
Horizon: Scalable Dependency-driven Data Cleaning
El Kindi Rezig

MIT CSAIL

elkindi@csail.mit.edu

Mourad Ouzzani

Qatar Computing Research Institute

mouzzani@hbku.edu.qa

Walid G. Aref

Purdue University

aref@cs.purdue.edu

Ahmed K. Elmagarmid

Qatar Computing Research Institute

aelmagarmid@hbku.edu.qa

Ahmed R. Mahmood

Purdue University

amahmoo@cs.purdue.edu

Michael Stonebraker

MIT CSAIL

stonebraker@csail.mit.edu

ABSTRACT
A large class of data repair algorithms rely on integrity constraints

to detect and repair errors. A well-studied class of constraints is

Functional Dependencies (FDs, for short). Although there has been

an increased interest in developing general data cleaning systems

for a myriad of data errors, scalability has been left behind. This is

because current systems assume data cleaning is performed offline

and in one iteration. However, developing data science pipelines

is highly iterative and requires efficient cleaning techniques to

scale to millions of records in seconds/minutes, not days. In our

efforts to re-think the data cleaning stack and bring it to the era

of data science, we introduce Horizon, an end-to-end FD repair

system to address two key challenges: (1) Accuracy: Most existing

FD repair techniques aim to produce repairs that minimize changes

to the data that may lead to incorrect combinations of attribute

values (or patterns). Horizon leverages the interaction between

the data patterns induced by the various FDs, and subsequently

selects repairs that preserve the most frequent patterns found in

the original data, and hence leading to a better repair accuracy.

(2) Scalability: Existing data cleaning systems struggle when dealing

with large-scale real-world datasets. Horizon features a linear-time

repair algorithm that scales to millions of records, and is orders-

of-magnitude faster than state-of-the-art cleaning algorithms. A

benchmark of Horizon against state-of-the-art cleaning systems

on multiple datasets and metrics shows that Horizon consistently

outperforms existing techniques in repair quality and scalability.

PVLDB Reference Format:
El Kindi Rezig, Mourad Ouzzani, Walid G. Aref, Ahmed K. Elmagarmid,

Ahmed R. Mahmood, and Michael Stonebraker. Horizon: Scalable

Dependency-driven Data Cleaning. PVLDB, 14(11): 2546 - 2554, 2021.

doi:10.14778/3476249.3476301

1 INTRODUCTION
Current data cleaning systems do not scale well with large datasets.

The reason is that they are designed to support one-shot and offline

data cleaning. However, emerging data science applications pose

new scalability requirements that current data cleaning systems

do not deliver. In light of our collaborations with data scientists

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 11 ISSN 2150-8097.

doi:10.14778/3476249.3476301

 0.1

 1

 10

 100

 1000

 10000

 100000

20k 40k 60k 80k100k 1M 2M 16M 32M 64M

R
u
n
ti

m
e
 (

se
c)

#tuples

Horizon
HOLISTIC

SAMP
HoloClean

Baran
Unified

Figure 1: Runtime of state-of-the-art cleaning systems vs. Horizon

at several organizations, we observe that (1) Data preparation for

large datasets takes the bulk of the human effort; (2) Specificity:

Because it is important to know the input/output of each stage

in the pipeline to facilitate debugging, various data preparation

tools are loosely connected to address specific problems in the data

(e.g., inputting missing values). Because it is hard to debug, data

scientists rarely use a one-box data cleaning system that strives to

clean all types of data errors [16, 26]; (3) Iterativeness: Developing

data science pipelines is highly iterative and data scientists run

their pipelines dozens of time to refine them [29].

In response to the above observations, we envision that building

data cleaning systems that are tailored to specific data errors, as op-

posed to general-purpose data cleaning systems, is more amenable

to efficient implementations and is easier to debug and tune. As a

result, our approach to data cleaning is to re-think common data

quality problems and build scalable by design techniques to address

them. The importance of scalability of data cleaning in a data sci-

ence setting is twofold: (1) Support larger datasets, and (2) Allow

data scientists to refine their pipelines by enabling faster workflow

iterations. Following this direction, we develop a data cleaning sys-

tem for a specific, yet common, data inconsistency problem, namely,

functional dependency violations, that is efficient by design.
A functional dependency (FD) 𝑋 → 𝑌 defined over a relation

𝑅 that has attributes 𝑋 and 𝑌 states that records sharing the same

value in 𝑋 must share the same value in 𝑌 (e.g., 𝑧𝑖𝑝 → 𝑠𝑡𝑎𝑡𝑒).

FDs are some of the most fundamental and well-studied integrity

constraints. This is because their syntax is easy to understand

and they can be expressed in a variety of languages (e.g., SQL).

Additionally, they form the basis for more expressive rules, e.g.,

Conditional FDs (CFDs) [17] and Denial Constraints (DCs) [10].

Although extensive efforts have been proposed to clean dirty

data, the focus has mainly been on supporting more error types

rather than on developing scalable solutions to existing data quality

problems [24, 25]. Case in point, it still takes hours/days to even

2546

https://doi.org/10.14778/3476249.3476301
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3476249.3476301

cid provider_id provider_
address

provider_
area_id

service_
area

1 GF903 140 W Court 0 212

2 GF903 140 W Court 0 212

3 GF903 1407 Wescam
Court T75 212

4 YT43 1407 Wescam
Court T75 212

5 YT43 1407 Wescam
Court T75 212

6 RG09 160 Asher St T75 212

fd1: provider_id → provider_address
fd2: provider_address → provider_area_id
fd3: provider_area_id → service_area

Functional dependencies (𝚺)

Build FD pattern graph (Section 3)
Project FDs on dirty data
Assess quality of each FD pattern

FDs static analysis (Section 4, 5)
 Determine attribute boundness (sec. 4)
 Devise traversal order on FD graph (sec. 5)

provider_id

1 2 3

Data repairing (Section 5.2)
Traverse the FD pattern graph
to compute repairs

Clean data (D’)

t1: ([fd1], {“GF903”, “1407 Wescam Court”}) ▷([fd2],
{“1407 Wescam Court”, “T75”}) ▷ ([fd3], {“T75”, “212”})

1

Generate pattern expressions

cid provider_
id

provider_
address

provider_
area_id

service_
area

1 GF903 1407 Wescam
Court T75 212

2 GF903 1407 Wescam
Court T75 212

3 GF903 1407 Wescam
Court T75 212

4 YT43 1407 Wescam
Court T75 212

5 YT43 1407 Wescam
Court T75 212

6 RG09 160 Asher St T75 212

2

0
2

GF903 YT43 RG09

140 W Court 1407 Wescam
Court 160 Asher St

T75

212

2 1 2 1

1
3

4

t1
t2
t3
t4
t5

t1
t2
t3
t4
t5

Dirty data (D)
Input

cost: 4
support: 9

provider_
address

provider_
area_id

service_
area

Update data with computed pattern expressions

t2: ([fd1], {“GF903”, “1407 Wescam Court”}) ▷([fd2],
{“1407 Wescam Court”, “T75”}) ▷ ([fd3], {“T75”, “212”})

t3: ([fd1], {“YT43”, “1407 Wescam Court”}) ▷([fd2],
{“1407 Wescam Court”, “T75”}) ▷ ([fd3], {“T75”, “212”})

cost: 2
support: 6

t6

t6

(a)

(b)

(c)

(f)

(d) (e)

Figure 2: Horizon at a glance. b○ Horizon computes the FD pattern graph. c○ Performs static analysis on the FDs to devise a
traversal order of the graph in Step b○. d○ Repairs the input tuples and presents the results to the user in f○ e○

enforce simple FD rules on small datasets. Figure 1 reports the

runtime of various state-of-the-art data cleaning systems to repair

FD violations on a real-world dataset (refer to Section 6 for further

detail on baselines and setup). It is clear that current systems do

not scale well with regard to dataset size. Even for moderately sized

datasets (e.g., 1M), most of the baselines do not terminate within

24 hours on a 32GB memory machine with an 8-core CPU.

In this paper, we introduce Horizon, an end-to-end FD repair

system that efficiently cleans data using a novel cost model that

preserves the frequent patterns found in the input data. Horizon
outperforms state-of-the-art cleaning systems on both effectiveness

of FD repairs and efficiency. In the remainder of this section, we

outline the intuition behind Horizon’s repair strategy, and discuss

limitations of existing methods through a motivating example. In

the subsequent sections, we explore Horizon’s repair model in more

detail, and how it is amenable to an efficient implementation.

Modeling Value Combinations. One way to capture value com-

binations that bind semantically-related attributes is through FDs.

