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ABSTRACT
Recent advances in computer architecture and networking have
ushered in a new age of edge computing, where computation is
placed close to the point of data collection to facilitate low-latency
decision making. As the complexity of such deployments grow into
networks of interconnected edge devices, getting the necessary data
to be in “the right place at the right time” can become a challenge.
We envision a future of edge analytics where data flows between
edge nodes are declaratively configured through high-level con-
straints. Using machine learning model-serving as a prototypical
task, we illustrate how the heterogeneity and specialization of edge
devices can lead to complex, task-specific communication patterns
even in relatively simple situations. Without a declarative frame-
work, managing this complexity will be challenging for developers
and will lead to brittle systems. We conclude with a research vi-
sion for database community that brings our perspective to the
emergent area of edge computing.
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1 INTRODUCTION
Model-serving systems are a crucial part of any modern machine
learning deployment. These systems interface trained machine
learning models (e.g., a neural network or an SVM) to software
clients who can use those predictions (e.g., a fraud detection frame-
work). The first iteration of these systems, including Clipper [10],
TensorFlow Serving [46], and InferLine[9], were designed as REST-
ful cloud services. As the uses for machine learning have evolved
towards increasingly latency and communication -sensitive ap-
plications, such as in control systems, industrial monitoring, and
mobile applications, there has been a steady trend towards moving
model-serving to resources closer to the point of data collection. We
collectively call these computation resources “the edge”.
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The primary focus of recent research has been on reduced-
size models that can efficiently be deployed on lower-powered de-
vices [22, 24, 40, 63]. In our opinion, simply reducing computational
footprint of each prediction served is an incomplete solution. As the
database community learned with sensor networks [6, 17, 20, 64],
there are significant data movement challenges in computing on
decentralized data streams. For example, computing aggregate sta-
tistics over data from multiple different sensors requires smart
communication strategies, such as aggregation trees, to minimize
the network load while ensuring all required data is at “the right
place at the right time” [13, 38]. Similar data movement problems
resurface in many edge model-serving scenarios where data from
multiple sources need to be combined for a prediction. However, to
the best of our knowledge, no edge model-serving system orches-
trates such data movement and they all rely on the user to ensure
that featurized data is at “the right place at the right time” while
reasoning about latency constraints.

As a concrete example, we highlight an example deployment
of the DeepLens video analytics system [31] in a mock internet-
of-things kitchen at the University of Chicago. Household activity
recognition, where one uses information from smart devices in a
household to determine what an occupant is currently doing, is
an important task with applications in senior care and security.
Accurate recognition in an unstructured household environment
is quite complex and often requires aggregating multiple sources
of information such as video, audio, and side-channel information
(like network traffic) from IoT devices. As a part of the project, the
team explored a machine learning model that could predict ongoing
activities in real-time as a function of features of multiple video
streams, audio streams, and network traffic captures from the IoT
devices. There is a complex interplay between the design of the
machine learningmodel, the necessary data flows needed to support
that model, and the available resources in the edge network. For
example, one could build a neural network whose predictions are
based on a simple concatenation of features from all three sources,
which would require aggregating the disparate data streams on
a single node capable of running neural network inference. Or,
one could imagine first using the volume from the audio signal to
determine whether any activity is occurring, which then triggers
more expensive video processing if necessary. Beyond these two
choices, there are many more prediction architectures one could
envision each of which has its own accuracy, communication, and
computation trade-offs.
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Figure 1: (A) A cloud-basedmodel serving system. The client
sends a prediction result, which is an image of a cat, and re-
ceives a prediction result from a model served in the cloud.
(B) An edge-based model serving system. Video and audio
data are continuously streamed to a server for activity recog-
nition. The video data is first preprocessed by an embedded
Intel Movidius VPU to calculate visual features.

