
Auto-Pipeline: Synthesizing Complex Data Pipelines By-Target
Using Reinforcement Learning and Search

Junwen Yang
University of Chicago
junwen@uchicago.edu

Yeye He
Microsoft Research

yeyehe@microsoft.com

Surajit Chaudhuri
Microsoft Research

surajitc@microsoft.com

ABSTRACT

Recent work has made significant progress in helping users to auto-

mate single data preparation steps, such as string-transformations

and table-manipulation operators (e.g., Join, GroupBy, Pivot, etc.).

We in this work propose to automate multiple such steps end-

to-end, by synthesizing complex data-pipelines with both string-

transformations and table-manipulation operators.

We propose a novel by-target paradigm that allows users to

easily specify the desired pipeline, which is a significant departure

from the traditional by-example paradigm. Using by-target, users

would provide input tables (e.g., csv or json files), and point us to

a łtarget tablež (e.g., an existing database table or BI dashboard)

to demonstrate how the output from the desired pipeline would

schematically łlook likež. While the problem is seemingly under-

specified, our unique insight is that implicit table constraints such

as FDs and keys can be exploited to significantly constrain the space

and make the problem tractable. We develop an Auto-Pipeline

system that learns to synthesize pipelines using deep reinforcement-

learning (DRL) and search. Experiments using a benchmark of

700 real pipelines crawled from GitHub and commercial vendors

suggest that Auto-Pipeline can successfully synthesize around

70% of complex pipelines with up to 10 steps.

PVLDB Reference Format:

Junwen Yang, Yeye He, and Surajit Chaudhuri. Auto-Pipeline: Synthesizing

Complex Data Pipelines By-Target Using Reinforcement Learning and

Search. PVLDB, 14(11): 2563 - 2575, 2021.

doi:10.14778/3476249.3476303

1 INTRODUCTION

Data preparation, sometimes also known as data wrangling, refers

to the process of building sequences of table-manipulation steps

(e.g., Transform, Join, Pivot, etc.), to bring raw data into a form

that is ready for downstream applications (e.g., BI or ML). The end-

result of data preparation is often a workflow or data-pipeline with

a sequence of these steps, which are often then operationalized as

recurring jobs in production.

It has been widely reported that business analysts and data sci-

entists spend a significant fraction of their time on data preparation

tasks (some report numbers as high as 80% [23, 24]). Accordingly,

Gartner calls data preparation łthe most time-consuming step in

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 11 ISSN 2150-8097.
doi:10.14778/3476249.3476303

analyticsž [45]. This is particularly challenging for less-technical

users, who increasingly need to prepare data themselves today.

In response, significant progress has been made in the research

community toward helping users author individual data preparation

steps in data-pipelines. Notable efforts include automated data

transformations (e.g., [17, 27, 30, 32]), table-joins (e.g., [38, 53]),

and table-restructuring (e.g., [18, 34, 52]), etc.

In commercial systems, while pipelines are traditionally built

manually (e.g., using drag-and-drop tools to build ETL pipelines),

leading vendors have adopted recent advances in research and

released features that make it really easy for users to build key steps

in pipelines (e.g., automated transformation-by-example has been

used in Excel [12], Power Query [6], and Trifacta [7]; automated

join has been used in Tableau [15] and Trifacta [16], etc.).

Automating multi-step pipeline-building. While assisting

users to build single data-prep steps (e.g., Transform, Join, etc.) is

great progress, not much attention has been given to the more

ambitious goal of automating multi-step pipeline-building end-to-

end. We argue that building on top of recent success in automating

single-steps such as [52], synthesizing multi-step pipelines has be-

come feasible and will be an area that warrants more attention.

The key challenge in multi-step pipeline-synthesis is to allow

users to easily specify the desired pipelines. Existing methods use

the łby-examplež paradigm (e.g., SQL-by-example [51] and Query-

by-output [50]), which unfortunately requires a matching pair of

input/output tables to be provided in order for the desired program

(e.g., in SQL) to be synthesized. While by-example is easy-to-use

for row-to-row string transformation [27, 30] (because users only

need to type 2-3 example values), for table-to-table transformations

this paradigm would unfortunately require users to manually enter

an entire output table, which is not only significant overhead, but

can also be infeasible for users to provide in many cases (e.g., when

complex aggregations are required on large tables).

Furthermore, existing by-example approaches largely resort to

some forms of exhaustive search, which unfortunately limits the

richness of the operators they can support, also making these

approaches frequently fail or time-out when synthesizing real

pipelines with large amounts of data.

Newparadigm: łby-targetž pipeline-synthesis. In this work,

we propose a new paradigm for multi-step pipeline-synthesis called

by-target. We show that a łtargetž is easy for users to provide, yet

it still provides a sufficient specification for desired pipelines to be

synthesized. We emphasize that this novel paradigm is not studied

before, and is a significant departure from the by-example approach.

Our key observation here is that a common usage pattern in

pipeline-building (e.g., ETL) is to onboard new data files, such as

sales data from a new store/region/time-period, etc., that are of-

ten formatted differently. In such scenarios, users typically have a

2563

https://doi.org/10.14778/3476249.3476303
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3476249.3476303

Figure 1: An example of pipeline-by-target. (1-3): Input ta-

bles from different time-periods/store-locations often have

different formats and schema. (1): A pipeline previously

built on one chunk of the input to produce database tables or

BI dashboards. (2, 3): Instead of manually building pipelines

for new chunks of input, we try to synthesize these pipelines

by asking users to point us to a fuzzy łtargetž that can be (4)

an existing table or (5) an existing visualization.

precise łtargetž in mind, such as an existing data-warehouse table,

where the goal is to bring the new data into a form that łlooks

likež the existing target table (so that the new data can be inte-

grated). Similarly, in building visualizations and dashboards for

data analytics (e.g., in Tableau or Power BI), users can be inspired

by an existing visualization, and want to turn their raw data into

a visualization that łlooks likež the given target visualization (in

which case we can target the underlying table of the visualization).

Figure 1 illustrates the process visually. In this example, a large

retailer has sales data coming from stores in different geographi-

cal regions and across different time-periods. Some version of the

desired pipeline has been built previously ś the top row of the

figure shows a chunk of data for łUS-Store-1ž and ł2019-Decž, and

for this chunk there may already be a legacy script/pipeline from

IT that produces a database table or a dashboard. However, as is

often the case, new chunks of data for subsequent time-periods or

new stores need to be brought on-board, which however may have

different formats/schema (e.g., JSON vs. CSV, pivoted vs. relational,

missing/extra columns, etc.), because they are from different point-

of-sales systems or sales channels. Building a new pipelinemanually

for each such łchunkž (shown in the second/third row in the figure)

is laborious, and especially challenging for less-technical users who

may not have the skills to build such pipelines from scratch. Today

these less-technical users often have to submit a ticket, and wait

until IT has the bandwidth to serve their needs.

The aspirational question we ask, is whether pipelines can be

synthesized automatically in such settings ś if users could point us

to a łtargetž that schematically demonstrates how the output should

łlook likež, as shown with green arrows in Figure 1 that point to

existing database tables or visualizations. Concretely, łtargetsž can

be specified like shown in Figure 2, where users could right-click an

existing database table and select the option to łappend data to the

tablež, or right-click an existing visualization and select łcreate a

dashboard like thisž, to easily trigger a pipeline synthesis process.

Unlike by-example synthesis, łtargetž used in this new paradigm

is only as a fuzzy illustration of user intent. Surprisingly, we show

that this seemingly imprecise specification is in fact often sufficient

to uniquely determine the desired pipeline ś our insight is that im-

plicit constraints such as FDs and Keys discovered from the target

table are often sufficient to constrain the space of possible pipelines.

This is a key property overlooked thus-far by existing work, which

Figure 2: To trigger by-target synthesis, users only need to

(Left): pick an existing database table, right click and select

łAppend data to this tablež, or (Right): point to a visualiza-

tion, right click and select łCreate a dashboard like thisž.

we argue can be the key to make pipeline-synthesis practical (be-

cause fuzzy łtargetsž are a lot easier for users to provide).

Search and RL-based Synthesis. The problem of synthesizing

multi-step pipelines is clearly challenging, as the number of candi-

date pipelines grows exponentially in the number of steps, which

is prohibitively large very quickly (reaching 1020 within 5 steps on

typical tables having 10 columns).

In order to make synthesis tractable, we formalize the end-to-end

synthesis as an optimization problem, and develop a search-based

algorithm Auto-Pipeline-Search that considers a diverse array of

factors to best prioritize search over the most promising candidates.

We also design a deep reinforcement-learning (DRL) based syn-

thesis algorithm Auto-Pipeline-RL, which łlearnsž to synthesize

pipelines using large collections of real pipelines. Drawing inspi-

ration from the success of using łself-playž to train game-playing

agents like AlphaGo [47] and Atari [40], we use łself-synthesisž to

train an agent by asking it to try to synthesize real pipelines, and

rewarding it when it succeeds. It turns out that the RL-based synthe-

sis can learn to synthesize fairly quickly, and slightly outperforms

hand-crafted search using Auto-Pipeline-Search.

2 MULTI-STEP BY-TARGET SYNTHESIS

We describe the by-target synthesis problem in this section, and

we will start with preliminaries.

2.1 Preliminary: Pipelines and Operators

Data-pipelines. Data pipelines are ubiquitous today, to transform

raw data into suitable formats for downstream processing. Step

(0)-(3) of Figure 3 shows a conceptual pipeline using the Titanic

table as input, which is a popular Kaggle task to predict which

passengers survived [4]. The pipeline in this case performs (1) a

GroupBy on the Gender column to compute Avg-Survived by Gender,

and then (2) a Join of the result with the input table on Gender, so

that in (3) Avg-Survived becomes a useful feature for predictions.

Today pipelines like this are built by both experts (e.g., developers

and data-scientists) and less-technical users (e.g., end-users in tools

like Power Query and Tableau Prep).

Expert users typically build pipelines using code/script, with Pan-

das [14] in Python being particularly popular for table manipulation.

Figure 4(a) shows an example pipeline written in Pandas that corre-

sponds to the same steps of Figure 3. Today a lot of these pipelines

are written in Jupyter Notebooks [13] and are publicly available

online. We crawled over 4M such notebooks on GitHub [52], from

which we can extract large quantities of real data pipelines.

