
Beyond Equi-joins: Ranking, Enumeration and Factorization
Nikolaos Tziavelis

Northeastern University

Boston, Massachusetts, USA

tziavelis.n@northeastern.edu

Wolfgang Gatterbauer

Northeastern University

Boston, Massachusetts, USA

w.gatterbauer@northeastern.edu

Mirek Riedewald

Northeastern University

Boston, Massachusetts, USA

m.riedewald@northeastern.edu

ABSTRACT

We study theta-joins in general and join predicates with conjunc-

tions and disjunctions of inequalities in particular, focusing on

ranked enumeration where the answers are returned incrementally

in an order dictated by a given ranking function. Our approach

achieves strong time and space complexity properties: with 𝑛 denot-

ing the number of tuples in the database, we guarantee for acyclic

full join queries with inequality conditions that for every value of 𝑘 ,

the 𝑘 top-ranked answers are returned in O(𝑛 polylog𝑛 + 𝑘 log𝑘)
time. This is within a polylogarithmic factor of O(𝑛 + 𝑘 log𝑘), i.e.,
the best known complexity for equi-joins, and even of O(𝑛 + 𝑘),
i.e., the time it takes to look at the input and return 𝑘 answers in

any order. Our guarantees extend to join queries with selections

and many types of projections (namely those called “free-connex”

queries and those that use bag semantics). Remarkably, they hold

even when the number of join results is 𝑛ℓ for a join of ℓ relations.

The key ingredient is a novel O(𝑛 polylog𝑛)-size factorized repre-
sentation of the query output, which is constructed on-the-fly for

a given query and database. In addition to providing the first non-

trivial theoretical guarantees beyond equi-joins, we show in an

experimental study that our ranked-enumeration approach is also

memory-efficient and fast in practice, beating the running time of

state-of-the-art database systems by orders of magnitude.

PVLDB Reference Format:

Nikolaos Tziavelis, Wolfgang Gatterbauer, and Mirek Riedewald. Beyond

Equi-joins: Ranking, Enumeration and Factorization. PVLDB, 14(11):

2599-2612, 2021.

doi:10.14778/3476249.3476306

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/northeastern-datalab/anyk-code.

1 INTRODUCTION

Join processing is one of the most fundamental topics in database

research, with recent work aiming at strong asymptotic guarantees

[47, 58, 61, 62]. Work on constant-delay (unranked) enumeration

[10, 19, 42, 74] strives to pre-process the database for a given query

on-the-fly so that the first answer is returned in linear time (in

database size), followed by all other answers with constant delay

(i.e., independent of database size) between them. Together, linear

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 11 ISSN 2150-8097.

doi:10.14778/3476249.3476306

pre-processing and constant delay guarantee that all answers are

returned in time linear in input and output size, which is optimal.

Ranked enumeration. Ranked enumeration [78] generalizes

the heavily studied top-𝑘 paradigm [35, 45] by continuously return-

ing join answers in ranking order. This enables the output consumer

to select the cut-off 𝑘 on-the-fly while observing the answers. For

top-𝑘 , the value of 𝑘 must be chosen in advance, before seeing any

query answer. Unfortunately, non-trivial complexity guarantees

of previous top-𝑘 techniques, including the celebrated Threshold

Algorithm [35], are limited to the “middleware” cost model, which

only accounts for the number of distinct data items accessed [78].

While some of those top-𝑘 algorithms can be applied to joins with

general predicates, they do not provide non-trivial guarantees in

the standard RAMmodel of computation, and their time complexity

for a join of ℓ relations can be O(𝑛ℓ).
The goal of this paper is to design ranked-enumeration algorithms

for general theta joins with strong space and time guarantees in the

standard RAMmodel of computation. Tight upper complexity bounds

are essential for ensuring predictable performance, no matter the

given database instance (e.g., in terms of data skew) or the query’s

total output size. Notice that it already takes O(𝑛+𝑘) time to simply

look at 𝑛 input tuples as well as create and return 𝑘 output tuples.