Beyond this specific example, there are a number of common
themes that we have observed in edge-based inference problems
(Figure 1). First, data arrive in a streaming fashion (Figure 1B.1) sup-
porting continuous, synchronous model predictions. This workflow
differs from those in existing model-serving systems that assume
asynchronous communication with a RESTful API. Next, edge re-
sources, while increasingly capable, are often highly specialized
for power, security, or other considerations. This specialization
means that data often have to be moved between nodes, hereafter
called “intra-edge data flows” (IeFs), for processing (Figure 1B.2).
Finally, edge systems often interact or actuate the real world, and
thus, predictions have to be materialized on specific nodes in the
network (Figure 1B.3). This property leads to further IeFs between
nodes in a network.

Here, we believe that the database community can contribute a
new perspective that re-focuses the model serving systems towards
optimizing IeFs. IeFs, when hand-written, can be brittle and lack
the adaptivity to account for dynamic data arrival rates, resource
availability, or contention. The database community has solved a
number of these problems in the context of sensor networks, and
in particular, promoted declarative programming to abstract away
low-level communication decisions from the analyst writing the
query. Ideally, IeFs should be managed in a similar way, where
the user defines a high-level prediction workflow and locality con-
straints, and an automatic optimizer makes model placement and
data routing decisions. This “data-first” perspective contrasts with
the computation-first vision of current edge machine learning pro-
posals that focus on making the actual machine learning inference
tasks more efficient.

This paper describes an envisioned edge-based model serving
system, called EdgeServe, that not only manages a machine learning
inference service but also orchestrates data movement between
nodes on an edge network. Practically, this means supporting the
following features not considered in current cloud-based model
serving systems:

(1) Heterogeneous and disaggregated edge resources. The system
should automatically reason about a network of heteroge-
neous and disaggregated resources and automatically make

cost-based judgments about model placement and data move-
ment.

(2) Complex and conditional prediction architectures. The sys-
tem should support complex task graphs where models can
consume the prediction outputs from other models or can
be triggered by those outputs.

(3) Failures. The system should robustly adapt to resource un-
availability.

We believe such a system will create new opportunities for machine
learning research on edge networks, including designing models
that can be spatially decoupled (spread across multiple nodes with
a slow network between them), models that are fault-tolerant (can
issue predictions even if some data sources are lost), and AutoML
techniques to search through complex axes between accuracy, com-
munication and computation.

2 SURVEY OF CURRENT TECHNOLOGY
It is easy to dismiss EdgeServe as simply a reinvention of the sensor
networks research of the 2000s [17, 20]. However, the very nature of
the edge has changed in recent years due to computer architecture,
networking, and infrastructure trends that substantially changed
the assumptions that underpin such systems.

2.1 Hardware and Workload Trends
Trend 1. Specialized Edge Hardware. Recent advances in computer ar-
chitecture research have resulted in highly-specialized edge devices
in power-efficient form factors including edge visual processing sys-
tems for fast multimedia processing [25, 44], TPU systems for ma-
chine learning serving [19], programmable switches for fast packet
analysis, and a variety of 5G-capable devices for high-bandwidth
mobile applications [30]. In short, the edge is no longer “underpow-
ered” as many in the 2000s assumed [32]. Our mental model for the
future edge is not one that is under-powered, but rather one that
is highly disaggregated with a complex network of heterogeneous
computing and data collection nodes.
Trend 2. Growing “Public Edge” Infrastructure. Recent IT trends are
blurring the line between content distribution networks (CDNs)
and edge computing. Various commercial offerings allow users
to not only geo-distribute data, but also computation [49]. ISPs
are further expanding offers to co-locate computation at or near
telecommunication base stations. In short, over the next decade,
there will be an entire ecosystem of infrastructure-as-a-service
that fills the void between edge and cloud. This ecosystem will
serve to make edge computing less of an all-or-nothing proposition,
and more of a user-defined trade-off of reliability, latency, and cost.
More degrees of freedom in the design of such networks necessitates
smarter tools to take advantage of them.
Trend 3. Prevalence of Smart Home Devices. Per research firm Statista,
there will be nearly 2.7 billion smart home devices installed in the
United States by 2023 [55]. The huge amount and variety of sensitive
data generated by such devices will introduce new workloads for
the entire data pipeline, from data collection to decision making.
Current cloud computing paradigm is not efficient enough for such
workloads, as it would be expensive, both in bandwidth and latency,
to transfer a large amount of raw data to the cloud, let alone privacy
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and security concerns. Edge computing will fill the gap to shorten
the distance between data and compute, and leave only featurized
anonymous data to the cloud for offline analysis.
Trend 4. From Analytics to Decision Making. Workloads in edge net-
works have changed as well. In the sensor network work of the
2000s, the primary “real-time” workload was continuously updated
dashboards and reports to summarize data for a human analyst [39].
Since then, the growing maturity of AI has made us more comfort-
able with automated decisions made fully by software systems. This
change has led to a new era of latency-sensitive applications, in
real-time control, robotics, security, and autonomous driving, as
human action is no longer a decision bottleneck.