Less-technical users also increasingly need to build pipelines

themselves today, typically using drag-and-drop tools (e.g., Power-

Query, Informatica, Azure Data Factory, etc.) to manually specify

2564

Passenger Gender Fare-Class Survived?
A Female 1st 1
B Male 2nd 0
C Female 3rd 1
D Male 1st 0

Input: Titanic (a popular Kaggle challenge)

Gender Avg-Survived?
Female 0.731
Male 0.422

GroupBy (Gender)
Average(Survived)

Passenger Gender Fare-Class Survived? Avg-Survived
A Female 1st 1 0.731
B Male 2nd 0 0.422
C Female 3rd 1 0.731
D Male 1st 0 0.422Join (Gender)

Key: {Passenger}

FD: {Gender => Avg-Survived}

“Target” Output (from a previous pipeline) Implicit constraints discovered from target output

1

0

2

3 4

Passenger Gender Fare-Class Survived? Avg-Survived
E Male 3rd 0 0.422
F Male 3rd 0 0.422
G Female 2nd 0 0.731
H Female 3rd 1 0.731

6

Synthesized
pipeline

5
Passenger Gender Fare-Class Survived?

E Male 3rd 0
F Male 3rd 0
G Female 2nd 0
H Female 3rd 1

New Input: (e.g., a different subset)

“Soft” (plausible) column-mapping candidates, between
columns in synthesized output and columns in target output

Constraints from synthesized output are the same
as constraint from the target output above

7

Key: {Passenger}

FD: {Gender => Avg-Survived}

Figure 3: An example pipeline to show why łby-targetž provides a sufficient specification. Given (0) an input Titanic table

from Kaggle to predict passenger survivals, a manually-authored pipeline performs (1) a GroupBy on łGenderž to compute

łAvg-Survivedž by łGenderž, and then (2) Joins it back on łGenderž. Imagine that users give the output table (3) as the łtargetž,

we can discover constraints such as (4) Key:{łPassengerž} and FD: {łGenderž→ łAvg-Survivedž}. (5) For a new input table (with a

different set of passengers) and given (3) as the łtargetž, intuitively a correctly synthesized pipeline in (6) should have the

same FD/Key constraints that match the ones from the target table (3), like shown in (7).

pipelines step-by-step. Figure 4(b) shows an example pipeline with

the same steps as Figure 3, but built in a visual drag-and-drop tool,

which are more accessible to less-technical non-programmer users.

We note that the two pipelines in Figure 4 are equivalent, because

they invoke the same sequence of operators (a GroupBy followed

by Join). We introduce the notion of operators below.

Operators. Conceptually, data-pipelines invoke sequences of

operators that broadly fall into two categories:

(1) Table-level operators: e.g., Join, Union, GroupBy, Pivot, Un-

pivot, etc. that manipulate tables. A subset of these operators are

considered in SQL-by-example [50, 51].

(2) String-level operators: e.g., Split, Substring, Concatenate, etc.,

that perform string-to-string transformations. These operators are

traditionally considered in transformation-by-example [29, 30].

In this work, we consider both classes of operators, since both

are common in pipelines. Figure 5 shows the operators we consider,

henceforth referred to as O. Because these operators are fairly

standard (e.g., the automation of individual operators are studied in

depth in a prior work [52]), we defer descriptions of these operators

to a full version of the paper [1].

Limitations.We note that expert users can write ad-hoc user-

defined functions (e.g., any python code) in their pipelines, which

are unfortunately intractable for program-synthesis even in simple

cases (e.g., PSPACE-hard for arithmetic functions) [22, 25], and are

thus not considered in our work. Similarly, we do not consider

row-level filtering because it is also intractable in general [50].

2.2 Problem: Multi-step By-target Synthesis

As illustrated in Figure 1, in our pipeline synthesis problem, we

are given as łtargetž an existing table 𝑇 𝑡𝑔𝑡 (e.g., a database table or

a dashboard), generated from a pipeline 𝐿 on a previous batch of

input tables T𝑖𝑛 = {𝑇1,𝑇2, . . .}, written as 𝑇 𝑡𝑔𝑡 = 𝐿(T𝑖𝑛).

As is often the case, new data files, denoted byˆ︁T𝑖𝑛 = {ˆ︁𝑇1,ˆ︁𝑇2, . . .},
have similar content but may have different schema and represen-

tations (e.g., because they come from a different store/region/time-

period, etc.). Users would want to bring ˆ︁T𝑖𝑛 onboard, but 𝐿 is no

longer applicable, and often also not accessible1.

1End-users wanting to build a łsimilarž pipeline targeting an existing

database-table/dashboard often do not have access to the original legacy

pipelines 𝐿 built by IT, due to discover-ability and permission issues. As

In this work, we ask the aspirational question of whether new

pipelines can be automatically synthesized, if users can point us

to the new input files ˆ︁T𝑖𝑛 and the target 𝑇 𝑡𝑔𝑡 , to schematically

demonstrate what output from a desired pipeline should łlook likež.

This by-target synthesis problem is defined as follows:

Definition 1. In by-target pipeline-synthesis, given input data
ˆ︁T𝑖𝑛 , and a target table 𝑇 𝑡𝑔𝑡 generated from related input T𝑖𝑛 that

schematically demonstrates the desired output, we need to synthe-

size a pipeline ˆ︁𝐿 using a predefined set of operators O, such that
ˆ︁𝑇𝑜 =

ˆ︁𝐿(ˆ︁T𝑖𝑛) produces the desired output.

Evaluate synthesized pipelines from by-target. Since one

may worry that a target-table 𝑇 𝑡𝑔𝑡 only provides a fuzzy specifi-

cation of the synthesis problem, we will start by discussing how a

by-target synthesis system can be systematically evaluated.

In traditional by-example synthesis (e.g., SQL-by-example [50,

51]), a pair of matching input/output tables (ˆ︁T𝑖𝑛 , ˆ︁𝑇𝑜) is provided as

input to synthesis algorithms (even though in practice ˆ︁𝑇𝑜 is hard
to come by). In such a setting, evaluating a synthesized program ˆ︁𝐿
often reduces to a simple check of whether the synthesized output
ˆ︁𝐿(ˆ︁T𝑖𝑛) is the same as ˆ︁𝑇𝑜 .

In by-target synthesis, we are given as input a pair of non-

matching tables (ˆ︁T𝑖𝑛 , 𝑇 𝑡𝑔𝑡), for which the same evaluation does

not apply. It turns out, however, that evaluation by-target synthe-

sis can be performed similarly, using what is analogous to łtest-

ingž/łtrainingž in Machine Learning.

Specifically, as illustrated in Figure 6, for each real pipeline 𝐿

authored by humans, we split the input tables used by 𝐿 50%/50%

into łtestingž and łtrainingž2. We treat the the first 50% as if they are

T𝑖𝑛 in by-target synthesis, and use the ground-truth pipeline 𝐿 to

generate the target output𝑇 𝑡𝑔𝑡 = 𝐿(T𝑖𝑛). We then use the remaining

50% as if they are ˆ︁T𝑖𝑛 , and feed the non-matching pair (ˆ︁T𝑖𝑛 , 𝑇 𝑡𝑔𝑡)
as input to by-target synthesis (circled in dash in Figure 6), so

such, to ensure generality, in this work we do not assume the original 𝐿 to

be available as reference to synthesize new pipelines (though we are clearly

more likely to succeed if the original 𝐿 is available).
2When there are multiple tables in a pipeline and Joins are required, we

split the largest input table (which is fact-table-like) to ensure that Joins do

not produce empty results.

2565

(a) A pipeline authored using Python Pandas

L

J

R

L

Step-0: Read input
Titanic.csv

Titanic_output.csv

Step-1: Group-by “Gender”
average “Survived”

Step-2: Join
back on “Gender”

R

Passenger Gender Fare-Class Avg-Survived

1 A Female 1st 0.731

2 B Male 2nd 0.422

3 C Female 3rd 0.731

4 D Male 1st 0.422

Results – Input Data - Output

(b) A pipeline authored in visual drag-and-drop
tool

Figure 4: Example pipelines corresponding to the same steps in Figure 3. (a): A pipeline built by data scientists using Python

Pandas in a Jupyter Notebook. (b): The same pipeline built by less-technical users using visual drag-and-drop tools.

Figure 5: Operators considered in by-target synthesis.

Figure 6: Evaluate by-target synthesis: Given a human-

authored pipeline 𝐿, we treat the first 50% of input data for 𝐿

as T𝑖𝑛 , to generate the target table𝑇 𝑡𝑔𝑡 = 𝐿(T𝑖𝑛). We then use

the remaining 50% of input as ˆ︁T𝑖𝑛 , which together with 𝑇 𝑡𝑔𝑡 ,

is fed into by-target synthesis to synthesize a new pipelineˆ︁𝐿.
The correctness of ˆ︁𝐿 can be verified on T𝑖𝑛 (held-out during

synthesis), by checking whether ˆ︁𝐿(T𝑖𝑛) ?
= 𝐿(T𝑖𝑛).

that a new pipeline ˆ︁𝐿 can be synthesized. The correctness of the

synthesized ˆ︁𝐿 can be verified on the first 50% data (T𝑖𝑛), which is

held-out during synthesis, by checking whether ˆ︁𝐿(T𝑖𝑛) ?
= 𝐿(T𝑖𝑛).

Note that because T𝑖𝑛 is held-out during synthesis (analogous to

hold-out test-data inML), and the original pipeline 𝐿 is also held-out,

the fact that we can łreproducež a synthesized ˆ︁𝐿 that has the same

effect as 𝐿 on the hold-out data T𝑖𝑛 ensures that the synthesized ˆ︁𝐿
from by-target is indeed what users want.3

Is by-target a sufficient specification? Even though by-target

synthesis can be systematically evaluated using a procedure anal-

ogous to train/test in ML, one may still wonder whether a non-

matching pair (ˆ︁T𝑖𝑛 ,𝑇 𝑡𝑔𝑡) in by-target synthesis provides a sufficient

specification for a desired pipeline to be synthesized. We show

that this seemingly imprecise specification is in fact sufficient in

3Note that we do not require ˆ︁𝐿 and 𝐿 to be identical at a syntactical-level,

because there are often semantically equivalent ways to rewrite a pipeline

(e.g., change of operator orders, or rewrite using an equivalent sequence).

most cases, by leveraging implicit constraints that we can discover

from 𝑇 𝑡𝑔𝑡 . We illustrate this using the following example.

Example 1. Figure 3 shows the conceptual steps of a simple

pipeline for the Titanic challenge [5]. Like we discussed in Sec-

tion 2.1, this particular pipeline computes (1) a GroupBy on the

Gender column to compute Avg-Survived by Gender, and then (2) a

Join on Gender to bring Avg-Survived as an additional feature into

the original input, like shown in (3).

In our setting of by-target synthesis, a different user is now given

a similar input table with a different set of passengers like shown in

(5). Without having access to the original pipeline, she points to (3)

as the target table to as a fuzzy demonstration of her desired output,

in order for by-target synthesis to produce the desired pipeline.

Our key insight is that in such cases, the desired pipeline can

be uniquely determined, by leveraging implicit constraints discov-

ered from the output table (3). Specifically, we can apply stan-

dard constraint-discovery techniques (e.g., [42]) to uncover two

constraints shown in (4): Key-column:{łPassengerž}, Functional-

dependency (FD): {łGenderž→ łAvg-Survivedž}.

