
Beyond Equi-joins: Ranking, Enumeration and Factorization
Nikolaos Tziavelis

Northeastern University

Boston, Massachusetts, USA

tziavelis.n@northeastern.edu

Wolfgang Gatterbauer

Northeastern University

Boston, Massachusetts, USA

w.gatterbauer@northeastern.edu

Mirek Riedewald

Northeastern University

Boston, Massachusetts, USA

m.riedewald@northeastern.edu

ABSTRACT

We study theta-joins in general and join predicates with conjunc-

tions and disjunctions of inequalities in particular, focusing on

ranked enumeration where the answers are returned incrementally

in an order dictated by a given ranking function. Our approach

achieves strong time and space complexity properties: with 𝑛 denot-

ing the number of tuples in the database, we guarantee for acyclic

full join queries with inequality conditions that for every value of 𝑘 ,

the 𝑘 top-ranked answers are returned in O(𝑛 polylog𝑛 + 𝑘 log𝑘)
time. This is within a polylogarithmic factor of O(𝑛 + 𝑘 log𝑘), i.e.,
the best known complexity for equi-joins, and even of O(𝑛 + 𝑘),
i.e., the time it takes to look at the input and return 𝑘 answers in

any order. Our guarantees extend to join queries with selections

and many types of projections (namely those called “free-connex”

queries and those that use bag semantics). Remarkably, they hold

even when the number of join results is 𝑛ℓ for a join of ℓ relations.

The key ingredient is a novel O(𝑛 polylog𝑛)-size factorized repre-
sentation of the query output, which is constructed on-the-fly for

a given query and database. In addition to providing the first non-

trivial theoretical guarantees beyond equi-joins, we show in an

experimental study that our ranked-enumeration approach is also

memory-efficient and fast in practice, beating the running time of

state-of-the-art database systems by orders of magnitude.

PVLDB Reference Format:

Nikolaos Tziavelis, Wolfgang Gatterbauer, and Mirek Riedewald. Beyond

Equi-joins: Ranking, Enumeration and Factorization. PVLDB, 14(11):

2599-2612, 2021.

doi:10.14778/3476249.3476306

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/northeastern-datalab/anyk-code.

1 INTRODUCTION

Join processing is one of the most fundamental topics in database

research, with recent work aiming at strong asymptotic guarantees

[47, 58, 61, 62]. Work on constant-delay (unranked) enumeration

[10, 19, 42, 74] strives to pre-process the database for a given query

on-the-fly so that the first answer is returned in linear time (in

database size), followed by all other answers with constant delay

(i.e., independent of database size) between them. Together, linear

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 11 ISSN 2150-8097.

doi:10.14778/3476249.3476306

pre-processing and constant delay guarantee that all answers are

returned in time linear in input and output size, which is optimal.

Ranked enumeration. Ranked enumeration [78] generalizes

the heavily studied top-𝑘 paradigm [35, 45] by continuously return-

ing join answers in ranking order. This enables the output consumer

to select the cut-off 𝑘 on-the-fly while observing the answers. For

top-𝑘 , the value of 𝑘 must be chosen in advance, before seeing any

query answer. Unfortunately, non-trivial complexity guarantees

of previous top-𝑘 techniques, including the celebrated Threshold

Algorithm [35], are limited to the “middleware” cost model, which

only accounts for the number of distinct data items accessed [78].

While some of those top-𝑘 algorithms can be applied to joins with

general predicates, they do not provide non-trivial guarantees in

the standard RAMmodel of computation, and their time complexity

for a join of ℓ relations can be O(𝑛ℓ).
The goal of this paper is to design ranked-enumeration algorithms

for general theta joins with strong space and time guarantees in the

standard RAMmodel of computation. Tight upper complexity bounds

are essential for ensuring predictable performance, no matter the

given database instance (e.g., in terms of data skew) or the query’s

total output size. Notice that it already takes O(𝑛+𝑘) time to simply

look at 𝑛 input tuples as well as create and return 𝑘 output tuples.

Since polylogarithmic factors are generally considered small or

even negligible for asymptotic analysis [5, 27], we aim for time

bounds that are within such polylogarithmic factors of O(𝑛 + 𝑘).
At the same time, we want space complexity to be reasonable; e.g.,

for small 𝑘 to be within a polylogarithmic factor of O(𝑛), which is

the required space to hold the input.

While state-of-the-art commercial and open-source DBMSs do

not yet support ranked enumeration, it is worth taking a closer look

at their implementation of top-𝑘 join queries. (Here 𝑘 is specified

in a SQL clause like FETCH FIRST or LIMIT.) While we tried a

large variety of inputs, indexes on the input relations, join queries,

and values of 𝑘 , the optimizer of PostgreSQL and two other widely

used commercial DBMSs always chose to execute the join before

applying the ranking and top-𝑘 condition on the join results.
1
This

implies that their overall time complexity to return even the top-1

result cannot be better than the worst-case join output size, which

can be O(𝑛ℓ) for a join of ℓ relations.

Beyond equi-joins. Recent work on ranked enumeration [30,

32, 77, 78, 86, 87] achieves much stronger worst-case guarantees,

but only considers equi-joins. However, big-data analysis often also

requires other join conditions [31, 34, 48, 52] such as inequalities

(e.g., S.age < T.age), non-equalities (e.g., S.id ≠ T.id), and band
predicates (e.g., |S.time - T.time| < 𝜀). For these joins, two

1
For non-trivial ranking functions, or when the attributes used for joining differ from

those used for ranking, the DBMS cannot determine if a subset of the join output so

far produced already contains all 𝑘 top-ranked answers. This applies to general theta

joins as well as equi-joins.

2599

https://orcid.org/0000-0001-8342-2177
https://orcid.org/0000-0002-9614-0504
https://orcid.org/0000-0002-6102-7472
https://doi.org/10.14778/3476249.3476306
https://github.com/northeastern-datalab/anyk-code
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3476249.3476306

major challenges must be addressed. First, the join itself must be

computed efficiently in the presence of complex conditions, possi-

bly consisting of conjunctions and disjunctions of such predicates.

Second, to avoid having to produce the entire output, ranking has

to be pushed deep into the join itself.

Example 1. A concrete application of ranked enumeration for

inequality joins concerns graph-based approaches for detecting “lat-

eral movement” between infected computers in a network [53]. By

modeling computers as nodes and connections as timestamped edges,

these approaches search for anomalous access patterns that take

the form of paths (or more general subgraphs) ranked by the prob-

ability of occurrence according to historical data. The inequalities

arise from a time constraint: the timestamps of two consecutive

edges need to be in ascending order. Concretely, consider the relation

G(From,To,Time,Prob). Valid 2-hop paths can be computed with

a self-join (where𝐺1,𝐺2 are aliases of𝐺) where the join condition is

an equality G1 .To = G2 .From and an inequality G1 .Time < G2 .Time,
while the score of a path is G1 .Prob · G2 .Prob. Existing approaches
are severely limited computationally in terms of the length of the

pattern, since the number of paths in a graph can be extremely large.

Thus, they usually resort to a search over very small paths (e.g.,

only 2-hop). With the techniques developed in this paper, patterns of

much larger size can be retrieved efficiently in ranked order without

considering all possible instantiations of the pattern.

Main contributions.We provide the first comprehensive study

on ranked enumeration for joins with conditions other than equal-

ity, notably general theta-joins and conjunctions and disjunctions

of inequalities and equalities. While such joins are expensive to

compute [48, 52], we show that for many of them the top-ranked

answers can always be found in time complexity that only slightly

exceeds the complexity of sorting the input. This is remarkable,

given that the input may be heavily skewed and the output size

of a join of ℓ relations is O(𝑛ℓ). We achieve this with a carefully

designed factorized representation of the join output that can be

constructed in relatively small time and space. Then the ranking

function determines the traversal order on this representation.

Recall that ranked-enumeration algorithms must continuously

output answer tuples in order and the goal is to achieve non-trivial

complexity guarantees no matter at which value of 𝑘 the algorithm

is stopped. Hence we express algorithm complexity as a function of

𝑘 : TT(𝑘) and MEM(𝑘) denote the algorithm’s time and space com-

plexity, respectively, until the moment it returns the 𝑘-th answer

in ranking order. Our main contributions (see also Figure 1) are:

(1) We generalize an equi-join-specific ranked-enumeration con-

struction [77] by representing the overall join structure as a tree of

joining relations and then introducing a join-condition-sensitive

abstraction between each pair of adjacent relations in the tree. For

the latter, we propose the “Tuple-Level Factorization Graph” (TLFG,

Section 3), a novel factorized representation for any theta-join be-

tween two relations, and show how its size and depth affect the

complexity of ranked enumeration. Interestingly, some TLFGs can

be used to transform a given theta-join to an equi-join, a property

we leverage for ranked enumeration for cyclic join queries.

(2) For join conditions that are a DNF of inequalities (Sec-

tion 4), we propose concrete TLFGs with space and construction-

time complexity O(𝑛 polylog𝑛). Using them for acyclic joins, our

Join Condition Example Time P(𝑛) Space S(𝑛)
(𝐶) Theta booleanUDF(S.A, T.C) O(𝑛2) O (𝑛2)

(𝐶1) Inequality S.A < T.B
(𝐶2) Non-equality S.A ≠ T.B O(𝑛 log𝑛) O (𝑛 log log𝑛)

(𝐶3) Band |S.A − T.B | < 𝜀
(𝐶4) DNF of

(𝐶1), (𝐶2), (𝐶3)
(S.A<T.B ∧ S.A<T.C)

∨(S.A≠T.D) O (𝑛 polylog𝑛) O (𝑛 polylog𝑛)

Figure 1: Preprocessing time P(𝑛) and space complexity

S(𝑛) of our approach for various join conditions. Our novel

factorized representation allows ranked enumeration to re-

turn the 𝑘 top-ranked results in time (“Time-To”) TT(𝑘) =

O(P(𝑛) + 𝑘 log𝑘), usingMEM(𝑘) = O(S(𝑛) + 𝑘) space.

algorithm guarantees TT(𝑘) = O(𝑛 polylog𝑛 + 𝑘 log𝑘), which
is within a polylogarithmic factor of the equi-join case, where

TT(𝑘) = O(𝑛 +𝑘 log𝑘) [77], and even the lower bound of O(𝑛 +𝑘).
(3) Our experiments (Section 6) on synthetic and real datasets

show orders-of-magnitude improvements over highly optimized

top-𝑘 implementations in state-of-the-art DBMSs, as well as over

an idealized competitor that is not charged for any join-related cost.

Due to space constraints, formal proofs and several details of im-

provements to our core techniques (Section 5) are in the full version

of this paper [79]. Our project website contains more information in-

cluding source code: https://northeastern-datalab.github.io/anyk/.

2 PRELIMINARIES

2.1 Queries

Let [𝑚] denote the set of integers {1, . . . ,𝑚}. A theta-join query in

Datalog notation is a formula of the type

𝑄 (Z) :−𝑅1 (X1), . . . , 𝑅ℓ (Xℓ), 𝜃1 (Y1), . . . , 𝜃𝑞 (Y𝑞)
where 𝑅𝑖 are relational symbols, X𝑖 are lists of variables (or at-

tributes), Z,Y𝑖 are subsets of X =
⋃︁

X𝑖 , 𝑖 ∈ [ℓ], 𝑗 ∈ [𝑞], and 𝜃 𝑗
are Boolean formulas called join predicates. The terms 𝑅𝑖 (X𝑖)
are called the atoms of the query. Equality predicates are encoded

by repeat occurrences of the same variable in different atoms; all

other join predicates are encoded in the corresponding 𝜃 𝑗 . If no

predicates 𝜃 𝑗 are present, then 𝑄 is an equi-join. The size |𝑄 | of the
query is equal to the number of symbols in the formula.

Query semantics. Join queries are evaluated over a database

that associates with each 𝑅𝑖 a finite relation (or table) that draws

values from a domain that we assume to be R for simplicity.
2
With-

out loss of generality, we assume that relational symbols in different

atoms are distinct since self-joins can be handled with linear over-

head by copying a relation to a new one. The maximum number of

tuples in an input relation is denoted by 𝑛. We write 𝑅.𝐴 for an at-

tribute𝐴 of relation 𝑅 and 𝑟 .𝐴 for the value of𝐴 in tuple 𝑟 ∈ 𝑅𝑖 . The

semantics of a theta-join query is to (𝑖) create the Cartesian product

of the ℓ relations, (𝑖𝑖) select the tuples that satisfy the equi-join

conditions and 𝜃 𝑗 predicates, and (𝑖𝑖𝑖) project on the Z attributes.

Consequently, each individual query answer can be represented as

a combination of joining input tuples, one from each table 𝑅𝑖 .

Projections. In this paper, we focus on full queries, i.e., join

queries without projections (Z = X).While our approach can handle

2
Our approach naturally extends to other domains such as strings or vectors, as long

as the corresponding join predicates are well-defined and computable in O(1) for a
pair of input tuples.

2600

https://northeastern-datalab.github.io/anyk/

projections by applying them in the end, the strong asymptotic

TT(𝑘) guarantees may not hold any more. The reason is that a

projection could map multiple distinct output tuples to the same

projected answer. In the strict relational model where relations are

sets, those “duplicates” would have to be eliminated, creating larger

gaps between consecutive answers returned to the user. Fortunately,

our strong guarantees still hold for arbitrary projections in the

presence of bag semantics, which is what DBMSs use when the SQL

query has a SELECT clause instead of SELECT DISTINCT. Even for

set semantics and SELECT DISTINCT queries, it is straightforward

to extend our strong guarantees to non-full queries that are free-

connex [10, 13, 17, 43].

Join trees for equi-joins. An equi-join query is (alpha-)acyclic

[39, 75, 89] if it admits a join tree. A join tree is a tree with the atoms

(relations) as the nodes where for every attribute 𝐴 appearing in an

atom, all nodes containing 𝐴 form a connected subtree. The GYO

reduction [89] computes such a join tree for equi-joins.

