
Low-Latency Compilation of SQL Queries to Machine Code
Henning Funke

TU Dortmund University
henning.funke@cs.tu-dortmund.de

Jens Teubner
TU Dortmund University

jens.teubner@cs.tu-dortmund.de

ABSTRACT
Query compilation has proven to be one of the most efficient query
processing techniques. Despite its fast processing speed, the addi-
tional compilation times of the technique limit its applicability. This
is because the approach is most beneficial only when the improve-
ments in processing time clearly exceed the additional compilation
time.

Recently the feasibility of query compilers with very low compi-
lation times has been shown. This may prove query compilation
as a merely universal approach. In this article and in the corre-
sponding live demo, we show the capabilities of the ReSQL database
system, which uses the intermediate representation Flounder IR to
achieve very low compilation times. ReSQL reduces the compilation
times from SQL to machine code compared to existing LLVM-based
techniques by up to 101.1x for real-world analytic queries.

PVLDB Reference Format:
Henning Funke and Jens Teubner. Low-Latency Compilation of SQL
Queries to Machine Code. PVLDB, 14(12): 2691-2694, 2021.
doi:10.14778/3476311.3476321

1 INTRODUCTION
Query compilation is a processing technique for database queries
that achieves very high resource-efficiency and troughput. It uses
Just-in-Time (JIT)-compilation to generate custommachine code for
every query. This eliminates the overheads of traditional techniques
for interpreting query plans and schemas during processing. At the
time a query arrives, the query plan and schemas are constants and
can be evaluated before processing.

Using compilation, however, introduces additional compilation
time, which effectively increases response times. Therefore query
compilation is mostly used for applications, where the reduction of
execution time clearly exceeds the additional compilation time. This
is trivially true for large datasets and even GPU-based techniques
with compilation times up to seconds can amortize the cost [2].

Achieving low compilation times, on the other hand, is not only
beneficial for the immediate effect of reducing query response times.
Furthermore, low compilation times make query compilation more
practical. When compilation times are sufficiently low, there is no
need for different backends to address different types of workloads.
Previous work proposed to hide compilation costs by seamlessly
switching between interpreted and compiled execution [3]. With
sufficiently low compilation times there is no need for the additional
implementation cost of redundant backends.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 12 ISSN 2150-8097.
doi:10.14778/3476311.3476321

select * from r,s,t

where r_key = s_rkey

and s_key = t_skey

R S

TZ

Z
JIT Compilation

with
Flounder IR

48 89 e5

53

48 83 ec 08

80 3d 80 0b 20

75 4b

bb 30 0e 60 00

4c 89 fa

4c 89 f6

44 89 ef

41 ff 14 dc

41 5f

c3

Query

Machine Code

Figure 1: Flounder IR enables compilation of SQL queries to
machine code in very short time.

1.1 Low-Latency Query Compilation
Query compilation typically involves two steps. The first translates
the query to an intermediate representation (IR) and the second
translates the IR tomachine code. Especially during the second step,
the choice of IR has a strong effect on compilation times.

Lower-level IRs such as LLVM have been used to achieve low
compilation times [4, 5]. Machine code generation with LLVM,
however, still takes tens of milliseconds, which is sufficient time to
process millions of tuples with traditional non-JIT techniques. The
benefit of query compilation with LLVM for smaller data sizes is
therefore limited.

Our previous work on Flounder IR [1] has shown that query
compilers with much lower compilation times than those of LLVM
are feasible. To achieve this, Flounder IR uses a set of features that
is tailored to relational workloads and runs only very lightweight
algorithms during translation to machine code.

1.2 Contributions
In this work, we demonstrate how Flounder IR is used in a full
translation stack from SQL to machine code to enable low-latency
JIT compilation of queries. The demonstration enables inspection
of different levels of the translation process and shows the prac-
ticality of query compilation with Flounder IR. In the following,
we first describe IRs for low-latency query compilation (Section 2).
Then we present how the ReSQL database system is used for the
demonstration (Section 3). Finally Section 4 evaluates the transla-
tion performance and Section 5 wraps up with a summary.

2 LOW-LEVEL IRS FOR FAST TRANSLATION
Low-level IRs such as Flounder and LLVM are used to achieve low
compilation times during query compilation. Query compilation is

2691

https://doi.org/10.14778/3476311.3476321
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3476311.3476321

a two-step process that involves first translation of queries to IR
and second translation of IR to machine code. For LLVM, the second
step is still fairly time-consuming relative to the processing speed of
queries. Flounder has the ability perform the translation to machine
code in much shorter time. This is achieved by simplifying and
tailoring the IR and its translation process to relational workloads.