When table (5) is used as the new input and table (3) is used as

the target, implicitly we want a synthesized pipeline (6) to follow

the same set of transformations in the pipeline that produces (3),

and as such the new output using table (5) as input should naturally

satisfy the same set of constraints. Namely, if we perform a column-

mapping between the table (3) and table (6), we can see that the

constraints discovered from these two tables, as shown in (4) and

(7), have direct one-to-one correspondence. If we need to recreate

these implicit constraints in table (3) in a synthesized pipeline, it

can be shown that the only pipeline with the fewest steps to satisfy

all these constraints is the aforementioned pipeline. (Others would

either miss one constraint, or require more steps, which are less

likely to be desired according to MDL and Occam’s Razor [26]). 4

In summary, our key insight is that leveraging implicit con-

straints can sufficiently constrain the synthesis problem. Our large-

scale evaluation on real pipelines (Section 5) confirms that most can

indeed be successfully synthesized using the by-target paradigm.

2.3 Synthesis Algorithm: Intuitive Sketch

We now give a sketch of how a synthesis algorithm may look like

before we formalize the problem.

4We note that while the synthesized pipeline in the example of Figure 3 is the same as
the original, there are many cases where synthesized pipelines are different from the
original, while still being semantically equivalent. We defer this to Section 5.4.

2566

Figure 7: A search graph for synthesis: from the start-node

(an empty pipeline) to the end-node (a synthesized pipeline),

each intermediate node represents a partial pipeline, and

each edge represents the act of adding one operator, which

leads to a new pipeline with one more operator.

Figure 7 gives an intuitive illustration of the synthesis process.

Each node here represents an intermediate state in the synthesis

process, which corresponds to a łpartial pipelinež. The starting state

(shown with a checkerboard pattern at the top-left) corresponds

to an empty pipeline ˆ︁𝐿 = {}, and the ending state (at bottom-right)

corresponds to a final synthesized pipeline ˆ︁𝐿 = {𝑂1,𝑂2, . . . 𝑂𝑛}.

From each state representing a partial pipeline, we can extend

the partial pipeline by one additional łstepž using some operator

𝑂 ∈ O in Figure 5, to move to a subsequent state. For example, from

the starting state ˆ︁𝐿 = {}, we can add different instantiations of op-

erators in O (e.g., different ways to apply GroupBy/Join/Pivot, etc.,

on given input tables), which lead to different one-step pipelines

(e.g., ˆ︁𝐿 = {GroupBy(table-1, column-1)}). This synthesis process

can then be visualized as traversing the search graph, until a satis-

factory end-state is reached (e.g., satisfying all implicit constraints).

It is clear from this intuitive sketch, however, that the search

space of possible pipelines is prohibitively large, because (1) the

number of possible pipelines grows exponentially with the number

of steps; and (2) even one individual step can be parameterized in

numerous ways ś e.g., a Join between two tables with |𝐶 | columns

each can in theory use any of the |𝐶 |2 column-pairs as the Join key

(the same is true for GroupBy/Pivot, etc.).

While we will defer a description of our solution to (1) above,

solving (2) is relatively straightforward because for each operator

(e.g., Join), we can leverage existing work (e.g., [52]) to accurately

predict the most likely way to parameterize the operator given

input tables (e.g., which columns to Join/GroupBy/Pivot, etc.).

Predict Single-Operator Parameters. Conceptually, for each

operator 𝑂 ∈ O, and given input tables 𝑇 , we need to predict the

likelihood of using parameter 𝑝 for 𝑂 in the context of 𝑇 , written

as 𝑃𝑇 (𝑂(𝑝)). For instance, for a Join between two given tables, we

need consider the characteristics of the tables to estimate which

columns will likely join (which is a Join parameter); similarly for

Unpivot, we need to consider input tables and predict which subset

of columns should Unpivot (also a parameter), etc.

For this reason, we build upon a prior technique called Auto-

Suggest [52], which learns from real data pipelines to predict the

likelihood of using parameters 𝑝 for each operator 𝑂 given input

tables 𝑇 , which is exactly 𝑃𝑇 (𝑂(𝑝)). In this work, we leverage [52]

and treat these 𝑃𝑇 (𝑂(𝑝)) as given, to better focus on the end-to-end

pipeline synthesis problem. We refer readers to [52] for details of

these single-operator predictions in the interest of space.

Optimization-based formulation. Given the probabilistic es-
timates of operator parameters 𝑃 (𝑂(𝑝)), and the fact that we want
to synthesize a pipeline that can satisfy all implicit constraints
(FD/Key), we formulate the synthesis as an optimization prob-

lem. Specifically, we want to find the łmost likelyž pipeline ˆ︁𝐿
consisting of a sequence of suitably parameterized operators ˆ︁𝐿 =

{𝑂1(𝑝1),𝑂2(𝑝2), . . .}
5, by maximizing the joint probabilities of these

operators 𝑂𝑖 (𝑝𝑖), under the constraints that output from ˆ︁𝐿 should
satisfy all implicit constraints. This problem, henceforth referred
to as PMPS (probability-maximizing pipeline synthesis), can be
written as follows:

(PMPS) argmax
ˆ︁𝐿

∏︂

𝑂𝑖 (𝑝𝑖)∈ˆ︁𝐿
𝑃 (𝑂𝑖 (𝑝𝑖)) (1)

s.t. FD(ˆ︁𝐿(ˆ︁T𝑖𝑛)) = FD(𝑇 𝑡𝑔𝑡) (2)

Key(ˆ︁𝐿(ˆ︁T𝑖𝑛)) = Key(𝑇 𝑡𝑔𝑡) (3)

Col-Map(ˆ︁𝐿(ˆ︁T𝑖𝑛),𝑇 𝑡𝑔𝑡) (4)

The objective function in Equation (1) states that we want to find

the most likely pipeline ˆ︁𝐿, or the one whose joint probability of all

single-step operator invocations is maximized. Equation (2) and (3)

state that when running the synthesized pipeline ˆ︁𝐿 on the given

input ˆ︁T𝑖𝑛 to get ˆ︁𝐿(ˆ︁T𝑖𝑛), the FD/Key constraints discovered from

𝑇 𝑡𝑔𝑡 should also be satisfied on ˆ︁𝐿(ˆ︁T𝑖𝑛). Finally Equation (4) states

that we should be able to łmapž columns from ˆ︁𝐿(ˆ︁T𝑖𝑛) to 𝑇 𝑡𝑔𝑡 , with
standard schema-mapping [44].

Example 2. We revisit Figure 3. Using [52], we estimate the

probabilities 𝑃 (𝑂(𝑝)) of the two steps in the pipeline (GroupBy

and Join) to be 0.4 and 0.8, respectively. Among all other possible

pipelines, this two-step pipeline maximizes the joint probability

(0.32) in Equation (1), while satisfying all FD/Key/column-mapping

constraints in Equation (2)-(4), which is thus the solution to PMPS.

3 SEARCH-BASED AUTO-PIPELINE

This section describes our synthesis using Auto-Pipeline-Search.

3.1 A High-level Overview

As discussed in Section 2.3, at a high level the synthesis process

can be seen as traversing a large search graph shown in Figure 7.

Because each node corresponds to a partial-pipeline, and each edge

corresponds to the act of adding one operator, each node that is

𝑑𝑒𝑝𝑡ℎ-steps away from the start-node would naturally correspond

to a partial-pipeline with 𝑑𝑒𝑝𝑡ℎ number of operators/steps.

Given the large search graph, it is natural to explore only łpromis-

ingž parts of the graph. We first describe such a strategy in a meta-

level synthesis algorithm shown in Algorithm 1 below, which uses

a form of beam search [41].

Algorithm 1 starts by initializing 𝑑𝑒𝑝𝑡ℎ = 0 to indicate that we

are at the start-node in Figure 7. The variable 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 stores all

łvalidž pipelines satisfying the constraints in PMPS (Equation (2)-

(4)), and is initialized as an empty set. The variable 𝑆𝑑𝑒𝑝𝑡ℎ corre-

sponds to all pipelines with 𝑑𝑒𝑝𝑡ℎ-steps that are actively explored

5 While pipelines are in general directed acyclic graphs (DAGs), they can
be serialized into sequences of invocations, thus the simplified notation.

2567

Algorithm 1 Synthesis: A meta-level synthesis algorithm

1: procedure Synthesis(ˆ︁T𝑖𝑛,𝑇 𝑡𝑔𝑡 ,O)

2: 𝑑𝑒𝑝𝑡ℎ ← 0, 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ← ∅

3: 𝑆𝑑𝑒𝑝𝑡ℎ ← {𝑒𝑚𝑝𝑡𝑦()} ⊲ #initialize an empty pipeline

4: while 𝑑𝑒𝑝𝑡ℎ <𝑚𝑎𝑥𝐷𝑒𝑝𝑡ℎ do

5: 𝑑𝑒𝑝𝑡ℎ ← 𝑑𝑒𝑝𝑡ℎ + 1

6: for each (𝐿 ∈ S𝑑𝑒𝑝𝑡ℎ−1,𝑂 ∈ O) do

7: 𝑆𝑑𝑒𝑝𝑡ℎ ← 𝑆𝑑𝑒𝑝𝑡ℎ ∪ AddOneStep(𝐿,𝑂)

8: 𝑆𝑑𝑒𝑝𝑡ℎ ← GetPromisingTopK(𝑆𝑑𝑒𝑝𝑡ℎ,𝑇
𝑡𝑔𝑡)

9: 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ← 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ∪ VerifyCands(𝑆𝑑𝑒𝑝𝑡ℎ,𝑇
𝑡𝑔𝑡)

10: return GetFinalTopK(𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠)

in one loop iteration, and at line 3 we initialize it to a single place-

holder empty-pipeline, because it is the only 0-step pipeline and

we are still at the start-node of the search graph.

From line 4, we iteratively visit nodes that are 𝑑𝑒𝑝𝑡ℎ = {1, 2, . . .}

steps away from the start-node, which is equivalent to exploring

all pipelines with {1, 2, . . .} operators. As we increment 𝑑𝑒𝑝𝑡ℎ in

the loop, we take all active pipelines from the previous iteration

with (𝑑𝑒𝑝𝑡ℎ − 1) steps, denoted by 𝑆𝑑𝑒𝑝𝑡ℎ−1, and łextendž each par-

tial pipeline 𝐿 ∈ 𝑆𝑑𝑒𝑝𝑡ℎ−1 using one additional operator 𝑂 ∈ O,

by invoking AddOneStep(𝐿,𝑂), which is shown at line 7. These

resulting pipelines with 𝑑𝑒𝑝𝑡ℎ-steps are saved as 𝑆𝑑𝑒𝑝𝑡ℎ . Because

we cannot exhaustively explore all pipelines in 𝑆𝑑𝑒𝑝𝑡ℎ , at line 8,

we select top-K most promising ones from 𝑆𝑑𝑒𝑝𝑡ℎ by invoking Get-

PromisingTopK(). Among these top-K promising partial pipelines,

we check whether any of them already satisfy PMPS constraints

using VerifyCand(), and save the feasible solutions separately into

𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 (line 9). This marks the end of one iteration.