Atomic join predicates.We define the following types of pred-

icates between attributes 𝑆.𝐴 and 𝑇 .𝐵: an inequality is 𝑆.𝐴 < 𝑇 .𝐵,

𝑆.𝐴 > 𝑇 .𝐵, 𝑆.𝐴 ≤ 𝑇 .𝐵, or 𝑆.𝐴 ≥ 𝑇 .𝐵, a non-equality is 𝑆.𝐴 ≠ 𝑇 .𝐵 and

a band is |𝑆.𝐴−𝑇 .𝐵 | < 𝜀 for some 𝜀 > 0. Our approach also supports

numerical expressions over input tuples, e.g., 𝑓 (𝑆.𝐴1, 𝑆 .𝐴2, . . .) <
𝑔(𝑇 .𝐵1,𝑇 .𝐵2, . . .), with 𝑓 and 𝑔 arbitrary O(1)-time computable

functions that map to R. The join predicates 𝜃 𝑗 are built with con-

junctions and disjunctions of such atomic predicates. We assume

there are no predicates on individual relations since they can be

removed in linear time by filtering the corresponding input tables.

2.2 Ranked Enumeration

Ranked enumeration [78] returns distinct join answers one-at-a-

time, in the order dictated by a given ranking function on the

output tuples. Since this paradigm generalizes top-𝑘 (top-𝑘 for “any

𝑘” value, or “anytime top-𝑘”), it is also called any-𝑘 [77, 86]. An

obvious solution is to compute the entire join output, and then

either batch-sort it or insert it into a heap data structure. Our goal

is to find more efficient solutions for appropriate ranking functions.

For simplicity, in this paper we only discuss ranking by increas-

ing sum-of-weights, where each input tuple has a real-valued weight

and the weight of an output tuple is the sum of the weights of the

input tuples that were joined to derive it. Ranked enumeration

returns the join answers in increasing order of output-tuple weight.

It is straightforward to generalize our approach to any ranking

function that can be interpreted as a selective dioid [77]. Intuitively,

a selective dioid [37] is a semiring that also establishes a total order

on the domain. It has two operators (min and + for sum-of-weights)

where one distributes over the other (+ distributes over min). These

structures include even less obvious cases such as lexicographic

ordering by relation attributes.

2.3 Complexity Measures

We consider in-memory computation and analyze all algorithms in

the standard Random Access Machine (RAM) model with uniform

cost measure. Following common practice, we treat query size

|𝑄 |—intuitively, the length of the SQL string—as a constant. This

corresponds to the classic notion of data complexity [80], where

one is interested in scalability in the size of the input data, and not

of the query (because users do not write arbitrarily large queries).

In line with previous work [15, 22, 38], we assume that it is

possible to create in linear time an index that supports tuple lookups

in constant time. In practice, hashing achieves those guarantees in

an expected, amortized sense. We include all index construction

times and index sizes in our analysis.

For the time complexity of enumeration algorithms, we measure

the time until the 𝑘th result is returned (TT(𝑘)) for all values of 𝑘 . In
the full version [79], we further discuss the relationship of TT(𝑘) to
enumeration delay as complexity measures. Since we do not assume

any given indexes, a trivial lower bound is TT(𝑘) = O(𝑛 + 𝑘):
the time to inspect each input tuple at least once and to return

𝑘 output tuples. Our algorithms achieve that lower bound up to a

polylogarithmic factor. For space complexity, we use MEM(𝑘) to
denote the required memory until the 𝑘th result is returned.

3 GRAPH FRAMEWORK FOR JOINS

We summarize our recent work on ranked enumeration for equi-

joins, then show our novel generalization to theta-joins.

3.1 Previous Work: Any-𝑘 for Equi-joins

Any-𝑘 algorithms [77] for acyclic equi-joins reduce ranked enumer-

ation to the problem of finding the 𝑘th-lightest trees in a layered

DAG, which we call the enumeration graph. Its structure depends

on the join tree of the given query; an example is depicted in Fig. 2a.

The enumeration graph is a layered DAG in the sense that we as-

sociate it with a particular topological sort: (1) Conceptually, each

node is labeled with a layer ID (not shown in the figure to avoid

clutter). A layer is a set of nodes that share the same layer ID

(depicted with rounded rectangles). (2) Each edge is directed, going

from lower to higher layer ID. (3) All tuples from an input relation

appear as (black-shaded) nodes in the same layer, called a relation

layer. Each relation layer has a unique ID and for each join-tree edge

(𝑆,𝑇), 𝑆 has a lower layer ID than𝑇 . (4) If and only if two relations

are adjacent in the join tree, then their layers are connected via

a connection layer that contains (blue-shaded) nodes representing

their join-attribute values. (5) The edges from a relation layer to

a connection layer connect the tuples with their corresponding

join-attribute values and vice-versa.

The enumeration graph is constructed on-the-fly and bottom-up,

according to a join tree of the query (starting from𝑈 and 𝑇 in the

example). This phase essentially performs a bottom-up semi-join

reduction that also creates the edges and join-attribute-value nodes.

A tree solution is a tree that starts from the root layer and contains

exactly 1 node from each relation layer. By construction, every tree

solution corresponds to a query answer, and vice versa.

The any-𝑘 algorithm then goes through two phases on the enu-

meration graph. The first is a Dynamic Programming computation,

where every graph node records for each of its outgoing edges the

lowest weight among all subtrees that contain 1 node from each re-

lation layer below. The minimum-subtree and input-tuple weights

are not shown in Figure 2a to avoid clutter. For instance, the outgo-

ing edge for 𝑅-node (2, 3) would store the smaller of the weights

of 𝑈 -tuples (2, 1) and (2, 2). Similarly, the left edge from 𝑆-node

(2, 1) would store the sum of the weight of 𝑅-tuple (2, 3) and the

2601

1,1 2,1 3,2S 4,3 5,3 6,3

1,1 2,1 2,2U 4,1

1

1,1 2,1 3,2T 4,3 5,3 6,31,1 1,2 2,3R 4,5

S(A, B)

R(A, C) T(D, B)

U(A, E)

Join Tree

2 4 1 2 3

1 2 4

(a) Equi-join enumeration graph [77].

1,1 2,1 3,2S 4,3 5,3 6,3

1,1 2,2 3,3U 4,4

1,1 2,1 3,2T 4,3 5,3 6,3

1,1 2,1 3,2R 4,3

S(A, D)

R(D, E) T(B, C)

U(D, F)

Theta-join Tree

A < BA > E

E < F

v1 v2 v3 v4 v5

vx⋯ ⋯

vy

vz

⋯ ⋯

⋯ ⋯

(b) Theta-join enumeration graph and abstraction proposed in this paper.

𝐴
1
2
3
4

𝐷
1
1
2
3

5
6

3
3

S
𝐵
1
2
3
4

𝐶
1
1
2
3

5
6

3
3

T
𝐴
1
1
2
2
3
4

𝑉1

5

E1

v1
v3
v2
v3
v3
v4
v5

𝐷
1
1
1
1
2
3
3

𝐵
2
3
3

5

𝑉1
v1
v1
v2

v4

4v3
5v3
6v3

6v4

E2

𝐶
1
2
2

3

3
3
3

3
6v5 3

S(A, D)

T(B, C)

New Join Tree
(between S-T)

E2(V1, B, C)

E1(A, D, V1)

(c) Reduction to equi-join.

Figure 2: Overview of our approach.We generalize the equi-join-specific construction to theta-joins by introducing an abstrac-

tion (blue clouds) that factorizes binary joins. Some factorizations can also be used to reduce theta-joins to equi-joins.

minimum subtree weight from 𝑅-node (2, 3). The minimum-subtree

weight for a node’s outgoing edge is obtained at a constant cost

by pushing the minimum weight over all outgoing edges up to the

node’s parent. Afterwards, enumeration is done in a second phase,

where the enumeration graph is traversed top-down (from 𝑆 in the

example), with the traversal order determined by the layer IDs and

minimum-subtree weights on a node’s outgoing edges.

The size of the enumeration graph and its number of layers

determine space and time complexity of the any-𝑘 algorithm. The

following lemma summarizes the main result from our previous

work [77]. We restate it here in terms of data complexity (where

query size ℓ is a constant) and using 𝜆 for the number of layers.
3

Lemma 2 ([77]). Given an enumeration graph with |𝐸 | edges and
𝜆 layers, ranked enumeration of the 𝑘-lightest tree solutions can be

performed with TT(𝑘) = O(|𝐸 | + 𝑘 log𝑘 + 𝑘𝜆) and MEM(𝑘) =

O(|𝐸 | + 𝑘𝜆).

To extend the any-𝑘 framework beyond equi-joins, we generalize

first the definition of a join tree and then the enumeration graph

with an abstraction that is sensitive to the join conditions.

3.2 Theta-Join Tree

The join tree is essential for generating the enumeration graph.

In contrast to equi-joins, for general join conditions there is no

established methodology for how to define or find a join tree. We

generalize the join tree definition as follows:

Definition 3 (Theta-join Tree). A theta-join tree for a theta-

join query 𝑄 is a join tree for the equi-join 𝑄 ′
that has all the 𝜃 𝑗

predicates of 𝑄 removed, and every 𝜃 𝑗 is assigned to an edge (𝑆,𝑇) of
the tree such that 𝑆 and 𝑇 contain all the attributes referenced in 𝜃 𝑗 .

We call a theta-join query acyclic if it admits a theta-join tree. In

the theta-join tree, edge (𝑆,𝑇) represents the join 𝑆 ⊲⊳𝜃 𝑇 , where

join condition 𝜃 is the conjunction of all predicates 𝜃 𝑗 assigned to

the edge, as well as the equality predicates 𝑆.𝐴 = 𝑇 .𝐴 for every

attribute 𝐴 that appears in both 𝑆 and 𝑇 .

3
Due to the specific construction for equi-joins [77], there 𝜆 was linear in query size ℓ

and hence ℓ and 𝜆 were used interchangeably. In our generalization this may not be

the case, therefore we use the more precise parameter 𝜆 here.

Example 4. Consider 𝑄 (𝐴, 𝐵,𝐶, 𝐷, 𝐸, 𝐹) :−𝑅(𝐷, 𝐸), 𝑆 (𝐴, 𝐷),
𝑇 (𝐵,𝐶),𝑈 (𝐷, 𝐹), (𝐴 < 𝐵), (𝐴 > 𝐸), (𝐸 < 𝐹).a This query

is acyclic since we can construct the theta-join tree shown in

Fig. 2b. Notice that all nodes containing attribute 𝐷 are connected

and each inequality is assigned to an edge whose adjacent

nodes together contain all referenced attributes. For example,

𝐴 < 𝐵 is assigned to (𝑆,𝑇) (𝑆 contains 𝐴 and 𝑇 contains 𝐵).

The join-tree edges represent join predicates 𝜃1 = 𝑆.𝐴 < 𝑇 .𝐵

(edge (𝑆,𝑇)), 𝜃2 = 𝑆.𝐴 > 𝑅.𝐸 ∧ 𝑆.𝐷 = 𝑇 .𝐷 (edge (𝑆, 𝑅)), and
𝜃3 = 𝑅.𝐸 < 𝑈 .𝐹 ∧ 𝑅.𝐷 = 𝑈 .𝐷 (edge (𝑅,𝑈)).
a
SELECT * FROM R, S, T, U WHERE

R.D = S.D AND R.D = U.D AND S.A < T.B AND S.A > R.E AND R.E < U.F

We can construct the theta-join tree by first removing all 𝜃 𝑗
predicates from the given query 𝑄 , turning it into an equi-join 𝑄 ′

.

Then an algorithm like the GYO reduction can be used to find a join

tree for 𝑄 ′
. For the query in Example 4, this join tree looks like the

one in Figure 2b, but without the edge labels. Finally, we attempt

to add each 𝜃 𝑗 predicate to a join-tree edge: 𝜃 𝑗 can be assigned to

any edge where the two adjacent nodes contain all the attributes

referenced in it. Note that there may exist different join trees for𝑄 ′
,

and we may have to try all possible options to obtain a theta-join

tree. Fortunately, this computation depends only on the query, thus

takes O(1) space and time in data complexity. If either the GYO

algorithm fails to find a join tree for 𝑄 ′
or no join tree allows us to

assign the 𝜃 𝑗 predicates to tree edges, then the query is cyclic and

can be handled as discussed in Section 5.3. We discuss next how to

create the enumeration graph for a given theta-join tree.

3.3 Factorized Join Representation

By relying on a join tree similar in structure to the equi-join case,

we can establish a similar layered structure for the enumeration

graph. In particular, each input relation appears in a separate layer

and each join-tree edge is mapped to a subgraph implementing

the join condition between the corresponding relation layers. This

is visualized by the blue clouds in Figure 2b. In contrast to the

equi-joins, we allow more general connection layers, possibly a

single layer with a more complex connection pattern (like the 𝑆-

to-𝑇 connection in the example) or even multiple layers (like the

connection between 𝑅-node (2, 1) and𝑈 -node (2, 2)).

2602

To be able to apply our any-k algorithms [77] to this generalized

enumeration graph wemust ensure that (1) each “blue cloud” can be

mapped to a layered graph and (2) each tree solution corresponds to

a join answer, and vice versa (like the one highlighted in Figure 2b

which corresponds to joining input tuples 𝑠 = (3, 2), 𝑡 = (4, 3),
𝑟 = (2, 1), and 𝑢 = (2, 2)). For (2) it is sufficient to ensure for each

adjacent parent-child pair of relations in the theta-join tree that

there exists a path from a node in the parent-relation layer to a node

in the child-relation layer iff the corresponding input tuples join.

In the example, there is a path from 𝑆-node (3, 2) via 𝑣3 to 𝑇 -node
(4, 3), because the two tuples satisfy 𝐴 = 3 < 𝐵 = 4. Similarly,

since 𝑠 ′ = (5, 3) and 𝑡 = (4, 3) violate 𝐴 < 𝐵, there is no path from

the former to the latter. For (1), it is sufficient to ensure that the

“blue cloud” is a DAG with parent-relation nodes only having edges

going into the cloud, while all child-relation edges must point out

of the cloud. We formalize these properties with the notion of a

Tuple-Level Factorization Graph (TLFG).