These advances in statistical machine learning will drive the
workloads for future edge systems. As such, we will focus on model
serving as a prototypical workload. There have been several re-
cent model-serving frameworks including Clipper [10], TensorFlow
Serving [46], and InferLine[9] aimed at cloud systems. Recently,
there has been more interest in model-serving at the edge [11]. If
the data needed to construct features resides on multiple nodes, it
is the user’s responsibility to bring that data together. Thus, in a
disaggregated environment like the edge, we need to change the
way we think about model serving. As we will describe in the fol-
lowing sections, the design of such a system is not trivial and there
are several unsolved research challenges.

2.2 An Industrial Example
Modern manufacturing systems are composed of heterogeneous
devices with varying levels of computing and storage capabilities.
This can range from fixed-function micro-controllers with limited
programmability to full-fledged servers. This diversity forces highly
customized per-instance data system implementations based on
available computing resources, network bandwidth, and assump-
tions about the future workloads. System designers must weigh the
trade-offs between maintaining data near the edge where comput-
ing and storage resources are limited with the cost of transmitting
data to more powerful computing systems. The introduction of new
sensors, new robots, and new computers may invalidate previous
assumptions that were used. These modifications can introduce
communication and computation bottlenecks that require the re-
design of the entire schema.

For instance, Audi has a business need to inspect welding robots
used in the vehiclemanufacturing process. TheAudi plant inNeckar-
sulm, Germany contains 2,500 robots, some of which carry welding
guns that perform a total of 5,000 welds per vehicle [8]. A machine
learning model that considers images and sensor data from the as-
sembly lines can be used to determine faults. This prediction task is
latency-sensitive, and needs to consider priorities and assembly line
deadlines. A systematic approach is needed that can optimize the
data movement to ensure that tasks are completed within specified
time thresholds. This includes determining where features should
be computed, where predictions should occur, and how to adapt to
network conditions.

2.3 Related Work
From academia to industry, people have been trying to make use
of edge computing resources and move computing closer to users

for a long time [37, 47, 56, 61]. There are already tens of edge
computing frameworks targeting specific types of applications
(video analytics, smart home, VR/AR gaming, autonomous vehi-
cle, machine learning), endpoint devices (smartphones, IoT de-
vices, cameras, drones) and edge nodes (highly-specialized hard-
ware) [1, 7, 14, 15, 21, 24, 26, 27, 33, 34, 41, 50, 52, 58–60, 63, 65–
67]. We focus on the narrow but nascent application of machine
learning model serving, and believe that there are interesting opti-
mization opportunities within this application. For example, Neu-
rosurgeon [29] splits a DNN into an edge part and a cloud part at
the granularity of neural network layers. Extending similar types
of optimizations to models that integrate data over multiple data
sources and those that are spatially partitioned over a network will
be interesting extensions.

2.3.1 Combining Stream Processing andMachine Learning Inference.
In a sense, EdgeServe will need to integrate two well-studied classes
of systems: distributed stream processing systems and machine
learning inference frameworks. To the best of our knowledge, such
a system is a missing piece in the literature. There are existing cloud-
based model serving systems, such as Clipper [10], TensorFlow
Serving [46], and InferLine[9]; however, they are not designed
for heterogeneous edge environments. While recent systems like
TensorFlow Lite Pro [11] do support edge model deployment, they
assume the user has manually programmed all of the necessary
data movement.