We continue with the loop and go back to line 4, where we

increment 𝑑𝑒𝑝𝑡ℎ by 1 and explore longer pipelines, until we find

enough number of valid candidates, or we reach the maximum

depth, at which point we return the final top-K candidate pipelines

by invoking GetFinalTopK() (line 10).

Discussion.While the key steps in our synthesis are sketched

out in Algorithm 1, we have yet to describe the sub-routines below:

• AddOneStep() extends a partial pipeline 𝐿 using one addi-

tional operator 𝑂 ∈ O;

• VerifyCands() checks whether pipelines satisfy PMPS con-

straints, and if so marks them as final candidates;

• GetPromisingTopK() selects the most promising K pipelines

from all explored pipelines with 𝑑𝑒𝑝𝑡ℎ-steps;

• GetFinalTopK() re-ranks and returns final pipelines.

The first two sub-routines, AddOneStep() and VerifyCands(),

are reasonably straightforward ś AddOneStep() adds one addi-

tional step into partial pipelines by leveraging Auto-Suggest [52] to

find most likely parameters for each operator, while VerifyCands()

checks for PMPS constraint using standard FD/key-discovery [20,

42] and column-mapping [44]. We will describe these two sub-

routines in Section 3.2 and 3.3, respectively.

The last two sub-routines, GetPromisingTopK() and GetFinal-

TopK(), are at the core of Auto-Pipeline, where a good design

ensures that we can efficiently search promising parts of the graph

and synthesize successfully. In Section 3.4, we will describe a search-

based strategy to instantiate these two sub-routines, and later in

Section 4, we will describe a learning-based alternative using RL.

3.2 Extend pipelines by one step

We describe the AddOneStep() subroutine in this section.

AddOneStep(𝐿,𝑂) takes as input a 𝑑𝑒𝑝𝑡ℎ-step partial pipeline 𝐿 =

{𝑂1(𝑝1), . . . ,𝑂𝑑𝑒𝑝𝑡ℎ(𝑝𝑑𝑒𝑝𝑡ℎ)}, and some operator 𝑂 (enumerated

from all possible operators O) that we want to add into 𝐿. We

leverages [52], which considers the characteristics of intermedi-

ate tables in the partial pipeline 𝐿, to predict the best parameter

𝑝 = argmax𝑝∈p 𝑃 (𝑂(𝑝)|𝐿) to use. We use this predicted param-

eter 𝑝 to instantiate the new operator 𝑂 , and use the resulting

𝑂(𝑝) to extend 𝐿 by one additional step, producing 𝐿′ = {𝑂1(𝑝1),

. . . 𝑂𝑑𝑒𝑝𝑡ℎ(𝑝𝑑𝑒𝑝𝑡ℎ),𝑂(𝑝)}.

Note that in general, for each operator 𝑂 , there may be more

than one good way to parameterize 𝑂 (e.g., there may be more

than one plausible GroupBy column, and more than one good Join

column, etc.). So instead of using only top-1 predicted parameter,

for each 𝑂 we keep top-𝑀 most likely parameters, which would

produce 𝑀 possible pipelines after invoking AddOneStep(𝐿,𝑂) for

a given 𝐿 and 𝑂 .

We use the following example to illustrate the process.

Example 3. We revisit the pipeline in Figure 3. At step (0), we

have one input table and an empty pipeline 𝐿 = {}. We enumerate

all possible operators 𝑂 ∈ O to extend 𝐿.

Suppose we first pick 𝑂 to be GroupBy. Intuitively we can see

that Gender and Fare-Class columns are themost likely for GroupBy

(because among other things these two columns have categorical

values with low cardinality). We leverage single-operator predictors

from [52] ś in this case we use the GroupBy predictor (Section 4.2

of [52]), which may predict that 𝑃 (𝐺𝑟𝑜𝑢𝑝𝐵𝑦(Fare-Class)|𝐿) = 0.5

and 𝑃 (𝐺𝑟𝑜𝑢𝑝𝐵𝑦(Gender)|𝐿) = 0.4 to be the most likely. If we use

𝑀 = 2 or keep top-2 parameters for each operator, this leads to

two new 1-step pipelines 𝐿′1 = {𝐺𝑟𝑜𝑢𝑝𝐵𝑦(Fare-Class)} and 𝐿′2 =

{𝐺𝑟𝑜𝑢𝑝𝐵𝑦(Gender)}.

The same process continues for other 𝑂 ∈ O. For instance

when we pick 𝑂 to be łPivotž, we may predict that Gender and

Fare-Class to be likely Pivot keys, so we get 𝐿′3 = {𝑃𝑖𝑣𝑜𝑡 (Gender)},

𝐿′4 = {𝑃𝑖𝑣𝑜𝑡 (Fare-Class)}.

However, when we pick 𝑂 to be Join/Union, the probabilities

of all possible parameters are 0, because no parameter is valid

with only one input table in 𝐿. This changes when we have more

intermediate tables ś e.g., in a subsequent step marked as (1) in

Figure 3, a new intermediate table is generated from GroupBy. At

that point, using [52] we may predict a Join using Gender to be

likely, while a Union is unlikely (because of the schema difference).

3.3 Verify constraint satisfaction

We now describe VerifyCands() in this section. Recall that

VerifyCands(𝑆𝑑𝑒𝑝𝑡ℎ,𝑇
𝑡𝑔𝑡) takes as input a collection of pipelines

𝑆𝑑𝑒𝑝𝑡ℎ (the set of synthesized pipelines with𝑑𝑒𝑝𝑡ℎ steps), and check

if any ˆ︁𝐿 ∈ 𝑆𝑑𝑒𝑝𝑡ℎ satisfy all constraints listed in Equation (2)-(4) for

Key/FD/column-mapping, in relation to the target table 𝑇 𝑡𝑔𝑡 .

Column-mapping. For column-mapping, we apply standard

schema-mapping techniques [44] to find possible column-mapping

2568

between the target table 𝑇 𝑡𝑔𝑡 , and the output table from a synthe-

sized pipeline ˆ︁𝐿(ˆ︁T𝑖𝑛), using a combination of signals from column-

names and column-values/patterns. In the interest of space, we

defer details of this to a full version of the paper [1], but we give

an example below for illustration.

Example 4. Consider a synthesized pipeline ˆ︁𝐿 that produces an

output table shown at step (6) of Figure 3. Recall that our target

table𝑇 𝑡𝑔𝑡 is shown in step (3) ś for a synthesized ˆ︁𝐿 to be successful,

its output ˆ︁𝐿(ˆ︁T𝑖𝑛) should łcoverž all columns in the target 𝑇 𝑡𝑔𝑡 , as

required in Equation (4). As such, we need to establish a column-

mapping between the table in (3) and the table in (6).

Using standard schema-mapping techniques, we find column-to-

column mapping shown in Figure 3, using a combination of signals

from column-values, column-patterns, and column-names.

It should be noted that our mapping is not required to be hard

1:1 mapping, but can be łsoftž 1:N mapping. Like shown in Figure 3,

the Avg-Survived column may be mapped to both Survived and

Avg-Survived in the other table, since both share similar column-

names and values, and can be plausible mapping candidates. In

the end, so long as columns in 𝑇 𝑡𝑔𝑡 can be łcoveredž by some

plausible mapping candidates in the synthesized result ˆ︁𝐿(ˆ︁T𝑖𝑛), this
synthesized pipeline ˆ︁𝐿 is deemed to satisfy the column-mapping

constraint in Equation (4).

FD/Key constraints. For FD/Key constraints, we again apply

standard-constraint discovery techniques [20, 42], to discover FD/Key

constraints from both the target table 𝑇 𝑡𝑔𝑡 , and the output table
ˆ︁𝐿(ˆ︁T𝑖𝑛) from a synthesized pipeline ˆ︁𝐿, in order to see if all FD/Key

constraints from 𝑇 𝑡𝑔𝑡 can be satisfied by ˆ︁𝐿. We use the example

below to illustrate this.

Example 5. Given a synthesized pipeline ˆ︁𝐿 that produces an

output table shown at step (6) of Figure 3, and a target table 𝑇 𝑡𝑔𝑡

shown in step (3), we use constraint-discovery to discover Key/FD

constraints, which are shown in (7) and (4) for these two tables,

respectively. Given the soft column-mapping candidates shown in

Figure 3, we can see that there exists one column-mapping (with

Survived ↔ Survived and Avg-Survived ↔ Avg-Survived), under

which all Key/FD constraints from the target table (3) can be satis-

fied by the ones in table (6), thus satisfying Equation (2) and (3).

Given that Key/FD/column-mapping have all been satisfied for

the output in (6), in VerifyCands() we can mark the corresponding

pipeline ˆ︁𝐿 as a feasible solution to PMPS (and saved in the variable

𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 in Algorithm 1).

3.4 A diversity-based search strategy

We now describe GetPromisingTopK() and GetFinalTopK(), which

are at the core of Auto-Pipeline-Search.

Recall that our goal is to solve the optimization problem PMPS

in Section 2.3, which requires us to find a pipeline that can (1)

maximize overall joint operator probabilities in the synthesized

pipeline (the objective function in Equation (1)), and (2) satisfy

constraints in Equation (2)-(4).

Because each candidate pipeline has already been checked for

constraint satisfaction (Equation (2)-(4)) inVerifyCands(), thismakes

GetFinalTopK() easy as we only need to pick candidate pipelines

that maximize joint operator probabilities. That is, for a synthesized

pipeline ˆ︁𝐿 = {𝑂1(𝑝1),𝑂2(𝑝2), . . .}, we can calculate its joint oper-

ator probabilities as 𝑃 (ˆ︁𝐿) = ∏︁
𝑂𝑖 (𝑝𝑖)∈ˆ︁𝐿 𝑃 (𝑂𝑖 (𝑝𝑖)), where 𝑃 (𝑂𝑖 (𝑝𝑖))

are estimates from single-operator models in [52]. We can output

a ranked list of top-K pipelines, by simply ranking all candidate

pipelines using 𝑃 (ˆ︁𝐿).
On the other hand, the sub-routine GetPromisingTopK() evalu-

ates all 𝑑𝑒𝑝𝑡ℎ-step pipelines currently explored, where we need to

find top-K promising candidates in order to prune down the search

space. We note that GetPromisingTopK() could not use the same

strategy as GetFinalTopK() by simply maximizing 𝑃 (ˆ︁𝐿), because
this may lead to pipelines that cannot satisfy PMSP constraints

(Equation 2-(4)), resulting in infeasible solutions.