When instantiated on the data, these FDs form data patterns

that bind together semantically-related data values. For instance,

in Figures 2a-b, the pattern [provider_address= “1407 Wescam

Court", provider_area_id = “T75"] is a binding of data values

[provider_address= “1407 Wescam Court"] and [provider_area_id

= “T75"] through 𝑓 𝑑2. Consequently, every FD generates a set of

patterns. We refer to these patterns as FD patterns. We propose

to extract FD patterns from the dirty data and reason about their

quality and interactions to compute data repairs. Since correct data

is a genuine representation of reality, correct values will usually

maintain some patterns based on their distribution and relation-

ships [25, 32]. Therefore, we want to pick repairs that result in pat-

terns that are well-supported in the data (e.g., [provider_address=

“1407 Wescam Court", provider_area_id = “T75"] is more frequent

than [provider_address= “140 W Court", provider_area_id = “0"].

Example 1. Table D (Figure 2a) is a data snippet based on a col-
laboration we have with an organization (Company X) that connects
customers to providers for various services. 𝐷 has five attributes:

(1) cid: Customer identifier; (2) provider_id: Service provider identifier;
(3) provider_address: Address of the provider; (3) provider_area_id:
Identifier of a provider’s area; (4) service_area: Customer’s area
code. We use the FDs: 𝑓 𝑑1 : 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟_𝑖𝑑 → 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟_𝑎𝑑𝑑𝑟𝑒𝑠𝑠
(Records with the same provider id must have the same provider
address), 𝑓 𝑑2 : 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟_𝑎𝑑𝑑𝑟𝑒𝑠𝑠 → 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟_𝑎𝑟𝑒𝑎_𝑖𝑑 (Records
with the same provider address must have the same provider area
id) and 𝑓 𝑑3 : 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟_𝑎𝑟𝑒𝑎_𝑖𝑑 → 𝑠𝑒𝑟𝑣𝑖𝑐𝑒_𝑎𝑟𝑒𝑎 (Records with the
same provider area id must have the same service area code). In Fig-
ure 2a, the cells involved in the violation of 𝑓 𝑑1 are highlighted.

Given a dirty table and FDs (Figure 2a), Horizon creates a graph,

termed FD Pattern Graph (FDG) (Figure 2b), that combines all the

FD patterns in the data, and then selects the repairs with maximal

support. In Figure 2b, each edge is an FD pattern and its weight

corresponds to the number of records that support the pattern in

table 𝐷 . Most existing repair algorithms rely on theminimality cost

model, i.e., picking the repairs that result in the least changes to the

data. However, minimality falls short when dealing with patterns

(instead of individual cells). For instance, in Figure 2b, the pat-

tern [provider_address = “1407 Wescam Court”, provider_area_id

= “T75”] is more frequent than the pattern [provider_address =

“140 W Court”, provider_area_id = “0”]. However, the repair (or

path) that selects the frequent pattern costs more (in terms of up-

dates) than the alternative path (4 > 2), but has higher support

(9 > 6). While there is no guarantee that the path with the highest

support is always the correct one, our empirical evaluation clearly

shows that the pattern granularity offers more context for selecting

high-quality repairs than cells seen in isolation.

Repair Side Effects. When a repair algorithm is faced with con-

flicting values, oftentimes every choice will affect the underlying

patterns in the data. For instance, in Example 1, choosing “140 W

Court” over “1407 Wescam Court” (for cell 𝑡3[𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟_𝑎𝑑𝑑𝑟𝑒𝑠𝑠])

to repair the 𝑓 𝑑1 violation will result in incorrect patterns, e.g.,

[provider_address = “140 W Court", provider_area_id = “0”]. Hori-
zon considers how a repair choice for one FD affects the patterns

of subsequent FDs (Figure 2b).

2547

Typically, FD repair algorithms work in two phases: (1) Error de-

tection which detects all the violating tuple pairs, and (2) Repairing

that typically focuses on minimizing the changes to the violating

cells so as to satisfy all the FDs, which constitutes a hard optimiza-

tion problem [21]. Horizon disrupts this traditional workflow by

(1) Using FDs as generative rules to produce a graph that encodes

the FD-induced data patterns and their interactions; (2) Static anal-

ysis on the FDs to dissect the interactions among them (Figure 2c);

and (3) Traversing the graph in linear time to select patterns that

are “most supported” in the data (Figure 2d).

Representation. To ease their readability, Horizon presents repair

results in an intermediate representation that we refer to as pattern
expressions that shows the lineage of a given repair, instead of

showing isolated cell updates generated by repairs. Example pattern

expressions are given in Figure 2(e), where each output record is a

“composition” of several FD patterns. The composition operator ▷
“joins” two FD patterns sharing the same attribute value.

Contributions.
1.We propose FD patterns to model value combinations and their

interactions through FDs. We compile FD patterns into a graph data

structure (FDG) within Horizon to clean the input data (Section 3.2).

2. We present measures for Horizon to reason about the quality of

the FD patterns in the FDG that captures the intrinsic quality of

the FD patterns and the ones they lead to (Section 3.3).

3. We transform the cleaning problem into an FD pattern mapping

problem and develop algorithms in Horizon to generate repairs in

linear time in the size of the data and FDs (Sections 4, 5).

4. We conduct a thorough experimental study to assess the perfor-

mance of Horizon against a variety of state-of-the-art data repairing
algorithms (Section 6). We evaluate Horizon’s scalability using vari-

ous datasets including a real-world dataset with 64M records.

2 RELATEDWORK
For simplicity, we classify the repairingmethods into two categories:

(1) Rule-based [18, 21]: These are the most related to our work.

They produce an instance that is consistent with a set of constraints

(e.g., FDs, CFDs). In this category, we have methods that focus solely

on FDs (FD-centric), and those that address other types of rules

(e.g., CFDs, DCs), which might encompass FDs (non-FD-centric).

(2) General: These are general data cleaning methods [15, 25, 30]

that were not designed to address a particular type of data errors,

but strive to repair any cell that might contain an error.

Rule-based Data Cleaning. Existing rule-based data repairing

techniques focus on computing repairs that minimally change the

data instance to satisfy a set of rules, e.g., FDs [6, 8, 9, 14, 20, 23],

Conditional FDs [6, 12, 13, 19], Fixing Rules [31], Order Depen-

dencies [27], and Denial Constraints [10]). For instance, SAMP [6]

produces repairs of FDs and CFDs by sampling from the space of

possible repairs. Holistic repairs violations of denial constraints
by leveraging the overlap between violating cells. Most of these

methods use the subset of violating cells to find repairs.

Horizon provides a significant addition to this family of algo-

rithms from the way Horizon models the data (the FD patterns) to

the way it maps patterns to each other to produce a repaired in-

stance efficiently. Furthermore, unlike existing rule-based solutions,

Horizon benefits from evidence from all the data values in the dirty

instance, including those that are not involved in violations.

[7, 9] address the problem of repairing the FDs in addition to

data. For instance, Unified [9] decides whether it is best to repair

the data, or repair the FDs by computing support measures for data

patterns. However, in addition to their inherent inefficiency, the

repairing cost model is still minimality.

General Data Cleaning. HoloClean [25] uses probabilistic infer-

ence to produce repairs based on different signals (e.g., constraint

violations). Repairs are associated with marginal probabilities that

reflect their accuracy. Another recent effort is Baran [24] that com-

bines various data correction models to clean data cells. Horizon is

different from HoloClean and Baran in three ways: (1) They both

have to know which cells are erroneous, and this could be hard

to get whereas 𝐻𝑜𝑟𝑖𝑧𝑜𝑛 has to find out automatically which cells

might contain errors through the FDs; (2) They were both designed

for generality, i.e., to clean a large class of data errors. This gen-

erality puts them at a disadvantage compared to Horizon which is

tailored to deal with FD errors, allowing it to benefit from their

interactions to produce repairs. (3) They do not produce repairs

that are necessarily consistent w.r.t. a set of constraints.

SCARE [32], a probabilistic approach that relies on predicting

attribute values given the data distribution. However, the user’s

feedback is needed to assess the quality of the repairs. In addition,

SCARE is not bound by any data quality rules. KATARA [11] is a

cleaning system that employs external, curated knowledge bases

in addition to crowdsourcing to derive repairs. Both methods are

different in scope in contrast to Horizon.