On the other hand, there are a number of stream processing
systems that are designed for data routing on the edge [54, 64].
NebulaStream [64] proposes a multi-layer topology to separate
edge nodes (fog layer) from data collection points (sensor layer) and
remote computational capability (cloud layer). Routing nodes are
network-aware and responsible for data transfer between all edge
nodes. This architecture echoes early ideas from the HiFi sensor
network architecture [17]. As the database community learned, op-
timizing data routing is an important part of distributed stream pro-
cessing. For example, computing aggregate statistics over data from
multiple different sensors requires smart communication strategies,
such as routing trees in the TinyDB project [13, 38]. In a modern
implementation, we can leverage more recent message-broker sys-
tems, such as RabbitMQ [48] and Kafka [4], and stream processing
systems, such as Apache Spark Streaming [2], Apache Flink [3] and
Apache Storm [5]. However, such systems are more tuned toward
a cloud environment.

2.3.2 Routing and Management. A key aspect of EdgeServe will
be a cost-based optimizer to make data movement and model
placement decisions. Existing work covers various types of sched-
uling mechanisms for an edge network. Nebula [28] and Neb-
ulaStream [64] have a basic routing model where pre-specified
nodes route data through the system. EdgeWise [18] incorporates a
congestion-aware scheduler into a stream processing engine (SPE)
and achieves better performance than traditional One Worker Per
Operation Architecture (OWPOA) SPEs such as Apache Storm [5].
Frontier [45] uses a network-aware backpressure stream routing
algorithm to determine transmission rates and dynamically route
data downstream based on network path conditions. DPaxos [43]
is a Paxos-based distributed protocol for data management across
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globally distributed edge nodes, which divides such nodes into re-
gional zones to reduce latency within the same zone. Tetrium [23]
proposes a heuristic to tackle the multi-resource (compute and
network) allocation problem across heterogeneous geo-distributed
clusters. None of them addressed the trade-off between system met-
rics and prediction accuracy, an important metric in model serving,
as we will do in Section 3.2.

3 EDGESERVE: THE MISSING PIECE IN
MACHINE LEARNING INFERENCE

The primary goal of EdgeServe is to facilitate machine learning
inference on the edge where data sources may have to be routed
through the network before prediction. Unlike existing model-serving
systems, EdgeServe also orchestrates how data moves through the
edge network. We envision a declarative system: the underlying
data movement and placement policy should be automatically de-
termined given a task specification and network capabilities.

3.1 Overview
We assume that each edge node is connected to others on a TCP/IP
network (either directly or via a switched network). A subset of
these nodes are physically connected to data sources (e.g. video
cameras, sensors, and other data streams). Every node maintains
a globally-synchronized catalog of data streams that are locally
collected. EdgeServe is declarative in the sense that it decouples
physical data collection with processing: decision making need not
happen on the node collecting the data.

In EdgeServe,models are functions that are repeatedly applied to
fixed windows of data. We assume white-box access to the models
(all the parameters) and any feature transformations that need to
be made before inference. Every model in EdgeServe has locality
constraints, which describe where a model’s prediction results have
to be delivered. For example, one could require that both node1 and
node2 need to have the output of the home activity recognition
model above. In this case, once the inference is made on node1, the
result must be streamed back to node2 (which is just another flow).
However, not all requirements have to be this rigid, and we could
require that either node1 or node2 has the required output. In this
case, the extra flow is unnecessary. This class of requirements can
be represented as a Boolean condition, such as “node 1”, “any of
node 1,4,5”, or “all nodes 4,9,8”.

Unlike existingmodel-serving systems thatwork asynchronously,
EdgeServe works in a push-based model, where the arrival of
each new data batch (defined by the user’s inference task) triggers
re-evaluation. These tasks subscribe to a message-broker service,
which informs each node about new data. Each model can consume
one or more sources of data and yields a new stream (a prediction).
Since there is a global message-broker service, the output of models
can be streamed to other models as well.

