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ABSTRACT

Modern mobile applications often produce decentralized data, i.e.,
a huge amount of privacy-sensitive data distributed over a large
number of mobile devices. Techniques for learning models from
decentralized data must properly handle two natures of such data,
namely privacy and massive engagement. Federated learning (FL)
is a promising approach for such a learning task since the tech-
nique learns models from data without exposing privacy. However,
traditional FL methods assume that the participating mobile de-
vices are honest volunteers. This assumption makes traditional
FL methods unsuitable for applications where two kinds of par-
ticipants are engaged: 1) self-interested participants who, without
economical stimulus, are reluctant to contribute their computing
resources unconditionally, and 2) malicious participants who send
corrupt updates to disrupt the learning process. This paper pro-
poses Refiner, a reliable federated learning system for tackling the
challenges introduced by massive engagements of self-interested
and malicious participants. Refiner is built upon Ethereum, a pub-
lic blockchain platform. To engage self-interested participants, we
introduce an incentive mechanism which rewards each participant
in terms of the amount of its training data and the performance
of its local updates. To handle malicious participants, we propose
an audit scheme which employs a committee of randomly chosen
validators for punishing them with no reward and preclude corrupt
updates from the global model. The proposed incentive and audit
scheme is implemented with cryptocurrency and smart contract,
two primitives offered by Ethereum. This paper demonstrates the
main features of Refiner by training a digit classification model on
the MNIST dataset.
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1 INTRODUCTION

There is an increasing interest in developing techniques for learning
models from decentralized data distributed across a large number
of mobile devices [7]. Models learned from such data can greatly
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improve intelligent behaviors of mobile applications such as image
classification and speech recognition. However, learning from de-
centralized data poses two challenges: 1) data privacy, i.e., sensitive
data stored on mobile devices are disallowed to be uploaded to a
centralized location for learning with conventional approaches; 2)
massive engagement, i.e., given that the average number of exam-
ples in each mobile device is small, participation of a large number
of mobile devices is a must for constructing a reasonably sized
training dataset.

Federate learning (FL) [7], originally developed by Google, is an
emerging technique for learning from decentralized data. To learn
a shared global model, instead of storing all data in a centralized
server for learning, FL first performs training on local data at each
participating mobile device and then aggregates these local up-
dates to obtain a global model. This expose-local-updates strategy
instead of expose-raw-data is proven to solve the data privacy chal-
lenge reasonably well [3]. The assumption of a collaborative group
with a common goal of obtaining high-quality models, however,
makes traditional FL methods unsuitable for applications where
self-interested and malicious participants are engaged [8]. This is
because traditional FL methods assume that participating mobile
devices are willing to contribute their computing resources to the
learning task as honest volunteers who strictly follow the learning
protocol. Therefore, traditional FL methods do not provide mech-
anisms for handling two kinds of participants: 1) self-interested
participants who, without proper economical stimulus, have no
motivation to contribute their computing resources uncondition-
ally, and 2) malicious participants who deviate from the learning
protocol and send corrupt local updates to poison the global model.

This paper proposes Refiner, a reliable federated learning system,
to tackle the challenges introduced by engaging self-interested and
malicious mobile devices. Refiner is built upon Ethereum, a public
blockchain platform, and extends traditional FL approaches with
a well-designed incentive mechanism and an audit scheme. We
assume self-interested participants are rational players whose goal
is to maximize profit. To engage self-interested participants, our
incentive mechanism rewards each participant with cryptocurren-
cies based on the amount of data it owns and the performance of
its local model updates. The more quality data that a participant
contributes, the more rewards that the participant will receive. Al-
though DeepChain [8] also proposes to enhance FL with blockchain-
based incentive mechanism, their method only enforces the correct
behaviors of the participants, without taking into consideration the
quality of the local model updates. In contrast, we reward partici-
pants based on both data volume and model quality, which makes
our approach more resilient to low-quality model updates.
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To prevent malicious participants from disrupting the system,
our audit scheme, implemented as smart contracts, traces the learn-
ing process on the blockchain and punishes participants who devi-
ate from the learning protocol with no rewards. To preclude corrupt
updates from the global model, a committee of validators, randomly
chosen from participating mobile devices, are employed for check-
ing the quality of local updates. Only qualified local updates are
accepted for updating the global model.