3 COMPUTING THE FD PATTERN GRAPH
3.1 Background
Let 𝑅 be a relational schema of a data instance 𝐼 . Let 𝐴 =

{𝐴1, 𝐴2, ..., 𝐴𝑛} be the set of attributes in 𝑅 with active domains

𝑑𝑜𝑚(𝐴1), 𝑑𝑜𝑚(𝐴2), ..., 𝑑𝑜𝑚(𝐴𝑛) respectively. Let Σ be the set of func-

tional dependencies (FDs) defined over 𝑅. We assume that Σ is

minimal and in canonical form [2]. An FD 𝑓 𝑑𝑖 in Σ (𝑖 < |Σ|) has the
format 𝑋 → 𝑌 , where 𝑋,𝑌 ∈ 𝐴. 𝑋 and 𝑌 are referred to as the an-

tecedent and consequent attributes, respectively. Let 𝐿𝑒 𝑓 𝑡 (𝑓 𝑑𝑖) and

𝑅𝑖𝑔ℎ𝑡 (𝑓 𝑑𝑖) be the left- and right-hand sides of 𝑓 𝑑𝑖 , respectively. The

set of attributes involved in 𝑓 𝑑𝑖 and Σ are referred to as 𝑎𝑡𝑡𝑟 (𝑓 𝑑𝑖)

and 𝑎𝑡𝑡𝑟 (Σ) respectively. When 𝑓 𝑑𝑖 is projected on a tuple 𝑡 , we

refer to 𝑡[𝑋] and 𝑡[𝑌] as 𝐿𝐻𝑆 and 𝑅𝐻𝑆 values of 𝑓 𝑑𝑖 on 𝑡 . An in-

stance 𝐼 = {𝑡1, 𝑡2, ..., 𝑡𝑛} of 𝑅 satisfies Σ, denoted by 𝐼 |= Σ, if 𝐼 has

no violations (i.e., every pair of tuples with the same 𝐿𝐻𝑆 value

must have the same 𝑅𝐻𝑆 value) of any of the FDs in Σ. A cell 𝑡[𝐴]

denotes the value of attribute 𝐴 in tuple 𝑡 . Every tuple has a unique

identifier. The set of tuple identifiers in 𝐼 is denoted 𝑇 𝐼𝐷(𝐼).

Definition 1. Repair Instance [23] Given an instance 𝐼 of schema
𝑅 violating FDs Σ, an instance 𝐼 ′ is a repair of 𝐼 iff 𝐼 ′ |= Σ and
𝑇 𝐼𝐷(𝐼) = 𝑇 𝐼𝐷(𝐼 ′)

According to Definition 1, a repair is achievable only by modi-

fying attribute values of tuples. Insertion or deletion of tuples or

attributes are not allowed. Unlike [23], our space of repairs only

contains constants from the active domain.

3.2 Encoding FD Patterns
We encode the FD patterns by projecting the FD graph on the

instance. Refer to Figure 2b for illustration. Every FD pattern

2548

(𝑋1, 𝑋2, ...𝑋𝑛 → 𝑌, [𝑥1, 𝑥2, ..., 𝑥𝑛, 𝑦]) (𝑛 ≤ |𝐼 |) is encoded with a

directed hyperedge ({𝑥1, 𝑥2, ..., 𝑥𝑛}, {𝑦}). We refer to 𝑥1, 𝑥2, ..., 𝑥𝑛 as

the 𝐿𝐻𝑆 nodes and 𝑦 as the 𝑅𝐻𝑆 node.

FD Pattern Graph (FDG): The FDG of instance 𝐼 is a directed

hypergraph [5] 𝐺(𝑉 , 𝐸), where: (1) Each node 𝑣 ∈ 𝑉 has two at-

tributes 𝑣 .𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 and 𝑣 .𝑣𝑎𝑙 encoding an attribute 𝑎 ∈ 𝐴 and

a data value 𝑑 ∈ 𝑑𝑜𝑚(𝑎), respectively; (2) A directed hyperedge

𝑒(𝑊,𝑍) ∈ 𝐸 that (a) connects nodes in 𝑊 (tail) to a node in 𝑍

(head) such that |𝑍 | = 1 and |𝑊 |≥ 1; and (b) encodes an FD pattern

𝑝(𝑋1, 𝑋2, ..., 𝑋𝑛 → 𝑌, [𝑥1, 𝑥2, ..., 𝑥𝑖 , 𝑦]) ∈ 𝐼 (𝑛 ≤ |𝐼 |) such that there

is a node 𝑤 ∈ 𝑊 where 𝑤.𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 = 𝑋𝑖 and 𝑤.𝑣𝑎𝑙 = 𝑥𝑖 for all

𝑖 ≤ |𝐼 |, and 𝑍 .𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 = 𝑌 , 𝑍 .𝑣𝑎𝑙 = 𝑦.

For example, the graph in Figure 2b is the FD pattern graph for

table 𝐷 (Figure 2a). Each edge represents an FD pattern. In the

sequel, since they represent the same thing, we employ the terms

“FDG edge” and “FD pattern” interchangeably. Additionally, to ease

the readability of the graph figures, we label the nodes with their

values and omit the attribute names.

3.3 Pattern Quality
Our target is to select “good” FD patterns in the FD pattern graph to

compute instance repairs. Therefore, it is crucial to characterize the

quality of FD patterns in the FD pattern graph. This step is required

by the repair algorithm (Section 5.2) to reason about the quality of

various candidate FD patterns. We now present a general model

to characterize the quality of FD patterns that also captures their

interactions. By looking at an FD pattern 𝑃 : (𝑋 → 𝑌, [𝑥,𝑦]) as an

association rule [3] (𝑃[𝑥] → 𝑃[𝑦]), we can compute its 𝑆𝑢𝑝𝑝𝑜𝑟𝑡

(𝑆𝑢𝑝) as the number of tuples with 𝑋 = 𝑥 and 𝑌 = 𝑦 in 𝐼 over the

number of tuples in 𝐼 .

𝑆𝑢𝑝(𝑃) =

|𝑃 |
|(𝑋 → 𝑌, ∗, ∗) | (1)

In the above equations, * denotes “any value”.

As illustrated in Example 1, greedily selecting FD patterns based

on their frequencies is not a good strategy for selecting the best FD

patterns. That is, in Figure 2b, the edges [“YT43”, “1407 Wescam

Court”] and [“GF903”, “140 W Court”] have the same weight. There-

fore, it would be better if the score of an FD pattern not only includes

its own support, but also the support of the FD patterns it can lead

to. Thus, we extend 𝑆𝑢𝑝 in Equations 1 to capture the quality of an

FD pattern 𝑃 by the set of FD patterns it can lead to (denoted 𝑃→)

as follows:

𝑄𝑢𝑎𝑙𝑖𝑡𝑦(𝑃) =

𝑆𝑢𝑝(𝑃) +

∑︁
𝑄 ∈𝑃→ 𝑆𝑢𝑝(𝑄)

|𝑃→ |+1

(2)

The enumerator of 𝑄𝑢𝑎𝑙𝑖𝑡𝑦(𝑃) (Equation 2) is the sum of: (1) the

𝑆𝑢𝑝𝑝𝑜𝑟𝑡 of 𝑃 , and (2) the 𝑆𝑢𝑝𝑝𝑜𝑟𝑡 of all the FD patterns that can

be reached from 𝑃 . We normalize the quality of a pattern using the

average over the number of edges in |𝑃→ |.
Horizon performs a Depth-First Search (DFS) traversal over the

FDG and computes the quality of each visited edge using Equation 2.

To guarantee termination, back-edges (corresponding to cyclic FDs)

are processed when the DFS traversal is complete. Specifically,

Horizon performs the following steps: (1) Build a DFS tree from

the input root vertex 𝑣 ; (2) For every edge 𝑒 = (𝑣,𝑤), if 𝑒 is a back-

edge add it to a set 𝐵𝑎𝑐𝑘𝐸𝑑𝑔𝑒𝑠 . If not, compute the edge quality;

(3) Assign the quality of the root vertex (The quality of a vertex 𝑣

is the average quality of all the edges that can be reached from 𝑣).

After the DFS step is completed, all back-edges are processed. The

quality of a back-edge 𝑒 = (𝑣,𝑤) is the quality assigned to vertex

𝑤 in the DFS step. Since it amounts to a DFS, the time and space

complexities of computing and propagating scores in an FD pattern

graph 𝐹𝐷𝐺(𝑉 , 𝐸) are both 𝑂(|𝑉 |+|𝐸 |).

4 RULES COMPILATION
4.1 Interactions among FD Patterns
Figure 3a enumerates four cases in which FD patterns interact with

each other. FD patterns 𝑃𝑖 : (𝑓 𝑑𝑖 ,𝑉𝑖) and 𝑃 𝑗 : (𝑓 𝑑 𝑗 ,𝑉𝑗) (𝑓 𝑑𝑖 , 𝑓 𝑑 𝑗 ∈ Σ

and𝑉𝑖 ,𝑉𝑗 are values assigned to𝑎𝑡𝑡𝑟 (𝑓 𝑑𝑖) and𝑎𝑡𝑡𝑟 (𝑓 𝑑 𝑗) respectively

with 𝑖 ̸= 𝑗) interact with each other iff: (1) 𝑓 𝑑𝑖 and 𝑓 𝑑 𝑗 share at

least one attribute, and (2) the value of the shared attribute(s) is the

same in 𝑉𝑖 and 𝑉𝑗 . Note that different cases of interactions have

different semantics. Consider a dirty tuple 𝑡 containing two FD

patterns 𝑃𝑖 and 𝑃 𝑗 corresponding to two different FDs 𝑓 𝑑𝑖 and 𝑓 𝑑 𝑗 .