Models that consume multiple streams of data induce additional
locality constraints, where data streams from multiple nodes may
have to be aggregated in a central place. For example, an activity
recognitionmodel that requires video, audio, and network datamust
aggregate all of the data in a single place somewhere in the network.
At a high level, EdgeServe combines a publication-subscription
system to facilitate communication betweenmultiplemodel-serving

nodes on a network. To the best of our knowledge, such a system
does not exist in part due to the challenges in routing, scheduling,
and placement. The key system goal of EdgeServe is to provide
a centralized control-plane to find placement, routing decisions,
and model partitioning decisions that satisfy locality and hardware
constraints.

3.2 Optimization Objectives
Themain performancemetric that we care about is timeliness, which
is the time delay between data arrival and the prediction results
arriving at the appropriate node in the edge network (independent
of exactly where and how EdgeServe chose to execute that process).

Time-to-Decision (Timeliness). Unlike existing model serving sys-
tems where predictions are triggered by client requests, EdgeServe
will continuously process predictions over streams of incoming
data. Therefore, the concept of “latency” is a little more compli-
cated in this setting. Accordingly, we define a new metric called
timeliness, which is the gap between the time at which the data
arrived and when a prediction was issued. The start time is defined
as the time point at which all of the relevant data for a particular
prediction is available somewhere on the network, and the end time
is the time at which the prediction is issued and communicated to
the appropriate edge node that can use the prediction.

The focus on model-serving makes the design of EdgeServe par-
ticularly interesting, because optimization decisions that improve
the timeliness of predictions may affect their accuracy:

(1) Prediction Accuracy (Accuracy). We also care about the accu-
racy of the predictions that are made, or the gap between the
prediction of a class or a continuous label and (hypothetical)
ground-truth.

(2) Robustness to Failure (Robustness). Finally, it is also important
to consider robustness to network and node failures. These
failures can affect both the placement of computation, and
the availability of source data. Robustness is measured in
terms of the number and type of edge nodes that can be lost
while still issuing a prediction.

All three of these metrics have both systems and machine learning
implications. For example, there are systems solutions to improving
timeliness through batching and locality, but there are also machine
learning solutions where different model types have latency char-
acteristics. Similarly, systems techniques like replication can help
tolerate failures, but robust machine learning techniques can also
allow for issuing predictions even if some of the features are lost.

3.3 Architecture
Next, we overview the architecture and implementation of Edge-
Serve. As depicted in Figure 2, there are 4 main components in
our proposed system: (1) Data Input, (2) Optimizer, (3) EdgeServe
Execution Engine, and (4) Cloud Synchronization.
(1) Data Input. EdgeServe will provide a domain-specific language
(DSL) to describe model-serving tasks on the edge. The user will de-
scribe which nodes collect data, how those nodes are connected, the
trained models to serve, and the endpoints at which model predic-
tions should be delivered. EdgeServewill run as a persistent daemon
on every node in the edge network and will discover network and
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Figure 2: Four main components in EdgeServe

compute capabilities online. To support multi-tenancy, the user can
also provide hints in terms of the desired timeliness, accuracy and
robustness (defined above) of each model’s predictions.
(2) Centralized Cost-based Optimizer. An optimizer parses the speci-
fications from (1) Data Input and determines where best to place
models and how to route data through the network. The optimizer
needs to satisfy every model inference task’s locality constraints
while optimizing for a timely, accurate inference. This involves
weighing communication costs, contention, as well as any special-
ized hardware, to accelerate prediction while maintaining accuracy.
For example, if a node on the network has an attached GPU, it may
be beneficial to stream image/video data to that node and results
back rather than a local prediction. Accordingly, the optimizer will
have to periodically re-optimize this global plan to account for
shifting/bursty workloads and changing network conditions.

Architecturally, one node in the edge network is designated as a
“leader” who hosts the centralized scheduler. This node also hosts a
global catalog for the message-broker service giving every node on
the network global visibility of all of the produced data streams. In
our initial prototype, we do not handle leader failures.