Because of this reason, we design a diversity-based strategy in

GetPromisingTopK(), by not only picking partial pipelines that

maximize the objective function in PMSP (Equation (1)), but also

the ones that satisfy the most number of FD/key/column-mapping

constraints in (Equation (2)-(4)). Specifically, given a budget of 𝐾

promising partial pipelines that we can keep in 𝑆𝑑𝑒𝑝𝑡ℎ , we consider

a balanced set of criteria by selecting 𝐾
3 pipelines from each of the

three groups below:

(1) We select 𝐾3 pipelines that have the highest overall probabili-

ties 𝑃 (ˆ︁𝐿);
(2) We select 𝐾3 pipelines whose output tables satisfy the most

number of FD/Key constraints in the target table;

(3) We select 𝐾3 pipelines whose output tables can łmapž the

most number of columns in the target table.

We demonstrate this using an example below.

Example 6.We continue with the Example 3 in Figure 3. Suppose

we have a budget of 𝐾 = 3 pipelines to keep. Using the diversity-

based search in GetPromisingTopK(), we can keep 1 pipeline each

based on (1) probabilities, (2) key/FD constraints, and (3) column-

mapping, respectively. For all 1-step pipelines considered in Ex-

ample 3, based on the criterion (1) we can see that the partial

pipeline 𝐿′1 = {𝐺𝑟𝑜𝑢𝑝𝐵𝑦(Fare-Class)} has the highest probability

and will be selected, while based on the criterion (2) the pipeline

𝐿′2 = {𝐺𝑟𝑜𝑢𝑝𝐵𝑦(Gender)} will be selected as it satisfies an additional

FD constraint found in the target table, etc.

Suppose that among all 1-step pipelines, we select the set 𝑆1 =

{𝐿′1, 𝐿
′
2, 𝐿
′
5} as promising partial pipelines in GetPromisingTopK()

given a 𝐾 = 3. In the next iteration when we consider 2-step

pipelines, we will start from 𝑆1 and consider different ways to

extend pipelines in 𝑆1 using AddOneStep(). We can see that extend-

ing 𝐿′2 ∈ 𝑆1 with a Join on Gender yields a high probability pipeline

satisfying all constraints, which becomes a solution to PMPS.

Note that in this example, we prioritize our search on a promising

set of 𝐾 = 3 pipelines at each depth-level, without exploring all

possible 1-step and 2-step pipelines.

Additional details. While Algorithm 1 outlines key steps in

our synthesis algorithm, there are a few additional optimizations,

such as normalizing non-relational input tables, and fine-tuning

candidate pipelines in final steps, etc. In the interest of space we

refer readers to a full version of this paper [1] for additional details.

4 LEARNING-BASED AUTO-PIPELINE

In addition to the search-based synthesis, we also design a learning-

based synthesis, which follows the exact same steps in Algorithm 1,

2569

except that we replace the search-based heuristics in GetPromising-

TopK and GetFinalTopK (in Section 3.4), using deep reinforcement-

learning (DRL) models.

Learning-to-synthesize: key intuition. At a high-level, our

pipeline synthesis problem bears strong resemblance to game-

playing systems like AlphaGo [47] and Atari [40].

Recall that in learning-to-play games like Go and Atari, agents

need to take into account game łstatesž they are in (e.g., visual

representations of game screens in Atari games, or board states in

the Go game), in order to produce suitable łactionsž (e.g., press-

ing up/down/left/right/fire buttons in Atari, or placing a stone on

the board in Go) that are estimated to have the highest łvaluež

(producing the highest likelihood of winning).

In the case of pipeline synthesis, our problem has a very similar

structure. Specifically, like illustrated in Figure 7, at a given łstatež

in our search graph (representing a partial pipeline 𝐿), we need

to decide suitable next łactionsž to take ś i.e., among all possible

ways to extend 𝐿 using different operators/parameters, which ones

have the highest estimated łvaluež (giving us the best chance to

synthesize successfully).

Just like game-playing agents can be trained via łself-playž [40,

47], or by playing many episodes of games with win/loss outcomes

to learn optimized łpoliciesž for games (what actions to take in

which states), we hypothesize that for pipeline-synthesis an opti-

mized synthesis łpolicyž may also be learned via łself-synthesisž

ś namely, we could feed an RL agent with large numbers of real

data pipelines, asking the agent to synthesize pipelines by itself

and assigning rewards when it succeeds.

Deep Q-Network (DQN). Given this intuition, we set out to

replace the search-based heuristics in GetPromisingTopK and Get-

FinalTopK, using a particular form of reinforcement learning called

Deep Q-Network (DQN) [40], which uses a deep neural network to

directly estimate the łvaluež of a łstatež, or intuitively how łpromis-

ingž a partial pipeline is to ultimately produce a successful synthesis.

More formally, like in Markov Decision Process (MDP), we have

a space of states S where each state 𝑠 ∈ S corresponds to a pipeline

𝐿(𝑠) = {𝑂1(𝑝1),𝑂2(𝑝2), . . . ,𝑂𝑠 (𝑝𝑠)}, which in turn corresponds to a

node in our search graph in Figure 3.

From each state 𝑠 ∈ S, we can take an action 𝑎 ∈ A, which adds

a parameterized operator to the pipeline 𝐿(𝑠) and leads to a new

state 𝑠 ′ corresponding to the pipeline 𝐿(𝑠 ′) = {𝑂1(𝑝1),𝑂2(𝑝2), . . . ,

𝑂𝑠 (𝑝𝑠),𝑂𝑎(𝑝𝑎)}. Unlikely MDP, state transition in our problem is

deterministic, because adding 𝑂𝑎(𝑝𝑎) to pipeline 𝐿(𝑠) uniquely de-

termines a new pipeline.

The challenge in our pipeline-synthesis problem, however, is

that the state/action space of one data-pipeline will be different

from another data-pipeline ś for example, the action of adding an

operator łJoin(Gender)ž in the pipeline of Figure 3 would not apply

to other pipelines operating on different input tables. This calls for

a way to better łrepresentž the states and actions, so that learned

synthesis policies can generalize across pipelines.

Because of this reason, we choose to use Deep Q-Network (DQN)

to directly learn the value-function [49] of each state 𝑠 , denoted as

𝑄(𝑠), which estimates the łvaluež of a state 𝑠 , or how łpromisingž 𝑠

is in terms of its chance of reaching the desired target.

State representation and model architecture. In order to

represent states S of different pipelines in a manner that generalizes

across different pipelines and tables, we need a representation that

abstracts away the specifics of each pipeline (e.g., which table col-

umn is used), and instead encodes generic information important

to by-target synthesis that is applicable to all pipelines.

Recall that in our problem formulation PMPS, our end-goal is

to synthesize a pipeline ˆ︁𝐿 that can produce all FD/Key constraints

discovered from the target 𝑇 𝑡𝑔𝑡 , while the operators invoked in
ˆ︁𝐿 are plausible with high estimated probabilities. As such, in the

representation we design, we directly model these signals, which

are data/pipeline independent.

Given a pipeline 𝐿𝑇 with 𝑇 pipeline steps/operators, Figure 8

shows the representation we use to encode the state of 𝐿𝑇 , including

FD/Key/operators/column-mapping, etc. We will start with the

representation for FD, which is encoded using the matrix at lower-

left corner (other types of information are encoded similarly and

will be described later).

Recall that we discover FDs from the target table 𝑇 𝑡𝑔𝑡 , and our

goal is to synthesize pipelines matching all these FDs. We arrange

these FDs in𝑇 𝑡𝑔𝑡 as rows in the matrix, and encode the FDs satisfied

by 𝐿𝑇 using the right-most columns (marked with 𝑇), where a ł0ž

entry indicates that this corresponding FD has not been satisfied

by 𝐿𝑇 yet, while a ł1ž indicates that FD has been satisfied. Columns

to the left correspond to FDs of pipelines from previous time-steps,

with 𝑇 − 1, 𝑇 − 2 steps/operators, etc., up to a fixed number of

previous steps.

This representation, together with a convolutional architecture,

has two benefits. First, this explicitly models historical information

(i.e., what FDs are satisfied from previous pipelines), so that with

convolution filters, we can directly łlearnž whether adding an op-

erator at 𝑇 -th step makes łprogressž in satisfying more FDs. As a

concrete example, Figure 8 shows a convolutional filter that may

be learned, which have an orange ł-1ž and a green ł+1ž. This filter

would allow us to check whether an increased number of FDs are

satisfied from time (𝑇 − 1) to𝑇 . In this example, FD-2 is not satisfied

at the (𝑇 − 1) step but is now satisfied at the 𝑇 step, as marked by

an orange ł0ž and green ł1ž in the matrix. Applying a dot-product

between the matrix and the example conv-filter, will yield (0*(-1)

+ 1*(+1)) = 1 on this portion of data, which can be intuitively seen

as signaling łpositive-progressž in covering more FDs from time

(𝑇 − 1) to 𝑇 . Observe that in comparison, from time (𝑇 − 1) to 𝑇 ,

both FD-1 (being 0/0 before/after) and FD-3 (being 1/1 before/after)

will get a 0 from applying a dot-product with this filter, indicating

no progress for these two FDs.

In typical computer-vision tasks where convolutional architec-

tures are applied, many conv-filters are stacked together to learn

visual features (e.g., circles vs. lines). We apply similar conv-filters

in our synthesis problem, which interestingly learn to observe

local features like whether a pipeline-step is making progress in

FD/key/mapping, etc.

A benefit of using this representation with a convolutional ar-

chitecture is its ability to represent pipelines with varying numbers

of FDs/Keys, etc., because we can set the number of rows in the

matrix as the maximum number of FDs across all pipelines, and

conveniently łpadž rows not used for a specific pipeline as ł0žs

(which will always result in 0 irrespective of the conv-filters used).

2570

0 0
0 1
1 1
0 0
0 0
0 0

<== Previous steps
T-4 T-3 T-2 T-1 T

-1 +1
FD-1
FD-2
FD-3
FD-4
…

…

…

Pooling + MLP

…

Making “progress” on FD!

<=
==

 V
ar

ia
bl

e
le

ng
th

MLP

Value-function

Figure 8: State representation for a partial pipeline at time-step 𝑇 , using a convolution-based model.

In addition to FD, other types of information (e.g., Key con-

straints, operator probabilities, column-mapping) can be modeled

similarly using the same matrix-representation and conv-filter ar-

chitecture, as shown in the top part of Figure 8. These represen-

tations are then fed into pooling and MLP layers, before being

concatenated and passed into additional layers to produce a final

function-approximation of 𝑄(𝑠).

Training via prioritized experience-replay.Wenowdescribe

our approach to train this model to learn the value-function 𝑄(𝑠),

using łself-synthesisž of real data pipelines harvested from GitHub.

