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Definition 5 [Comparability of two trends]. Two trends 𝑡1: (𝑐1)(𝑔1,
𝑚1) and 𝑡2: (𝑐1)(𝑔2,𝑚2) can be compared if 𝑔1 = 𝑔2 and𝑚1 =𝑚2, i.e.,
they have the same grouping and measure.

For example, a trend (R.product = ‘Inspiron’) (R.week, AVG(
R.revenue)) and a trend (R.product = ‘XPS’)( R.month, AVG(R.pro-
fit)) are not comparable since they differ on grouping and measure.

Next, we define a function scorer for comparing two trends.

Definition 6 [Scorer]. Given two trends 𝑡1 and 𝑡2, a scorer is any
function that returns a single scalar value called ‘score’ measuring
how 𝑡1 compares with 𝑡2.

While any function satisfying the above definition can be used
as a scorer, two trends are often compared using 𝐿𝑝 norms such as
Euclidean distance [26, 38, 42]. Such functions are also called ag-
gregated distance functions [29]. All aggregated distance functions
use a function DIFF(.)1 as defined below.

Definition 7 [DIFF(𝑚1,𝑚2, 𝑝)]. Given a tuple with measure value
𝑚1 and grouping value 𝑔𝑖 in trend 𝑡1 and another tuple with measure
value𝑚2 and the same grouping value 𝑔𝑖 , DIFF(𝑚1,𝑚2, p) = |𝑚1 −
𝑚2 |

𝑝 where 𝑝 ∈ Z+. Tuples with non-matching grouping values are
ignored.

Since𝑚1 and𝑚2 are clear from the definition of 𝑡1 and 𝑡2, we
succinctly represent DIFF(𝑚1,𝑚2, 𝑝) = DIFF(𝑝).

Definition 8 [Aggregated Distance Function]. An aggregated dis-
tance function compares trends 𝑡1 : (𝑐𝑖 ) (𝑔𝑖 ,𝑚𝑖 ) and 𝑡2 : (𝑐 𝑗 ) (𝑔𝑖 ,𝑚𝑖 )
in two steps: (i) first DIFF(p) is computed between every pairs of tu-
ples in 𝑡1 and 𝑡2 with same values of 𝑔𝑖 , and (ii) all values of DIFF(p)
are aggregated using an aggregate function AGG such as SUM, AVG,
MIN, and MAX to return a score. An aggregated distance function is
represented as AGG OVER DIFF(p).

For example, 𝐿𝑝 norms2 such as Euclidean distance can be spec-
ified using SUM OVER DIFF(2), Manhattan distance using SUM
OVER DIFF(1), mean-absolute deviation as AVG OVER DIFF(1),
mean-square deviation as AVG OVER DIFF(2).

2.2.4 Comparison between Trendsets. We extend Definition 5 to
the following observation over trendsets.

Observation 1 [Comparability between two trendsets] Given
two trendsets 𝑇1 and 𝑇2, a trend (𝑐𝑖 ) (𝑔𝑖 ,𝑚𝑖 ) in 𝑇1 is compared with
only those trends (𝑐 𝑗 ) (𝑔 𝑗 ,𝑚 𝑗 ) in 𝑇2 where 𝑔𝑖 = 𝑔 𝑗 and𝑚𝑖 =𝑚 𝑗 .

Thus, given two trendsets, we can automatically infer which
trends between the two trendsets need to be compared. We use
𝑇 1<->𝑇 2 to denote the comparison between𝑇1 and𝑇2. For example,
the comparison in example 1a can be represented as:
[region = ‘Inspiron’][(week, AVG(revenue))] <-> [region = ‘Asia’,
product][ (week, AVG (revenue))]

If both𝑇1 and𝑇2 consist of the same set of grouping and measure
expressions say {(𝑔1,𝑚1), ..., (𝑔𝑛 ,𝑚𝑛)} and differ only in constraint,
then
[𝑐1][(𝑔1,𝑚1), ..., (𝑔𝑛 ,𝑚𝑛)] <-> [𝑐2][(𝑔1,𝑚1), ..., (𝑔𝑛 ,𝑚𝑛)]⇒ [𝑐1 <->
𝑐2][(𝑔1,𝑚1), ..., (𝑔𝑛 ,𝑚𝑛)]

Thus, the comparison between trendsets in example 1a can be
succinctly expressed as:
[(region = ‘Asia’) <-> (region = ‘Asia’, product) ][(week, AVG(reve-
nue))]

Similarly, the following expression represents the comparison in
example 1b.

1Note that the function DIFF is distinct from another operator [5] with similar name.
2We ignore the 𝑝th root as it does not affect the ranking of subsets.