This optimizer is highly related to similar proposals for Wide-
Area Analytics (such as Tetrium) [23]. While such systems tackle
communication constraints, data locality, and some amount of het-
erogeneity, they are incomplete in our context. In EdgeServe, not
only is there consideration for data locality, there is also considera-
tion for result locality. In edge-decision systems, prediction results
may have to be delivered to a particular node on the network (e.g.,
the node that actuates a real-world system). The combination of
data-locality and result-locality leads to a more challenging routing
problem. Furthermore, our optimizer has to account for the location
of machine learning accelerators which are not relevant for systems
like [23].
(3) EdgeServe Execution Engine. All data in EdgeServe are interfaced
through the message-broker system. Raw data streams are produc-
ers on the network, and model inference tasks are consumers on
the network. The results of each model inference process are then
new producers on the network (which other models can subscribe
to). This architecture creates a naturally adaptive “push-based” task
graph that is independent of where data are produced. Nodes simply
need to know what streams to subscribe to and the leader informs
the nodes where that resource is located. Nodes continuously serve

model predictions over data that stream to them. The global routing
table is synthesized based on the result of our centralized optimizer.
(4) Cloud Synchronization. Eventually, for model training, update,
and archive, data will have to be moved off the edge and to the
cloud. EdgeServe is able to synchronize data with a cloud service.
The user can send featurized (or otherwise anonymized) data to
the cloud.

3.3.1 Example Execution. Let’s consider the home activity recog-
nition example in the introduction. There are three streams of data:
audio, video, and network traffic. Audio and video are collected on
node1 (an Intel Video Processing Embedded System) and network
traffic is collected on node2 (a programmable wireless access point).
We have a model which is a neural network that requires all three
data sources to predict ongoing activities in the home. To issue such
predictions, the system could create a data flow (via publication
and subscription) that repeatedly transfers raw data from node2 to
node1, and host a comprehensive model on node1. Alternatively, it
could also featurize the network traffic data locally on node2 and
only transfer pre-processed features to node1. node1 applies a pool-
ing method to issue a prediction based on features from multiple
sources. This allows the user to combine the sources of data for
a richer prediction, as well as leverage the specialized prediction
hardware on both nodes.

4 RESEARCH AGENDA
We believe that EdgeServe is a key gap in current edge machine
learning systems. Conceptually, it’s a straightforward concept: com-
bining a distributed message-broker system with model-serving
nodes. However, the optimal design of such a system is an unsolved
research question in its own right. We also believe that there are a
number of future challenges, for us and the community, that would
arise once an initial prototype is built.

4.1 Design Challenges
First, there are several technical challenges in the design of Edge-
Serve.

Step 1. Declarative Design. Existing model-serving systems are con-
ceptually easy to use for users. By combining such systems with
a message-broker interface, EdgeServe adds significant program-
ming complexity. We believe that EdgeServe will only be practical
as a declarative system where users specify high-level constraints
which the optimizer turns into an execution plan. The optimizer
would have to parse the specification, determine all placement and
flow configurations that meet the specification, and find one that
optimizes latency and data transfer objectives. The heterogeneity
of modern edge networks is exploited as data distribution should be
proportional to the heterogeneous capabilities of highly-specialized
hardware. This requires accurate, dynamic cost-modeling of con-
tention, latency and system performance on all of the nodes of an
edge network and how they may affect accuracy. We know that this
will be a formidable research challenge because in heterogeneous
data center environments there has been already been significant
work in task scheduling [12, 57, 62]. An optimizer for EdgeServe
would have to address all of the problems in those works, as well
as new ones that arise due to communication limitations.
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Step 2. Fault Tolerance. Failures are an important characteristic
of the edge, and fault-tolerance will have to be a primary design
consideration for EdgeServe [51]. We envision a framework that
ensures the availability of both data streams and model predictions
in the presence of failures. The global routing table can be used
to replicate both data and predictions to ensure that they are not
lost. Similarly, redundant predictions can be generated by placing
a model on multiple nodes. Therefore, in addition to optimizing for
the user-specified constraints, we believe that the optimizer should
additionally synthesize the appropriate replication strategy to meet
availability constraints on data streams and predictions.