Definition 5 (TLFG). A Tuple-Level Factorization Graph of a

theta-join 𝑆 ⊲⊳𝜃 𝑇 of relation 𝑆 , called the source, and 𝑇 , called the

target, is a directed acyclic graph 𝐺 (𝑉 , 𝐸) where:
(1) 𝑉 contains a distinct source node 𝑣𝑠 for each tuple 𝑠 ∈ 𝑆 , a

distinct target node 𝑣𝑡 for each tuple 𝑡 ∈ 𝑇 , and possibly other

intermediate nodes,

(2) each source node 𝑣𝑠 has only outgoing edges and each target

node 𝑣𝑡 has only incoming edges, and

(3) for each 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇 , there exists a path from 𝑣𝑠 to 𝑣𝑡 in 𝐺 if

and only if 𝑠 and 𝑡 satisfy join condition 𝜃 .

The size of a TLFG 𝐺 (𝑉 , 𝐸) is |𝑉 | + |𝐸 | and its depth 𝑑 is the

maximum length of any path in 𝐺 . The graphs depicted in Fig. 4a

and Fig. 4b are valid TLFGs for equi-joins.

It is easy to see that any TLFG is a layered graph: Assign w.l.o.g.

layer ID 0 to all source nodes 𝑣𝑠 ; each intermediate node 𝑣 is as-

signed layer ID 𝑖 , where 𝑖 is the length of the longest path (mea-

sured in number of edges) from any source node to 𝑣 . Here 𝑖 is

well-defined due to the TLFG’s acyclicity. All target-relation nodes

are assigned to layer 𝑑 , which is the maximum layer ID assigned to

any intermediate node, plus 1. In the example in Figure 4d, node 𝑣3
is in layer 3, because the longest path from any 𝑆-node to 𝑣3 has 3

edges (from (1, 1) in the example). All 𝑇 -nodes are in layer 6.

Since the entire generalized enumeration graph consists of ℓ

relation layers and ℓ − 1 TLFGs (one for each edge of the theta-join

tree), using Lemma 2 we can show:

Theorem 6. Given a theta-join 𝑄 of ℓ = O(1) relations, a theta-
join tree, and the corresponding enumeration graph 𝐺𝑄 , where for

each edge of the theta-join tree the corresponding TLFG has O(|𝐸 |)
size and O(𝑑) depth, then ranked enumeration of the 𝑘-lightest tree

solutions can be performed with TT(𝑘) = O(|𝐸 | + 𝑘 log𝑘 + 𝑘𝑑) and
MEM(𝑘) = O(|𝐸 | + 𝑘𝑑).

The theorem states that worst-case size and depth of the TLFG

determine the time and space complexity of enumerating the theta-

join answers in weight order. Hence the main challenge is to encode

join condition with the smallest and most shallow TLFG possible.

Direct TLFGs. For any theta-join, a naive way to construct a

TLFG is to directly connect each source node with all the target

nodes it joins with. This results in |𝐸 | = O(𝑛2) and 𝑑 = 1, thus

𝑂(1)

Size

Depth

𝑂(𝑛)

𝑂(𝑛2)

Shared
Ranges

𝑂(𝑛 loglog 𝑛) 𝑂(𝑛 log 𝑛)𝑂(𝑛)

Direct1

Binary
Partitioning

2

Multiway
Partitioning

3

Equi-join
Grouping

Goal

Figure 3: We propose 4 different TLFGs for a single inequal-

ity. These trade off size with depth and 2 of them (in blue)

achieve the equi-join guarantee up to a logarithmic factor.

TT(𝑘) = O(𝑛2 + 𝑘 log𝑘) and MEM(𝑘) = O(𝑛2 + 𝑘), respectively.
Hence even the top-ranked result requires quadratic time and space.

To improve this complexity, we must find a TLFG with a smaller

number of edges, while keeping the depth low. Our results are

summarized in Figure 3, with details discussed in later sections.

Output duplicates. A subtle issue with Theorem 6 is that two

non-isomorphic tree solutions of the enumeration graph may con-

tain the exact same input tuples (the relation-layer nodes), caus-

ing duplicate query answers. This happens if and only if a TLFG

has multiple paths between the same source and destination node.

While one would like to avoid this, it may not be possible to find a

TLFG that is both efficient in terms of size and depth, and also free

of duplicate paths. Among the inequality conditions studied in this

paper, this only happens for disjunctions (Section 4.3).

Since duplicate join answers must be removed, the time to re-

turn the 𝑘 top-ranked answers may increase. Fortunately, for our

disjunction construction it is easy to show that the number of dupli-

cates per output tuple is O(1), i.e., it does not depend on input size

𝑛. This implies that we can filter the duplicates on-the-fly without

increasing the complexity of TT(𝑘) (or MEM(𝑘), for that matter):

We maintain the top-𝑘 join answers returned so far in a lookup

structure and, before outputting the next join answer, we check in

O(1) time if the same output had been returned before.
4

To prove that the number of duplicates per join answer is inde-

pendent of input size, it is sufficient to show that for each TLFG the

maximum number of paths from any source node 𝑣𝑠 to any target

node 𝑣𝑡 , which we will call the duplication factor, is independent of

input size. We show this to be the case for the only TLFG construc-

tion that could introduce duplicate paths: disjunctions (Section 4.3).

A duplicate-free TLFG has a duplication factor equal to 1 (which is

the case for most TLFGs we discuss).

3.4 Theta-join to Equi-join Reduction

The factorized representation of the output of a theta-join as an enu-

meration graph (using TLFGs to connect adjacent relation layers)

enables a novel reduction from complex theta-joins to equi-joins.

Theorem 7. Let 𝐺 = (𝑉 , 𝐸) be a TLFG of depth 𝑑 for a theta-

join 𝑆 ⊲⊳𝜃 𝑇 of relations 𝑆 , 𝑇 and 𝑋 be the union of their attributes.

For 0 < 𝑖 ≤ 𝑑 , let 𝐸𝑖 be the set of edges from layer 𝑖 − 1 to 𝑖 . If

4
As an optimization, we can clear this lookup structure whenever the weight of an

answer is greater than the previous, since all duplicates share the same weight. While

this does not impact worst-case complexity, it can greatly reduce computation cost in

practice whenever output tuples have diverse sum-of-weight values.

2603

𝐸 =
⋃︁
𝑖 𝐸𝑖 , i.e., every edge connects nodes in adjacent layers, then

𝑆 ⊲⊳𝜃 𝑇 = 𝜋𝑋 (𝑆 ⊲⊳ 𝐸1 ⊲⊳ · · · ⊲⊳ 𝐸𝑑 ⊲⊳ 𝑇) where 𝜋𝑋 is an 𝑋 -projection.

Intuitively, the theorem states that if no edge in the TLFG skips

a layer, then the theta-join 𝑆 ⊲⊳𝜃 𝑇 can equivalently be computed as

an equi-join between 𝑆 , 𝑇 , and 𝑑 auxiliary relations. Each of those

relations is the set of edges between adjacent layers of the TLFG.

The theorem is easy to prove by construction, which we explain

using the example in Figure 2b. Consider the TLFG for 𝑆 and 𝑇

and notice that all edges are between adjacent layers and 𝑑 = 2. In

Figure 2c, the first tuple (1, 1, 𝑣1) ∈ 𝐸1 represents the edge from

𝑆-node (1, 1) to intermediate node 𝑣1. (The tuple is obtained as

the Cartesian product of the edge’s endpoints.) Similarly, the first

tuple in 𝐸2 represents the edge from 𝑣1 to 𝑇 -node (2, 1). It is easy
to verify that 𝑆 (𝐴, 𝐷) ⊲⊳𝐴<𝐵 𝑇 (𝐵,𝐶) = 𝜋𝐴𝐷𝐵𝐶 (𝑆 ⊲⊳ 𝐸1 ⊲⊳ 𝐸2 ⊲⊳ 𝑇).
The corresponding branch of the join tree is shown in Figure 2c.

Compared to the theta-join tree in Figure 2b, the inequality con-

dition disappeared from the edge and is replaced by new nodes

𝐸1 (𝐴, 𝐷,𝑉1) and 𝐸2 (𝑉1, 𝐵,𝐶).
QuadEqi for direct TLFGs. Recall that any theta-join 𝑆 ⊲⊳𝜃 𝑇

between relations of sizeO(𝑛) can be represented by a 1-layer TLFG
that directly connects the joining 𝑆- and 𝑇 -nodes. Since this TLFG

satisfies the condition of Theorem 7, it can be reduced to equi-join

𝑆 ⊲⊳ 𝐸 ⊲⊳ 𝑇 , where |𝐸 | = O(𝑛2). We refer to the algorithm that

first applies this construction to each edge of the theta-join tree

(and thus reducing the entire theta-join query between ℓ relations

to an equi-join) and then uses the equi-join ranked-enumeration

algorithm [77] asQuadEqi.

Below we will show that better constructions with smaller aux-

iliary relations 𝐸𝑖 can be found for any join condition that is a

DNF of inequalities. In particular, such joins can be expressed as

𝑆 ⊲⊳ 𝐸1 ⊲⊳ 𝐸2 ⊲⊳ 𝑇 where 𝐸1, 𝐸2 are of size O(𝑛 polylog𝑛). Figure 2c
shows a concrete instance. However, note that not all TLFGs satisfy

the condition of Theorem 7. For example, Fig. 4d shows a TLFG

which cannot be reduced to an equi-join with our theorem.

4 FACTORIZATION OF INEQUALITIES

We now show how to construct TLFGs of size O(𝑛 polylog𝑛) and
depth O(1) when the join condition 𝜃 in a join 𝑆 ⊲⊳𝜃 𝑇 is a DNF

5
of

inequalities (and equalities). Starting with a single inequality, we

then generalize to conjunctions and finally to DNF. Non-equalities

and bands will be discussed in Section 5.

4.1 Single Inequality Condition

Efficient TLFGs for equi-joins exploit that equality conditions group

input tuples into disjoint equivalence classes (Fig. 4b). For inequali-

ties, this is generally not possible and therefore we need a different

approach to leverage their structural properties (see Fig. 4c).

Binary partitioning. Our binary-partitioning based TLFG is

inspired by quicksort [40]. Consider condition 𝑆.𝐴 < 𝑇 .𝐵 and a

pivot value 𝑣 . We partition relations 𝑆 and 𝑇 s.t. 𝑠 .𝐴 < 𝑣 for 𝑠 ∈ 𝑆1
and 𝑠 .𝐴 ≥ 𝑣 for 𝑠 ∈ 𝑆2, and similarly 𝑡 .𝐵 < 𝑣 for 𝑡 ∈ 𝑇1 and 𝑡 .𝐵 ≥ 𝑣

for 𝑡 ∈ 𝑇2. This guarantees that all 𝐴-values in 𝑆1 are strictly less

than all 𝐵-values in 𝑇2. Instead of representing this with |𝑆1 | · |𝑇2 |

5
Converting an arbitrary formula to DNF may increase query size exponentially. This

does not affect data complexity, because query size is still a constant.

direct edges (𝑠𝑖 ∈ 𝑆1, 𝑡 𝑗 ∈ 𝑇2), we introduce an intermediate “pivot

node” 𝑣 and use only |𝑆1 | + |𝑇2 | edges (𝑠𝑖 ∈ 𝑆1, 𝑣) and (𝑣, 𝑡 𝑗 ∈ 𝑇2).
Then we continue recursively with the remaining partition pairs

(𝑆1,𝑇1) and (𝑆2,𝑇2). (Note that (𝑆2,𝑇1) cannot contain joining tu-

ples by construction.) Each recursive step will create a new inter-

mediate node connecting a set of source and target nodes, therefore

the TLFG has depth 2.

As the pivot, we use the median of the distinct join-attribute

values appearing in the tuples in both input partitions. E.g., for

multiset {1, 1, 1, 1, 2, 3, 3} the set of distinct values is {1, 2, 3} and
hence the median is 2. This pivot is easy to find in O(𝑛) time if

the relations have been sorted on the join attributes beforehand.

Since each partition step cuts the number of distinct values per

partition in half, it takes O(log𝑛) steps until we reach the base case

where all input tuples in a partition share the same join-attribute

value and the recursion terminates. Overall, the algorithm takes

time O(𝑛 log𝑛) to construct a TLFG of size O(𝑛 log𝑛) and depth 2.

It is easy to see that there is exactly one path from each source to

joining target node, hence the TLFG is duplicate-free.

Example 8. Figure 4e illustrates the approach, with dotted lines

showing how the relations are partitioned. Initially, we create parti-

tions containing the values {1, 2, 3} and {4, 5, 6} respectively. The
source nodes containing 𝐴-values of the first partition are connected

to target nodes containing 𝐵-values of the second partition via the

intermediate node 𝑣3. The first partition is then recursively split into

{1} and {2, 3}. Even though these new partitions are uneven with 2

and 4 nodes respectively, they contain roughly the same number of

distinct values (plus or minus one).

Other inequality types. The construction for greater-than (>)

is symmetric, connecting 𝑆2 to 𝑇1 instead of 𝑆1 to 𝑇2. For ≤ and ≥,
we only need to modify handling of the base case of the recursion:

instead of simply returning from the last call (when all tuples in a

partition have the same join-attribute value), the algorithm connects

the corresponding source and target nodes via an intermediate node

(like for equality predicates).

Lemma 9. Let 𝜃 be an inequality predicate for relations 𝑆,𝑇 of

total size 𝑛. A duplicate-free TLFG of 𝑆 ⊲⊳𝜃 𝑇 of size O(𝑛 log𝑛) and
depth 2 can be constructed in O(𝑛 log𝑛) time.

4.2 Conjunctions

TLFG construction for conjunctions can be integrated elegantly

into the recursive binary partitioning.

Example 10. Consider join condition 𝑆.𝐴 < 𝑇 .𝐶 ∧ 𝑆.𝐵 > 𝑇 .𝐷

for relations 𝑆 (𝐴, 𝐵),𝑇 (𝐶, 𝐷) as shown in Fig. 5a. The algorithm

initially considers the first inequality 𝑆.𝐴 < 𝑇 .𝐶 , splitting the rela-

tions into 𝑆1, 𝑇1, 𝑆2, 𝑇2 as per the binary partitioning method (see

Section 4.1). All pairs (𝑠𝑖 ∈ 𝑆1, 𝑡 𝑗 ∈ 𝑇2) satisfy 𝑆.𝐴 < 𝑇 .𝐶 , but not

all of them satisfy the other conjunct 𝑆.𝐵 > 𝑇 .𝐷 . To correctly con-

nect the source and target nodes, we therefore run the same binary

partitioning algorithm on input partitions 𝑆1 and 𝑇2, but now with

predicate 𝑆.𝐵 > 𝑇 .𝐷 as illustrated by the diagonal blue edge in

Fig. 5a; the resulting graph structure is shown in Fig. 5b. For the

remaining partition pairs (𝑆1,𝑇1) and (𝑆2,𝑇2), the recursive call still
needs to enforce both conjuncts as illustrated by the orange edges in

Fig. 5a.