Since polylogarithmic factors are generally considered small or

even negligible for asymptotic analysis [5, 27], we aim for time

bounds that are within such polylogarithmic factors of O(𝑛 + 𝑘).
At the same time, we want space complexity to be reasonable; e.g.,

for small 𝑘 to be within a polylogarithmic factor of O(𝑛), which is

the required space to hold the input.

While state-of-the-art commercial and open-source DBMSs do

not yet support ranked enumeration, it is worth taking a closer look

at their implementation of top-𝑘 join queries. (Here 𝑘 is specified

in a SQL clause like FETCH FIRST or LIMIT.) While we tried a

large variety of inputs, indexes on the input relations, join queries,

and values of 𝑘 , the optimizer of PostgreSQL and two other widely

used commercial DBMSs always chose to execute the join before

applying the ranking and top-𝑘 condition on the join results.
1
This

implies that their overall time complexity to return even the top-1

result cannot be better than the worst-case join output size, which

can be O(𝑛ℓ) for a join of ℓ relations.

Beyond equi-joins. Recent work on ranked enumeration [30,

32, 77, 78, 86, 87] achieves much stronger worst-case guarantees,

but only considers equi-joins. However, big-data analysis often also

requires other join conditions [31, 34, 48, 52] such as inequalities

(e.g., S.age < T.age), non-equalities (e.g., S.id ≠ T.id), and band
predicates (e.g., |S.time - T.time| < 𝜀). For these joins, two

1
For non-trivial ranking functions, or when the attributes used for joining differ from

those used for ranking, the DBMS cannot determine if a subset of the join output so

far produced already contains all 𝑘 top-ranked answers. This applies to general theta

joins as well as equi-joins.

2599

https://orcid.org/0000-0001-8342-2177
https://orcid.org/0000-0002-9614-0504
https://orcid.org/0000-0002-6102-7472
https://doi.org/10.14778/3476249.3476306
https://github.com/northeastern-datalab/anyk-code
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3476249.3476306

major challenges must be addressed. First, the join itself must be

computed efficiently in the presence of complex conditions, possi-

bly consisting of conjunctions and disjunctions of such predicates.

Second, to avoid having to produce the entire output, ranking has

to be pushed deep into the join itself.

Example 1. A concrete application of ranked enumeration for

inequality joins concerns graph-based approaches for detecting “lat-

eral movement” between infected computers in a network [53]. By

modeling computers as nodes and connections as timestamped edges,

these approaches search for anomalous access patterns that take

the form of paths (or more general subgraphs) ranked by the prob-

ability of occurrence according to historical data. The inequalities

arise from a time constraint: the timestamps of two consecutive

edges need to be in ascending order. Concretely, consider the relation

G(From,To,Time,Prob). Valid 2-hop paths can be computed with

a self-join (where𝐺1,𝐺2 are aliases of𝐺) where the join condition is

an equality G1 .To = G2 .From and an inequality G1 .Time < G2 .Time,
while the score of a path is G1 .Prob · G2 .Prob. Existing approaches
are severely limited computationally in terms of the length of the

pattern, since the number of paths in a graph can be extremely large.

Thus, they usually resort to a search over very small paths (e.g.,

only 2-hop). With the techniques developed in this paper, patterns of

much larger size can be retrieved efficiently in ranked order without

considering all possible instantiations of the pattern.

Main contributions.We provide the first comprehensive study

on ranked enumeration for joins with conditions other than equal-

ity, notably general theta-joins and conjunctions and disjunctions

of inequalities and equalities. While such joins are expensive to

compute [48, 52], we show that for many of them the top-ranked

answers can always be found in time complexity that only slightly

exceeds the complexity of sorting the input. This is remarkable,

given that the input may be heavily skewed and the output size

of a join of ℓ relations is O(𝑛ℓ). We achieve this with a carefully

designed factorized representation of the join output that can be

constructed in relatively small time and space. Then the ranking

function determines the traversal order on this representation.