The rest of this paper is organized as follows. Section 2 presents
an overview of Refiner, describing participants, adversary model
and the system architecture. Section 3 presents the plan for demon-
strating the major functions of Refiner.

2 SYSTEM OVERVIEW

This section presents an overview of Refiner. The key ideas of
Refiner are summarized as two points: 1) an audit scheme which
employs a committee of randomly chosen validators for evaluating
and aggregating local model updates and 2) an incentive scheme
which utilizes smart contracts to reward participating mobile de-
vices according to their contributions. We can prove that as long as
a majority of the validators in the committee are honest, Refiner
can reliably engage self-interested mobile devices and prevent ma-
licious participants from disrupting the learning task. Due to space
limitations, this paper presents the design of Refiner. Algorithm de-
tails and analysis will be presented in a separate research paper. We
shall refer to a smart contract as a contract and use the two terms
interchangeably. Below, Section 2.1 describes different participants
in Refiner. Section 2.2 presents the adversary model. Section 2.3
presents Refiner’s system architecture and workflow.

2.1 Roles

There are four kinds of participants in Refiner, listed as follows.

Administrator. There is only one administrator in Refiner. The
administrator is responsible for setting up an entry point, e.g., a
website, for participants to access the system and maintaining a
registry smart contract for posting and querying FL tasks. The
administrator is not involved in any FL task.

Requester. For each FL task, there is only one requester who is
responsible for submitting the task and paying rewards to workers
and validators. A requester is not expected to have any data for
training, but is required to provide validation datasets which serve
as the standards for evaluating the quality of the local model up-
dates produced by workers. Since the quality evaluation has direct
influences on the model aggregation process, the validation datasets
should be carefully chosen to reflect the requester’s demand.

Worker. Workers are mobile devices that collectively learn a
global model from their local data. Workers in Refiner are analogous
to clients in traditional FL systems. We assume that a massive
number of self-interested workers, who seek to maximize their
profits, will engage in an FL task.

Validator. Validators are mobile devices responsible for evalu-
ating the quality of local model updates and aggregating qualified
local updates into a global model. Validators also receive rewards
from the requester. Each mobile device in Refiner can register either
as a worker or as a validator. But Refiner disallows a mobile device
to register as both a worker and a validator simultaneously.

2660

2.2 Adversary Model

Refiner handles three kinds of malicious participants: cheating
requester, malicious workers and compromised validators.

Cheating Requester: Traditional FL methods employ the re-
quester for aggregating local model updates and producing the final
global model. Such an approach suffers from the payment default
attack. After the global model is produced, a cheating requester
may leave the system without paying participants. Refiner deals
with payment default attack by wrapping the global model retrieval
and payment as a single transaction and relying on smart contracts
for processing this transaction.

Malicious Workers: Malicious workers are mobile devices that
produce fabricated or corrupt local model updates to defraud re-
wards. Refiner handles malicious workers by randomly choosing
a committee of validators to evaluate the performance of the sub-
mitted model updates on the validation dataset provided by the
requester. Rewards are only paid to workers who produce qualified
local model updates.

Compromised Validators: Compromised validators are mo-
bile devices which produce incorrect evaluation results. In Refiner,
compromised validators come in two ways: 1) Sybil attack, i.e., an
attacker fabricates a large number of aliases to join the system as
validators; 2) fake evaluation results attack, i.e., the compromised
validator steals the evaluation results from an honest validator and
sends the stolen results to cheat for rewards. Refiner employs a
validator committee selection scheme which is similar to the block
proposer selection algorithm presented in Algorand [2] to tackle
the Sybil attack and a cryptographic commit scheme to prevent
fake evaluation results.

2.3 System Architecture

The architecture of Refiner is depicted in Figure 1. Our system is
implemented on top of Ethereum, a prevalent public blockchain
platform!. At system startup, the administrator deploys a registry
contract on Ethereum. The registry contract serves as the catalog of
registered FL tasks, workers, and validators and provides functions
such as task status updating and participants registration. Refiner
learns a model from data stored on mobile devices in iterative
rounds. During learning, participants need to privately exchange
data which is unsuitable to be stored on blockchain. Thus we employ
a secure data sharing scheme for persisting these data to IPFS [1], a
decentralized storage system?. We describe the data sharing scheme
first. Then, we present each step of a learning round in detail.