One interesting future research opportunity is to explore low-
resolution replicas. Instead of exactly replicating a stream of data
one could consider subsample or compress the stream. This would
reduce the amount of data transfer but sacrifice accuracy in the
event of a failure. Both the theory and practice of optimizing such a
system are unknown and it would be an exciting future opportunity.

Step 3. Multi-Tenancy and Work Sharing. Furthermore, the edge
generally does not have the same scale-out properties as the cloud.
Thus, any edge computing framework will have to reason about
how multiple users may share the same finite resources [35, 53]. In
the machine learning context, multi-tenancy creates a number of
new opportunities for work-sharing. For example, prior work has
shown that combining redundant data streams can significantly
improve the performance of Deep Learning workloads [36, 42], e.g.,
features created by one user can be reused by others. In addition
to work-sharing, there are further challenges in meeting varying
latency demands in a multi-user environment.

Step 4. Security and Debugging. As real-time decision systems get de-
ployed in safety-critical applications such as industrial monitoring,
transportation, and security, we will need to be able to retroactively
audit such systems to explain their behavior. Containerized, black-
box deployments of programs (as in existing systems) are opaque
and hard to reason about. In contrast, we believe that EdgeServe
would allow for detailed logging of what data is used for a decision
and where it comes from. We envision a system that can track the
provenance of the data and of the models deployed to be able to
explain failures and other anomalous behavior. This logging system
will periodically synchronize its data with a cloud service to enable
model evaluation, retraining, and model updates.

4.2 Future Opportunities
Once built, we believe that EdgeServe will open up new research
questions on the intersection of systems and machine learning.
Accuracy and model design are particularly interesting optimiza-
tion knobs in this context. Most AutoML frameworks today largely
optimize for model accuracy without regard to the deployment
environment. EdgeServe gives us a way to systematically consider
timeliness, communication constraints and robustness in a single
deployment framework. One could envision future AutoML frame-
works searching for models with certain timeliness properties but
also robustness and network communication properties as well.
These frameworks would find the most accurate models and also
have timely inference on the hardware in a particular edge network.

Figure 3: Some multimodal model architectures are more
communication efficient than others, for example integrat-
ing data sources at later layers of a network.

OpenQuestion 1. Communication-Efficient Models. There are a num-
ber of optimization opportunities in serving multi-modal predic-
tions. At the most basic level, any time a model needs to integrate
two different streams of data, communication between the respec-
tive sources is necessary. However, instead of communicating raw
data streams, it may be far more efficient to communicate lower-
dimensional features instead. Many machine learning models inter-
nally compress data into lower-dimensional representations and
are highly robust to compressed inputs [16].

Figure 3 shows how the model structure plays an intimate role
in how much data are communicated to serve the prediction. On
the left, we have a model (neural network) that integrate the three
data sources at the input layer. On the right, we have a model
that integrates the data at a later layer. The model on the right
is potentially more communication efficient than the one on the
left. We believe that it is possible to integrate such constraints into
the model search process–for example, by only considering neural
network architectures with a certain communication cost. We can
further optimize this process to construct a model in such a way
that the features are spare using techniques like L1 regularization.
Balancing these constraints with accuracy will be an important
future research challenge.

OpenQuestion 2. Naturally Fault-Tolerant Models. Another opportu-
nity is to integrate fault-tolerance into the model architecture itself.
Certain model architectures are naturally robust to losing one or
more input sources. For example, consider the home activity recog-
nition task before. Suppose that instead of a single architecture
unified model, each data source was processed in its own model
to issue a prediction using only the information within the model.
These local models could be ensembled together (e.g, with a ma-
jority vote) to integrate the information from local predictions. On
the other hand, a single unified model may not be able to tolerate
the full loss of an input.

While the ensembling approach may lose correlations that occur
across data sources, it can serve predictions even after losing input
data sources. We believe that this indicates an efficiency-robustness
trade-off in multimodal models, where some overall accuracy can
be traded for robustness to the inputs. In general, we believe there is
an interesting research direction to explore multimodal prediction
architectures that ensure the result is at least as accurate as each
constituent source.
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