Recall that ranked-enumeration algorithms must continuously

output answer tuples in order and the goal is to achieve non-trivial

complexity guarantees no matter at which value of 𝑘 the algorithm

is stopped. Hence we express algorithm complexity as a function of

𝑘 : TT(𝑘) and MEM(𝑘) denote the algorithm’s time and space com-

plexity, respectively, until the moment it returns the 𝑘-th answer

in ranking order. Our main contributions (see also Figure 1) are:

(1) We generalize an equi-join-specific ranked-enumeration con-

struction [77] by representing the overall join structure as a tree of

joining relations and then introducing a join-condition-sensitive

abstraction between each pair of adjacent relations in the tree. For

the latter, we propose the “Tuple-Level Factorization Graph” (TLFG,

Section 3), a novel factorized representation for any theta-join be-

tween two relations, and show how its size and depth affect the

complexity of ranked enumeration. Interestingly, some TLFGs can

be used to transform a given theta-join to an equi-join, a property

we leverage for ranked enumeration for cyclic join queries.

(2) For join conditions that are a DNF of inequalities (Sec-

tion 4), we propose concrete TLFGs with space and construction-

time complexity O(𝑛 polylog𝑛). Using them for acyclic joins, our

Join Condition Example Time P(𝑛) Space S(𝑛)
(𝐶) Theta booleanUDF(S.A, T.C) O(𝑛2) O (𝑛2)

(𝐶1) Inequality S.A < T.B
(𝐶2) Non-equality S.A ≠ T.B O(𝑛 log𝑛) O (𝑛 log log𝑛)

(𝐶3) Band |S.A − T.B | < 𝜀
(𝐶4) DNF of

(𝐶1), (𝐶2), (𝐶3)
(S.A<T.B ∧ S.A<T.C)

∨(S.A≠T.D) O (𝑛 polylog𝑛) O (𝑛 polylog𝑛)

Figure 1: Preprocessing time P(𝑛) and space complexity

S(𝑛) of our approach for various join conditions. Our novel

factorized representation allows ranked enumeration to re-

turn the 𝑘 top-ranked results in time (“Time-To”) TT(𝑘) =

O(P(𝑛) + 𝑘 log𝑘), usingMEM(𝑘) = O(S(𝑛) + 𝑘) space.

algorithm guarantees TT(𝑘) = O(𝑛 polylog𝑛 + 𝑘 log𝑘), which
is within a polylogarithmic factor of the equi-join case, where

TT(𝑘) = O(𝑛 +𝑘 log𝑘) [77], and even the lower bound of O(𝑛 +𝑘).
(3) Our experiments (Section 6) on synthetic and real datasets

show orders-of-magnitude improvements over highly optimized

top-𝑘 implementations in state-of-the-art DBMSs, as well as over

an idealized competitor that is not charged for any join-related cost.

Due to space constraints, formal proofs and several details of im-

provements to our core techniques (Section 5) are in the full version

of this paper [79]. Our project website contains more information in-

cluding source code: https://northeastern-datalab.github.io/anyk/.

2 PRELIMINARIES

2.1 Queries

Let [𝑚] denote the set of integers {1, . . . ,𝑚}. A theta-join query in

Datalog notation is a formula of the type

𝑄 (Z) :−𝑅1 (X1), . . . , 𝑅ℓ (Xℓ), 𝜃1 (Y1), . . . , 𝜃𝑞 (Y𝑞)
where 𝑅𝑖 are relational symbols, X𝑖 are lists of variables (or at-

tributes), Z,Y𝑖 are subsets of X =
⋃︁

X𝑖 , 𝑖 ∈ [ℓ], 𝑗 ∈ [𝑞], and 𝜃 𝑗
are Boolean formulas called join predicates. The terms 𝑅𝑖 (X𝑖)
are called the atoms of the query. Equality predicates are encoded

by repeat occurrences of the same variable in different atoms; all

other join predicates are encoded in the corresponding 𝜃 𝑗 . If no

predicates 𝜃 𝑗 are present, then 𝑄 is an equi-join. The size |𝑄 | of the
query is equal to the number of symbols in the formula.