Table 1: Output of Compare in Example 1a
R1 P W V score
Asia XPS True True 30
Asia Inspiron True True 24
... ... ... ... ...

Asia G8 True True 45

[(region = ‘Asia’) <-> (region = ‘Asia’, product = ‘Inspiron’)][(week,
AVG(revenue)), (country, AVG(profit)), ... , (month, AVG(revenue))]

We can now define a comparative expression using the notions
introduced so far.

Definition 9 [Comparative expression]. Given two trendsets𝑇1 <->
𝑇2 over a relation 𝑅, and a scorer F , a comparative expression com-
putes the scores between trends (𝑐𝑖 ) (𝑔𝑖 ,𝑚𝑖 ) in 𝑇1 and (𝑐 𝑗 ) (𝑔 𝑗 ,𝑚 𝑗 )
in 𝑇2 where 𝑔𝑖 = 𝑔 𝑗 and𝑚𝑖 =𝑚 𝑗 using F .

3 THE COMPARE OPERATOR
In this section, we introduce a new operator Compare, that makes
it easier for data analysts and application developers to express
comparative queries. We first explain the syntax and semantics of
Compare and then show how Compare interoperates with other re-
lational operators to express top-k comparative queries as discussed
in Section 2.1.

3.1 Syntax and Semantics
Compare, denoted by Φ, is a logical operator that takes as input a
a comparative expression specifying two trendsets 𝑇1 <->𝑇2 over
relation 𝑅 along with a scorer F and returns a relation 𝑅′.

Φ(𝑅,𝑇1<->𝑇2, F ) → 𝑅′

𝑅′ consists of scores for each pair of compared trends between
the two trendsets. For instance, the table below depicts the output
schema for the Compare expression [𝑐1 <-> 𝑐2][(𝑔1,𝑚1), (𝑔2,𝑚2)].
The values in the shown tuple indicate that the trend (𝑐1 = 𝛼1)(𝑔1,
𝑚1) is compared with the trend (𝑐2 = 𝛼2)(𝑔1,𝑚1) and the score is
10.

𝑐1 𝑐2 𝑔1 𝑚1 𝑔2 𝑚2 score
𝛼1 𝛼2 True True False False 10

... ... ... ... ... ... ...

We express the Compare operator in SQL using two extensions:
Compare and USING:

COMPARE T1 <-> T2

USING F

For instance, for example 1a, the comparison between the AVG(reve-
nue) over week trends for the region ‘Asia’ and each of the products
in region ’Asia’ can be succinctly expressed as follows:

Listing 1: COMPAREXPR1A

SELECT R1, P, W, V, score
FROM sales R
COMPARE [((R.region = Asia) AS R1) <-> (R1, R.product AS P)]

[R.week AS W, AVG (R.revenue) AS V]
USING SUM OVER DIFF(2) AS score

Here𝑇1 = [((R.region =Asia) AS R1)][R.weekASW,AVG (R.revenue)
AS V] and 𝑇2 = [((R.region = Asia) AS R1, R.product AS P)][R.week
AS W, AVG (R.revenue) AS V]. Since 𝑇1 and 𝑇2 share the same
set of (grouping, measure) and the filter (R.region = Asia) in their
constraints, we concisely express them as [((R.region = Asia) AS
R1)<->(R1, R.product AS P)][R.week AS W, AVG (R.revenue) AS V]
as discussed earlier.

Table 1 illustrates the output of this query. The first two columns
R1 and P identify the values of constraint for compared trends in T1
and T2. The columnsW and V are Boolean valued denoting whether
R.week and AVG(R.revenue) were used for the compared trends.
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Table 2: Output of Compare in Example 1b
R1 P W C M V O score
Asia Inspiron True False False True False 40
Asia Inspiron False True False True False 20
... ... ... ... ... ... ... ...

Asia Inspiron False False True True False 10

Thus, the values of (R1, P, W, V) together identify the pairs of trends
that are compared. Since R.week and AVG(R.revenue) are grouping
and measure for all trends in this example, their values are always
True. Finally, the column score specifies the scores computed using
Euclidean distance, expressed as SUM OVER DIFF(2).

Now, consider below the query for example 1b that compares
tuples where (R.region = Asia) with tuples where (R.region = Asia)
and (R.product = ’Inspiron’) over a set of (grouping, measure):

Listing 2: COMPAREXPR1B

SELECT R1, P, W, C, V, ..., M, score
FROM sales R
COMPARE [((R.region = Asia) AS R1) <-> (R1, (R.product = 'Inspiron')

AS P)][(R.week AS W, AVG(R.revenue) AS V), (R.country AS
C, AVG(R.profit) AS O), ..., (R.month AS M, V)]

USING SUM OVER DIFF(2) AS score

Table 2 depicts the output for this query. The columns R1 and P
are always set to "Asia" and "Inspiron" since the constraint for all
trends in T1 and T2 are fixed. W, C, M, V, and P consist of Boolean
values telling which columns among R.week, R.country, R.month,
AVG(R.revenue), and AVG(R.profit) were used as (grouping, mea-
sure) for the pair of compared trends.