We now want to point out differences and similarities between
both IRs along with an example. To this end, we take the query
plan shown in the margin and discuss the translation of the hash

R S

Z
hash

codegen
probe

join probe operator. We assume that the code for
hash join build has already been generated. Now
follows the code generation for probing the hash
table with tuples from S.

In the following, we first look at a high-level description of the
probe funtionality and then we look at both low-level IRs that
enable fast compilation. For more details on query compilation
with Flounder IR, we refer to the article [1].

2.1 Join Probe
We first describe the functionality generated for the hash join probe
with C-code. Although C is not used as the IR here, this is a straight-
forward way of describing the functionality.

[...] /* child code */

int64_t* entry = null;

while (true) {

entry = ht_get (ht, s_a, entry);

if (entry == null) break;

int64_t r_a = entry[0];

int64_t r_b = entry[1];

[...] /* parent code */

}

[...] /* child code */

The probe entry is initialized with null and then hash probes are
executed via ht_get(..)-calls in a loop. When the call returns
null there are no further matches and we exit the loop. Inside the
loop, the attribute values stored at the hash table location entry are
read into r_a and r_b. After this the succeeding (parent) operators
execute.

2.2 Low-Level Representation
We now show the low-level representations for the hash join probe
functionality previously specified as C code. The low-level IRs con-
sist of instructions with a granularity similar to those executed by
the processor. However they include several abstractions to facili-
tate translation. Figure 2 (a) shows the LLVM IR for the hash join
probe and Figure 2 (b) the corresponding Flounder IR. Along with
the IR code, we exemplify commonalities and differences between
both IRs.

Structure. The structure of Flounder IR is simpler than the structure
of LLVM. The latter consists of Basic Blocks that start with a label
(e.g. match:) and end with a jump br. This makes the IR a graph
with Basic Block-nodes and edges for jumps between them. Floun-
der IR is linear and consists only of one instruction sequence. The
graph-based representations allows compilers to pick a favorable

joinProbe:

;get previous probe value

%prev = phi i64* [null, %scan],

[%ht_get, %match]

;ht_get(..) call

%ht_get = call i64* %htGetPtr(

%ht, %s_a, %prev)

;break when entry=NULL

%1 = icmp ne i64* %ht_get, null

br i1 %1, label %match,

label %miss

match:

;read ht entry

%addr0 = getelementptr i64,

i64* %ht_get, i64 0

%r_a = load i64, i64* %addr0

%addr1 = getelementptr i64,

i64* %ht_get, i64 1

%r_b = load i64, i64* %addr1

[...] ;parent code

br label %joinProbe

miss:

[...] ;child code

LLVM IR
(a)

[...] ;child code

vreg {entry}

mov {entry}, 0

loop_headN: ;while(..)

;ht_get(..) call

mcall {entry},{ht_get},

{ht},{s_a},{entry}

;break when entry=NULL

cmp {entry}, 0

je loop_footN

;read ht entry

vreg {r_a}

vreg {r_b}

mov {r_a}, [{entry}]

mov {r_b}, [{entry}+8]

[...] ;parent code

clear {r_a}

clear {r_b}

jmp loop_headN

loop_footN:

clear {entry}

[...] ;child code

Flounder IR
(b)

Figure 2: Intermediate representation of the hash join probe
operator in (a) LLVM IR and (b) Flounder IR.

fall-through path. This is not essential for query workloads because
the default path is already identified by the query compiler. The
simpler representation of Flounder IR improves translation speed.

Virtual Registers. Both IRs use a logically unlimited set of virtual
registers. For LLVM their names start with a percent-sign, e.g.
%prev. For Flounder virtual register names are contained in braces,
e.g. {entry}. To reduce translation cost, Flounder uses marker-
instructions to indicate usage ranges of virtual registers. Their start
is indicated e.g. by vreg {entry} their end by clear {entry}.

Register Allocation. During translation of IR to machine code, the
virtual registers are replaced with machine registers. LLVM applies
algorithms, such as live range splitting, to find an allocation that
uses machine registers efficiently. For Flounder IR the process is
simplified by separating machine registers into attribute registers
and few temporary registers. Attribute registers are allocated for
attribute values in a single scan over the IR. Temporary registers
are used to access spill-values on the stack and other purposes.