Query semantics. Join queries are evaluated over a database

that associates with each 𝑅𝑖 a finite relation (or table) that draws

values from a domain that we assume to be R for simplicity.
2
With-

out loss of generality, we assume that relational symbols in different

atoms are distinct since self-joins can be handled with linear over-

head by copying a relation to a new one. The maximum number of

tuples in an input relation is denoted by 𝑛. We write 𝑅.𝐴 for an at-

tribute𝐴 of relation 𝑅 and 𝑟 .𝐴 for the value of𝐴 in tuple 𝑟 ∈ 𝑅𝑖 . The

semantics of a theta-join query is to (𝑖) create the Cartesian product

of the ℓ relations, (𝑖𝑖) select the tuples that satisfy the equi-join

conditions and 𝜃 𝑗 predicates, and (𝑖𝑖𝑖) project on the Z attributes.

Consequently, each individual query answer can be represented as

a combination of joining input tuples, one from each table 𝑅𝑖 .

Projections. In this paper, we focus on full queries, i.e., join

queries without projections (Z = X).While our approach can handle

2
Our approach naturally extends to other domains such as strings or vectors, as long

as the corresponding join predicates are well-defined and computable in O(1) for a
pair of input tuples.

2600

https://northeastern-datalab.github.io/anyk/

projections by applying them in the end, the strong asymptotic

TT(𝑘) guarantees may not hold any more. The reason is that a

projection could map multiple distinct output tuples to the same

projected answer. In the strict relational model where relations are

sets, those “duplicates” would have to be eliminated, creating larger

gaps between consecutive answers returned to the user. Fortunately,

our strong guarantees still hold for arbitrary projections in the

presence of bag semantics, which is what DBMSs use when the SQL

query has a SELECT clause instead of SELECT DISTINCT. Even for

set semantics and SELECT DISTINCT queries, it is straightforward

to extend our strong guarantees to non-full queries that are free-

connex [10, 13, 17, 43].

Join trees for equi-joins. An equi-join query is (alpha-)acyclic

[39, 75, 89] if it admits a join tree. A join tree is a tree with the atoms

(relations) as the nodes where for every attribute 𝐴 appearing in an

atom, all nodes containing 𝐴 form a connected subtree. The GYO

reduction [89] computes such a join tree for equi-joins.

Atomic join predicates.We define the following types of pred-

icates between attributes 𝑆.𝐴 and 𝑇 .𝐵: an inequality is 𝑆.𝐴 < 𝑇 .𝐵,

𝑆.𝐴 > 𝑇 .𝐵, 𝑆.𝐴 ≤ 𝑇 .𝐵, or 𝑆.𝐴 ≥ 𝑇 .𝐵, a non-equality is 𝑆.𝐴 ≠ 𝑇 .𝐵 and

a band is |𝑆.𝐴−𝑇 .𝐵 | < 𝜀 for some 𝜀 > 0. Our approach also supports

numerical expressions over input tuples, e.g., 𝑓 (𝑆.𝐴1, 𝑆 .𝐴2, . . .) <
𝑔(𝑇 .𝐵1,𝑇 .𝐵2, . . .), with 𝑓 and 𝑔 arbitrary O(1)-time computable

functions that map to R. The join predicates 𝜃 𝑗 are built with con-

junctions and disjunctions of such atomic predicates. We assume

there are no predicates on individual relations since they can be

removed in linear time by filtering the corresponding input tables.

2.2 Ranked Enumeration

Ranked enumeration [78] returns distinct join answers one-at-a-

time, in the order dictated by a given ranking function on the

output tuples. Since this paradigm generalizes top-𝑘 (top-𝑘 for “any

𝑘” value, or “anytime top-𝑘”), it is also called any-𝑘 [77, 86]. An

obvious solution is to compute the entire join output, and then

either batch-sort it or insert it into a heap data structure. Our goal

is to find more efficient solutions for appropriate ranking functions.