Without loss of generality, we discuss interaction cases with FDs

that have one attribute in their antecedent. 𝑃𝑖 and 𝑃 𝑗 can exhibit

the following four cases of interaction depending on the FDs they

embed (Figure 3a):

Case 1 (𝑓 𝑑𝑖 = 𝐴 → 𝐵, 𝑓 𝑑 𝑗 = 𝐴 → 𝐶): 𝑡[𝐴] = 𝑎1 can be mapped

to any RHS value in 𝐵 and 𝐶 , i.e., the choice of values of 𝐵 is

independent of the choice of the value of𝐶 . In other words, choosing

the RHS of 𝑎1 to satisfy 𝐴 → 𝐵 does not affect the choice of the

RHS of 𝑎1 to satisfy 𝐴→ 𝐶 .

Case 2 (𝑓 𝑑𝑖 = 𝐴→ 𝐶, 𝑓 𝑑 𝑗 = 𝐵 → 𝐶): 𝑡[𝐴] = 𝑎1 and 𝑡[𝐵] = 𝑏1 must

be mapped to the same RHS value 𝐶 . In other words, Patterns 𝑃𝑖
and 𝑃 𝑗 have to share the 𝐶 value. Thus, the choice of the 𝐶 value

for 𝐴 affects the choice of the 𝐶 value for 𝐵, and vice-versa.

Case 3 (𝑓 𝑑𝑖 = 𝐴→ 𝐵, 𝑓 𝑑 𝑗 = 𝐵 → 𝐶): In this case, the consequent

of 𝑃𝑖 is the antecedent of 𝑃 𝑗 . In this case, the choice of the value of

𝐵 affects the 𝐶 value. That is, choosing a value 𝐵 = 𝑏𝑥 in 𝑃𝑖 would

make 𝑏𝑥 the antecedent of 𝑃 𝑗 .

Case 4 (𝑓 𝑑𝑖 = 𝐴 → 𝐵, 𝑓 𝑑 𝑗 = 𝐵 → 𝐴): This is the case of circular
FDs; the choice of the value of 𝐴 affects the choice of the value of

𝐵 and vice-versa.

In the above cases, depending on the interaction case of the FDs,

selecting an FD pattern for one FD in a tuple 𝑡 may affect the choice

of the FD patterns for the subsequent FDs that interact with it. Next,

we formalize this observation.

4.2 Determining Bound and Free Attributes
FDs impose a “many-to-one" relationship between LHS and RHS

values. That is, for the instance to be consistent, a LHS value is

mapped to a single RHS value. An attribute 𝐴 that does not appear

as a RHS of an FD is said to be a bound attribute. Bound attributes

have two properties: (1) They appear as part of a LHS in Σ and are

thus used to determine the value of RHS attributes, and (2) Since

they do not appear as RHS attributes in Σ, we cannot use other

attributes to determine their values (because of the many-to-one

relationship, we can only determine attribute values from LHS to

RHS and not the other way around). If an attribute is not bound,
then, it is a free attribute, i.e., its values are determined from other

(LHS) attributes. Obviously, an attribute cannot be 𝑏𝑜𝑢𝑛𝑑 and 𝑓 𝑟𝑒𝑒

2549

a1

bx

A B

cy

C

a1

cx

A

C

b1

B

a1

bx

A B

cy

C

a1

bx

A B

Case 1
(A → B; A → C)
For a given a1 , the
choice of B and C
values is
independent

Case 2
(A → C; B → C)
For a given a1 and
b1, we must select a
single C value.

Case 4
(A → B; B → A)
For a given a1 (or b1), we
must select a single B
value (or A value).

Case 3
(A → B; B → C)
For a given a1 the choice
of B affects the choice of C

P1

P2

P1

P2

P1

P2

P1

P2

c2
2

c0
0

1. Build FD graph

2. Build SCC graph of FD graph and compute
topological sorting on its components

3. Call OrderFDs() and compute a traversal order
for each FD

provider_id
provider_
address

provider_
area_id

service_
area

fd1 fd2 fd3

fd4

provider_address

provider_id → provider_address 0
provider_address → provider_area_id

provider_area_id → service_area

service_area → provider_area_id

1
2
3

FD Order

(a) (b)

provider_id

provider_
area_id

service
_area

c1
1

Figure 3: FD Patterns interaction cases
at the same time. Therefore, all free attributes must appear as RHS

attributes in Σ (we discuss cyclic FDs next).

Proposition 1. For every 𝑓 𝑟𝑒𝑒 attribute 𝐴 in Σ, there must exist
at least an attribute 𝐵 such that: (1) There is an FD 𝑓 𝑑𝑖 (𝐵 → 𝐴) ∈ Σ;
(2) If there is an FD 𝑓 𝑑 𝑗 (𝐴→ 𝐵) ∈ Σ, then, there must exist at least
an FD 𝑓 𝑑𝑘 ∈ Σ where 𝑓 𝑑𝑘 (𝐶 → 𝐴) or 𝑓 𝑑𝑘 (𝐶 → 𝐵). If 𝑓 𝑑𝑘 ̸∈ Σ, we
designate either 𝐴 or 𝐵 to be a 𝑏𝑜𝑢𝑛𝑑 attribute.

Proposition 1 states that every 𝑅𝐻𝑆 attribute (free attribute) has to

have at least one set of 𝐿𝐻𝑆 attributes that determines it in Σ. This

is trivial when there are no cyclic FDs. However, if Σ has cyclic FDs,

some attributes could be 𝑓 𝑟𝑒𝑒 but would not have an 𝐿𝐻𝑆 attribute

that determines them outside the cycle. For instance, consider the

FDs in Figure 4a where 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟_𝑎𝑟𝑒𝑎_𝑖𝑑 and 𝑠𝑒𝑟𝑣𝑖𝑐𝑒_𝑎𝑟𝑒𝑎 are free
attributes because they both appear as 𝑅𝐻𝑆 in Σ.

5 TRAVERSING THE FD PATTERN GRAPH
FDG node values from bound attributes are assigned from the in-

put tuples. For example, consider table D and its FDs in Figure 4a

(shaded cells correspond to fixed values and cell values “*” corre-

spond to cells that we can change) and its corresponding FD pattern

graph in Figure 4b (edge weights are quality scores as presented

in Section 3.3). The set of 𝑏𝑜𝑢𝑛𝑑 attributes contains 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟_𝑖𝑑

while all the other attributes involved in the FDs are free.

Proposition 2. For an assignment 𝛽 of bound attribute nodes
𝐴 in the 𝐹𝐷𝐺(𝑉 , 𝐸), there exists a subgraph 𝐺(𝐾, 𝐵) such that: (1)
𝐾 ⊂ 𝑉 and 𝐵 ⊂ 𝐸 and 𝐴 ⊂ 𝐾 ; (2) ∀𝑓 𝑑(𝑋 → 𝑌) ∈ Σ : ∃𝑒(𝑈 ,𝑊) ∈ 𝐵 :

𝑈 .𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 = 𝑋 ∧𝑊 .𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 = 𝑌 .