3 DEMONSTRATION: RESQL DBMS
The demonstration is based on the database system ReSQL that
was built ontop of Flounder IR. ReSQL allows JIT-based processing
of database workloads with very low compilation times. For the
demonstation users will be provided with the command line inter-
face for an instance of ReSQL. A screenshot of the command line
interface is shown in Figure 3.

2692

Figure 3: Command line interface of ReSQL.

3.1 Just-in-Time Compilation
The demo system allows users to enter and execute SQL statements
live on a sample database. JIT-Compilation is then performed for
many SQL queries in very short time. ReSQL translates the queries
with the following translation stack:

SQL

Expression Tree

Query Plan

Flounder IR

Machine Code

Grammar (lemon)

Query Planner

Query Compiler

Flounder Library

Translation starts by parsing SQL statements to an expression tree.
The query planner transforms the expression tree to a query plan,
which is the input for the query compiler. The query compiler
then translates each relational operator to Flounder IR, as was
shown in Section 2. Finally, the Flounder library translates the IR
to binary machine code, which is ready for query execution. The
demonstration system uses these steps for all queries and reports
compilation and execution times.

3.2 IR Inspection
To deep-dive into the translation mechanisms, users can inspect
the generated IR code and the resulting machine assembly. This
makes it possible to look into various aspects of code generation
and to look at the code that was generated for each operator. An
example for the IR code of a hash join probe operator is shown in
Figure 2 (b).

By looking at the IR code and the machine assembly, we can ob-
serve different database and compiler techniques in action. These in-
clude register allocation, post-projection optimizations, implemen-
tation of relational operators, as well as hash-based aggregations
and joins. In the following, we take a look at the dematerialization
of hash table entries as an example for IR inspection.

3.3 Example: Register Allocation
To illustrate how the IR inspection allows us to observe register al-
location, we get back to the example from Section 2. In the example,
hash table entries were read to registers for every match. We now

want to inspect the IR and the machine assembly to understand
how register allocation is performed for this operation.

The code shown below is an extract from Figure 2 (b) and is
responsible for reading the attributes r_a and r_b from the hash
table entry into registers. As scenario for register allocation, we
assume that 3 of 4 attribute registers are occupied and only r8 is
still free. No virtual registers were spilled on the stack yet. The
attribute registers and the stack are illustrated on the right. Dur-
ing translation, the Flounder translator goes over the instruction
sequence and replaces all virtual registers.

vreg {r_a}

vreg {r_b}

;read r_a

mov {r_a}, [{entry}]

;read r_b

mov {r_b}, [{entry}+8]

[...] ;parent code

clear {r_a}

clear {r_b}

Attribute Registers
rdxrsi

entry

rdi

...s_ar_a

r8

Stack

...

r_b

✗

✗

Tr
an
sl
at
e

Machine Register. When the first vreg {r_a} marker-instruction
is met, the allocator has to provide a new allocation. As there is a
free attribute register r8 available, it is used for {r_a}.

Spill Slot. When the second vreg {r_b} marker-instruction is en-
countered, there are no free attribute registers available. Therefore
a stack location is allocated for {r_b}.

In the remaining code whenever {r_a} is used in an instruction, the
virtual register is replaced with r8. Whenever {r_b} is used, the
register allocator emits spill code to exchange its value between the
stack and a temporary register. The instruction then operates on
the temporary register. At the end of the code both virtual registers
are deallocated with clear marker-instructions. Thus the register
r8 and {r_b}’s stack location are freed. This is indicated by the
symbol ✗.

mov r8, [rdi] ;read r_a

mov rax, [rdi+8] ;read r_b

mov [rsp-8], rax ;spill store

[...] ;parent code

Machine Assembly. The translation results in the x86_64 assembly
shown above. The code contains the functionality of the two moves
from the Flounder IR code and an additional move for stack access.
The vreg and clear marker-instructions are stripped after driving
register allocation. With the first mov the attribute r_a is read into
the attribute register r8. With the second mov the attribute r_b is
read into the temporary register rax. The third mov then stores the
temporary register’s value to r_b’s stack spill location [rsp-8].

4 EVALUATION
We evaluate the compilation performance of ReSQL for several
workloads. We focus on compilation times as primary showcase of
the demonstration. For execution times, we refer to related work [1].

2693

0

200

400

600

Query complexity

Co
m
pi
le
tim

e
m
s

llvm-O0 llvm-O3 Flounder
Qπ (projection)
QZ (join)

Figure 5: Effect of query complexity on compilation times
for different intermediate representations.