Similar to [52], we crawl large numbers of Jupyter notebooks on

GitHub, and łreplayž them programmatically to re-create real data

pipelines, denoted by L. We then train a reinforcement-learning

agent to learn-to-synthesize L, by using Algorithm 1 but replac-

ing GetPromisingTopK and GetFinalTopK with learned 𝑄(𝑠) (i.e.,

picking top-K pipelines with the highest 𝑄(𝑠)).

We start with a 𝑄(𝑠) model initialized using random weights. In

each subsequent episode, we sample a real pipeline 𝐿 = {𝑂1(𝑝1),

𝑂2(𝑝2), . . . ,𝑂𝑛(𝑝𝑛)} ∈ L and try to synthesize 𝐿 using the current

𝑄(𝑠) and Algorithm 1. If we successfully synthesize this 𝐿, we assign

a reward of +1 for all previous states traversed by 𝐿 in the search

graph ś that is, for all 𝑖 ∈ [𝑛], we assign 𝑄(𝑠𝑖) = +1 where 𝑠𝑖 =

{𝑂1(𝑝1), . . . ,𝑂𝑖 (𝑝𝑖)}
6. For all remaining states 𝑠 ′ traversed that do

not lead to a successful synthesis, we assign𝑄(𝑠 ′) = −1. By training

the value-function 𝑄(𝑠) using immediate feedback, our hope is that

an optimized synthesis policy can be learned quickly that can take

into account diverse factors (operator probabilities and various

constraints).

We use prioritized experience replay [46],in which we record all

(𝑠,𝑄(𝑠)) pairs in an internal memory M and łreplayž events sampled

from M to update the model. (This is shown to be advantageous

because of its data efficiency, and the fact that events sampled over

many episodes have weak temporal correlations [39]). We train𝑄(𝑠)

in an iterative manner in experience replay. In each iteration, we

use the 𝑄(𝑠) from the previous iteration to play self-synthesis and

collect a fixed 𝑛 number of (𝑠,𝑄(𝑠)) events into the memory𝑀 . We

use [46] to sample events in𝑀 to update weights of 𝑄(𝑠), and the

new𝑄 ′(𝑠) will then be used to play the next round of self-synthesis.

In our experiments, we use 𝑛 = 500, and find the model to

converge quickly with 20 iterations. We also observe a clear benefit

of using RL over standard supervised-learning (SL), because in RL

we get to learn from immediate positive/negative feedback tailored

6This corresponds to not discounting rewards for previous steps, which is

reasonable since we typically have only around 10 steps.

to the current policy, which tends to be more informative than SL

data collected over fixed distributions. 7

5 EXPERIMENTS

We evaluate different pipeline synthesis algorithms by both success

rates and efficiency. All experiments were performed on a Linux VM

from a commercial cloud, with 16 virtual CPU and 64 GB memory.

Variants of Auto-Pipeline are implemented in Python 3.6.9.

5.1 Evaluation Datasets

We created two benchmarks of data pipelines to evaluate the task

of pipeline synthesis, which have been made publicly available8 to

facilitate future research.

The GitHub Benchmark. Our first benchmark, referred to as

GitHub, consists of real data pipelines authored by developers and

data scientists, which we harvested at scale from GitHub. Specif-

ically, we crawled Jupyter notebooks from GitHub, and replayed

them programmatically on corresponding data sets (from GitHub,

Kaggle, and other sources) to reconstruct the pipelines authored

by experts, in a manner similar to [52]. We filter out pipelines that

are likely duplicates (e.g., copied/forked from other pipelines), and

ones that are trivially small (e.g., input tables have less than 10

rows). These human-authored pipelines become our ground-truth

for by-target synthesis.

We group these pipelines based on pipeline-lengths, defined as

the number of steps in a pipeline. Longer pipelines are intuitively

more difficult to synthesize, because the space of possible pipelines

grow exponentially with the pipeline-length. For our synthesis

benchmark, we randomly sample 100 pipelines of length {1, 2, 3, 4,

5, [6-8], 9+}, for a total of 700 pipelines.

The Commercial Benchmark. Since there are many commer-

cial systems that also help users build complex data pipelines (e.g.,

vendors discussed in Section 1), we create a second benchmark

referred to as Commercial, using pipelines from commercial ven-

dors. We sample 4 leading vendors 9, and manually collect 16 demo

pipelines from official tutorials of these vendors, as ground-truth

pipelines for synthesis.

Recall that these commercial tools help users build pipelines

step-by-step (via drag-and-drop) ś with this benchmark we aim to

7Additional details of our model can be found in a full paper [1].
8Our benchmark data is publicly available at: https://gitlab.com/jwjwyoung/
autopipeline-benchmarks
9Alteryx [8], SQL Server Integration Services [10], Microsoft Power

Query [3], Microsoft Azure Data Factory [2]

2571

https://gitlab.com/jwjwyoung/autopipeline-benchmarks
https://gitlab.com/jwjwyoung/autopipeline-benchmarks

Table 1: Characteristics of pipeline synthesis benchmarks.

Benchmark # of pipelines
avg. # of

input files

avg. # of

input cols

avg. # of

input rows

GitHub 700 6.6 9.1 4274

Commercial 16 3.75 8.7 988

understandwhat fraction of pipelines from standard commercial use

cases (ETL and data-prep) can be automated using Auto-Pipeline.

Note that for learning-based Auto-Pipeline, we use models

trained on the GitHub pipelines to synthesize pipelines from the

Commercial benchmark, which tests its generalizability.

5.2 Methods Compared

Because łby-targetž is a new paradigm not studied in the literature

before, we compare Auto-Pipeline with methods mostly from the

łby-examplež literature.

• SQL-by-example [51]. This recent łby-examplež approach

synthesizes SQL queries by input/output tables. Like other łby-

examplež approaches, SQL-by-example requires users to provide an

exact output-table matching the given input-tables. In order tomake

it work, we provide the exact output of the ground-truth pipelines

to SQL-by-example. We use the author’s implementation [9], and

set a timeout of 3600 seconds per pipeline. For cases where this

method fails due to timeout we give it another try using small input

tables with 5 sampled rows only.

• SQL-by-example-UB [51]. Because SQL-by-example frequently

times-out on large input tables, we analyze its theoretical upper-

bound of łcoveragež, based on the operators it supports in its DSL

(Join, Aggregation, Union, etc.). If all operators used in a benchmark

pipeline are included in its DSL, we mark the pipeline as łcoveredž

in this theoretical upper-bound analysis.

• Query-by-output-UB (QBO-UB) [50]. Query-by-output is

another influential łby-examplež approach that synthesizes SQL by

input/output tables. Since its code is not available, we also evaluate

its theoretical upper-bound coverage based on its operators.

• Auto-Pandas [19]. Auto-Pandas is another by-example ap-

proach that synthesizes Pandas programs instead of SQL. We use

the authors’ implementation [11], and like in SQL-by-Example we

feed it with ground-truth output-tables matching the given input

tables so that it can function properly.

• Data-Context-UB [37]. This recent work proposes to lever-

age data context (including data values and schema) to automate

mapping. Like Query-by-output-UB we evaluate its theoretical

upper-bound coverage based on the operators it handles.

•Auto-Suggest [52]. Auto-Suggest is a recent approach that au-

tomates single table-manipulation steps (e.g., Join, Pivot, GroupBy)

by learning from Jupyter Notebooks on GitHub. We use Auto-

Suggest to synthesizemulti-step pipelines, by greedily finding top-K

most likely operators at each step.

• Auto-Pipeline. This is our proposed method. We report re-

sults from three variants, namely the search-based Auto-Pipeline-

Search, the supervised-learning-based Auto-Pipeline-SL, and the

reinforcement-learning-based Auto-Pipeline-RL.

For learning-based methods, we randomly sample 1000 pipelines

with at least 2 steps as training data that are completely disjoint

with the test pipelines ś specifically, we not only make sure that

the train/test pipelines have no overlap, but also the data files used

by the train/test pipelines have no overlap (e.g., if a pipeline using

łtitanic.csvž as input is selected in the test set, no pipelines using an

input-file with the same schema would be selected into training).

This ensures that test pipelines are completely unseen to learning-

based synthesizers, which can better test synthesis on new pipelines.

Because learning-based variants uses stochastic gradient descent

during training, we report numbers averaged over 5 offline training

runs with different seeds.10

5.3 Evaluation Method and Metric

Accuracy. Given a benchmark of 𝑃 pipelines, accuracy measures

the fraction of pipelines that can be successfully synthesized, or
num-succ-synthesized

𝑃 .

Mean Reciprocal Rank (MRR).MRR is a standard metric that

measures the quality of ranking [21]. In our setting, a synthesis

algorithm returns a ranked list of 𝐾 candidate pipelines for each

test case, ideally with the correct pipeline ranked high (at top-1).

The reciprocal-rank [21] in this case is defined as 1
𝑟𝑎𝑛𝑘

, where 𝑟𝑎𝑛𝑘

is the rank-position of the first correct pipeline in the candidates

(if no correct pipeline is found then the reciprocal-rank is 0). For a

benchmark with 𝑃 test pipelines, the Mean Reciprocal Rank is the

mean reciprocal rank over all pipelines, defined as:

MRR =
1
𝑃

∑︁𝑃
𝑖=1

1
𝑟𝑎𝑛𝑘𝑖

We note that MRR is in the range of [0, 1], with 1 being perfect (all

desired pipelines ranked at top-1).

5.4 Comparison of Synthesis

Overall comparisons. Table 2 and Table 3 show an overall com-

parison on the GitHub and Commercial benchmark, respectively,

measured using accuracy, MRR, and latency. We report average

latency on successfully-synthesized cases only, because some base-

lines would fail to synthesize after hours of search.

As can be seen from the tables, Auto-Pipeline based meth-

ods can consistently synthesize 60-70% of pipelines within 10-20

seconds across the two benchmarks, which is substantially more

efficient and effective than other methods.

While our search-based Auto-Pipeline-Search is already effec-

tive, Auto-Pipeline-RL is slightly better in terms of accuracy. The

advantage of Auto-Pipeline-RL over Auto-Pipeline-Search is

more pronounced in terms of MRR, which is expected as learning-

based methods are better at understanding the nuance in fine-

grained ranking decisions than a coarse-grained optimization ob-

jective in our search-based variant (Equation (1)).

We note that because our input/output tables are from real

pipeline and are typically large (as shown in Table 1), existing

by-example synthesis methods like SQL-by-Example frequently

timeout after hours of search, because their search methods are

exhaustive in nature. We should also note that even the theoretical

upper-bound coverage of existing by-example methods (based on

their DSL) are substantially smaller than Auto-Pipeline, showing

the richness of the operators supported in Auto-Pipeline.

10It should be noted that once a model is trained, its predictions are deterministic.