Proposition 2 states that assigning values to the 𝑏𝑜𝑢𝑛𝑑 attribute

nodes in the FD pattern graph produces a subgraph (referred to as

the chase graph) that covers all the FDs in Σ. In other words, the

set of bound attribute values is all we need to determine the value

of all the other attributes in Σ. Figure 4b illustrates the chase graph

generated with 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟_𝑖𝑑 as the bound attribute. For example,

given Tuple 𝑡1 in 𝐷 (Figure 4a), the assignment of the bound at-

tribute is 𝛽 = {𝑡1[𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟_𝑖𝑑] = “𝐺𝐹903”}, all the other attributes
in Σ can be modified. Then, we start the chase to get the FD pat-

terns of all the FDs from the FD pattern graph (highlighted path in

Figure 4b). Then, the resulting chase graph is translated to an FD

pattern expression and used to repair tuple 𝑡1 (Figure 4c).

cid provider_id provider_
address

provider_
area_id

service_
area

1 GF903 * * *

2 GF903 * * *

3 GF903 * * *

4 YT43 1407 Wescam
Court T75 212

5 YT43 1407 Wescam
Court T75 212

6 RG09 160 Asher St T75 212

Functional dependencies (𝚺)

FD pattern graph
Edge weights are edge quality scores
The highlighted path is the chase graph to repair t1

Clean data (D’)

t1: t1: ([fd1], {“GF903”, “1407 Wescam
Court”}) ▷([fd2], {“1407 Wescam Court”,
“T75”}) ▷ ([fd3], {“T75”, “212”}) ▷ ([fd4],
{“212”, “T75”})

cid provider_
id

provider_
address

provider_
area_id

service_
area

1 GF903 1407 Wescam
Court T75 212

2 GF903 1407 Wescam
Court T75 212

3 GF903 1407 Wescam
Court T75 212

t1
t2
t3
t4
t5

t1
t2
t3

Dirty data (D)
Input

Update data with computed pattern expressions

t6

(a)

(b)

GF903 YT43 RG09

140 W Court 1407 Wescam
Court 160 Asher St

T75

212

0.33
0.44 0.5 0.32

0.41
0.580.33

0 0.33

0.49
0.44

0.66

(c)

fd1: provider_id → provider_address
fd2: provider_address → provider_area_id
fd3: provider_area_id → service_area
fd4: service_area → provider_area_id

Figure 4: Example of repairing a tuple

5.1 Traversal order
Following the boundedness of attributes, we devise a traversal

order of the FDG. Since the FDs can have cycles, we cannot di-

rectly apply standard topological ordering of the nodes in the FD

graph. Instead, we first apply topological sorting on the Strongly

Connected Component Graph (SCCG) induced by the FD graph

(SCCG is guaranteed to be a DAG). We obtain the SCCG using the

𝑇𝑎𝑟 𝑗𝑎𝑛 algorithm [28] that runs in 𝑂(|𝐴|+|𝐸 |), where 𝐴 and 𝐸 are

the vertices and edges in the FD graph, respectively.

Figure 3b illustrates how we go from the FD graph (top canvas)

to the SCCG (middle canvas), and finally to ordering the FDs. Note

how each SCC 𝑐𝑖 has an order 𝑜 assigned to it (denoted 𝑐𝑜
𝑖

)).

5.2 Pattern-Preserving Repairs
We present a linear-time repair algorithm that computes a repair

instance in the form of pattern expressions. Notice that a pattern

expression that covers all the FDs in Σ corresponds to a chase graph
in the FDG. Our final goal is to choose chase graphs that have high

edge weights without resorting to an exponential solution.

Algorithm 1 takes as input a dirty table 𝐷 and the set of FDs Σ,

and produces pattern expressions that correspond to clean tuples.

Repair tables (𝑅𝑡𝑎𝑏𝑙𝑒 in Algorithm 1) collect all the 𝐿𝐻𝑆 to 𝑅𝐻𝑆

mappings done so far and are used to update the input tuples

accordingly. First, we build the FD pattern graph and compute

its edge weights (Lines 1-2), and compute the order of FDs (Lines

3-5). We process the input data one tuple at a time (line 7), and

2550

Algorithm 1: GeneratePatternPreservingRepairs(Σ, 𝐷)

output :For every tuple in 𝐷 , return a pattern expression

1 FDG← BuildFDPatternGraph(𝐷 , Σ)

2 FDG← ComputePatternsQuality(IG)

3 SCCG← BuildSCCGraph(Σ)

4 OC← TopologicalSorting(SCCG)

5 Ordered_FDs← OrderFDs(Σ,𝑂𝐶)

6 pattern_expressions← ∅
7 forall Tuple t ∈ 𝐷 do
8 for i ← 0 to |Ordered_FDs | do
9 forall FD 𝑓 ∈𝑂𝑟𝑑𝑒𝑟𝑒𝑑_𝐹𝐷𝑠[𝑖] do
10 Lval← t[f.LHS]

11 if Rtable(f).contains(Lval) then
12 FDPattern p← New FDPattern(f, Lval→

Rtable(f).get(Lval))

13 𝑃𝑒𝑥𝑝
(𝑡)← 𝑃𝑒𝑥𝑝

(𝑡) ▷ p

14 else if f.RHS ∈ 𝑃𝑒𝑥𝑝
(𝑡) then

15 FDPattern p← New FDPattern(f, Lval→
GetAttributeValue(𝑃𝑒𝑥𝑝

(𝑡), f.RHS))

16 𝑃𝑒𝑥𝑝
(𝑡)← 𝑃𝑒𝑥𝑝

(𝑡) ▷ p

17 Rtable(f).Add(Lval, GetAttributeValue(𝑃𝑒𝑥𝑝
(𝑡), f.RHS))

18 else
19 FDPattern p← Edge_Selection(FDG)

20 𝑃𝑒𝑥𝑝
(𝑡)← 𝑃𝑒𝑥𝑝

(𝑡) ▷ p

21 Rtable(f).Add(Lval, p.RHS)

22 pattern_expressions = pattern_expressions ∪ 𝑃𝑒𝑥𝑝
(𝑡)

create a pattern expression 𝑃𝑒𝑥𝑝 (𝑡) for each Tuple 𝑡 by building

the chase graph from the FDG (lines 18-21). Then, the (LHS, RHS)

mappings are written into the repair tables of each corresponding

FD (lines 17 and 21). We handle the cases of a LHS that is (1) already

mapped in a previous iteration (lines 11- 13); (2) already mapped

to a 𝑅𝐻𝑆 from another FD (lines 15- 17); or (3) not mapped yet, in

which case we add a new pattern from the 𝐹𝐷𝐺 (lines 19- 21).

6 EXPERIMENTAL STUDY
We present an experimental evaluation to answer the following

questions: (1) How doesHorizon perform under different error types

and rates? (2) How does Horizon compare to state-of-the-art rule-

based and non-rule-based cleaning techniques in terms of repair

quality and runtime? (3) How scalable is Horizon?

6.1 Setup
Datasets. We use the following four datasets: (i) DataX is a pri-

vate dataset from an active collaboration with Company X to clean

their data. DataX integrates data from over 1,600 data sources and

contains information about customers, their personal information

and service providers that serve those customers. It contains 64M

records, 43 attributes, over 2B and 750 million cells and 10 FDs. We

have a sample of 470 correct cells that we use as the ground truth.

(ii) Parking is a real-world dataset of parking ticket information for

New York City [1] with 9M records and 9 FDs. We used a labeled

random sample of 100 cells as the ground truth. Because the com-

peting baselines we evaluate cannot handle larger datasets, we used

a 100K and 20k records for Parking and DataX respectively in the

effectiveness experiments and the whole 9M and 64M records (for

Parking and DataX respectively) records for the runtime experi-

ments. (iii) Hospital is a real-world dataset on health-care providers

and hospitals [10]. It contains 100K records and 13 FDs. (iv) Tax is a

Table 1: Data and FD properties of the datasets
Dataset Tax Hospital Parking DataX

Avg. Redundancy 8915.89 6274.03 540.46 4431.59

Atts w. AvgRed. ≤ 5 3 0 2 0

Avg. |𝑣𝑎𝑙 | 3.79 18.87 4.62 5.04

Attribute overlap 0.77 0.71 0.85 0.58

synthetic dataset [17] with 6 FDs that contains records on tax infor-

mation for individuals, e.g., first name, last name, and whether the
person has a child. For measuring effectiveness, we use 100K records

(Tax) while we generate 5M records for the scalability experiment

(Tax_Extended).
Datasets properties. Table 1 reports key dataset and FD proper-

ties which may affect the performance of Horizon. (1) The average
redundancy is the average frequency of each attribute value. The

number of attributes whose average redundancy is less or equal

than 5 is reported in 𝐴𝑡𝑡𝑠 𝑤 .𝐴𝑣𝑔𝑅𝑒𝑑 ≤ 5. (2) Attribute overlap

measures the overlap of attributes across the FDs.

Errors. We divide our experimental study into two parts:

(1) Controlled errors (CE): We conduct a thorough experimental

study to benchmark Horizon and its competing baselines under

various error types and rates. Similar to existing data cleaning liter-

ature, e.g., [10, 18, 22] to cite a few, we use the state-of-the-art data

cleaning benchmarking system BART [4] to control the injected

error rate and type of errors. BART introduces synthetic errors to

the Tax and Hospital datasets that would trigger violations of their

corresponding FDs. More specifically, we generate errors for all

their FDs with varying noise levels and using different data sizes.

We introduce two types of errors to the Hospital and Tax datasets:

• Error-1 (E1): BART injects the input datasets with FD-detectable

errors that include values from the active domain (e.g., replace

“NY” with “CA”) making it harder for the repair algorithms to

find the correct repair if the candidate repair values are all well

supported in the data.