2604

1,1

2,1

3,2

4,3

5,3

1,1

2,1

3,2

4,3

5,3

6,3 6,3

S.B = T.B
S(A, B) T(D, B)

(a) Equality: naive construc-

tion with edges between all

joining pairs. O(𝑛2) size,

O(1) depth.

v1

v2

v3

=1

=2

=3

1,1

2,1

3,2

4,3

5,3

1,1

2,1

3,2

4,3

5,3

6,3 6,3

S.B = T.B
S(A, B) T(D, B)

(b) Equality: grouping

tuples with common join

values together. O(𝑛) size,

O(1) depth.

S.A < T.B
S(A, D) T(B, C)

1,1

2,1

3,2

4,3

5,3

1,1

2,1

3,2

4,3

5,3

6,3 6,3

(c) Inequality: naive

construction with edges

between all joining pairs.

O(𝑛2) size, O(1) depth.

v1

v2

v3

v4

v5

<2

<3

<4

<5

<6

1,1

2,1

3,2

4,3

5,3

1,1

2,1

3,2

4,3

5,3

6,3 6,3

S.A < T.B
S(A, D) T(B, C)

(d) Inequality: shared

ranges. Middle nodes

indicate a range. O(𝑛) size,
O(𝑛) depth.

v2

v1

v3

v5

v4

(1)

(2)

(2)

(3)

(3)

1,1

2,1

3,2

4,3

5,3

1,1

2,1

3,2

4,3

5,3

6,3 6,3

S.A < T.B
S(A, D) T(B, C)

(e) Inequality: binary partition-

ing. Dotted lines indicate par-

titioning steps. O(𝑛 log𝑛) size,

O(1) depth.

Figure 4: Factorization of Equality and Inequality conditions with our TLFGs. The S and T node labels indicate the values of

the joining attributes. All TLFGs shown here have O(1) depth.

1,7

2,5

3,6

7,7

8,9

4,2

5,4

6,1

7,3

8,6

9,8 9,5

S1

S2

T1

T2

[S.A < T.C,
S.B > T.D]

[S.B>T.D]

[S.A < T.C,
S.B > T.D]

S.A < T.C
S(A, B) T(C, D)

(a) Binary partitioning and recursions.

2,5

3,6

1,7

7,3

9,5

8,6

v1

v2

(1)

(2)

S.B > T.D
S(A, B) T(C, D)

(b) Handling the next predicate.

Figure 5: Example 10: Steps of the conjunction algorithm for

two inequality predicates on 𝑆 (𝐴, 𝐵),𝑇 (𝐶, 𝐷). Node labels de-
pict 𝐴, 𝐵 values (left) or 𝐶, 𝐷 values (right).

Strict inequalities. The example generalizes in a straightfor-

ward way to the conjunction of any number of strict inequalities

as shown in Algorithm 1. We note that the order in which the pred-

icates are handled does not impact the asymptotic analysis, but in

practice, handling the most selective predicates first is bound to

give better performance. Whenever two partitions are guaranteed

to satisfy a conjunct, that conjunct is removed from consideration

in the next recursive call (Line 19). An intermediate node for the

pivot and the corresponding edges connecting it to source and tar-

get nodes are only added to the TLFG when no predicates remain

(Lines 14 to 16). Overall, we perform two recursions simultaneously.

In one direction, we make recursive calls on smaller partitions of

the data and the same set of predicates (Lines 21 and 22). In the

other direction, when the current predicate is satisfied for a parti-

tion pair, nextPredicate() is called with one less predicate (Line 19).

The recursion stops either when we are left with 1 join value (base

case for binary partitioning) or we exhaust the predicate list (base

case for conjunction). Finally, notice that each time a new predicate

is processed by a recursive call, the join-attribute values in the

corresponding partitions are sorted according to the new attributes

(Line 6) to find the pivot.

Non-strict inequalities. Like for a single predicate, we only

need to modify handling of the base case when all join-attribute

values in a partition are the same. While a strict inequality is not

Algorithm 1: Factorizing a conjunction of 𝑝 strict inequalities

1 Input: Relations 𝑆,𝑇 , nodes 𝑣𝑠 , 𝑣𝑡 for 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇 ,
2 Conjunction 𝜃 =

⋀︁𝑝

𝑖=1
𝜃𝑖 , where 𝜃1 = 𝑆.𝐴 < 𝑇 .𝐵

3 Output: A TLFG of the join 𝑆 ⊲⊳𝜃 𝑇

4 Call nextPredicate (𝑆,𝑇 , 𝜃)

5 Procedure nextPredicate(𝑆,𝑇 , (𝑆.𝐴 < 𝑇 .𝐵) ∧⋀︁𝑝

𝑖=2
𝜃𝑖)

6 𝑆′,𝑇 ′
= 𝑆,𝑇 sorted by attributes 𝐴 and 𝐵, respectively

7 partIneqBinary (𝑆′,𝑇 ′
, (𝑆.𝐴 < 𝑇 .𝐵) ∧⋀︁𝑝

𝑖=2
𝜃𝑖)

8 Procedure partIneqBinary(𝑆,𝑇 , (𝑆.𝐴 < 𝑇 .𝐵) ∧⋀︁𝑝

𝑖=2
𝜃𝑖)

9 𝛿 = vals(S.A ∪ T.B) // Number of distinct A, B values

10 if 𝛿 == 1 then return // Base case for binary partitioning

11 Partition 𝑆,𝑇 into (𝑆1, 𝑆2), (𝑇1,𝑇2) with median distinct value

as pivot

12 if 𝑝 == 1 then

13 // Base case for #predicates: connect 𝑆1 to𝑇2
14 Materialize intermediate node 𝑥

15 foreach 𝑠 in 𝑆1 do Create edge 𝑣𝑠 −→ 𝑥

16 foreach 𝑡 in𝑇2 do Create edge 𝑥 −→ 𝑣𝑡
17 else

18 // Check 𝑆1 → 𝑇2 against the rest of the predicates

19 nextPredicate (𝑆1,𝑇2,
⋀︁𝑝

𝑖=2
𝜃𝑖)

20 // Recursive calls on horizontal partitions, same predicates

21 partIneqBinary (𝑆1,𝑇1, (𝑆.𝐴 < 𝑇 .𝐵) ∧⋀︁𝑝

𝑖=2
𝜃𝑖)

22 partIneqBinary (𝑆2,𝑇2, (𝑆.𝐴 < 𝑇 .𝐵) ∧⋀︁𝑝

𝑖=2
𝜃𝑖)

satisfied and thus no edges are added to the TLFG, the non-strict one

is satisfied for all pairs of source and target nodes in the partition.

Hence instead of exiting the recursive call (Line 10), the partition

pair is treated like the (𝑆1,𝑇2) case (Lines 14 to 19).

Equalities. If the conjunction contains both equality and in-

equality predicates, then we reduce the problem to an inequality-

only conjunction by first partitioning the inputs into equivalence

classes according to all equality predicates (see Fig. 4b). Then the

inequality-only algorithm introduced above is executed on each

of these partitions. Since the equality-based partitioning takes lin-

ear time and space, complexity is determined by the inequality

predicates.

Lemma 11. Let 𝜃 be a conjunction of 𝑝 inequality and any number

of equality predicates for relations 𝑆,𝑇 of total size 𝑛. A duplicate-free

2605

TLFG of 𝑆 ⊲⊳𝜃 𝑇 of size O(𝑛 log𝑝 𝑛) and depth 2 can be constructed

in O(𝑛 log𝑝 𝑛) time.

4.3 Disjunctions

Given a join condition that can be expressed as a disjunction 𝑃 =⋁︁
𝑖 𝑃𝑖 where 𝐺𝑖 is the TLFG for 𝑃𝑖 , we construct the TLFG𝐺 for 𝑃

by simply “unioning” the 𝐺𝑖 , i.e., 𝐺 ’s set of nodes and edges are

the unions of the node and edge sets of the 𝐺𝑖 , respectively. Note

that the auxiliary “pivot” nodes added by the binary partitioning

algorithm to the 𝐺𝑖 are all distinct. Hence if there is a path from

source 𝑠 to target 𝑡 in 𝑗 of the individual 𝐺𝑖 , then there are exactly

𝑗 different paths from 𝑠 to 𝑡 in𝐺 . This creates duplicate join results

when traversing𝐺 during the enumeration phase. Fortunately, since

the number of “duplicate” paths depends only on the number of

terms in 𝑃 and hence query size (not input size), the number of

duplicates per join output tuple is constant.

Lemma 12. Let 𝜃 be a disjunction of predicates 𝜃1, . . . , 𝜃𝑝 for re-

lations 𝑆,𝑇 . If for each 𝜃𝑖 , 𝑖 ∈ [𝑝] we can construct a duplicate-free

TLFG of 𝑆 ⊲⊳𝜃𝑖 𝑇 of size O(S𝑖) and depth 𝑑𝑖 in O(T𝑖) time, then we

can construct a TLFG of 𝑆 ⊲⊳𝜃 𝑇 of size O(∑︁𝑖 S𝑖) and depth max𝑖 𝑑𝑖
in O(∑︁𝑖 O(T𝑖)) time. The duplication factor of the latter is at most 𝑝 .

We can now factorize any DNF of equality and inequality predi-

cates by applying the conjunction construction to each conjunct,

and then the union construction for their disjunction.

5 IMPROVEMENTS AND EXTENSIONS

Wepropose improvements that lead to ourmain result: strongworst-

case guarantees for TT(𝑘) andMEM(𝑘) for acyclic join queries with
inequalities, which we then extend to cyclic joins.

5.1 Improved Factorization Methods

We explore how to reduce the size of the TLFG for inequalities.

Multiway partitioning. When the join predicate on an edge

of the theta-join tree is a simple inequality like 𝑆.𝐴 < 𝑇 .𝐵, we

can split the set of input tuples into O(
√
𝑛) partitions per step—

instead of 2 partitions for binary partitioning (Section 4.1)—hence

the name multiway partitioning. This results in a smaller TLFG

of size O(𝑛 log log𝑛) (vs. O(𝑛 log𝑛) for binary partitioning) and

depth 3 (vs. 2). Unfortunately, it is unclear how to generalize this

idea to a conjunction of inequalities.

Shared ranges. A simple inequality can be encoded even more

compactly with O(𝑛) edges by exploiting the transitivity of “<”

as illustrated in Figure 4d. Intuitively, our shared ranges method

creates a hierarchy of intermediate nodes, each one representing

a range of values. Each range is entirely contained in all those

that are higher in the hierarchy, thus we connect the intermediate

nodes in a chain. The resulting TLFG has size and depth O(𝑛). The
latter causes a high delay between consecutive join answers. From

Theorem 6 and the fact that we need to sort to construct the TLFG,

we obtain TT(𝑘) = O(𝑛 log𝑛 + 𝑛 + 𝑘 log𝑘 + 𝑘𝑛) = O(𝑛 log𝑛 +
𝑘𝑛) and MEM(𝑘) = O(𝑛 + 𝑘𝑛) = O(𝑘𝑛). Compared to binary

partitioning’s O(𝑛 log𝑛 + 𝑘 log𝑘) and O(𝑛 log𝑛 + 𝑘) (Theorem 6,

Lemma 9), respectively, space complexity is reduced by about a

factor log𝑛, and without affecting time complexity, only for small

𝑘 , i.e., 𝑘 = o(log𝑛). For larger 𝑘 = Ω(𝑛) both space and time

complexity are worse by (almost) a factor 𝑛. (Recall that 𝑘 = O(𝑛ℓ)
for a join of ℓ relations.) Moreover, like for multiway partitioning,

it is not clear how to generalize this construction to conjunctions

of inequalities.

Non-Equality and Band Predicates.A non-equality predicate

can be expressed as a disjunction of 2 inequalities; a band predicate

as a conjunction of 2 inequalities. Hence both can be handled by the

techniques discussed in Section 4, at the cost of increasing query

size by up to a constant factor. This can be avoided by a specialized

construction that leverages the structure of these predicates. It

is similar to the binary partitioning for an inequality (and hence

omitted due to space constraints) and achieves the same size and

depth guarantees for the TLFG.

5.2 Putting Everything Together

Using multiway partitioning and the specialized techniques for

non-equality and band predicates yields:

Lemma 13. Let 𝜃 be a simple inequality, non-equality, or band

predicate for relations 𝑆,𝑇 of size O(𝑛). A duplicate-free TLFG for

𝑆 ⊲⊳𝜃 𝑇 of size O(𝑛 log log𝑛) and depth 3 can be constructed in

O(𝑛 log𝑛) time.

Applying the approach for a DNF of inequalities (Section 4), but

using the specialized TLFGs for non-equality and band predicates

and multiway partitioning for the base case of the conjunction

construction (when only one predicate remains), we obtain:

Theorem 14 (Main Result). Let 𝑄 be a full acyclic theta-join

query over a database 𝐷 of size 𝑛 where all the join conditions

are DNF formulas of equality, inequality, non-equality, and band

predicates. Let 𝑝 be the maximum number of predicates, excluding

equalities, in a conjunction of a DNF on any edge of the theta-join

tree. Ranked enumeration of the answers to 𝑄 over 𝐷 can be per-

formed with TT(𝑘) = O(𝑛 log𝑝 𝑛 + 𝑘 log𝑘). The space requirement

is MEM(𝑘) = O(𝑛 log𝑝−1 𝑛 · log log𝑛 + 𝑘).