2572

Table 2: Results on the GitHub benchmark

Accuracy MRR Latency (seconds)

Auto-Pipeline-Search 76.6% 0.724 18

Auto-Pipeline-SL 73.7% 0.583 20

Auto-Pipeline-RL 76.9% 0.738 21

SQL-by-Example 14.7% 0.147 49

SQL-by-Example-UB 56% 0.56 -

Query-by-Output-UB 15.7% 0.157 -

Auto-Suggest 29.7% 0.297 11

Data-Context-UB 43% 0.43 -

AutoPandas 9 % 0.09 600

Table 3: Results on the Commercial benchmark

Accuracy MRR Latency (seconds)

Auto-Pipeline-Search 62.5% 0.593 13

Auto-Pipeline-SL 68.8% 0.583 14

Auto-Pipeline-RL 68.8% 0.645 14

SQL-by-Example 19% 0.15 64

SQL-by-Example-UB 37.5% 0.375 -

Query-by-Output-UB 18.8% 0.188 -

Auto-Suggest 25% 0.25 13

Data-Context-UB 25% 0.25 -

AutoPandas 25% 0.25 34.5

1 2 3 4 5 6-8 9+
Pipeline-length

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

AutoPipeline-Search
AutoPipeline-SL
AutoPipeline-RL
Augo-Suggest

SQL-by-example
SQL-by-example-UB
QBO-UB

Figure 9: Accuracy results by pipeline-

lengths on the GitHub benchmark.

1 2 3 4 5 6-8 9+
Pipeline-length

0.0

0.2

0.4

0.6

0.8

1.0
M
RR

AutoPipeline-Search
AutoPipeline-SL
AutoPipeline-RL
Augo-Suggest

SQL-by-example
SQL-by-example-UB
QBO-UB

Figure 10: MRR results by pipeline-

lengths on the GitHub benchmark.

1 2 3 4 5 6-8 9+
Pipeline-length

0

10

20

30

40

50

60

70

80

La
te

nc
y

(s
)

Original Time
AutoPipeline-Search
AutoPipeline-SL

AutoPipeline-RL
Augo-Suggest
SQL-by-example

Figure 11: Latency results by pipeline-

lengths on the GitHub benchmark

Synthesis Quality. Figure 9 and Figure 10 show detailed com-

parisons of accuracy and MRR, between different methods on the

GitHub benchmark. Test pipelines are bucketized into 7 groups

based on their lengths (shown on the x-axis), with longer pipelines

beingmore difficult to synthesize. It can be seen thatAuto-Pipeline-

RL and Auto-Pipeline-Search are comparable in terms of quality,

with Auto-Pipeline-RL being slightly better in terms of MRR. We

can see that Auto-Pipeline-RL is noticeably better than Auto-

Pipeline-SL, showing the benefit of using RL to proactively select

examples to learn from.

All Auto-Pipeline variants are substantially better than QBO

and SQL-by-example baselines. We note that SQL-by-example fails

to synthesize any pipeline longer than 3-steps within our 1 hour

timeout limit, showing its limited efficacy when dealing with large

input tables from real pipelines.

Latency. Figure 11 shows a comparison of the average latency

to successfully synthesize a pipeline between all methods on the

GitHub benchmark. While all Auto-Pipeline methods have com-

parable latency, SQL-by-example requires 20x-7x more time to

synthesize pipelines up to 3 steps.

Pipeline simplification.We observe in experiments that our

synthesized pipelines can sometimes be simpler (with fewer steps)

than human-authored ground-truth pipelines, while still being se-

mantically equivalent. Figure 12 shows a real example from GitHub,

where the human-authored pipeline would group-by on column

Gender for four times with different aggregation, before joining

them back. A synthesized pipeline from Auto-Pipeline is a one-

liner in this case and more succinct. While this example is intuitive,

there are many more involved examples of simplifications ś for

example, having an Unpivot on each of K similar files followed

by (K-1) union, is equivalent to a Join between the K similar files

followed by one Unpivot, etc.

Out of the 700 pipeline in the GitHub benchmark, our synthe-

sized pipelines are simpler on 90 cases (12.85%), which we believe

is an interesting use and an added benefit of Auto-Pipeline.

(a) A human-authored pipeline

(b) A synthesized pipeline with fewer steps

Figure 12: An example pipeline simplified after synthesis.

5.5 Robustness Analysis

To understand the robustness of our algorithm in the presence of

noisy input/output tables, we perform various robustness tests.

Add irrelevant input tables. For each pipeline synthesis task,

we inject 𝐾 extra input tables randomly sampled from other test

pipelines irrelevant to this synthesis task, which is used to test

the robustness of our algorithm in the presence of irrelevant data

sources. Figure 13 shows that even with 3 extra irrelevant input

2573

Pipeline-length

A
cc

ur
ac

y
(%

)

0%

25%

50%

75%

100%

3 4 5

original extra 1 table extra 2 tables extra 3 tables

Figure 13: Robustness: add extra input

tables irrelevant to pipelines.

Pipeline-length

A
cc

ur
ac

y
(%

)

0

25

50

75

100

3 4 5

original extra 1 column extra 2 columns extra 3 columns

Figure 14: Robustness: add extra

columns irrelevant to pipelines.

P1 (%)

A
cc

ur
ac

y
(%

)

0

25

50

75

100

0 25 50 75 100

length 3 length 4 length 5

Figure 15: Robustness: randomly per-

turb column values.

Pipeline-length

A
cc

ur
ac

y
(%

)

0

25

50

75

100

1 2 3 4 5 6-8 9+

AutoPipeline-Search w/o Operator Probability
w/o FD/Key Constraints w/o Column Map

Figure 16: Ablation study. Figure 17: Error Analysis.

tables, our synthesis algorithm (not specifically optimized to handle

noisy and irrelevant tables) only has a slight decrease in accuracy.

Add irrelevant columns to input tables. In addition to inject-

ing extra irrelevant tables, for each test pipeline, we also test the

scenario in which we inject 𝐾 extra columns to each input table

randomly sampled from other irrelevant pipelines. Figure 14 shows

that our accuracy also drops slightly in such settings.

Perturb column values. In order to test the robustness of our

synthesis in the presence of noisy data values (e.g., typos and name

variations), for each input table in a pipeline, we randomly select

50% of string columns and randomly perturb 𝑝 fraction of their

values. Specifically, we randomly initialize a character scrambling

scheme (e.g., ‘a’→ ‘t’, ‘b’→ ‘f’, etc.), and for 𝑝 fraction of distinct

values in a selected column, we apply the scrambling character-by-

character to perturb values (e.g., ‘abc store’→ ‘tfg kabzo’). Such

perturbations are performed on each input table independently.

Figure 15 shows the synthesis accuracy when varying 𝑝1 from 0

to 100%. It can be seen that our synthesis is still robust even when

50% of values are perturbed.

5.6 Error Analysis

In this section, we analyze 70 sampled failed cases (10 cases for

each group of pipeline lengths), to understand why Auto-Pipeline

fails to synthesize. We categorize the failed reasons as follows:

• Incorrect singe operator parameter. 41% of failed cases fall in

this category (e.g., a ground-truth join column is not in the top-K

parameters predicted for the given pair of tables).

• Incorrect string transformation. 26% failed cases are in this cat-

egory, which can be attributed to the fact that the synthesis of

string transformations in our case do not have paired input/out-

put examples (unlike the traditional by-example setting).

• False-positive FDs. There are two cases where false-positive FDs

are discovered from target tables, which prevents synthesized

pipelines to produce matching FDs, causing the synthesis to fail.

• Deleted key column. In three test cases, key columns are deleted

in final steps of the pipelines, leading to missing constraints.

Spurious discovery of constraints. While it is known that

spurious FDs/keys can be discovered [43], especially on small input

tables, they do not contribute significantly to failed synthesis in our

Figure 18: An example pipeline that we fail to synthesize.

evaluation. We believe this is because unlike by-example synthesis

that uses only a few rows, our test pipelines operate on real data

tables (e.g., from Kaggle) that are typically large (e.g., on average an

input table used in GitHub pipelines have over 4K rows, and an out-

put table has over 41K rows). Such large tables make false discovery

of spurious constraints substantially less likely. To confirm this, we

down-sample target tables of each test case to 20 rows each and

re-run Auto-Pipeline. We observe 37 out of 70 cases would then

fail due to spurious FDs/Keys, confirming the hypothesis that large

realistic tables indeed prevents spurious discovery of constraints.

Contribution of constraints in synthesis. Figure 17 shows

how fail-rates vary when FDs/Keys do not exist in the target table

𝑇 𝑡𝑔𝑡 . We can see from the two rightmost bars that when only FDs

exist 𝑇 𝑡𝑔𝑡 (key columns are missing), or when both FDs/Keys are

missing, fail-rates go up significantly.

Additional results.We present additional results such as sen-

sitivity analyses of in a full version of the paper [1].

6 RELATED WORKS

We briefly review related work on automating pipeline-building in

this section in the interest of space.We give additional discussions of

the broad area of data preparation in a full version of the paper [1].

Automate data transformations. Data transformation is a

long-standing problem and a common step in data-pipelines. Sig-

nificant progress has been made in this area, with recent work for

łby-patternž [36] and łby-examplež approaches [17, 28, 30, 31, 33ś

35, 48]. These techniques have generated substantial impacts on

commercial systems, with related features shipping in popular sys-

tems such as Microsoft Excel [28], Power BI [30], and Trifacta [7].

Multi-step pipeline synthesis. As discussed, existing work

on multi-step pipelines mostly focus on the by-example paradigm

(e.g., SQL-by-example [51], Query-by-output [50]), where an exact

output-table is often difficult for users to provide. In addition, most

approaches support a limited set of operators, which limits their

ability to synthesize complex pipelines.

7 CONCLUSIONS AND FUTUREWORKS

In this paper, we propose a new by-target synthesis paradigm to

automate pipeline-building. We design search and learning-based

synthesis algorithms, which are shown to be effective on real data

pipelines. Future directions include extending our current DSL, and

incorporating user feedback to facilitate synthesis.