For simplicity, in this paper we only discuss ranking by increas-

ing sum-of-weights, where each input tuple has a real-valued weight

and the weight of an output tuple is the sum of the weights of the

input tuples that were joined to derive it. Ranked enumeration

returns the join answers in increasing order of output-tuple weight.

It is straightforward to generalize our approach to any ranking

function that can be interpreted as a selective dioid [77]. Intuitively,

a selective dioid [37] is a semiring that also establishes a total order

on the domain. It has two operators (min and + for sum-of-weights)

where one distributes over the other (+ distributes overmin). These

structures include even less obvious cases such as lexicographic

ordering by relation attributes.

2.3 Complexity Measures

We consider in-memory computation and analyze all algorithms in

the standard Random Access Machine (RAM) model with uniform

cost measure. Following common practice, we treat query size

|𝑄 |—intuitively, the length of the SQL string—as a constant. This

corresponds to the classic notion of data complexity [80], where

one is interested in scalability in the size of the input data, and not

of the query (because users do not write arbitrarily large queries).

In line with previous work [15, 22, 38], we assume that it is

possible to create in linear time an index that supports tuple lookups

in constant time. In practice, hashing achieves those guarantees in

an expected, amortized sense. We include all index construction

times and index sizes in our analysis.

For the time complexity of enumeration algorithms, we measure

the time until the 𝑘th result is returned (TT(𝑘)) for all values of 𝑘 . In
the full version [79], we further discuss the relationship of TT(𝑘) to
enumeration delay as complexity measures. Since we do not assume

any given indexes, a trivial lower bound is TT(𝑘) = O(𝑛 + 𝑘):
the time to inspect each input tuple at least once and to return

𝑘 output tuples. Our algorithms achieve that lower bound up to a

polylogarithmic factor. For space complexity, we use MEM(𝑘) to
denote the required memory until the 𝑘th result is returned.

3 GRAPH FRAMEWORK FOR JOINS

We summarize our recent work on ranked enumeration for equi-

joins, then show our novel generalization to theta-joins.

3.1 Previous Work: Any-𝑘 for Equi-joins

Any-𝑘 algorithms [77] for acyclic equi-joins reduce ranked enumer-

ation to the problem of finding the 𝑘th-lightest trees in a layered

DAG, which we call the enumeration graph. Its structure depends

on the join tree of the given query; an example is depicted in Fig. 2a.

The enumeration graph is a layered DAG in the sense that we as-

sociate it with a particular topological sort: (1) Conceptually, each

node is labeled with a layer ID (not shown in the figure to avoid

clutter). A layer is a set of nodes that share the same layer ID

(depicted with rounded rectangles). (2) Each edge is directed, going

from lower to higher layer ID. (3) All tuples from an input relation

appear as (black-shaded) nodes in the same layer, called a relation

layer. Each relation layer has a unique ID and for each join-tree edge

(𝑆,𝑇), 𝑆 has a lower layer ID than𝑇 . (4) If and only if two relations

are adjacent in the join tree, then their layers are connected via

a connection layer that contains (blue-shaded) nodes representing

their join-attribute values. (5) The edges from a relation layer to

a connection layer connect the tuples with their corresponding

join-attribute values and vice-versa.

The enumeration graph is constructed on-the-fly and bottom-up,

according to a join tree of the query (starting from𝑈 and 𝑇 in the

example). This phase essentially performs a bottom-up semi-join

reduction that also creates the edges and join-attribute-value nodes.

A tree solution is a tree that starts from the root layer and contains

exactly 1 node from each relation layer. By construction, every tree

solution corresponds to a query answer, and vice versa.