• Error-2 (E2): In order to experiment with all kinds of errors,

BART allows generating errors that may or may not be FD-

detectable. These errors include outliers.

(2) Uncontrolled errors (UE): In this part, we do not inject errors

and instead correct errors that are naturally occurring in the data.

We evaluate Parking and DataX for these experiments.

Baselines.We compare the following repair algorithms to Horizon:
• Holistic [10], SAMP [6],Unified [9],HoloClean [25] and Baran [24]
have been introduced in Section 2. For Unified, since we assume

the FDs are correct in Horizon, we evaluated the data repairing

part of Unified only.

• Min [8]. Min first assigns groups of cells that need to have the

same value to different equivalence classes, then, a value is chosen

for each equivalence class to repair the FD violations.

We picked different flavors of repair algorithms to show how

Horizon compares to (1) a variety of FD-centric baselines (SAMP,
Min, and Unified); (2) one non-FD-centric baseline (Holistic) and
(3) general repair techniques (HoloClean and Baran).
Metrics. (1) Precision (P): The number of correctly repaired cells

over the total number of repaired cells; (2) Recall (R): The number

of correctly repaired cells over the total number of dirty cells; and

(3) F1 score computed as 2(𝑃 ∗𝑅)/(𝑃 +𝑅). Since 𝑆𝐴𝑀𝑃 may generate

different results in each run, we took the average of five runs to

compute these metrics.

2551

Table 2: Rule-based baselines effectiveness results (CE on the left, and UE on the right). E = Error type, P = Precision, R = Recall, F1 = F1 score

Algorithm E

Tax Hospital

P R F1 P R F1

Horizon E1 0.81 0.74 0.76 0.93 0.77 0.84
E2 0.8 0.27 0.38 0.88 0.61 0.71

Holistic

E1 0.16 0.87 0.25 0.04 0.28 0.06

E2 0.22 0.19 0.19 0.48 0.04 0.03

SAMP

E1 0.08 0.34 0.09 0.20 0.29 0.20

E2 0.12 0.08 0 0.24 0.43 0.29

Unified

E1 0.12 0.01 0.01 0.82 0.66 0.73

E2 1.0 0 0 0.61 0.7 0.65

Min

E1 0.32 0.7 0.43 0.42 0.6 0.49

E2 0.29 0.26 0.27 0.99 0.76 0.85

Algorithm

Parking DataX

P R F1 P R F1

Horizon 0.98 0.56 0.7 0.93 0.93 0.93

Holistic 0.43 0.12 0.18 1.0 0.08 0.14

SAMP 0.14 0.02 0 0.2 0.32 0.24

Unified 0.42 0.1 0.16 0.71 0.06 0.11

Min 0.1 0.04 0.05 0.95 0.66 0.77

Table 3: Non-rule-based baselines results (CE on the left, and UE on the right). E = Error type, P = Precision, R = Recall, F1 = F1 score.

Algorithm E

Tax Hospital

P R F1 Time P R F1 Time

Horizon E1 0.95 0.75 0.83 0.5 sec 0.93 0.79 0.85 0.8 sec
E2 0.85 0.05 0.09 0.63 sec 0.98 0.73 0.83 0.57 sec

HoloClean E1 0.85 0.01 0.01 13 min 1.0 0.09 0.16 13 min

E2 0.91 0.01 0.01 8 min 1.0 0.61 0.75 14 min

Baran E1 0.97 0.94 0.96 2 min 1.0 0.14 0.24 2 min

E2 0.72 0.67 0.7 20 min 0.54 0.44 0.49 5.2 min

Algorithm

Parking DataX

P R F1 Time P R F1 Time

Horizon 0.89 0.61 0.72 1 sec 0.93 0.93 0.93 1 sec

HoloClean 0.7 0.1 0.17 18 min 0.91 0.72 0.8 33 min

Baran 0.14 0.02 0.0 11 sec 1.0 0.2 0.33 44 sec

Table 4: Interaction cases (IC) vs. precision (P), recall (R), F1 and
runtime (T) in sec. We use a bit array to indicate which IC is present
in the input FDs (e.g., 0101 indicates FDs involved in IC2 and IC4).

Tax

ICs 0011 0101 0110 0111 1001 1010 1011 1100 1101 1110 1111

P 0.81 0.29 0.95 0.95 0.81 0.80 0.81 0.81 0.81 0.81 0.81

R 0.72 0.01 0.66 0.66 0.71 0.71 0.71 0.72 0.72 0.71 0.71

F1 0.75 0.01 0.77 0.77 0.75 0.74 0.75 0.75 0.75 0.75 0.75

T 3.68 2.34 3.42 5.32 5.09 6.00 8.04 5.13 6.61 7.70 9.71

Hospital

ICs 0011 0101 0110 0111 1001 1010 1011 1100 1101 1110 1111

P 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93

R 0.81 0.75 0.75 0.78 0.78 0.81 0.80 0.75 0.76 0.78 0.78

F1 0.86 0.82 0.82 0.84 0.84 0.86 0.85 0.82 0.82 0.84 0.84

T 6.01 7.82 4.90 9.09 8.87 5.99 9.52 7.81 12.01 8.75 13.03

Implementation and Hardware Platform. Horizon is imple-

mented in Java. Evaluation was done on a Linux machine with

8 Intel Xeon E5450 3.0GHz cores and 32GB main memory.

6.2 Effectiveness Results
In Table 2, we report effectiveness results for CE (left) and UE (right).

In this section, we focus on rule-based baselines while we present

non-rule-based baselines results in Section 6.5.

Table 2 shows that Horizon outperforms (F1 score) all other

baselines on all datasets with one exception where it is slightly

outperformed by Min on Hospital with E2 errors. It also outper-

forms these baselines on Precision and Recall values with very few

exceptions. As expected, E1 errors are more amenable to repairs

than E2 errors. This is because E2 errors are random and are not

necessarily FD-detectable, this is why the F1 scores for E2 errors is

generally low. Horizon performs well on E1 errors as they usually

belong to FD patterns that are not frequent in the data, making

alternative “frequent” patterns more likely to be correct. We also

note that the repair quality of Horizon is more or less consistent

across all datasets and characteristics (Table 1).

As for the competing baselines, For Hospital E2, Min has the

highest F1; due to the high redundancy in the data, Min was able

to find the repairs even with the added noise. However, it is worse

than Horizon on all other datasets in addition to a high runtime.

Holistic can reach a high precision (DataX and Parking), but misses

a lot of repairs (hence the low recall). Holistic, SAMP, Min perform

poorly because (1) they only focus on minimal changes to repair the

data, which in most cases does not cover all the space of repairs; and

(2) when they are undecided on a repair, they introduce special vari-

ables (outside the domain) to fix a rule violation. Unified performs

poorly on Tax because: (1) The order of FDs in Unified was causing

an incorrect fix to be performed for earlier FDs which limits the

repair choices in the subsequent FDs. (2) We noticed that Unified
starts with FDs that have columns with lower redundancies. From

Table 1, we can see that Tax has the highest number of attributes

with an average redundancy that is less than 5. These attributes

appear in the FDs of Tax making it hard to select the correct fix for

conflicting values in those columns, and making the wrong choices

for FDs with those columns creates bad repairs in other FDs.

Repair quality vs. error rate. Figures 5a-b report the F1 score

of repairs w.r.t. different data error rates. Horizon outperforms the

other systems, especially as the error rate goes up. This is because

addingmore errorsmakes it harder forminimality-based algorithms

to identify correct cell values, whereas Horizon selects values that

lead to frequent FD patterns, and hence, a better repair quality.

Takeaways. 1○ Using FD patterns to repair an instance leads to

high-quality FD repairs. 2○ Minimality does not produce high-

quality repairs. 3○ Because Horizon captures patterns across several
attributes, the lack of redundancy on individual attributes does not

significantly affect its performance.

6.3 Repair quality vs. interaction case
In this section, we examine the effect of the different pattern Inter-

action Cases (ICs) in the input FDs on repair quality and runtime.

