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ABSTRACT
Kernel density visualization (KDV) is a commonly used visualiza-

tion tool for many spatial analysis tasks, including disease outbreak

detection, crime hotspot detection, and traffic accident hotspot

detection. Although the most popular geographical information

systems, e.g., QGIS, and ArcGIS, can also support this operation,

these solutions are not scalable to generate a single KDV for datasets

with million-scale data points, let alone to support exploratory op-

erations (e.g., zoom in, zoom out, and panning operations) with

KDV in near real-time (< 5 sec). In this demonstration, we develop

a near real-time visualization system, called KDV-Explorer, that

is built on top of our prior study on the efficient kernel density

computation. Participants will be invited to conduct some kernel

density analysis on three large-scale datasets (up to 1.3 million data

points), including the traffic accident dataset, crime dataset and

COVID-19 dataset. We will also compare the performance of our

solution and the solutions in QGIS and ArcGIS.
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1 INTRODUCTION
Kernel-density-estimation-based visualization, a.k.a. kernel den-

sity visualization (KDV) [6], is the de facto method for hotspot
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detection, which has been used in many application domains. Epi-

demiologists [10, 12] utilize KDV to detect the disease outbreak.

Criminologists [9, 15] utilize KDV to discover the crime hotspots.

Transportation experts [17] utilize KDV to find the traffic accident

blackspots. Besides the above analytics tasks, IKCEST [3] utilizes

the heatmap, based on KDV, to show the distribution of COVID-19

cases in different regions of China to the general public (cf. Fig-

ure 1). Here, each color of the pixel represents the density of that

particular region, e.g., orange color is used to represent the hotspots

(i.e., more confirmed cases) in IKCEST system.

Figure 1: KDV of COVID-19 cases in China (from [3])
Due to its wide applicability, KDV has been integrated into many

geographical information systems, including QGIS [14], and Ar-

cGIS [1]. However, KDV is a computationally expensive operation,

which is not scalable to large-scale datasets. Using the New York

traffic accident dataset [5] (with 1.3 million spatial data points) as

an example, computing KDV takes over 0.676 trillion operations

on a 512 × 512 screen, which is infeasible to compute in a short

period of time (e.g., seconds) on a moderate machine. Worse still,

there are more large-scale spatial point datasets available nowadays,

which can further deteriorate the infeasibility issue for computing

a single KDV in different tasks. Moreover, the practical users (e.g.,

transportation experts [17], epidemiologists [10]) do not generate

only a single visualization for a dataset. They would perform the

exploratory operations (e.g., zoom in, zoom out, and panning) with

KDV to explore the hotspots in different regions, including the

province level, city level, district level, and street level. For example,

transportation experts can zoom in to Manhattan and perform KDV

for analyzing the traffic accident hotspots (using the New York traf-

fic accident dataset [5]) in this region. Therefore, an efficient KDV

system is important to these users for performing spatial analysis.

Although both QGIS and ArcGIS have adopted some fast algo-

rithms for evaluating KDV, these types of software cannot generate
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KDV within a reasonable time for a large-scale dataset and cannot

support exploratory operations. For example, QGIS needs to use

more than 30 minutes to generate a single KDV for New York traffic

accident dataset [5]. Therefore, we ask a question, can we develop
a system that can achieve the near real-time KDV for datasets with
million-scale data points?

In this demonstration, we develop the web-based system, called

KDV-Explorer, which incorporates our state-of-the-art solution

QUAD [6] for generating KDV on different datasets, including traf-

fic accident dataset [5], crime dataset [2], and COVID-19 dataset [4].

As a remark, this web-based system offers the opportunity for

the users to perform hotspot analysis in their personal comput-

ers/smartphones, without installing new software. Furthermore, we

illustrate how to efficiently support different types of exploratory

operations, e.g., zoom in, zoom out, and panning, with KDV, using

representative kernel functions.