The any-𝑘 algorithm then goes through two phases on the enu-

meration graph. The first is a Dynamic Programming computation,

where every graph node records for each of its outgoing edges the

lowest weight among all subtrees that contain 1 node from each re-

lation layer below. The minimum-subtree and input-tuple weights

are not shown in Figure 2a to avoid clutter. For instance, the outgo-

ing edge for 𝑅-node (2, 3) would store the smaller of the weights

of 𝑈 -tuples (2, 1) and (2, 2). Similarly, the left edge from 𝑆-node

(2, 1) would store the sum of the weight of 𝑅-tuple (2, 3) and the

2601

1,1 2,1 3,2S 4,3 5,3 6,3

1,1 2,1 2,2U 4,1

1

1,1 2,1 3,2T 4,3 5,3 6,31,1 1,2 2,3R 4,5

S(A, B)

R(A, C) T(D, B)

U(A, E)

Join Tree

2 4 1 2 3

1 2 4

(a) Equi-join enumeration graph [77].

1,1 2,1 3,2S 4,3 5,3 6,3

1,1 2,2 3,3U 4,4

1,1 2,1 3,2T 4,3 5,3 6,3

1,1 2,1 3,2R 4,3

S(A, D)

R(D, E) T(B, C)

U(D, F)

Theta-join Tree

A < BA > E

E < F

v1 v2 v3 v4 v5

vx⋯ ⋯

vy

vz

⋯ ⋯

⋯ ⋯

(b) Theta-join enumeration graph and abstraction proposed in this paper.

ὃ
1
2
3
4

Ὀ
1
1
2
3

5
6

3
3

S
ὄ
1
2
3
4

ὅ
1
1
2
3

5
6

3
3

T
ὃ
1
1
2
2
3
4

ὠ

5

E1

v1
v3
v2
v3
v3
v4
v5

Ὀ
1
1
1
1
2
3
3

ὄ
2
3
3

5

ὠ
v1
v1
v2

v4

4v3
5v3
6v3

6v4

E2

ὅ
1
2
2

3

3
3
3

3
6v5 3

S(A, D)

T(B, C)

New Join Tree
(between S-T)

E2(V1, B, C)

E1(A, D, V1)

(c) Reduction to equi-join.

Figure 2: Overview of our approach.We generalize the equi-join-specific construction to theta-joins by introducing an abstrac-

tion (blue clouds) that factorizes binary joins. Some factorizations can also be used to reduce theta-joins to equi-joins.

minimum subtree weight from 𝑅-node (2, 3). The minimum-subtree

weight for a node’s outgoing edge is obtained at a constant cost

by pushing the minimum weight over all outgoing edges up to the

node’s parent. Afterwards, enumeration is done in a second phase,

where the enumeration graph is traversed top-down (from 𝑆 in the

example), with the traversal order determined by the layer IDs and

minimum-subtree weights on a node’s outgoing edges.

The size of the enumeration graph and its number of layers

determine space and time complexity of the any-𝑘 algorithm. The

following lemma summarizes the main result from our previous

work [77]. We restate it here in terms of data complexity (where

query size ℓ is a constant) and using 𝜆 for the number of layers.
3

Lemma 2 ([77]). Given an enumeration graph with |𝐸 | edges and
𝜆 layers, ranked enumeration of the 𝑘-lightest tree solutions can be

performed with TT(𝑘) = O(|𝐸 | + 𝑘 log𝑘 + 𝑘𝜆) and MEM(𝑘) =

O(|𝐸 | + 𝑘𝜆).

To extend the any-𝑘 framework beyond equi-joins, we generalize

first the definition of a join tree and then the enumeration graph

with an abstraction that is sensitive to the join conditions.

3.2 Theta-Join Tree

The join tree is essential for generating the enumeration graph.

In contrast to equi-joins, for general join conditions there is no

established methodology for how to define or find a join tree. We

generalize the join tree definition as follows:

Definition 3 (Theta-join Tree). A theta-join tree for a theta-

join query 𝑄 is a join tree for the equi-join 𝑄 ′
that has all the 𝜃 𝑗

predicates of 𝑄 removed, and every 𝜃 𝑗 is assigned to an edge (𝑆,𝑇) of
the tree such that 𝑆 and 𝑇 contain all the attributes referenced in 𝜃 𝑗 .