As discussed in Section 4, Horizon employs four pattern interaction

cases. Table 4 reports all possible combinations among the four

ICs. We have a total of 11 configurations (we exclude the case with

0 FDs and only one IC). We use a bit array notation to indicate

which IC is present in the input FDs. For example 0101 indicates

2552

 0

 0.2

 0.4

 0.6

 0.8

 1

5 10 15 20 25 30

F1

Error %

Horizon
HOLISTIC

SAMP
Unified

Min

(a) % Errors vs. F1. (Tax)

 0

 0.2

 0.4

 0.6

 0.8

 1

5 10 15 20 25 30

F1

Error %

Horizon
HOLISTIC

SAMP
Unified

Min

(b) % Errors vs. F1 (Hospital)

 100

 1000

 10000

 100000

 1×106

 1×107

 1×108

20k 40k 60k 80k 100k

R
e
p
a
ir

 t
im

e
 (

m
se

c)

#tuples

Horizon
HOLISTIC

SAMP
Unified

Min

(c) Repair time (Tax)

 100

 1000

 10000

 100000

 1×106

 1×107

 1×108

20k 40k 60k 80k 100k

R
e
p
a
ir

 t
im

e
 (

m
se

c)

#tuples

Horizon
HOLISTIC

SAMP
Unified

Min

(d) Repair time (Hospital)

 10

 100

 1000

 10000

 100000

1M 2M 3M 4M 5M

R
e
p

a
ir

 t
im

e
 (

se
c)

#tuples

Horizon
HOLISTIC

SAMP
Unified

(e) Repair time (Tax_Extended)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

1M 2M 3M 4M 5M 6M 7M 8M 9M
R

e
p

a
ir

 t
im

e
 (

se
c)

#tuples

Horizon
SAMP

Unified

(f) Repair time (Parking)

 5
 10
 15
 20
 25
 30
 35
 40
 45
 50
 55

8M 16M 24M 32M 40M 48M 56M 64M

R
e
p

a
ir

 t
im

e
 (

m
in

)

#tuples

(g) Repair time (DataX)

Figure 5: Effectiveness and Runtime results

FDs participating in IC2 and IC4. As expected, the more interaction

cases we have in the input FDs, the higher the repair time. We

notice that IC4 (the cyclic FDs case) introduces the most overhead.

With few ICs, the quality of repairs suffers (e.g., Tax 0101); Horizon
is unable to benefit from the interactions among the FDs or the low

data redundancy in Tax. The ICs that improve repair quality are

IC3 and IC1. This is expected as IC3 forms longer chains among

the FD patterns enabling the propagation of quality scores and IC1

allows choosing the 𝑅𝐻𝑆 with the highest support.

6.4 Runtime Results
We report the runtime results in Figures 5c-g for all the datasets.

Horizon significantly outperforms all the competing baselines by

at least 3 orders of magnitude. All the competing baselines strive

to generate minimal repairs, which boils down to solving an op-

timization problem to detect and then resolve the violating cells.

All the algorithms were given a 24-hour deadline to finish running

for each data size increment. In many cases, some of the compet-

ing baselines could not terminate (missing points in Figure 5e-g).

Overall, it took Horizon about 75 seconds to clean the 5 million

records in Tax_Extended. For DataX,𝐻𝑜𝑙𝑖𝑠𝑡𝑖𝑐 and 𝑆𝐴𝑀𝑃 did not fin-

ish running even with a 1M-record partition. With Parking, 𝑆𝐴𝑀𝑃
and 𝑈𝑛𝑖 𝑓 𝑖𝑒𝑑 could not finish for over 1M records while Holistic
could not even handle 1M records. It took a total of around 300

seconds to clean the 9 million records in Parking (Figure 5f). In

Figure 5g we report the runtime of Horizon using 8M increments of

DataX. It took 53 minutes to clean the 64M records while none of

the competing baselines were able to terminate even the smallest

increment (8M) within 24 hours. The runtime of Unified is affected

by the value length and average redundancy. For example, Unified
takes the longest on Tax which happens to have the highest number

of attributes with low redundancy (Table 1) which in turn increases

the set of unique values, and hence repair time. Furthermore, even

with the high redundancy of Hospital, Unified’s runtime is close to

the one in Tax because Hospital has a high average value length.

Overall, Unified’s runtime is unpredictable; it took 27 mins to repair

Parking (1M) while it did not finish within 24 hours for DataX (1M).

This is because DataX has a (1) slightly higher avg. |𝑣𝑎𝑙 | and (2) a

high set of candidate repairs, which leads to computing string simi-

larity across a larger number of value pairs. In general, the runtime

of Unified is relatively high compared to Horizon.

Takeaways. 1○ Thanks to its FDG traversal strategy, Horizon can

scale to millions of records linearly. 2○ Data redundancy and value

length directly affect the performance of rule-based baselines.

6.5 Comparison to non-rule-based baselines
Table 3 summarizes effectiveness and runtime results when Horizon
is compared to HoloClean and Baran. In order for HoloClean and

Baran to terminate within 24 hours, we had to evaluate them on

smaller sizes of the datasets: Hospital (20k), Tax(10k), Parking(20k)

and DataX(20k). We note the following: (1) HoloClean and Baran
require a specification of the cells that have errors. If we consider

all the cells involved in FD violations as potentially erroneous cells,

HoloClean and Baran perform poorly on E1 errors while Baran per-

forms better with E2 errors in Tax. (2) HoloClean performs well on

DataX, which has a low redundancy, suggesting that HoloClean can

generalize well even with a low redundancy. (3) Runtime of Holo-
Clean is unpredictable. It took 13 min on 20k records of 𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙 ,

while it took 33 min on DataX.

Takeaways. 1○ Horizon’s focus on FD errors allows it to generate

higher-quality FD repairs than cleaning systems that target gener-

ality and may miss several errors that may appear as FD violations.

2○ The complexity of general cleaning systems makes them ineffi-

cient for iterative cleaning scenarios.

7 CONCLUSIONS
In this paper, we presented a novel technique that is a radical

departure from existing repair approaches both in accuracy and

scalability. Guided by the FDs, Horizon generates a set of modi-

fications that exploit inherent FD-induced patterns found in the

data to produce a repair instance. Moreover, we leverage the FD

interactions to produce the repair instance in linear time.

2553

REFERENCES
[1] New York City Open Data. https://opendata.cityofnewyork.us.

[2] Serge Abiteboul, Richard Hull, and Victor Vianu (Eds.). 1995. Foundations of
Databases: The Logical Level (1st ed.). Addison-Wesley Longman Publishing Co.,

Inc., Boston, MA, USA.

[3] Rakesh Agrawal, Tomasz Imieliński, and Arun Swami. 1993. Mining Association

Rules Between Sets of Items in Large Databases (SIGMOD ’93).
[4] Patricia C. Arocena, Boris Glavic, Giansalvatore Mecca, Renée J. Miller, Paolo

Papotti, and Donatello Santoro. 2015. Messing Up with BART: Error Generation

for Evaluating Data-cleaning Algorithms. Proc. VLDB Endow. 9, 2 (Oct. 2015),
36–47. https://doi.org/10.14778/2850578.2850579

[5] Giorgio Ausiello and Luigi Laura. 2017. Directed hypergraphs: Introduction

and fundamental algorithms—A survey. Theoretical Computer Science 658 (2017),
293–306. https://doi.org/10.1016/j.tcs.2016.03.016 Horn formulas, directed hy-

pergraphs, lattices and closure systems: related formalism and application.

[6] George Beskales, Ihab F. Ilyas, and Lukasz Golab. 2010. Sampling the Repairs of

Functional Dependency Violations under Hard Constraints. Proc. VLDB Endow.
3, 1 (2010), 197–207. https://doi.org/10.14778/1920841.1920870

[7] George Beskales, Ihab F. Ilyas, Lukasz Golab, and Artur Galiullin. 2013. On the

relative trust between inconsistent data and inaccurate constraints. In 29th IEEE
International Conference on Data Engineering, ICDE 2013, Brisbane, Australia, April
8-12, 2013, Christian S. Jensen, ChristopherM. Jermaine, and Xiaofang Zhou (Eds.).

IEEE Computer Society, 541–552. https://doi.org/10.1109/ICDE.2013.6544854

[8] Philip Bohannon, Wenfei Fan, Michael Flaster, and Rajeev Rastogi. 2005. A

Cost-based Model and Effective Heuristic for Repairing Constraints by Value

Modification. In Proceedings of the 2005 ACM SIGMOD International Conference
on Management of Data (Baltimore, Maryland) (SIGMOD ’05). 143–154. https:

//doi.org/10.1145/1066157.1066175

[9] Fei Chiang and Renée J. Miller. 2011. A unified model for data and constraint

repair. 2011 IEEE 27th International Conference on Data Engineering (2011), 446–

457.

[10] Xu Chu, Ihab F. Ilyas, and Paolo Papotti. 2013. Holistic data cleaning: Putting

violations into context. In 29th IEEE International Conference on Data Engineering,
ICDE 2013, Brisbane, Australia, April 8-12, 2013. 458–469. https://doi.org/10.1109/

ICDE.2013.6544847

[11] Xu Chu, Mourad Ouzzani, John Morcos, Ihab F. Ilyas, Paolo Papotti, Nan Tang,

and Yin Ye. 2015. KATARA: Reliable Data Cleaning with Knowledge Bases and

Crowdsourcing. Proc. VLDB Endow. 8, 12 (2015), 1952–1955. https://doi.org/10.