Q1 Q3 Q5 Q6 Q10 Q12 Q14 Q19
0

20

40

60

80

100

57
0

40
0

72
4

16
6

10
86

46
9

28
2

11
34

Co
m
pi
le
tim

e
m
s

Number of machine
instructions

Hyper ReSQL

Figure 6: Compile time and number of machine instruction
for TPC-H queries with different query compilers.

select r.a1, r.a2, ..., r.ap
from r

where r.a1 < c

Qπ : Vary projection complexity (p).

select r1.a, r2.a, ..., rj.a

from r1, r2, ..., rj
where r1.a = r2.a

...

and rj−1.a = rj.a

QZ : Vary join complexity (j).

Figure 4: Complexity query templates.

System. We use a system with Intel(R) Xeon E5-1607 v2 CPU with
3.00 GHz and 32GBmainmemory.We use operating systemUbuntu
18.04.4 and LLVM 6.0.0. We use HyPer v0.5-222-g04766a1 which
also uses LLVM for JIT-compilation.

Complexity Queries. We use two query templates Qπ and QZ ,
shown in Figure 4 that each have a parameter for query complexity.
This allows us to measure the asymptotic compilation times of
different JIT techniques when varying the complexity. Qπ is used
for queries with varying numbers of projection attributes. QZ is
used for queries that join varying numbers of relations.

TPC-H Benchmark Queries. We evaluate the compilation times for
several TPC-H benchmark queries to characterize the compilation
speed for real world analytic queries. We use only queries that
contain no sub-queries, because the current query planner of ReSQL
does not implement sub-queries yet.

4.1 Asymptotic Compilation Times
We compare the machine code compilation times for LLVM and
Flounder for Qπ and QZ . We use Qπ with values of p to project 50
to an extreme case 500 attributes (filter with selectivity 1%). We use
QZ with values of j to join 2 to 100 relations. We show the results
for Flounder, llvm-O0, and llvm-O3 in Figure 5.

For all techniques, the compilation times increase with the query
complexity. The compilation times for QZ are higher (up to 657ms)
than for Qπ (up to 560ms) and we look in detail at QZ . With O0
optimization LLVM has compilation times between 10ms up to
265ms. With O3 compilation times range from 28ms up to 657ms.
For both optimization levels, the graphs show super-linear growth
of compilation times with query complexity. Flounder has lower
compilation times that scale linearly between 0.3ms to 10.8ms.
The highest factor of improvement for QZ 24.6x over llvm-O0.
and 60.9x over llvm-O3 (both for 100 join relations). For Qπ the
highest improvement of Flounder over llvm-O0 is 283x.

4.2 Real World Compilation Times
To evaluate real world compilation times, we execute TPC-H queries
with Hyper and ReSQL. The results of the experiment are shown
in Figure 6.

Hyper has compilation times between 15ms for Q6 and 90ms for
Q5. ReSQL has much shorter compilation times between 0.21ms
for Q6 and 1.71ms for Q19. On average the compilation times of
ReSQL are 70.1x shorter than those of Hyper. The highest factor
of improvement is 101.1x for Q5. ReSQL has shorter compilation
times, because it uses Flounder IR instead of LLVM. Flounder IR is
much simpler and tailored to relational workloads, which leads to
a significant speed-up of the compilation process.

5 SUMMARY
This article demonstrates the capabilities of Flounder IR as an inter-
mediate representation. We oppose Flounder IR and LLVM IR on
a conceptual level and from the viewpoint of compilation perfor-
mance. The article illustrates the aspects of compilation and query
processing that are observable in the live demo.

ACKNOWLEDGMENTS
This work was supported by the DFG, Collaborative Research Cen-
ter SFB 876, Project A2.

REFERENCES
[1] Henning Funke, Jan Mühlig, and Jens Teubner. 2020. Efficient generation of

machine code for query compilers. In Proceedings of the 16th InternationalWorkshop
on Data Management on New Hardware. 1–7.

[2] Henning Funke and Jens Teubner. 2020. Data-Parallel Query Processing on Non-
Uniform Data. PVLDB 13, 6 (2020).

[3] André Kohn, Viktor Leis, and Thomas Neumann. 2018. Adaptive execution of
compiled queries. In 2018 IEEE 34th International Conference on Data Engineering
(ICDE). IEEE, 197–208.

[4] Thomas Neumann. 2011. Efficiently compiling efficient query plans for modern
hardware. PVLDB 4, 9 (2011), 539–550.

[5] OmniSci Incorporated. 2021. OmniSciDB. https://www.omnisci.com/, last accessed
on 07/25/2021.

2694

https://www.omnisci.com/