We call a theta-join query acyclic if it admits a theta-join tree. In

the theta-join tree, edge (𝑆,𝑇) represents the join 𝑆 ⊲⊳𝜃 𝑇 , where

join condition 𝜃 is the conjunction of all predicates 𝜃 𝑗 assigned to

the edge, as well as the equality predicates 𝑆.𝐴 = 𝑇 .𝐴 for every

attribute 𝐴 that appears in both 𝑆 and 𝑇 .

3
Due to the specific construction for equi-joins [77], there 𝜆 was linear in query size ℓ

and hence ℓ and 𝜆 were used interchangeably. In our generalization this may not be

the case, therefore we use the more precise parameter 𝜆 here.

Example 4. Consider 𝑄 (𝐴, 𝐵,𝐶, 𝐷, 𝐸, 𝐹) :−𝑅(𝐷, 𝐸), 𝑆 (𝐴, 𝐷),
𝑇 (𝐵,𝐶),𝑈 (𝐷, 𝐹), (𝐴 < 𝐵), (𝐴 > 𝐸), (𝐸 < 𝐹).a This query

is acyclic since we can construct the theta-join tree shown in

Fig. 2b. Notice that all nodes containing attribute 𝐷 are connected

and each inequality is assigned to an edge whose adjacent

nodes together contain all referenced attributes. For example,

𝐴 < 𝐵 is assigned to (𝑆,𝑇) (𝑆 contains 𝐴 and 𝑇 contains 𝐵).

The join-tree edges represent join predicates 𝜃1 = 𝑆.𝐴 < 𝑇 .𝐵

(edge (𝑆,𝑇)), 𝜃2 = 𝑆.𝐴 > 𝑅.𝐸 ∧ 𝑆.𝐷 = 𝑇 .𝐷 (edge (𝑆, 𝑅)), and
𝜃3 = 𝑅.𝐸 < 𝑈 .𝐹 ∧ 𝑅.𝐷 = 𝑈 .𝐷 (edge (𝑅,𝑈)).
a
SELECT * FROM R, S, T, U WHERE

R.D = S.D AND R.D = U.D AND S.A < T.B AND S.A > R.E AND R.E < U.F

We can construct the theta-join tree by first removing all 𝜃 𝑗
predicates from the given query 𝑄 , turning it into an equi-join 𝑄 ′

.

Then an algorithm like the GYO reduction can be used to find a join

tree for 𝑄 ′
. For the query in Example 4, this join tree looks like the

one in Figure 2b, but without the edge labels. Finally, we attempt

to add each 𝜃 𝑗 predicate to a join-tree edge: 𝜃 𝑗 can be assigned to

any edge where the two adjacent nodes contain all the attributes

referenced in it. Note that there may exist different join trees for𝑄 ′
,

and we may have to try all possible options to obtain a theta-join

tree. Fortunately, this computation depends only on the query, thus

takes O(1) space and time in data complexity. If either the GYO

algorithm fails to find a join tree for 𝑄 ′
or no join tree allows us to

assign the 𝜃 𝑗 predicates to tree edges, then the query is cyclic and

can be handled as discussed in Section 5.3. We discuss next how to

create the enumeration graph for a given theta-join tree.

3.3 Factorized Join Representation

By relying on a join tree similar in structure to the equi-join case,

we can establish a similar layered structure for the enumeration

graph. In particular, each input relation appears in a separate layer

and each join-tree edge is mapped to a subgraph implementing

the join condition between the corresponding relation layers. This

is visualized by the blue clouds in Figure 2b. In contrast to the

equi-joins, we allow more general connection layers, possibly a

single layer with a more complex connection pattern (like the 𝑆-

to-𝑇 connection in the example) or even multiple layers (like the

connection between 𝑅-node (2, 1) and𝑈 -node (2, 2)).

2602