Related Work. In recent years, many efficient algorithms for sup-

porting KDV with exploratory operations (zoom in, zoom out and

panning) have been developed [11, 13, 18] in which all of these

studies focus on using the modern hardware, e.g., GPU [11, 13], or

distributed computation [18], to boost the efficiency for computing

KDV. However, these studies need to consume many computa-

tional resources (e.g., 16 computers (in parallel) with one GPU

for each computer in [13]) in order to generate KDV for million-

scale datasets in real-time (< 0.5 sec) [11, 13, 18]. Therefore, these

approaches are not well-suited for domain experts (e.g., transporta-

tion experts [17]), who do not necessarily have many computa-

tional resources, to analyze big spatial data (e.g., 1.3M traffic acci-

dent dataset [5]). Compared with these research studies, our KDV-

Explorer is the first system, which supports near real-time KDV

(i.e., time efficient) on a moderate machine (using only one core of

the process (i.e., resource efficient)) with exploratory operations

(zoom in, zoom out and panning). In Table 1, we summarize the

overall performance of well-known visualization software for KDV,

QGIS and ArcGIS, compared with KDV-Explorer.

Table 1: Comparisons of different visualization software

Software Exploratory Time Resource

(or system) operations efficiency efficiency

QGIS [14] × × X

ArcGIS [1] × × X

KDV-Explorer (ours) X X X

2 TECHNICAL OVERVIEW OF
KDV-EXPLORER

In this section, we describe the details for evaluating KDV. Since

evaluating the exact KDV is time-consuming, we evaluate the ap-

proximate version of KDV (ϵKDV), which is formulated as follows.

Problem 1. (ϵKDV [6]) Given the visualized region with resolution
M × N , the set P of data points and the relative error ϵ , the color of
each pixel q in this region depends on the approximate value AP (q)
such that:

(1 − ϵ)FP (q) ≤ AP (q) ≤ (1 + ϵ)FP (q) (1)

where FP (q) is the kernel density estimation value of pixel q, such
that:

FP (q) =
1

|P |

∑
pi∈P

K(q, pi) (2)

In practice, we can achieve similar visualization performance

once we specify the error parameter ϵ to be 0.05 [6] in Problem 1.

Here, we describe two main components of KDV-Explorer, which

are (1) our quadratic bound functions, i.e., QUAD (cf. Section 2.1)

and (2) indexing framework (cf. Section 2.2). These two components

can significantly improve the efficiency for the evaluation of ϵKDV,
which can then support exploratory operations with KDV in near

real-time for large-scale datasets.

2.1 QUAD
In order to efficiently obtain AP (q) for each pixel q, we adopt the
state-of-the-art lower and upper bound functions [6] for FP (q).
Here, we use the triangular kernel as an example to illustrate the

concept of these lower and upper bound functions, where:

K(q, pi) = max

(
1 −

1

b
· dist(q, pi), 0

)
(3)

Here, b and dist(q, pi) denote the bandwidth of the triangular

kernel function and Euclidean distance, respectively.

In [6], we illustrate that once we let xi =
1

b · dist(q, pi) in the

kernel function (cf. Equation 3), we can utilize two quadratic bounds

QL(xi ) = alxi
2 + cl and QU (xi ) = auxi

2 + cu for approximating

this kernel function max(1 − xi , 0), as shown in Figure 2.
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Figure 2: Approximation of triangular kernel function, by
the quadratic bound functions (QL(x) and QU (x))

Then, we can replace each kernel function K(q, pi) by its lower

and upper bounds, which provide the lower and upper bound func-

tions for FP (q), where:

LB(q) =
1

|P |

∑
pi∈P

(
al

(
1

b
dist (q, pi)

)
2

+ cl
)

(4)

U B(q) =
1

|P |

∑
pi∈P

(
au

(
1

b
dist (q, pi)

)
2

+ cu
)

(5)

Since

∑
pi∈P dist(q, pi)

2
can be efficiently evaluated inO(d) time

[6], both LB(q) andUB(q) can be computed inO(d) time. In [6], we

also mention how to obtain the suitable parameters al / cl and au / cu
in order to make the tightest lower and upper bound values. Once

we obtain these two bound functions, we can utilize the following

condition (cf. Lemma 1) to check whether it fulfills the theoretical

guarantee (cf. Equation 1).