5.3 Cyclic Queries

So far, we have focused only on acyclic queries, but our techniques

are also applicable to cyclic queries with some modifications. Re-

call that acyclic queries admit a theta-join tree, which is found by

assigning predicates to the edges of a join tree. If this procedure

fails, we can handle the query as follows:

Post-processing filter.An common practical solution for cyclic

queries is to ignore some predicates during join processing, then

apply them as a filter on the output. Specifically, we can remove 𝜃 𝑗
predicates and equality conditions encoded by the same variable

names until the query admits a theta-join tree, then apply our

technique to the resulting acyclic query, and finally use the removed

predicates as a filter. While this approach is simple to implement,

it can suffer from large intermediate results. In the worst case, all

answers to the acyclic join except the last one may be discarded,

giving us TT(𝑘) = O(𝑛ℓ log𝑛) for an ℓ-relation cyclic join.

Transformation to equi-join. An alternative approach with

non-trivial guarantees is to apply our equi-join transformation to

the cyclic query, and then use existing algorithms for ranked enu-

meration of cyclic equi-joins [77]. We deal with the case where

2606

each 𝜃 𝑗 predicate is covered by at most 2 input relations; the gen-

eral case is left for future work. To handle that case, we add edges

to the join tree as needed (creating a cyclic theta-join graph) and

assign predicates to covering edges. To achieve the equi-join trans-

formation, we consider all pairs of connected relations in the join

graph, build a TLFG according to the join condition, and then ma-

terialize relations “in the middle” as illustrated in Section 3.4. The

resulting query contains only equality predicates, hence is a cyclic

equi-join. Ranked enumeration for cyclic equi-joins is possible with

guarantees that depend on a width measure of the query [77].

Example 15 (Ineqality Cycle). The following triangle query

variant joins three relations with inequalities in a cyclic way:

𝑄 (𝐴, 𝐵,𝐶, 𝐷, 𝐸, 𝐹) :−𝑅(𝐴, 𝐵), 𝑆 (𝐶, 𝐷),𝑇 (𝐸, 𝐹), (𝐵 < 𝐶), (𝐷 <

𝐸), (𝐹 < 𝐴). Notice that there is no way to organize the relations in

a tree with the inequalities over parent-child pairs. However, if we

remove the last inequality (𝐹 < 𝐴), the query becomes acyclic and

a generalized join tree can be constructed. Thus, we can apply our

techniques on that query and filter the answers with the selection

condition (𝐹 < 𝐴).
Alternatively, we can factorize the pairs of relations using our

TLFGs, to obtain a cyclic equi-join. If we use binary partitioning, this

introduces three new attributes 𝑉1,𝑉2,𝑉3 and six new O(𝑛 log𝑛)-
size relations: 𝐸1 (𝐴, 𝐵,𝑉1), 𝐸2 (𝑉1,𝐶, 𝐷), 𝐸3 (𝐶, 𝐷,𝑉2), 𝐸4 (𝑉2, 𝐸, 𝐹),
𝐸5 (𝐸, 𝐹,𝑉3), 𝐸6 (𝑉3, 𝐴, 𝐵). The transformed query can be shown to

have a submodular width [5, 56] of 5/3, making ranked enumeration

possible with TT(𝑘) = O((𝑛 log𝑛)5/3 + 𝑘 log𝑘).

6 EXPERIMENTS

We demonstrate the superiority of our approach for ranked enu-

meration against existing DBMSs, and even idealized competitors

that receive the join output “for free" as an (unordered) array.

Algorithms.We compare 5 algorithms: 1 Factorized is our

proposed approach. 2 QuadEqi is an idealized version of the

fairly straightforward reduction to equi-joins described in Sec-

tion 3.4, which for each edge (𝑆,𝑇) of the theta-join tree uses the

direct TLFG (no intermediate nodes) to convert 𝑆 ⊲⊳𝜃 𝑇 to equi-

join 𝑆 ⊲⊳ 𝐸 ⊲⊳ 𝑇 via the edge set 𝐸 of the TLFG. Then previous

ranked-enumeration techniques for equi-joins [77] can be applied

directly. To avoid any concerns regarding the choice of technique

for generating 𝐸, we provide it “for free.” Hence the algorithm is

not charged for essentially executing theta-joins between all pairs

of adjacent relations in the theta-join tree, meaning the QuadE-

qi numbers reported here represent a lower bound of real-world

running time. 3 Batch is an idealized version of the approach

taken by state-of-the-art DBMSs. It computes the entire join output

and puts it into a heap for ranked enumeration. To avoid concerns

about the most efficient join implementation, we give Batch the

entire join output “for free” as an in-memory array. It simply needs

to read those output tuples (instead of having to execute the actual

join) to rank them, therefore the numbers reported constitute a

lower bound of real-world running time. We note that for a join of

only ℓ = 2 relations, there is no difference between QuadEqi and

Batch since they both receive all the query results; we thus omit

QuadEqi for binary joins. 4 PSQL is the open-source PostgreSQL

system. 5 System X is a commercial database system that is highly

optimized for in-memory computation.

We also compare our factorization methods 1a Binary Parti-

tioning, 1b Multiway Partitioning, and 1c Shared Ranges

against each other. Recall that the latter two can only be applied

to single-inequality type join conditions. Unless specified other-

wise, Factorized is set to 1b Multiway Partitioning for the

single-predicate cases and 1a Binary Partitioning for all others.

Data. S Our synthetic data generator creates relations

𝑆𝑖 (𝐴𝑖 , 𝐴𝑖+1,𝑊𝑖), 𝑖 ≥ 1 by drawing 𝐴𝑖 , 𝐴𝑖+1 from integers in

[0 . . . 104−1] uniformly at randomwith replacement, discarding du-

plicate tuples. The weights𝑊𝑖 are real numbers drawn from [0, 104).
T We also use the LINEITEM relation of the TPC-H benchmark

[2], keeping the schema Item(OrderKey, PartKey, Suppkey,
LineNumber, Quantity, Price, ShipDate, CommitDate,
ReceiptDate).

R For real data, we use a temporal graph RedditTitles [51]

whose 286𝑘 edges represent posts from a source community to

a target community identified by a hyperlink in the post title.

The schema is Reddit(From, To, Timestamp, Sentiment,
Readability). B OceaniaBirds [1] reports bird observations

from Oceania with schema Birds(ID, Latitude, Longitude,
Count). We keep only the 452𝑘 observations with a non-empty

Count attribute.

Queries. We test queries with various join conditions and sizes.

Figure 6 gives the Datalog notation and the ranking function. Some

of the queries have the number of relations ℓ as a parameter; for

those we only write the join conditions between the 𝑖th and (𝑖 +1)st
relations, with the rest similarly organized in a chain. In the full

version [79] we give the equivalent SQL queries.

On our synthetic data, 𝑄𝑆1 is a single inequality join, while 𝑄𝑆2
has a more complicated join condition that is a conjunction of a

band and a non-equality. On TPC-H, 𝑄𝑇 finds a sequence of items

sold by the same supplier with the quantity increasing over time,

ranked by the price. To test disjunctions, we run query𝑄𝑇𝐷 , which

puts the increasing time constraint on either of the three possible

dates. Query 𝑄𝑅1 computes temporal paths [84] on RedditTitles,

and ranks them by a measure of sentiment such that sequences

of negative posts are retrieved first. Query 𝑄𝑅2 uses instead the

sentiment in the join condition, keeping only paths along which

the negative sentiment increases. For ranking, we use readability

to focus on posts of higher quality. Last, 𝑄𝐵 is a spatial band join

on OceaniaBirds that finds pairs of high-count bird sightings that

are close based on proximity.

Details. Our algorithms are implemented in Java 8 and executed

on an Intel Xeon E5-2643 CPU running Ubuntu Linux. Queries

execute in memory on a Java VM with 100GB of RAM. If that is

exceeded, we report an Out-Of-Memory (OOM) error. The any-k al-

gorithm used by Factorized andQuadEqi is Lazy [23, 77] which

was found to outperform others in previous work. The version

of PostgreSQL is 9.5.25. We set its parameters such that it is opti-

mized for main-memory execution and system overhead related

to logging or concurrency is minimized, as it is standard in the

literature [12, 77]. To enable input caching for PSQL and System

X, each execution is performed twice and we only measure the

second one. Additionally, we create B-tree or hash indexes for each

attribute of the input relations, while our methods do not receive

these indexes. Even though the task is ranked enumeration, we still

2607

Query Ranking

𝑄𝑆1 (. . .) :−𝑆1 (𝐴1, 𝐴2), 𝑆2 (𝐴3, 𝐴4), . . . , 𝑆ℓ (𝐴2ℓ−1, 𝐴2ℓ), (𝐴2𝑖 < 𝐴2𝑖+1) min(𝑊1 +𝑊2 + . . .)
𝑄𝑆2 (. . .) :−𝑆1 (𝐴1, 𝐴2), 𝑆2 (𝐴3, 𝐴4), . . . , 𝑆ℓ (𝐴2ℓ−1, 𝐴2ℓ), (|𝐴2𝑖 −𝐴2𝑖+1 | < 50), (𝐴2𝑖−1 ≠ 𝐴2𝑖+2) min(𝑊1 +𝑊2 + . . .)
𝑄𝑇 (. . .) :− Item(𝑂1, 𝑃𝐾1, 𝑆𝐾, 𝐿1,𝑄1, 𝑃1, 𝑆1,𝐶1, 𝑅1), Item(𝑂2, 𝑃𝐾2, 𝑆𝐾, 𝐿2,𝑄2, 𝑃2, 𝑆2,𝐶2, 𝑅2), . . . , (𝑄𝑖 < 𝑄𝑖+1), (𝑆𝑖 < 𝑆𝑖+1) min(𝑃1 + 𝑃2 + . . .)
𝑄𝑇𝐷 (. . .) :− Item(𝑂1, 𝑃𝐾1, 𝑆𝐾, 𝐿1,𝑄1, 𝑃1, 𝑆1,𝐶1, 𝑅1), Item(𝑂2, 𝑃𝐾2, 𝑆𝐾, 𝐿2,𝑄2, 𝑃2, 𝑆2,𝐶2, 𝑅2), . . . , (𝑄𝑖 < 𝑄𝑖+1), (𝑆𝑖 < 𝑆𝑖+1 ∨𝐶𝑖 < 𝐶𝑖+1 ∨ 𝑅𝑖 < 𝑅𝑖+1) min(𝑃1 + 𝑃2 + . . .)
𝑄𝑅1 (. . .) :−Reddit(𝑁1, 𝑁2,𝑇1, 𝑆1, 𝑅1), Reddit(𝑁2, 𝑁3,𝑇2, 𝑆2, 𝑅2), . . . , (𝑇𝑖 < 𝑇𝑖+1) min(𝑆1 + 𝑆2 + . . .)
𝑄𝑅2 (. . .) :−Reddit(𝑁1, 𝑁2,𝑇1, 𝑆1, 𝑅1), Reddit(𝑁2, 𝑁3,𝑇2, 𝑆2, 𝑅2), . . . , (𝑇𝑖 < 𝑇𝑖+1), (𝑆𝑖 > 𝑆𝑖+1) max(𝑅1 + 𝑅2 + . . .)
𝑄𝐵 (. . .) :−Birds(𝐼1, 𝐿𝐴1, 𝐿𝑂1,𝐶1), Birds(𝐼2, 𝐿𝐴2, 𝐿𝑂2,𝐶2) (|𝐿𝐴1 − 𝐿𝐴2 | < 𝜀), (|𝐿𝑂1 − 𝐿𝑂2 | < 𝜀) max(𝐶1 +𝐶2)
Figure 6: Queries used in our experiments expressed in Datalog. The head always contains all body variables (no projections).

Length ℓ of queries range from 2 to 10. Indices 𝑖 range from 1 to ℓ − 1.

give the database systems a LIMIT clause whenever we measure

a specific TT(𝑘), and thus allow them to leverage the 𝑘 value. All

data points we show are the median of 5 measurements. We timeout

any execution that does not finish within 2 hours.

6.1 Comparison Against Alternatives

We will show that our approach has a significant advantage over

the competition when the size of the output is sufficiently large. We

test three distinct scenarios for which large output can occur: (1)

the size of the database grows, (2) the length of the query increases,

and (3) the parameter of a band join increases.

Summary. 1 Factorized is superior when the total output size is

large, even when compared against a lower bound of the running

time of the other methods. 2 QuadEqui and 3 Batch require

significantly more memory and are infeasible for many queries.

4 PSQL and 5 System X, similarly to Batch, must produce the

entire output, which is very costly. While System X is clearly faster

than PSQL, it can be several orders of magnitude slower than our

Factorized, and is outperformed across all tested queries.

6.1.1 Effect of Data Size. We run queries 𝑄𝑆1, 𝑄𝑆2 for different

input sizes 𝑛 and two distinct query lengths. Figure 7 depicts the

time to return the top 𝑘 = 10
3
results. We also plot how the size

of the output grows with increasing 𝑛 on a secondary y-axis. Even

thoughQuadEqi and Batch are given precomputed join results

for free and do not even have to resolve complicated join predicates,

they still require a large amount of memory to store those. Thus,

they quickly run out of memory even for relatively small inputs

(Figure 7b). PSQL does not face a memory problem because it can

resort to secondary storage, yet becomes unacceptably slow. The in-

memory optimized System X is 10 times faster than PSQL, but still

follows the same trend because it is materializing the entire output.

In contrast, our Factorized approach scales smoothly across all

tests and requires much less memory. For instance, in Figure 7b

QuadEqi fails after 8𝑘 input size, while we can easily handle 2𝑀 .

For very small input, the idealized methods QuadEqi and Batch

are sometimes faster, but their real running time would be much

higher if join computation was accounted for. 𝑄𝑆2 has more join

predicates and thus smaller output size (Figures 7c and 7d). Our

advantage is smaller in this case, yet still significant for large 𝑛.

We similarly run queries 𝑄𝑇 (Figure 8a) and 𝑄𝑇𝐷 (Figure 8b) for

ℓ = 3 with an increasing scale factor (which determines data size).

Here, the equi-join condition on the supplier severely limits the

blowup of the output compared to the input. Still, Factorized is

again superior. Disjunctions in 𝑄𝑇𝐷 increase the running time of

our technique only slightly by a small constant factor.