14778/2824032.2824109

[12] Gao Cong, Wenfei Fan, Floris Geerts, Xibei Jia, and Shuai Ma. 2007. Improving

Data Quality: Consistency and Accuracy. In VLDB’07. 315–326.
[13] Graham Cormode, Lukasz Golab, Flip Korn, Andrew McGregor, Divesh Srivas-

tava, and Xi Zhang. 2009. Estimating the confidence of conditional functional

dependencies. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, SIGMOD 2009, Providence, Rhode Island, USA, June 29 - July
2, 2009, Ugur Çetintemel, Stanley B. Zdonik, Donald Kossmann, and Nesime

Tatbul (Eds.). ACM, 469–482. https://doi.org/10.1145/1559845.1559895

[14] Michele Dallachiesa, Amr Ebaid, Ahmed Eldawy, Ahmed K. Elmagarmid, Ihab F.

Ilyas, Mourad Ouzzani, and Nan Tang. 2013. NADEEF: a commodity data clean-

ing system. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, SIGMOD 2013, New York, NY, USA, June 22-27, 2013, Ken-
neth A. Ross, Divesh Srivastava, and Dimitris Papadias (Eds.). ACM, 541–552.

https://doi.org/10.1145/2463676.2465327

[15] Sushovan De, Yuheng Hu, Venkata Vamsikrishna Meduri, Yi Chen, and Sub-

barao Kambhampati. 2016. BayesWipe: A Scalable Probabilistic Framework

for Improving Data Quality. ACM J. Data Inf. Qual. 8, 1 (2016), 5:1–5:30.

https://doi.org/10.1145/2992787

[16] Dong Deng, Raul Castro Fernandez, Ziawasch Abedjan, Sibo Wang, Michael

Stonebraker, Ahmed K. Elmagarmid, Ihab F. Ilyas, Samuel Madden, Mourad Ouz-

zani, and Nan Tang. 2017. The Data Civilizer System. In CIDR 2017, 8th Biennial
Conference on Innovative Data Systems Research, Chaminade, CA, USA, January 8-
11, 2017, Online Proceedings. www.cidrdb.org. http://cidrdb.org/cidr2017/papers/

p44-deng-cidr17.pdf

[17] Wenfei Fan, Floris Geerts, Xibei Jia, and Anastasios Kementsietsidis. 2008. Condi-

tional Functional Dependencies for Capturing Data Inconsistencies. ACM Trans.
Database Syst. 33, 2, Article 6 (June 2008), 48 pages.

[18] Floris Geerts, Giansalvatore Mecca, Paolo Papotti, and Donatello Santoro. 2013.

The LLUNATIC Data-cleaning Framework. Proc. VLDB Endow. 6, 9 (July 2013),

625–636. https://doi.org/10.14778/2536360.2536363

[19] Lukasz Golab, Howard Karloff, Flip Korn, Divesh Srivastava, and Bei Yu. 2008.

On Generating Near-optimal Tableaux for Conditional Functional Dependencies.

Proc. VLDB Endow. (Aug. 2008). https://doi.org/10.14778/1453856.1453900

[20] Shuang Hao, Nan Tang, Guoliang Li, Jian He, Na Ta, and Jianhua Feng. 2017. A

Novel Cost-Based Model for Data Repairing. IEEE Trans. on Knowl. and Data Eng.
29, 4 (April 2017), 727–742. https://doi.org/10.1109/TKDE.2016.2637928

[21] Ihab F. Ilyas and Xu Chu. 2015. Trends in Cleaning Relational Data: Consistency

and Deduplication. Foundations and Trends in Databases 5, 4 (2015), 281–393.

https://doi.org/10.1561/1900000045

[22] Matteo Interlandi and Nan Tang. 2015. Proof positive and negative in data

cleaning. In 2015 IEEE 31st International Conference on Data Engineering. IEEE,
18–29.

[23] Solmaz Kolahi and Laks V. S. Lakshmanan. 2009. On Approximating Optimum

Repairs for Functional Dependency Violations (ICDT ’09).
[24] Mohammad Mahdavi and Ziawasch Abedjan. 2020. Baran: Effective Error Cor-

rection via a Unified Context Representation and Transfer Learning. Proc.
VLDB Endow. 13, 11 (2020), 1948–1961. http://www.vldb.org/pvldb/vol13/p1948-

mahdavi.pdf

[25] Theodoros Rekatsinas, Xu Chu, Ihab F. Ilyas, and Christopher Ré. 2017. HoloClean:

Holistic Data Repairs with Probabilistic Inference. Proc. VLDB Endow. 10, 11 (Aug.
2017), 1190–1201. https://doi.org/10.14778/3137628.3137631

[26] El Kindi Rezig, Lei Cao, Giovanni Simonini, Maxime Schoemans, Samuel Madden,

Nan Tang, Mourad Ouzzani, and Michael Stonebraker. 2020. Dagger: A Data

(not code) Debugger. In CIDR 2020, 10th Conference on Innovative Data Systems
Research, Amsterdam, The Netherlands, January 12-15, 2020, Online Proceedings.
www.cidrdb.org. http://cidrdb.org/cidr2020/papers/p35-rezig-cidr20.pdf

[27] Jaroslaw Szlichta, Parke Godfrey, Lukasz Golab, Mehdi Kargar, and Divesh Sri-

vastava. 2018. Effective and Complete Discovery of Bidirectional Order Depen-

dencies via Set-based Axioms. The VLDB Journal 27, 4 (Aug. 2018), 573–591.

https://doi.org/10.1007/s00778-018-0510-0

[28] Robert Tarjan. 1972. Depth first search and linear graph algorithms. SIAM
JOURNAL ON COMPUTING 1, 2 (1972).

[29] Manasi Vartak and Samuel Madden. 2018. MODELDB: Opportunities and Chal-

lenges in Managing Machine Learning Models. IEEE Data Eng. Bull. 41, 4 (2018),
16–25. http://sites.computer.org/debull/A18dec/p16.pdf

[30] Jiannan Wang, Sanjay Krishnan, Michael J. Franklin, Ken Goldberg, Tim Kraska,

and Tova Milo. 2014. A sample-and-clean framework for fast and accurate query

processing on dirty data. In International Conference on Management of Data,
SIGMOD 2014, Snowbird, UT, USA, June 22-27, 2014, Curtis E. Dyreson, Feifei
Li, and M. Tamer Özsu (Eds.). ACM, 469–480. https://doi.org/10.1145/2588555.

2610505

[31] JiannanWang and Nan Tang. 2017. Dependable Data Repairing with Fixing Rules.

ACM J. Data Inf. Qual. 8, 3-4 (2017), 16:1–16:34. https://doi.org/10.1145/3041761

[32] Mohamed Yakout, Laure Berti-Équille, and Ahmed K. Elmagarmid. 2013. Don’T

Be SCAREd: Use SCalable Automatic REpairing with Maximal Likelihood and

Bounded Changes (SIGMOD ’13).

2554

https://opendata.cityofnewyork.us
https://doi.org/10.14778/2850578.2850579
https://doi.org/10.1016/j.tcs.2016.03.016
https://doi.org/10.14778/1920841.1920870
https://doi.org/10.1109/ICDE.2013.6544854
https://doi.org/10.1145/1066157.1066175
https://doi.org/10.1145/1066157.1066175
https://doi.org/10.1109/ICDE.2013.6544847
https://doi.org/10.1109/ICDE.2013.6544847
https://doi.org/10.14778/2824032.2824109
https://doi.org/10.14778/2824032.2824109
https://doi.org/10.1145/1559845.1559895
https://doi.org/10.1145/2463676.2465327
https://doi.org/10.1145/2992787
http://cidrdb.org/cidr2017/papers/p44-deng-cidr17.pdf
http://cidrdb.org/cidr2017/papers/p44-deng-cidr17.pdf
https://doi.org/10.14778/2536360.2536363
https://doi.org/10.14778/1453856.1453900
https://doi.org/10.1109/TKDE.2016.2637928
https://doi.org/10.1561/1900000045
http://www.vldb.org/pvldb/vol13/p1948-mahdavi.pdf
http://www.vldb.org/pvldb/vol13/p1948-mahdavi.pdf
https://doi.org/10.14778/3137628.3137631
http://cidrdb.org/cidr2020/papers/p35-rezig-cidr20.pdf
https://doi.org/10.1007/s00778-018-0510-0
http://sites.computer.org/debull/A18dec/p16.pdf
https://doi.org/10.1145/2588555.2610505
https://doi.org/10.1145/2588555.2610505
https://doi.org/10.1145/3041761