Lemma 1. [8] If U B(q)−LB(q)
U B(q)+LB(q) ≤ ϵ , we can achieve the theoretical

guarantee (cf. Equation 1) for Problem 1, where:

AP (q) =
2LB(q)UB(q)
LB(q) +UB(q)

(6)
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Table 2 summarizes the kernel functions that our system KDV-

Explorer can support. Compared with our preliminary work [6],

KDV-Explorer further extends QUAD for handling other commonly

used kernel functions, including quartic kernel, which is the default

kernel for QGIS/ ArcGIS software, and Epanechnikov kernel.

Table 2: Kernel functions

Kernel K (q, pi)

Gaussian exp(− 1

b2
dist (q, pi)2)

Quartic max((1 − 1

b2
dist (q, pi)2)2, 0)

Epanechnikov max(1 − 1

b2
dist (q, pi)2, 0)

Triangular max(1 − 1

b dist (q, pi), 0)

Cosine

{
cos( 1b dist (q, pi)) if dist (q, pi) ≤ π

2
b

0 otherwise

Exponential exp(− 1

b dist (q, pi))

2.2 Indexing framework for Bound Functions
Since both LB(q) andUB(q) (cf. Equations 4 and 5, respectively) are
derived based on the full dataset P , these two bound functions may

not be tight. Therefore, we can first build the index structure (cf.

Figure 3) on the dataset P and then utilize the indexing framework

to further tighten the bound functions until they fulfill the condition

in Lemma 1. For details, please refer to our preliminary work [6, 7].

R5

p1 p2 … p5 

Rroot

p6 p7 … p9 

leaf R1

p10 p11 … p13 p14 p15 … p18

leaf R3leaf R2 leaf R4

R6

Figure 3: Index structure (e.g., kd-tree) on the dataset P [6]

3 KDV-EXPLORER
In this section, we first illustrate the user interface of our system in

Section 3.1. Then, we describe the system architecture in Section 3.2.

After that, we discuss the use case of the exploratory operations,

including zoom in, zoom out, and panning, for our system in Sec-

tion 3.3. Lastly, we show the use case of the representative kernel

functions (cf. Table 2) in Section 3.4.

3.1 User Interface
In this section, we illustrate the user interface and the important

functionalities (i.e., (a) to (e) in Figure 4) of KDV-Explorer. To sup-

port KDV by our system, the users need to declare these three

inputs, which are (1) kernel type, (2) number of pixels (i.e.,M × N )

and (3) dataset.

For (1), we support all kernel types in Table 2, which are also

supported by existing geographical information systems, e.g., QGIS,

and ArcGIS. The users can select the desired kernel type in the

list box (a). In addition, the users can also tune the bandwidth

of different kernel functions, i.e., the variable b in Equation 3, to

control the smoothness of the chosen kernel function in (b). With

the larger bandwidth b, the density plot can be smoother.

To specify the number of pixels in KDV-Explorer for (2), we allow

the users to specify different levels in the bar (c). Here, the larger

(a)

(b)

(c)

(d)

(e)

Figure 4: The user interface of KDV-Explorer

the number of levels, the larger the number of pixels. Therefore, the

response time is also longer, but the visualization quality is better.

For (3), KDV-Explorer offers three datasets for demonstration,

including traffic accident dataset in New York [5], crime dataset

in Atlanta [2], and COVID-19 dataset [4]. The users can select the

dataset in the list box (d) for visualization.

After the users specify the parameters of (1), (2) and (3), they can

click the “Run” button (in (e)), KDV-Explorer adopts the efficient

methods of both Sections 2.1 and 2.2 to output the visualization to

the users.