6.1.2 Effect of Query Length. Next, we test the effect of query

length on RedditTitles. We plot TT(𝑘) for three values (𝑘 =

1, 103, 106) when the length is small (ℓ = 2, 3) and one value (𝑘 = 10
3
)

for longer queries. Note that for 𝑘 = 1, the time of Factorized is

essentially the time required for building our TLFGs, and doing

a bottom-up Dynamic Programming pass [77]. Figure 9 depicts

our results for queries 𝑄𝑅1, 𝑄𝑅2. Increasing the value of 𝑘 does not

have a serious impact for most of the approaches except for System

X, which for 𝑘 = 10
6
is not able to provide the same optimized

execution. For binary-join 𝑄𝑅1, our Factorized is faster than the

Batch lower bound (Figure 9a), and its advantage increases for

longer queries, since the output also grows (Figure 9c). Batch runs

out of memory for ℓ = 3, PSQL times out, while QuadEqi and

System X are more than 100 times slower (Figure 9b). Query 𝑄𝑅2
has an additional join predicate, hence its output size is smaller.

Thus, the Batch lower bound is slightly better than our approach

for ℓ = 2 (Figure 9e), but we expect it to be significantly slower if

the cost of computing and materializing the output was taken into

account. Either way, for ℓ ≥ 3 (Figure 9g), our approach dominates

even when compared against the lower bounds. PSQL again times

out for ℓ = 3 (Figure 9f), and the highly optimized System X is

outclassed by our approach.

6.1.3 Effect of Band Parameter. We now test the band-join 𝑄𝐵 on

the OceaniaBirds dataset with various band widths 𝜀. Figure 9d

shows that Factorized is superior for all tested𝑘 values for 𝜀 = 0.01.

Increasing the band width yields more joining pairs and causes the

size of the output to grow (Figure 9h). Hence, Batch consumes

more memory and cannot handle 𝜀 ≥ 0.16. On the other hand, the

performance of Factorized is mildly affected by increasing 𝜀. PSQL

and System X were not able to terminate within the time limit even

for the smallest 𝜀 because they use only one of the indexes (for

Longitude), searching over a huge number of possible results.

6.2 Comparison of our Variants

We now compare our 3 factorization methods 1a , 1b , 1c .

6.2.1 Delay and TT(𝑘). Since only Binary Partitioning is ap-

plicable to all types of join conditions considered, we compare the

different methods on𝑄𝑆1, which has only one inequality-type pred-

icate. Figure 10a depicts TT(𝑘) for 𝑘 = 1, 104, 2 ·104, 3 ·104. Even
though Shared Ranges starts returning results faster because its

TLFG is constructed in a single pass (after sorting), it suffers from

a high enumeration delay (linear in data size), and quickly dete-

riorates as 𝑘 increases. The delay is also depicted in Figure 10b,

where we observe that Binary Partitioning returns results with

lower delay than Multiway Partitioning (recall that Multiway

Partitioning has a depth of 3 vs Binary Partitioning’s 2). These

2608

Factorized QuadEqui Lower Bound Batch Lower Bound PSQL System X

212 214 216 218 220 222

n

10 1

100

101

102

103

TT
(1

03)
 se

c

OOM

107

109

1011

1013

To
ta

l O
ut

pu
t S

ize
(a) Query𝑄𝑆1, ℓ = 2.

28 211 214 217 220

n

10 1

100

101

102

103

TT
(1

03)
 se

c

OOM

OOM

108

1011

1014

1017

1020

1023

To
ta

l O
ut

pu
t S

ize

(b) Query𝑄𝑆1, ℓ = 4.

214 216 218 220 222

n

10 1

100

101

102

103

TT
(1

03)
 se

c OOM

106

107

108

109

1010

1011

To
ta

l O
ut

pu
t S

ize

(c) Query𝑄𝑆2, ℓ = 2.

210 212 214 216 218 220

n

10 2

10 1

100

101

102

103

TT
(1

03)
 se

c

OOM
OOM

106

108

1010

1012

1014

1016

1018

To
ta

l O
ut

pu
t S

ize

(d) Query𝑄𝑆2, ℓ = 4.

Figure 7: Section 6.1.1: Synthetic data with a growing database size 𝑛. While all four alternative methods either run out of

memory (“OOM”) or exceed a reasonable running time our method scales quasilinearly (O(𝑛 polylog𝑛)) with 𝑛.

21 23 25 27 29

scale factor (×10 3)

100

101

102

103

TT
(1

03)
 se

c

OOM

OOM

108

109

1010

To
ta

l O
ut

pu
t S

ize

(a) Query𝑄𝑇 , ℓ = 3.

21 23 25 27 29

scale factor (×10 3)

100

101

102

103

TT
(1

03)
 se

c

OOM

OOM

108

109

1010

To
ta

l O
ut

pu
t S

ize

(b) Query𝑄𝑇𝐷 , ℓ = 3.

Figure 8: Section 6.1.1: TPC-H data with increasing scale fac-

tor. Disjunctions do not affect the scaling of our algorithm.

results are a consequence of the size-depth tradeoff of the TLFGs

(Fig. 3). Note that the higher delay observed in the beginning is

due to lazy initialization of data structures needed by the any-𝑘

algorithm.

6.2.2 Join Representation. We show the sizes of the constructed

representation in Figure 10c, using an implementation-agnostic

measure. As 𝑛 increases there is an asymptotic difference between

the three methods (O(𝑛 log𝑛) vs O(𝑛 log log𝑛) vs O(𝑛)) that mani-

fests in our experiment. To see how the presence of the same domain

values could affect the construction of the TLFG, we also measure

the time to the first result for different domain sizes (Figure 10d).

All three of our methods become faster when the domain is small

and multiple occurrences of the same value are more likely. This is

expected since the intermediate nodes of our TLFG essentially rep-

resent ranges in the domain and they are more compact for smaller

domains. Domain size does not significantly impact running time

once it exceeds sample size (around 𝑛 = 2
16
) and the probability of

sampling duplicate domain values approaches zero.

7 RELATEDWORK

Enumeration for equi-joins. Unranked enumeration for equi-

joins has been explored in various contexts [13, 14, 19, 20, 33, 74],

with a landmark result showing for self-join-free equi-joins that

linear preprocessing and constant delay are possible if and only if

the query is free-connex acyclic [10, 16]. For the more demanding

task of ranked enumeration, a logarithmic delay is unavoidable

[18, 30]. Our recently proposed any-𝑘 algorithms represent the

state of the art for ranked enumeration for equi-joins [77]. Other

work in this space focuses on practical implementations [32] and

direct access [21, 22] to output tuples.

Non-Equality (≠) and inequality (<) joins. Techniques for

batch-computation of the entire output for joins with non-equality

(also called inequality [49] or disequality [10]) predicates mainly

rely on variations of color coding [8, 49, 71]. The same core idea

is leveraged by the unranked enumeration algorithm of Bagan et

al. [10]. Queries with negation can be answered by rewriting them

with not-all-equal-predicates [46], a generalization of non-equality.

Khayatt et al. [48] provide optimized and distributed batch algo-

rithms for up to two inequalities per join. Aggregate computation

[3] and Unranked enumeration under updates [43] have been stud-

ied for inequality predicates by using appropriate index structures.

We are the first to consider ranked enumeration for non-equality

and inequality predicates, including DNF conditions containing

both types, and to prove strong worst-case guarantees for a large

class of these queries.

Orthogonal range search. Our binary partitioning method

shares a similar intuition with index structures that have been

devised for orthogonal range search [6, 25]. For unranked enumer-

ation, it has been shown [7, 82, 83] how, for two relations, a range

tree [29] can be used to identify pairs of matching tuple sets. This

gives an alternative method to construct our depth-2 TLFGs because

a pair of matching tuple sets can be connected via one intermediate

node. Our approach supports ranking and it is simpler since it does

not require building a range tree. Our TLFG abstraction is also more

general: our other representations (such as multiway partitioning)

do not have any obvious representation as range trees.

Factorized databases. Factorized representations of query re-

sults [11, 66] have been proposed for equi-joins in the context of

enumeration [68, 69], aggregate computation [11], provenance man-

agement [54, 67, 68] and machine learning [4, 50, 65, 70, 73]. Our

novel TLFG approach to factorization complements this line of re-

search and extends the fundamental idea of factorization to ranked

enumeration for theta-joins. For probabilistic databases, factoriza-

tion of non-equalities [63] and inequalities [64] is possible with

OBDDs. Although these are for a different purpose, we note that the

latter exploits the transitivity of inequality, as our Shared Ranges

(Figure 4d) and other approaches for aggregates do [26].

Top-𝑘 queries. Top-𝑘 queries [72] are a special case of ranked

enumeration where the value of 𝑘 is given in advance and its knowl-

edge can be exploited. Fagin et al. [35] present the Threshold Algo-

rithm, which is instance-optimal under a “middleware” cost model

for a restricted class of 1-to-1 joins. Follow-up work generalizes the

idea to more general joins [36, 44, 55, 85], including theta-joins [57].

Since all these approaches focus on the middleware cost model,

they do not provide non-trivial worst-case guarantees when the

join cost is taken into account [78]. Ilyas et al. [45] survey some of

2609

Factorized QuadEqui Lower Bound Batch Lower Bound PSQL System X

100 103 106

k

101

102

TT
(k

) s
ec

s

(a) Query𝑄𝑅1, ℓ = 2.

100 103 106

k

101

102

103

TT
(k

) s
ec

s
(b) Query𝑄𝑅1, ℓ = 3.

2 4 6 8 10

101

102

103

TT
(1

03)
 se

c

OOM

1010

1013

1016

1019

1022

To
ta

l O
ut

pu
t s

ize

(c) Query𝑄𝑅1, different lengths ℓ .

100 103 106

k
0

5

10

15

TT
(k

) s
ec

s

(d) Query𝑄𝐵 , fixed 𝜀 = 0.01.

100 103 106

k

101

102

TT
(k

) s
ec

s

(e) Query𝑄𝑅2, ℓ = 2.

100 103 106

k

101

102

TT
(k

) s
ec

s

(f) Query𝑄𝑅2, ℓ = 3.

2 4 6 8 10

101

102

103

TT
(1

03)
 se

c

OOM
109

1011

1013

1015

To
ta

l O
ut

pu
t s

ize

(g) Query𝑄𝑅2, different lengths ℓ .

0.01 0.02 0.04 0.08 0.16 0.32 0.64 1.28

5

10

15

20

25

30

TT
(1

03)
 se

c

OOM

0

1

2

3

4

5

6

To
ta

l O
ut

pu
t s

ize

1e9

(h) Query𝑄𝐵 , different bands 𝜀.

Figure 9: Section 6.1.2: a,b,c,e,f,g: Section 6.1.3: d, h: Temporal paths of different lengths on RedditTitles (left), and spatial

band-join on OceaniaBirds (right). Our method is robust to increasing query sizes and band-join ranges.

Binary Partitioning Multiway Partitioning Shared Ranges

Binary
Partitioning

Multiway
Partitioning

Shared
Ranges

0.5

1.0

1.5

2.0

TT
(k

) s
ec

s

(a) TT(𝑘) for 𝑛 = 2
16
. After preprocess-

ing (no pattern), each bar represents

10
4
results (alternating pattern).

0 2 4 6
Result No. 1e4

10 6

10 5

10 4

De
la

y
(s

ec
)

(b) Delay between the first 𝑛 consecu-

tive results for 𝑛 = 2
16
. The delay is av-

eraged in a window of size 10
3
.

212 215 218 221

n

104

105

106

107

108

Re
pr

es
en

ta
tio

n
siz

e

(c) Size of the constructed TLFG for in-

creasing 𝑛. Measured as the total num-

ber of nodes and edges in the graph.

210 213 216 219 222

|domain|

0.4

0.5

0.6

0.7

0.8

0.9

TT
(1

) s
ec

(d) Time to the first result for 𝑛 = 2
16

and different domain sizes. The tuple

values are sampled randomly.

Figure 10: Section 6.2: Comparing different aspects of our factorization methods on query 𝑄𝑆1, ℓ = 2.

these approaches, along with some related ones such as building

top-𝑘 indexes [24, 76] or views [28, 41].

Optimal batch algorithms for joins. Acyclic equi-joins are

evaluated optimally in O(𝑛 + |out|) by the Yannakakis algo-

rithm [88], where |out| is the output size. This bound is unattain-

able for cyclic queries [61], thus worst-case optimal join algorithms

[58, 61, 62, 81] settle for the AGM bound [9], i.e., the worst-case

output size. (Hyper)tree decomposition methods [5, 38, 56] can im-

prove over these guarantees, while a geometric perspective has led

to even stronger notions of optimality [47, 60]. Ngo [59] recounts

the development of these ideas. That line of work focuses on batch-

computation, i.e., on producing all the query results, or on Boolean

queries, while we explore ranked enumeration.

8 CONCLUSIONS AND FUTUREWORK

Theta- and inequality-joins of multiple relations are generally con-

sidered “hard” and even state-of-the-art commercial DBMSs strug-

gle with their efficient computation. We developed the first ranked-

enumeration techniques that achieve non-trivial worst-case guar-

antees for a large class of these joins: For small 𝑘 , returning the 𝑘

top-ranked join answers for full acyclic queries takes only slightly-

more-than-linear time and space (O(𝑛 polylog𝑛)) for any DNF of

inequality predicates. For general theta-joins, time and space com-

plexity are quadratic in input size. These are strong worst-case guar-

antees, close to the lower time bound of O(𝑛) and much lower than

the O(𝑛ℓ) size of intermediate or final results traditional join algo-

rithms may have to deal with. Our results apply to many cyclic joins

(modulo higher pre-processing cost depending on query width) and

all acyclic joins, even those with selections and many types of pro-

jections. In the future, we will study parallel computation and more

general cyclic joins and projections.

ACKNOWLEDGMENTS

This work was supported in part by the National Institutes of Health

(NIH) under award number R01 NS091421 and by the National Sci-

ence Foundation (NSF) under award numbers CAREER IIS-1762268

and IIS-1956096.

REFERENCES

[1] 2020. Bird Occurrences in Oceania. https://doi.org/10.15468/dl.d6u6tj From

https://www.gbif.org/.

[2] 2021. TPC Benchmark H (Decision Support) Revision 3.0.0. http://tpc.org/tpch/

2610

https://doi.org/10.15468/dl.d6u6tj
https://www.gbif.org/
http://tpc.org/tpch/

[3] Mahmoud Abo Khamis, Ryan R. Curtin, Benjamin Moseley, Hung Q. Ngo,

XuanLong Nguyen, Dan Olteanu, and Maximilian Schleich. 2019. On Func-

tional Aggregate Queries with Additive Inequalities. In PODS. 414–431. https:

//doi.org/10.1145/3294052.3319694

[4] Mahmoud Abo Khamis, Hung Q Ngo, XuanLong Nguyen, Dan Olteanu, and

Maximilian Schleich. 2018. In-database learning with sparse tensors. In PODS.

