hartmann, Dirk Habich, and Wolfgang Lehner. 2021.
Aggregate-based Training Phase for ML-based Cardinality Estimation. BTW 2021
(2021).

[8] Lucas Woltmann, Claudio Hartmann, Maik Thiele, Dirk Habich, and Wolf-
gang Lehner. 2019. Cardinality estimation with local deep learning models. In
aiDM@SIGMOD. 1–8.

2718