From above examples, it is easy to see that we can write queries
with Compare expression for examples 2a and 2b as follows:

Listing 3: COMPAREXPR2A

SELECT R1, C1, R2, C2, W, V, score
FROM sales R
COMPARE [((R.Region = Asia) AS R1, (R.city) AS C1) <-> ((R.Region

= Europe) AS R2, (R.city) AS C2)][R.week AS W,
AVG(R.revenue) AS V]

USING SUM OVER DIFF(2) AS score

Listing 4: COMPAREXPR2B

SELECT R1, C1, R2, C2, W, C, V, ..., M, score
FROM sales R
COMPARE [((R.Region = Asia) AS R1, (R.city) AS C1) <-> ((R.Region
= Europe) AS R2, (R.city) AS C2)][(R.week AS W, AVG(R.revenue)
AS V), (R.country AS C, AVG(R.profit) AS O), ..., (R.month AS M, V)]

USING SUM OVER DIFF(2) AS score

Note that Compare is semantically equivalent to a standard re-
lational expression consisting of multiple sub-queries involving
union, group-by, and join operators as discussed in introduction.
As such, Compare does not add to the expressiveness of the SQL lan-
guage. However, Compare provides a succinct and more intuitive
way to express frequently used comparative queries. For example,
expressing the query in Listing 2 using existing SQL clauses (see
Figure 3) is much more verbose, requiring a complex sub-query for
each (grouping, measure). Prior work have also proposed similar
succinct abstractions such as GROUPING SETs [15] and CUBE [20]
(both widely adopted by most of the databases) and more recently
DIFF [5]; all of these work share our goal that with an extended
syntax, complex analytic queries are easier to write and optimize.

3.2 Expressing Top-K Comparative Queries
While Compare outputs the scores for each pair of compared trends,
comparative queries often involve selection of top-𝑘 trends based
on their scores (Section 2.1). We discuss how Compare interoper-
ates with other operators such as join, filter to select top-k trends.

Essentially, the input to Compare is a relation, which can either be
a base table or an output from another logical operator (e.g., join
over multiple tables); similarly the output relation from Compare
can be an input to another logical operator or the final output. This
allows Compare to interoperate with other operators.

We show how we can use the above-listed Compare sub-express-
ions (referred by COMPAREXPR1A, COMPAREXPR1B, COMPAR-
EXPR2A, and COMPAREXPR1B) with LIMIT and join to select
tuples for trends belonging to top-𝑘 .

Example 1a. The following query selects the tuples of a prod-
uct in region ‘Asia’ that has the most different AVG(revenue) over
week trends compared to that of region ‘Asia’ overall. COMPAR-
EXPR1A refers to the sub-expression in Listing 1.

SELECT T.product, T.week, T.revenue, S.score
FROM sales T JOIN
(SELECT ∗ FROM COMPAREXPR1A
ORDER BY score DESC
LIMIT 1) AS S
WHERE T.product = S.P

The ORDER BY and LIMIT clause select the top-1 row in Table 1
with the highest score with P consisting of the most similar product.
Next, a join is performed with the base table to select all tuples of
the most similar product along with its score.

Example 2a. The query for example 2a differs from example 1a
in that both trendsets consist of multiple trends. Here, one may
be interested in selecting tuples of both cities that are similar, thus
we use the WHERE condition (T.city = S.C1 AND T.Region = S.R1)
OR (T.city = S.C2 AND T.Region = S.R2). (S.R1, S.R2, S.C1, S.C2) in
SELECT clause identifies the pair of compared trends.

SELECT T.Region, T.city, T.week, T.revenue, S.R1, S.C1, S.R2, S.C2,
S.score
FROM sales T JOIN
(SELECT ∗ FROM COMPAREXPR2A
ORDER BY score
LIMIT 1) AS S
WHERE (T.city = S.C1 AND T.Region = S.R1) OR (T.city = S.C2 AND
T.Region = S.R2)

Examples 1b and 2b. These examples extend the first two exam-
ples to multiple attributes. We show the query for example 2b; it’s
a complex version of (example 1b) where trends in each trendsets
are created by varying all three: constraint, grouping, measure
(example 1b has a fixed constraint for each trendset).