325–340. https://doi.org/10.1145/3196959.3196960

[5] Mahmoud Abo Khamis, Hung Q Ngo, and Dan Suciu. 2017. What do Shannon-

type Inequalities, Submodular Width, and Disjunctive Datalog have to do with

one another?. In PODS. 429–444. https://doi.org/10.1145/3034786.3056105

[6] Pankaj K. Agarwal. 2017. Range Searching. In Handbook of Discrete and Com-

putational Geometry, Third Edition, Jacob E. Goodman, Joseph O’Rourke, and

Csaba D. Tóth (Eds.). Chapman and Hall/CRC, 1057–1092. https://doi.org/10.

1201/9781315119601

[7] Pankaj K Agarwal, Xiao Hu, Stavros Sintos, and Jun Yang. 2021. Dynamic

Enumeration of Similarity Joins. CoRR (2021). arXiv:2105.01818

[8] Noga Alon, Raphael Yuster, and Uri Zwick. 1995. Color-coding. J. ACM 42, 4

(1995), 844–856. https://doi.org/10.1145/210332.210337

[9] Albert Atserias, Martin Grohe, and Dániel Marx. 2013. Size Bounds and Query

Plans for Relational Joins. SIAM J. Comput. 42, 4 (2013), 1737–1767. https:

//doi.org/10.1137/110859440

[10] Guillaume Bagan, Arnaud Durand, and Etienne Grandjean. 2007. On acyclic

conjunctive queries and constant delay enumeration. In International Workshop

on Computer Science Logic (CSL). 208–222. https://doi.org/10.1007/978-3-540-

74915-8_18

[11] Nurzhan Bakibayev, Tomáš Kočiský, Dan Olteanu, and Jakub Závodný. 2013.

Aggregation and Ordering in Factorised Databases. PVLDB 6, 14 (2013), 1990–

2001. https://doi.org/10.14778/2556549.2556579

[12] Nurzhan Bakibayev, Dan Olteanu, and Jakub Závodný. 2012. FDB: A Query

Engine for Factorised Relational Databases. PVLDB 5, 11 (2012), 1232–1243.

https://doi.org/10.14778/2350229.2350242

[13] Christoph Berkholz, Fabian Gerhardt, and Nicole Schweikardt. 2020. Constant

Delay Enumeration for Conjunctive Queries: A Tutorial. ACM SIGLOG News 7, 1

(2020), 4–33. https://doi.org/10.1145/3385634.3385636

[14] Christoph Berkholz, Jens Keppeler, and Nicole Schweikardt. 2017. Answering

Conjunctive Queries Under Updates. In PODS. 303–318. https://doi.org/10.1145/

3034786.3034789

[15] Christoph Berkholz and Nicole Schweikardt. 2019. Constant Delay Enumeration

with FPT-Preprocessing for Conjunctive Queries of Bounded Submodular Width.

In 44th International Symposium onMathematical Foundations of Computer Science

(MFCS) (LIPIcs), Vol. 138. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 58:1–

58:15. https://doi.org/10.4230/LIPIcs.MFCS.2019.58

[16] Johann Brault-Baron. 2013. De la pertinence de l’énumération: complexité en

logiques propositionnelle et du premier ordre. Ph.D. Dissertation. Université de

Caen. https://hal.archives-ouvertes.fr/tel-01081392

[17] Johann Brault-Baron. 2016. Hypergraph Acyclicity Revisited. ACM Comput. Surv.

49, 3, Article 54 (Dec. 2016), 26 pages. https://doi.org/10.1145/2983573

[18] David Bremner, Timothy M Chan, Erik D Demaine, Jeff Erickson, Ferran Hurtado,

John Iacono, Stefan Langerman, and Perouz Taslakian. 2006. Necklaces, con-

volutions, and X+ Y. In European Symposium on Algorithms. Springer, 160–171.

https://doi.org/10.1007/s00453-012-9734-3

[19] Nofar Carmeli and Markus Kröll. 2019. On the Enumeration Complexity of

Unions of Conjunctive Queries. In PODS. 134–148. https://doi.org/10.1145/

3294052.3319700

[20] Nofar Carmeli and Markus Kröll. 2020. Enumeration Complexity of Conjunctive

Queries with Functional Dependencies. Theory Comput. Syst. 64, 5 (2020), 828–860.

https://doi.org/10.1007/s00224-019-09937-9

[21] Nofar Carmeli, Nikolaos Tziavelis, Wolfgang Gatterbauer, Benny Kimelfeld, and

Mirek Riedewald. 2021. Tractable Orders for Direct Access to Ranked Answers of

Conjunctive Queries. In PODS. 325–341. https://doi.org/10.1145/3452021.3458331

[22] Nofar Carmeli, Shai Zeevi, Christoph Berkholz, Benny Kimelfeld, and Nicole

Schweikardt. 2020. Answering (Unions of) Conjunctive Queries Using Random

Access and Random-Order Enumeration. In PODS. 393–409. https://doi.org/10.

1145/3375395.3387662

[23] Lijun Chang, Xuemin Lin, Wenjie Zhang, Jeffrey Xu Yu, Ying Zhang, and Lu Qin.

2015. Optimal enumeration: Efficient top-𝑘 tree matching. PVLDB 8, 5 (2015),

533–544. https://doi.org/10.14778/2735479.2735486

[24] Yuan-Chi Chang, Lawrence Bergman, Vittorio Castelli, Chung-Sheng Li, Ming-

Ling Lo, and John R Smith. 2000. The onion technique: indexing for linear

optimization queries. In SIGMOD. 391–402. https://doi.org/10.1145/342009.335433

[25] Bernard Chazelle. 1988. Functional approach to data structures and its use in

multidimensional searching. SIAM J. Comput. 17, 3 (1988), 427–462. https:

//doi.org/10.1137/0217026

[26] Sophie Cluet and Guido Moerkotte. 1995. Efficient evaluation of aggregates

on bulk types. In Proceedings of the Fifth International Workshop on Database

Programming Languages 5. 1–10. https://doi.org/10.14236/ewic/DBPL1995.6

[27] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

2009. Introduction to Algorithms (3rd ed.). The MIT Press. https://dl.acm.org/

doi/book/10.5555/1614191

[28] Gautam Das, Dimitrios Gunopulos, Nick Koudas, and Dimitris Tsirogiannis. 2006.

Answering top-k queries using views. In VLDB. 451–462. https://dl.acm.org/doi/

10.5555/1182635.1164167

[29] Mark De Berg, Marc Van Kreveld, Mark Overmars, and Otfried Schwarzkopf.

1997. Computational geometry. In Computational geometry. Springer, 1–17.

https://doi.org/10.1007/978-3-540-77974-2

[30] Shaleen Deep and Paraschos Koutris. 2021. Ranked Enumeration of Conjunctive

Query Results. In ICDT, Vol. 186. 5:1–5:19. https://doi.org/10.4230/LIPIcs.ICDT.

2021.5

[31] David J. DeWitt, Jeffrey F. Naughton, and Donovan A. Schneider. 1991. An

Evaluation of Non-Equijoin Algorithms. In VLDB. 443–452. https://dl.acm.org/

doi/10.5555/645917.672320

[32] Mengsu Ding, Shimin Chen, Nantia Makrynioti, and Stefan Manegold. 2021.

Progressive Join Algorithms Considering User Preference. In CIDR. https://ir.

cwi.nl/pub/30501/30501.pdf

[33] Arnaud Durand. 2020. Fine-Grained Complexity Analysis of Queries: From

Decision to Counting and Enumeration. In PODS. 331–346. https://doi.org/10.

1145/3375395.3389130

[34] Jost Enderle, Matthias Hampel, and Thomas Seidl. 2004. Joining Interval Data

in Relational Databases. In SIGMOD. 683–694. https://doi.org/10.1145/1007568.

1007645

[35] Ronald Fagin, Amnon Lotem, and Moni Naor. 2003. Optimal aggregation al-

gorithms for middleware. J. Comput. System Sci. 66, 4 (2003), 614–656. https:

//doi.org/10.1016/S0022-0000(03)00026-6

[36] Jonathan Finger and Neoklis Polyzotis. 2009. Robust and efficient algorithms

for rank join evaluation. In SIGMOD. 415–428. https://doi.org/10.1145/1559845.

1559890

[37] Michel Gondran and Michel Minoux. 2008. Graphs, Dioids and Semirings: New

Models and Algorithms (Operations Research/Computer Science Interfaces Series).

Springer. https://doi.org/10.1007/978-0-387-75450-5

[38] Georg Gottlob, Gianluigi Greco, Nicola Leone, and Francesco Scarcello. 2016.

Hypertree Decompositions: Questions and Answers. In PODS. 57–74. https:

//doi.org/10.1145/2902251.2902309

[39] M.H. Graham. 1979. On the universal relation. Technical Report. Univ. of Toronto.

[40] C. A. R. Hoare. 1962. Quicksort. Comput. J. 5, 1 (01 1962), 10–16. https:

//doi.org/10.1093/comjnl/5.1.10

[41] Vagelis Hristidis, Nick Koudas, and Yannis Papakonstantinou. 2001. PREFER: A

system for the efficient execution of multi-parametric ranked queries. SIGMOD

Record 30, 2 (2001), 259–270. https://doi.org/10.1145/375663.375690

[42] Muhammad Idris, Martín Ugarte, Stijn Vansummeren, Hannes Voigt, and Wolf-

gang Lehner. 2019. Efficient Query Processing for Dynamically Changing

Datasets. SIGMOD Record 48, 1 (2019), 33–40. https://doi.org/10.1145/3371316.

3371325

[43] Muhammad Idris, Martín Ugarte, Stijn Vansummeren, Hannes Voigt, and Wolf-

gang Lehner. 2020. General dynamic Yannakakis: conjunctive queries with theta

joins under updates. VLDB J. 29 (2020), 619–653. https://doi.org/10.1007/s00778-

019-00590-9

[44] Ihab F Ilyas, Walid G Aref, and Ahmed K Elmagarmid. 2004. Supporting top-

𝑘 join queries in relational databases. VLDB J. 13, 3 (2004), 207–221. https:

//doi.org/10.1007/s00778-004-0128-2

[45] Ihab F Ilyas, George Beskales, and Mohamed A Soliman. 2008. A survey of top-𝑘

query processing techniques in relational database systems. Comput. Surveys 40,

4 (2008), 11. https://doi.org/10.1145/1391729.1391730

[46] Mahmoud Abo Khamis, Hung Q. Ngo, Dan Olteanu, and Dan Suciu. 2019. Boolean

Tensor Decomposition for Conjunctive Queries with Negation. In ICDT. 21:1–

21:19. https://doi.org/10.4230/LIPIcs.ICDT.2019.21

[47] Mahmoud Abo Khamis, Hung Q. Ngo, Christopher Ré, and Atri Rudra. 2016.

Joins via Geometric Resolutions: Worst Case and Beyond. TODS 41, 4, Article 22

(2016), 45 pages. https://doi.org/10.1145/2967101

[48] Zuhair Khayyat, William Lucia, Meghna Singh, Mourad Ouzzani, Paolo Papotti,

Jorge-Arnulfo Quiané-Ruiz, Nan Tang, and Panos Kalnis. 2017. Fast and scalable

inequality joins. VLDB J. 26, 1 (2017), 125–150. https://doi.org/10.1007/s00778-

016-0441-6

[49] Paraschos Koutris, Tova Milo, Sudeepa Roy, and Dan Suciu. 2017. Answering

Conjunctive Queries with Inequalities. Theory of Computing Systems 61, 1 (2017),

2–30. https://doi.org/10.1007/s00224-016-9684-2

[50] Arun Kumar, Jeffrey Naughton, and Jignesh M Patel. 2015. Learning generalized

linear models over normalized data. In SIGMOD. 1969–1984. https://doi.org/10.

1145/2723372.2723713

[51] Srijan Kumar, William L Hamilton, Jure Leskovec, and Dan Jurafsky. 2018. Com-

munity interaction and conflict on the web. https://snap.stanford.edu/data/soc-

RedditHyperlinks.html. In WWW. 933–943.