2.3.1 Data Sharing. We employ a double encryption scheme for
a participant to share data with target receivers. The encryption
scheme requires that each participant in the system has a public-
private key pair. Suppose a worker wants to share its model updates
w with specific validators, the worker first encrypts w with a sym-
metric key K as enc(w, K). Then the worker stores enc(w, K) in
IPFS with a file handle H*> Finally, the worker encrypts % with

! Although Ethereum is adopted in our system implementation, the incentive and audit
scheme we proposed can actually be implemented in any blockchain platform that
supports cryptocurrency and smart contracts.

2Similar to the case of selecting Ethereum as our blockchain platform, our secure data
sharing scheme can also be implemented on other distributed storage systems.
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Figure 1: Refiner Architecture

the public key of each validator and shares the encrypted key and
the file handle with the target validator through blockchain.

2.3.2 Task Registration. A requester launches a new FL task by
deploying a task contract on the blockchain. The task contract spec-
ifies: 1) the task description, e.g., data format, target performance,
the numbers of workers and validators; and 2) the quantities of
rewards that will be paid to workers and validators in each round.
Notably, Refiner allows the requester to choose the global model
updating method from two available algorithms: 1) FedAvg [7] and
2) FedProx [5]. After the task contract is deployed, the requester in-
vokes RegisterTask(addr) to register the address of the deployed
task addr to the registry contract. The status of the newly created
task is PENDING.

2.3.3 Member Recruitment. Mobile devices register their roles,
namely workers or validators, to Refiner with their Ethereum ad-
dresses. After a new FL task T is submitted, the requester changes
the task status to RECRUITING. Then, registered mobile devices will
receive the new task notification via the Ethereum event handling
mechanism. After that, interested workers join the task T by in-
voking the SignUp() function of the task contract. Meanwhile,
registered validators perform the committee selection algorithm
to choose a committee of validators for T. We employ the same
committee selection algorithm as the one proposed in Algorand [2].
The algorithm employs a verifiable random function and a cryp-
tographic sortition scheme to choose committee members from
registered validators based on their Ethereum account balance. The
committee selection algorithm is proven to address the Sybil attack
[2]. After a sufficient number of participants are enrolled, the status
of the task T is changed to PENDING.

2.3.4 Round Initialization. In this step, the requester prepares a
starting global model w and a validation dataset D for the workers
and the validators committee respectively. The requester securely
shares these data with the intended recipients through the data
sharing scheme presented in Section 2.3.1. The requester invokes
the StartRound() function of the task contract with the file handles
and encrypted keys. Then the task status is changed to TRAINING.

2.3.5 Local Training. Each worker i retrieves the global model w
from IPFS with the file handle and decrypts it with the key. Next,
the worker updates the global model w on its local dataset. After
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computing the local model updates w;, the worker i securely stores
wj in IPFS and shares w; with the validators committee by invoking
SubmitTrainingResults() with the file handle and encrypted
keys of w;. After all workers have committed their training results
or a timer has expired, the status of the task becomes EVALUATING.

2.3.6  Model Evaluation and Aggregation. Each validator in the val-
idators committee retrieves the validation dataset and local model
updates using the file handles and encrypted keys. The validator
first evaluates each local model w; on the validation dataset D
by computing L(D;w;) where L is the loss function. To prevent
corrupt local model updates, only qualified local model updates
are accepted. The local model update w; is qualified only if w; sat-
isfies L(D;w;) < € where € is the model qualification threshold
specified in the task description. After all local model updates are
processed, the validator updates the global model by aggregating
qualified local model updates: w « }; %wi where n; is the num-
ber of training examples from worker i and n is the total number
of examples from all workers in this learning round. Next, the val-
idator calculates the worker’s contributions in terms of marginal
model performance loss. Specifically, for each worker j, the validator
computes an aggregated model w/ « ¥, j %wi without worker
J’s updates. Then, the contribution of worker j is determined by
Lj=L(D;w) - L(D; w/). Next, the validator ranks the workers
according to their contributions. Finally, each validator i securely
shares the aggregated model w with the requester and commits to
the task contract a manifest M; consisting of the evaluation results,
the file handle of the aggregated model and its encrypted key.