3.2 System Architecture
Figure 5 shows the system architecture of KDV-Explorer. Each user

can interact with the system using the exploratory operations, e.g.,

zoom in, zoom out, and panning. In the server side, Apache HTTP

Server is used to receive user operations and then asks Express.JS

to take the corresponding actions (e.g., zoom in). Once the user

requests for the heatmap of a geographical region (on her screen),

i.e., click the “Run” button in Figure 4, the KDV computationmodule

(i.e., QUAD) computes the density value for each pixel and then

Apache HTTP Server returns the result to the client side. After that,

DECK.GL, which is a WebGL-powered framework, can generate

the heatmap, based on our result, to the user.

Figure 5: System architecture

3.3 Use Case of Exploratory Operations
Recall from Section 3.2, KDV-Explorer can support three types

of exploratory operations, including zoom in, zoom out, and pan-

ning. Figure 6 shows the use case of these operations to generate

KDV in different geographical regions, using the crime dataset in

Atlanta [2].

Suppose that we generate KDV in Atlanta (cf. Figure 6a), we can

discover there are multiple crime hotspots (with red color) in this

region. Observe that there is a relatively huge hotspot region in

South Downtown. However, we cannot distinguish which parts
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(a) Atlanta, USA (b) South Downtown (c) Brookwood Hills

Figure 6: Generating KDV in different geographical regions via exploratory operations, including zoom in, zoom out, and
panning, with the crime dataset in Atlanta

of South Downtown contain higher density of crime events. To

provide more detailed visualization, we can further zoom in to

this region and request for generating KDV again (cf. Figure 6b).

Observe that KDV-Explorer can show more detailed visualization

in this region (i.e., two crime hotspots in the South Downtown).

Since the users can also be interested in visualizing different

regions, KDV-Explorer also provides the panning operation for

the users to select the interested region for visualization. As an

example, after we pan the visualized region from South Downtown

to Brookwood Hills, we can generate another KDV for this region

(cf. Figure 6c).

3.4 Use Case of Kernel Functions
In real applications, domain experts (e.g., transportation experts,

criminologists) adopt different types of kernel functions, e.g., Gauss-

ian [9], quartic [17], Epanechnikov [16], and triangular [9] kernels,

to perform KDV analysis. Therefore, KDV-Explorer extends our

preliminary work [6] to support more kernel functions, including

Epanechnikov and quartic kernels. Figure 7 shows the use case for

generating KDV in Upper Manhattan, using the traffic accident

dataset [5] in New York. Observe that KDV with different kernel

functions can provide different shapes of hotspot regions.

(d) Triangular kernel

(a) Gaussian kernel (b) Quartic kernel

(c) Epanechnikov kernel

Figure 7: Generating KDV in Upper Manhattan with differ-
ent kernel functions, using the traffic accident dataset in
New York

4 DEMONSTRATION PLAN
In this demonstration, we have two objectives:

• Demonstrate that KDV-Explorer can efficiently support on-

line (or web-based) KDVwith exploratory operations (includ-

ing zoom in, zoom out, and panning) and commonly-used

kernel functions (cf. Table 2) for multiple users.

• Demonstrate that KDV-Explorer can achieve significant

speedup, compared with existing geographical information

systems, including QGIS, and ArcGIS.

For the first objective, we use three large-scale datasets (up to

1.3 million data points), including traffic accident [5], crime [2],

and COVID-19 [4] datasets, as the case studies. For ease of use, we

develop a web-based prototype system to demonstrate our efficient

KDV tool. In the demonstration, audiences can simultaneously

access to the website (by their computers or smartphones) and

issue the KDV queries on different regions of the world.

For the second objective, we will pre-install ArcGIS and QGIS

and configure our web-based solution KDV-Explorer in a laptop.

Then, the audiences can compare the response time between three

solutions.
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