[52] Rundong Li, Wolfgang Gatterbauer, and Mirek Riedewald. 2020. Near-Optimal

Distributed Band-Joins through Recursive Partitioning. In SIGMOD. 2375–2390.

https://doi.org/10.1145/3318464.3389750

[53] Qingyun Liu, Jack W. Stokes, Rob Mead, Tim Burrell, Ian Hellen, John Lambert,

Andrey Marochko, and Weidong Cui. 2018. Latte: Large-Scale Lateral Movement

2611

https://doi.org/10.1145/3294052.3319694
https://doi.org/10.1145/3294052.3319694
https://doi.org/10.1145/3196959.3196960
https://doi.org/10.1145/3034786.3056105
https://doi.org/10.1201/9781315119601
https://doi.org/10.1201/9781315119601
https://arxiv.org/abs/2105.01818
https://doi.org/10.1145/210332.210337
https://doi.org/10.1137/110859440
https://doi.org/10.1137/110859440
https://doi.org/10.1007/978-3-540-74915-8_18
https://doi.org/10.1007/978-3-540-74915-8_18
https://doi.org/10.14778/2556549.2556579
https://doi.org/10.14778/2350229.2350242
https://doi.org/10.1145/3385634.3385636
https://doi.org/10.1145/3034786.3034789
https://doi.org/10.1145/3034786.3034789
https://doi.org/10.4230/LIPIcs.MFCS.2019.58
https://hal.archives-ouvertes.fr/tel-01081392
https://doi.org/10.1145/2983573
https://doi.org/10.1007/s00453-012-9734-3
https://doi.org/10.1145/3294052.3319700
https://doi.org/10.1145/3294052.3319700
https://doi.org/10.1007/s00224-019-09937-9
https://doi.org/10.1145/3452021.3458331
https://doi.org/10.1145/3375395.3387662
https://doi.org/10.1145/3375395.3387662
https://doi.org/10.14778/2735479.2735486
https://doi.org/10.1145/342009.335433
https://doi.org/10.1137/0217026
https://doi.org/10.1137/0217026
https://doi.org/10.14236/ewic/DBPL1995.6
https://dl.acm.org/doi/book/10.5555/1614191
https://dl.acm.org/doi/book/10.5555/1614191
https://dl.acm.org/doi/10.5555/1182635.1164167
https://dl.acm.org/doi/10.5555/1182635.1164167
https://doi.org/10.1007/978-3-540-77974-2
https://doi.org/10.4230/LIPIcs.ICDT.2021.5
https://doi.org/10.4230/LIPIcs.ICDT.2021.5
https://dl.acm.org/doi/10.5555/645917.672320
https://dl.acm.org/doi/10.5555/645917.672320
https://ir.cwi.nl/pub/30501/30501.pdf
https://ir.cwi.nl/pub/30501/30501.pdf
https://doi.org/10.1145/3375395.3389130
https://doi.org/10.1145/3375395.3389130
https://doi.org/10.1145/1007568.1007645
https://doi.org/10.1145/1007568.1007645
https://doi.org/10.1016/S0022-0000(03)00026-6
https://doi.org/10.1016/S0022-0000(03)00026-6
https://doi.org/10.1145/1559845.1559890
https://doi.org/10.1145/1559845.1559890
https://doi.org/10.1007/978-0-387-75450-5
https://doi.org/10.1145/2902251.2902309
https://doi.org/10.1145/2902251.2902309
https://doi.org/10.1093/comjnl/5.1.10
https://doi.org/10.1093/comjnl/5.1.10
https://doi.org/10.1145/375663.375690
https://doi.org/10.1145/3371316.3371325
https://doi.org/10.1145/3371316.3371325
https://doi.org/10.1007/s00778-019-00590-9
https://doi.org/10.1007/s00778-019-00590-9
https://doi.org/10.1007/s00778-004-0128-2
https://doi.org/10.1007/s00778-004-0128-2
https://doi.org/10.1145/1391729.1391730
https://doi.org/10.4230/LIPIcs.ICDT.2019.21
https://doi.org/10.1145/2967101
https://doi.org/10.1007/s00778-016-0441-6
https://doi.org/10.1007/s00778-016-0441-6
https://doi.org/10.1007/s00224-016-9684-2
https://doi.org/10.1145/2723372.2723713
https://doi.org/10.1145/2723372.2723713
https://snap.stanford.edu/data/soc-RedditHyperlinks.html
https://snap.stanford.edu/data/soc-RedditHyperlinks.html
https://doi.org/10.1145/3318464.3389750

Detection. In MILCOM. 1–6. https://doi.org/10.1109/MILCOM.2018.8599748

[54] Neha Makhija and Wolfgang Gatterbauer. 2021. Towards a Dichotomy for Mini-

mally Factorizing the Provenance of Self-Join Free Conjunctive Queries. CoRR

abs/2105.14307 (2021). arXiv:2105.14307 https://arxiv.org/abs/2105.14307

[55] Nikos Mamoulis, Man Lung Yiu, Kit Hung Cheng, and David W Cheung. 2007.

Efficient top-𝑘 aggregation of ranked inputs. TODS 32, 3 (2007), 19. https:

//doi.org/10.1145/1272743.1272749

[56] Dániel Marx. 2013. Tractable Hypergraph Properties for Constraint Satisfaction

and Conjunctive Queries. J. ACM 60, 6, Article 42 (2013), 51 pages. https:

//doi.org/10.1145/2535926

[57] Apostol Natsev, Yuan-Chi Chang, John R Smith, Chung-Sheng Li, and Jeffrey Scott

Vitter. 2001. Supporting incremental join queries on ranked inputs. In VLDB.

281–290. http://www.vldb.org/conf/2001/P281.pdf

[58] Gonzalo Navarro, Juan L. Reutter, and Javiel Rojas-Ledesma. 2020. Optimal

Joins Using Compact Data Structures. In ICDT, Vol. 155. 21:1–21:21. https:

//doi.org/10.4230/LIPIcs.ICDT.2020.21

[59] Hung Q Ngo. 2018. Worst-case optimal join algorithms: Techniques, results, and

open problems. In PODS. 111–124. https://doi.org/10.1145/3196959.3196990

[60] Hung Q Ngo, Dung T Nguyen, Christopher Re, and Atri Rudra. 2014. Beyond

worst-case analysis for joins with minesweeper. In PODS. 234–245. https://doi.

org/10.1145/2594538.2594547

[61] Hung Q Ngo, Ely Porat, Christopher Ré, and Atri Rudra. 2018. Worst-case optimal

join algorithms. J. ACM 65, 3 (2018), 16. https://doi.org/10.1145/3180143

[62] Hung Q Ngo, Christopher Ré, and Atri Rudra. 2014. Skew Strikes Back: New

Developments in the Theory of Join Algorithms. SIGMOD Record 42, 4 (Feb. 2014),

5–16. https://doi.org/10.1145/2590989.2590991

[63] DanOlteanu and JiewenHuang. 2008. Using OBDDs for efficient query evaluation

on probabilistic databases. (2008), 326–340. https://doi.org/10.1007/978-3-540-

87993-0_26

[64] DanOlteanu and JiewenHuang. 2009. Secondary-storage confidence computation

for conjunctive queries with inequalities. In SIGMOD. 389–402. https://doi.org/

10.1145/1559845.1559887

[65] Dan Olteanu andMaximilian Schleich. 2016. F: RegressionModels over Factorized

Views. PVLDB 9, 13 (2016), 1573–1576. https://doi.org/10.14778/3007263.3007312

[66] Dan Olteanu and Maximilian Schleich. 2016. Factorized databases. SIGMOD

Record 45, 2 (2016). https://doi.org/10.1145/3003665.3003667

[67] Dan Olteanu and Jakub Závodnỳ. 2011. On factorisation of provenance poly-

nomials. In TaPP. https://www.usenix.org/conference/tapp11/factorisation-

provenance-polynomials

[68] Dan Olteanu and Jakub Závodnỳ. 2012. Factorised representations of query

results: size bounds and readability. In ICDT. 285–298. https://doi.org/10.1145/

2274576.2274607

[69] Dan Olteanu and Jakub Závodnỳ. 2015. Size bounds for factorised representations

of query results. TODS 40, 1 (2015), 2. https://doi.org/10.1145/2656335

[70] Krishna Kumar P., Paul Langton, and Wolfgang Gatterbauer. 2020. Factorized

Graph Representations for Semi-Supervised Learning from Sparse Data. In SIG-

MOD. 1383–1398. https://doi.org/10.1145/3318464.3380577

[71] Christos H. Papadimitriou and Mihalis Yannakakis. 1999. On the complexity of

database queries. J. Comput. System Sci. 58, 3 (1999), 407–427. https://doi.org/10.

1006/jcss.1999.1626

[72] Saladi Rahul and Yufei Tao. 2019. A Guide to Designing Top-k Indexes. SIGMOD

Record 48, 2 (2019). https://doi.org/10.1145/3377330.3377332

[73] Maximilian Schleich, Dan Olteanu, and Radu Ciucanu. 2016. Learning linear

regression models over factorized joins. In SIGMOD. 3–18. https://doi.org/10.

1145/2882903.2882939

[74] Luc Segoufin. 2015. Constant Delay Enumeration for Conjunctive Queries. SIG-

MOD Record 44, 1 (2015), 10–17. https://doi.org/10.1145/2783888.2783894

[75] Robert E Tarjan and Mihalis Yannakakis. 1984. Simple linear-time algorithms to

test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce

acyclic hypergraphs. SIAM J. Comput. 13, 3 (1984), 566–579. https://doi.org/10.

1137/0213035

[76] Panayiotis Tsaparas, Themistoklis Palpanas, Yannis Kotidis, Nick Koudas, and

Divesh Srivastava. 2003. Ranked join indices. In ICDE. IEEE, 277–288. https:

//doi.org/10.1109/ICDE.2003.1260799

[77] Nikolaos Tziavelis, Deepak Ajwani, Wolfgang Gatterbauer, Mirek Riedewald, and

Xiaofeng Yang. 2020. Optimal Algorithms for Ranked Enumeration of Answers

to Full Conjunctive Queries. PVLDB 13, 9 (2020), 1582–1597. https://doi.org/10.

14778/3397230.3397250

[78] Nikolaos Tziavelis, Wolfgang Gatterbauer, and Mirek Riedewald. 2020. Optimal

Join Algorithms Meet Top-k. In SIGMOD. 2659–2665. https://doi.org/10.1145/

3318464.3383132

[79] Nikolaos Tziavelis, Wolfgang Gatterbauer, and Mirek Riedewald. 2021. Beyond

Equi-joins: Ranking, Enumeration and Factorization. CoRR abs/2101.12158 (2021).

arXiv:2101.12158

[80] Moshe Y. Vardi. 1982. The Complexity of Relational Query Languages (Extended

Abstract). In STOC. 137–146. https://doi.org/10.1145/800070.802186

[81] Todd L. Veldhuizen. 2014. Triejoin: A Simple, Worst-Case Optimal Join Algorithm.

In ICDT. 96–106. https://doi.org/10.5441/002/icdt.2014.13

[82] Dan E. Willard. 1996. Applications of Range Query Theory to Relational Data

Base Join and Selection Operations. J. Comput. System Sci. 52, 1 (1996), 157–169.

https://doi.org/10.1006/jcss.1996.0012

[83] Dan E Willard. 2002. An algorithm for handling many relational calculus queries

efficiently. J. Comput. System Sci. 65, 2 (2002), 295–331. https://doi.org/10.1006/

jcss.2002.1848

[84] Huanhuan Wu, James Cheng, Silu Huang, Yiping Ke, Yi Lu, and Yanyan Xu.

2014. Path Problems in Temporal Graphs. PVLDB 7, 9 (2014), 721–732. https:

//doi.org/10.14778/2732939.2732945

[85] Minji Wu, Laure Berti-Equille, Amélie Marian, Cecilia M Procopiuc, and Divesh

Srivastava. 2010. Processing top-k join queries. PVLDB 3, 1 (2010), 860–870.

https://doi.org/10.14778/1920841.1920951

[86] Xiaofeng Yang, Deepak Ajwani, Wolfgang Gatterbauer, Patrick K Nicholson,

Mirek Riedewald, and Alessandra Sala. 2018. Any-𝑘 : Anytime Top-𝑘 Tree Pattern

Retrieval in Labeled Graphs. InWWW. 489–498. https://doi.org/10.1145/3178876.

3186115

[87] Xiaofeng Yang, Mirek Riedewald, Rundong Li, and Wolfgang Gatterbauer. 2018.

Any-𝑘 Algorithms for Exploratory Analysis with Conjunctive Queries. In Inter-

national Workshop on Exploratory Search in Databases and the Web (ExploreDB).

1–3. https://doi.org/10.1145/3214708.3214711

[88] Mihalis Yannakakis. 1981. Algorithms for Acyclic Database Schemes. In VLDB.

82–94. https://dl.acm.org/doi/10.5555/1286831.1286840

[89] Clement Tak Yu and Meral Z Ozsoyoglu. 1979. An algorithm for tree-query

membership of a distributed query. In COMPSAC. IEEE, 306–312. https://doi.

org/10.1109/CMPSAC.1979.762509

2612

https://doi.org/10.1109/MILCOM.2018.8599748
https://arxiv.org/abs/2105.14307
https://arxiv.org/abs/2105.14307
https://doi.org/10.1145/1272743.1272749
https://doi.org/10.1145/1272743.1272749
https://doi.org/10.1145/2535926
https://doi.org/10.1145/2535926
http://www.vldb.org/conf/2001/P281.pdf
https://doi.org/10.4230/LIPIcs.ICDT.2020.21
https://doi.org/10.4230/LIPIcs.ICDT.2020.21
https://doi.org/10.1145/3196959.3196990
https://doi.org/10.1145/2594538.2594547
https://doi.org/10.1145/2594538.2594547
https://doi.org/10.1145/3180143
https://doi.org/10.1145/2590989.2590991
https://doi.org/10.1007/978-3-540-87993-0_26
https://doi.org/10.1007/978-3-540-87993-0_26
https://doi.org/10.1145/1559845.1559887
https://doi.org/10.1145/1559845.1559887
https://doi.org/10.14778/3007263.3007312
https://doi.org/10.1145/3003665.3003667
https://www.usenix.org/conference/tapp11/factorisation-provenance-polynomials
https://www.usenix.org/conference/tapp11/factorisation-provenance-polynomials
https://doi.org/10.1145/2274576.2274607
https://doi.org/10.1145/2274576.2274607
https://doi.org/10.1145/2656335
https://doi.org/10.1145/3318464.3380577
https://doi.org/10.1006/jcss.1999.1626
https://doi.org/10.1006/jcss.1999.1626
https://doi.org/10.1145/3377330.3377332
https://doi.org/10.1145/2882903.2882939
https://doi.org/10.1145/2882903.2882939
https://doi.org/10.1145/2783888.2783894
https://doi.org/10.1137/0213035
https://doi.org/10.1137/0213035
https://doi.org/10.1109/ICDE.2003.1260799
https://doi.org/10.1109/ICDE.2003.1260799
https://doi.org/10.14778/3397230.3397250
https://doi.org/10.14778/3397230.3397250
https://doi.org/10.1145/3318464.3383132
https://doi.org/10.1145/3318464.3383132
https://arxiv.org/abs/2101.12158
https://doi.org/10.1145/800070.802186
https://doi.org/10.5441/002/icdt.2014.13
https://doi.org/10.1006/jcss.1996.0012
https://doi.org/10.1006/jcss.2002.1848
https://doi.org/10.1006/jcss.2002.1848
https://doi.org/10.14778/2732939.2732945
https://doi.org/10.14778/2732939.2732945
https://doi.org/10.14778/1920841.1920951
https://doi.org/10.1145/3178876.3186115
https://doi.org/10.1145/3178876.3186115
https://doi.org/10.1145/3214708.3214711
https://dl.acm.org/doi/10.5555/1286831.1286840
https://doi.org/10.1109/CMPSAC.1979.762509
https://doi.org/10.1109/CMPSAC.1979.762509