2574

REFERENCES
[1] [n.d.]. Full version of Auto-Pipeline: Synthesize Data Pipelines By-Target

Using Search and Reinforcement Learning. https://arxiv.org/abs/2106.13861.
[2] [n.d.]. Microsoft Azure Data Factory. https://azure.microsoft.com/en-us/services/

data-factory/.
[3] [n.d.]. Microsoft Excel Power Query. http://office.microsoft.com/powerbi.
[4] [n.d.]. Titanic challenge on Kaggle. https://www.kaggle.com/c/titanic.
[5] [n.d.]. Titanic Challenge on Kaggle. https://www.kaggle.com/c/titanic.
[6] [n.d.]. Transform-by-Example feature in Power Query. http://powerbi.microsoft.

com/en-us/blog/power-bi-desktop-june-feature-summary/#addColumn.
[7] [n.d.]. Transform-by-Example feature in Trifacta. https://www.trifacta.com/

blog/transform-by-example-your-data-cleaning-wish-is-our-command.
[8] 2016.10.21. Alteryx. https://www.alteryx.com/.
[9] 2016.10.21. Implementation for SQL-by-example. https://github.com/Mestway/

Scythe.
[10] 2016.10.21. SQL Server Integration Service. https://docs.microsoft.com/en-

us/sql/integration-services/sql-server-integration-services.
[11] 2017.04.26. Auto-Pandas code. https://github.com/rbavishi/atlas/blob/oopsla19-

snapshot/autopandas_v2/evaluation/benchmarks/stackoverflow.py.
[12] 2017.04.26. FlashFill in Excel. https://www.microsoft.com/en-us/microsoft-

365/blog/2012/08/09/flash-fill/.
[13] 2017.04.26. Jupter Notebooks. https://jupyter.org/.
[14] 2017.04.26. Python Pandas Library. https://pandas.pydata.org/.
[15] 2017.04.26. Recommended Join in Tableau. https://help.tableau.com/current/

prep/en-us/prep_combine.htm.
[16] 2017.04.26. Recommended Join in Trifacta. https://www.trifacta.com/blog/

making-data-blending-faster-easier/.
[17] Ziawasch Abedjan, John Morcos, Ihab F. Ilyas, Mourad Ouzzani, Paolo Papotti,

and Michael Stonebraker. 2016. DataXFormer: A robust transformation discovery
system. In ICDE.

[18] Daniel W Barowy, Sumit Gulwani, Ted Hart, and Benjamin Zorn. 2015. FlashRe-
late: extracting relational data from semi-structured spreadsheets using examples.
ACM SIGPLAN Notices 50, 6 (2015), 218ś228.

[19] Rohan Bavishi, Caroline Lemieux, Roy Fox, Koushik Sen, and Ion Stoica. 2019.
AutoPandas: neural-backed generators for program synthesis. Proceedings of the
ACM on Programming Languages 3, OOPSLA (2019), 1ś27.

[20] Matt Buranosky, Elmar Stellnberger, Emily Pfaff, David Diaz-Sanchez, and Cavin
Ward-Caviness. 2018. FDTool: a Python application to mine for functional
dependencies and candidate keys in tabular data. F1000Research 7 (2018).

[21] UP Cambridge. 2009. Online edition (c) 2009 Cambridge UP An Introduction to
Information Retrieval Christopher D. Manning Prabhakar Raghavan Hinrich
Schütze Cambridge University Press

[22] Anish Das Sarma, Aditya Parameswaran, Hector Garcia-Molina, and Jennifer
Widom. 2010. Synthesizing view definitions from data. In Proceedings of the 13th
International Conference on Database Theory. 89ś103.

[23] Tamraparni Dasu and Theodore Johnson. 2003. Exploratory Data Mining and
Data Cleaning. John Wiley & Sons, Inc., New York.

[24] Dong Deng, Raul Castro Fernandez, Ziawasch Abedjan, Sibo Wang, Michael
Stonebraker, Ahmed K Elmagarmid, Ihab F Ilyas, Samuel Madden, Mourad Ouz-
zani, and Nan Tang. 2017. The Data Civilizer System.. In Cidr.

[25] Kevin Ellis, Armando Solar-Lezama, and Josh Tenenbaum. 2015. Unsupervised
learning by program synthesis. Advances in neural information processing systems
28 (2015), 973ś981.

[26] Peter D Grünwald and Abhijit Grunwald. 2007. The minimum description length
principle. MIT press.

[27] Sumit Gulwani. 2011. Automating string processing in spreadsheets using input-
output examples. ACM Sigplan Notices 46, 1 (2011), 317ś330.

[28] Sumit Gulwani. 2011. Automating string processing in spreadsheets using input-
output examples. In ACM Sigplan Notices, Vol. 46. ACM, 317ś330.

[29] William R. Harris and Sumit Gulwani. 2011. Spreadsheet table transformations
from examples. In Proceedings of SIGPLAN. 317ś328. https://doi.org/10.1145/
1993498.1993536

[30] Yeye He, Xu Chu, Kris Ganjam, Yudian Zheng, Vivek Narasayya, and Surajit
Chaudhuri. 2018. Transform-data-by-example (TDE): an extensible search engine
for data transformations. Proceedings of the VLDB Endowment 11, 10 (2018), 1165ś
1177.

[31] Yeye He, Kris Ganjam, Kukjin Lee, Yue Wang, Vivek Narasayya, Surajit Chaud-
huri, Xu Chu, and Yudian Zheng. 2018. Transform-Data-by-Example (TDE)
Extensible Data Transformation in Excel. In Proceedings of the 2018 International
Conference on Management of Data. 1785ś1788.

[32] Jeffrey Heer, Joseph M Hellerstein, and Sean Kandel. 2015. Predictive Interaction
for Data Transformation.. In CIDR.

[33] Jeffrey Heer, Joseph M. Hellerstein, and Sean Kandel. 2015. Predictive Interaction
for Data Transformation. In CIDR.

[34] Zhongjun Jin, Michael R. Anderson, Michael Cafarella, and H. V. Jagadish. 2017.
Foofah: Transforming Data By Example. In SIGMOD.

[35] Zhongjun Jin, Michael Cafarella, HV Jagadish, Sean Kandel, Michael Minar, and
Joseph M Hellerstein. 2018. CLX: Towards verifiable PBE data transformation.
arXiv preprint arXiv:1803.00701 (2018).

[36] Zhongjun Jin, Yeye He, and Surajit Chauduri. 2020. Auto-transform: learning-
to-transform by patterns. Proceedings of the VLDB Endowment 13, 12 (2020),
2368ś2381.

[37] Martin Koehler, Edward Abel, Alex Bogatu, Cristina Civili, Lacramioara Mazilu,
Nikolaos Konstantinou, Alvaro Fernandes, John Keane, Leonid Libkin, and Nor-
man W Paton. 2019. Incorporating Data Context to Cost-Effectively Automate
End-to-End Data Wrangling. IEEE Computer Architecture Letters 01 (2019), 1ś1.

[38] Oliver Lehmberg, Dominique Ritze, Petar Ristoski, Robert Meusel, Heiko Paul-
heim, and Christian Bizer. 2015. The mannheim search join engine. Journal of
Web Semantics 35 (2015), 159ś166.

[39] Long-Ji Lin. 1993. Reinforcement learning for robots using neural networks. Tech-
nical Report. Carnegie-Mellon Univ Pittsburgh PA School of Computer Science.

[40] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013. Playing atari with
deep reinforcement learning. arXiv preprint arXiv:1312.5602 (2013).

[41] Peng Si Ow and Thomas E Morton. 1988. Filtered beam search in scheduling.
The International Journal Of Production Research 26, 1 (1988), 35ś62.

[42] Thorsten Papenbrock, Jens Ehrlich, Jannik Marten, Tommy Neubert, Jan-Peer
Rudolph, Martin Schönberg, Jakob Zwiener, and Felix Naumann. 2015. Func-
tional dependency discovery: An experimental evaluation of seven algorithms.
Proceedings of the VLDB Endowment 8, 10 (2015), 1082ś1093.

[43] Thorsten Papenbrock and Felix Naumann. 2016. A hybrid approach to functional
dependency discovery. In Proceedings of the 2016 International Conference on
Management of Data. 821ś833.

[44] Erhard Rahm and Philip A Bernstein. 2001. A survey of approaches to automatic
schema matching. the VLDB Journal 10, 4 (2001), 334ś350.

[45] Rita L. Sallam, Paddy Forry, Ehtisham Zaidi, and Shubhangi Vashisth. 2016.
Gartner: Market Guide for Self-Service Data Preparation. (2016).

[46] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. 2015. Prioritized
experience replay. arXiv preprint arXiv:1511.05952 (2015).

[47] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja
Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton,
et al. 2017. Mastering the game of go without human knowledge. nature 550,
7676 (2017), 354ś359.

[48] Rishabh Singh. 2016. Blinkfill: Semi-supervised programming by example for
syntactic string transformations. Proceedings of the VLDB Endowment 9, 10 (2016),
816ś827.

[49] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An intro-
duction. MIT press.

[50] Quoc Trung Tran, Chee-Yong Chan, and Srinivasan Parthasarathy. 2009. Query
by output. In Proceedings of the 2009 ACM SIGMOD International Conference on
Management of data. 535ś548.

[51] Chenglong Wang, Alvin Cheung, and Rastislav Bodik. 2017. Synthesizing highly
expressive SQL queries from input-output examples. In Proceedings of the 38th
ACM SIGPLAN Conference on Programming Language Design and Implementation.
452ś466.

[52] Cong Yan and Yeye He. 2020. Auto-Suggest: Learning-to-Recommend Data
Preparation Steps Using Data Science Notebooks. In Proceedings of the 2020 ACM
SIGMOD International Conference on Management of Data. 1539ś1554.

[53] Erkang Zhu, Yeye He, and Surajit Chaudhuri. 2017. Auto-join: Joining tables by
leveraging transformations. Proceedings of the VLDB Endowment 10, 10 (2017),
1034ś1045.

2575

https://arxiv.org/abs/2106.13861
https://azure.microsoft.com/en-us/services/data-factory/
https://azure.microsoft.com/en-us/services/data-factory/
http://office.microsoft.com/powerbi
https://www.kaggle.com/c/titanic
https://www.kaggle.com/c/titanic
http://powerbi.microsoft.com/en-us/blog/power-bi-desktop-june-feature-summary/#addColumn
http://powerbi.microsoft.com/en-us/blog/power-bi-desktop-june-feature-summary/#addColumn
https://www.trifacta.com/blog/transform-by-example-your-data-cleaning-wish-is-our-command
https://www.trifacta.com/blog/transform-by-example-your-data-cleaning-wish-is-our-command
https://www.alteryx.com/
https://github.com/Mestway/Scythe
https://github.com/Mestway/Scythe
https://docs.microsoft.com/en-us/sql/integration-services/sql-server-integration-services
https://docs.microsoft.com/en-us/sql/integration-services/sql-server-integration-services
https://github.com/rbavishi/atlas/blob/oopsla19-snapshot/autopandas_v2/evaluation/benchmarks/stackoverflow.py
https://github.com/rbavishi/atlas/blob/oopsla19-snapshot/autopandas_v2/evaluation/benchmarks/stackoverflow.py
https://www.microsoft.com/en-us/microsoft-365/blog/2012/08/09/flash-fill/
https://www.microsoft.com/en-us/microsoft-365/blog/2012/08/09/flash-fill/
https://jupyter.org/
https://pandas.pydata.org/
https://help.tableau.com/current/prep/en-us/prep_combine.htm
https://help.tableau.com/current/prep/en-us/prep_combine.htm
https://www.trifacta.com/blog/making-data-blending-faster-easier/
https://www.trifacta.com/blog/making-data-blending-faster-easier/
https://doi.org/10.1145/1993498.1993536
https://doi.org/10.1145/1993498.1993536