To tackle compromised validators who steal manifests from oth-
ers, we adopt the cryptographic commit scheme [6]. The scheme
consists of two phases: 1) commit and 2) reveal. In the commit phase,
each validator i generates a commitment of M; as ¢; = H (M;, s;)
with a fresh salt s; and sends c; to the task contract. After all com-
mitments are submitted or a timer expired, the reveal phase starts
and the task status is changed to REVEALING. Each validator sends
M; and s; to the task contract. After all manifests are submitted or
a timer expired, the task status is changed to RENARDING.

2.3.7 Reward Distribution. The task contract verifies each man-
ifest by checking ¢; = H(M;, s;). A majority rule is adopted to
determine a consensus manifest. Validators who produce manifests
that agree with the consensus manifest will be rewarded with an
equal amount of Ether. Workers are rewarded according to their
contributions as recorded in the consensus manifest.

2.3.8 Task Termination. In the final step, the requester retrieves
the global model from IPFS. The whole FL task terminates if any one
of the following conditions is satisfied: 1) the task has run for a pre-
defined number of rounds, 2) the performance of the global model
has reached a pre-defined target, and 3) the requester explicitly
invokes the StopTraining() function of the task contract. Once
the task terminates, the status of the task is changed to TERMINATED
and the task is removed from the registry contract.

3 DEMONSTRATION

We demonstrate the main features of Refiner by training a digital
classification model on the MNIST dataset[4], i.e., running FL tasks,
rewarding participants, and handling malicious behavior. Refiner
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Figure 2: Refiner User Interface

supports two learning modes: auto and manual. We invite the audi-
ence to interact with the system in each step of the training process
in the manual learning mode. The demonstration plan is as follows:

Environment. The demonstration is hosted in cloud. A private
test-bed Ethereum blockchain is setup beforehand. We use NFS
instead of IPFS as the storage module. Five workers and eight val-
idators are run inside a virtual cloud server.

Task Registry. We first log in to Refiner as a requester and
submit a new FL task to the system. The audience will specify
configuration items of the task through the task configuration panel
(Figure 2(1)). Once the task is successfully created, its task contract
will be deployed on the blockchain. After that, the audience can view
the task in the task management panel (Figure 2(2)). The panel shows
detailed information of the task, including progress of learning,
budgets, members and global model performance.

Member Recruitment. In the second step, the audience will
recruit members for the submitted FL task through the task man-
agement panel. Then, we log in to Refiner as a worker. Figure 2(3)
shows the task board panel for the worker. The validators committee,
on the other hand, is automatically selected. Thus, the committee
selection scheme is not demonstrated in a step-by-step manner.

Round Initialization. The audience starts a new learning round
with the task management panel (Figure 2(2)). To make the demon-
stration interesting, we first invite the audience to supply some
rewards. Then, the audience will feed a starting model and a vali-
dation dataset into the progress subpanel and launch the round.

Local Training. In this step, the audience views tasks that re-
quire training through worker’s training panel (Figure 2(4)). We
prepare a good dataset with correct labels and a bad dataset with in-
tentionally shuffled labels. The audience can choose one for training
and then submit the local model updates.

Model Evaluation and Aggregation. We now log in to Refiner
as a validator and guide the audience to evaluate the performance
of local model updates produced by workers. Figure 2(5) shows the
evaluation panel for the validator. The validator first evaluates the
performance of all workers’ local model updates and then aggre-
gates qualified local updates into a global model. The contribution
of each worker is calculated and the results are submitted to the
blockchain. If the audience chooses the bad dataset in the previous

step, the worker will be deemed malicious and its local updates will
be rejected.

Reward Distribution. Reward distribution is performed after
the consensus manifest is determined. The rewards in the task con-
tract will be transferred to the accounts of the qualified workers and
validators. We will show the amount of rewards that they receive
(Figure 2(4) and Figure 2(5)). We will also log in as the requester and
show the results of the learning round (Figure 2(6)). The audience
will see that the rewards paid to workers are proportional to the
contributions made by those workers. Malicious workers whose lo-
cal model updates are rejected and compromised validators whose
evaluation results are inconsistent will not be paid.

Task Termination. In the final step, the performance of a learn-
ing curve will be presented to the audience (Figure 2(2)). We shall
end the demonstration by retrieving the global model and using
the model to perform digit classification.
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