SELECT T.city, S.R1, S.R2, S.C1, S.C2,
CASE WHEN S.W THEN T.week ELSE NULL END,
...
CASE WHEN S.V THEN T.revenue ELSE NULL END,
S.score
FROM sales T JOIN
(SELECT ∗ FROM COMPAREXPR2B
ORDER BY score
LIMIT 1) AS S
WHERE (T.city = S.C1 AND T.Region = S.R1) OR (T.city = S.C2 AND
T.Region = S.R2)

The SELECT clause only outputs the values of columns for which
corresponding trends has the highest score, setting NULL for other
columns to indicate that those columns were not part of top-1 pair
of trends. This idea of setting NULL is borrowed from prior work
on CUBE [20]. Nevertheless, an alternative is to output values of
all columns, and add (S.W, S.M, S.C, S.P, S.V) (as in the previous
example) to the output to indicate which columns were part of the
comparison between top-1 pair of trends.
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Bounds = [1700, 6400]

8, 129, 13, 18 8, 100, 10, 14

8, 211, 23, 30 8, 183, 20, 27

Bounds = [1702, 4624]

(a) Exact score on comparing two trends
(b) Bounds on score us-
ing a single summary

(c) Bounds on score using
two-segment summaries

Figure 8: Using summaries to bound scores. F = SUM OVER DIFF(2). Each value in (a) corresponds to a single tuple in a trend.

compute the upper bound on SUM by multiplying the the MAX
(DIFF(𝑚1,𝑚2, 2)) by COUNT. For example, in Figure 8b, we get an
upper bound of 6400.

Multiple Piecewise Summaries. Given that the value of measure
can vary over a wide range in each trend, using a single summary ag-
gregate often does not result in tight upper bound. Thus, to tighten
the upper bound, we create multiple summary aggregates for each
trend, by logically dividing each trend into a sequence of 𝑙 segments,
where segment 𝑖 represents tuples from index: (𝑖−1) × 𝑛

𝑙
+1 to 𝑖× 𝑛

𝑙
where 𝑛 is the number of tuples in the trend. Instead of creating a
single summary, we compute a set of same summary aggregates
over each segment, called segment aggregates. For example, Fig-
ure 8c depicts two segment aggregates for each trend, with each
segment representing a range of 8 tuples. The bounds between a
pair of matching segments is computed in the same way as we de-
scribed above for a single summary aggregates. Then, we sum over
the bounds across all pairs of matching segments to get the overall
bound (see [37] for formal description). To estimate the number
of summary aggregates for each trend, we use Sturges formula,
i.e., (⌊1 + 𝑙𝑜𝑔2 (𝑛)⌋) [36], which assumes the normal distribution
of measure values for each trend. Because of its low computation
overhead and effectiveness in capturing the distribution or trends of
values, Sturges formula is widely used in the statistical packages for
automatically segmenting or binning data points into fewer groups.
We empirically evaluate the effectiveness of Sturges formula in
Section 8.

5.2 Early Termination
When selecting top-𝑘 trends, we can further reduce the computation
by ordering the comparison of trends that are not pruned in the
previous step. To do so, we assign an utility to each of the trends
that tells how likely they are going to be in the top-𝑘 . For estimating
the utility of trends, we use the bounds computed using segment
aggregates. Specifically, for selecting top-𝑘 trends in descending
order of their scores, a trend with higher upper bound score has
a higher utility and for ascending order of scores, a trend with
the smallest lower bound has a higher utility. The processing of
higher utility trends leads to the faster improvement in the pruning
threshold, thereby minimizing wastage of tuple comparisons over
low utility trends.

Furthermore, the utility of a trend can vary after comparing a
few tuples in a candidate trend. Hence, instead of processing the
entire trend in one go, we process one segment of a trend at a time,
and then update the bounds to check (i) if the trend can be pruned,
or (ii) if there is another trend with better utility that we can switch
to. Incrementally comparing high utility trends leads to pruning of
many trends without processing all of their tuples.

5.3 Putting It All Together
We implemented a new physical operator, Φ𝑝 , that takes as input
the trends, and replaces the join and F in query plan discussed in
Section 4. It outputs a relation consisting of tuples that identify
the top-𝑘 pairs of trends along with their scores. The algorithm
used by the operator makes use of four data structures: (1) SegAgg :
An array where index 𝑖 stores summary aggregates for segment 𝑖 .
There is one SegAgg per trend. (2) TState : It consists of the current

upper and lowers bounds on the score between two trends, as well
as the next segment within the trends to be compared next. There is
one TState for each pairs of trends, and is updated after comparing
each pairs of segment. (3) PQP : a max priority queue that keeps
track of the trend pairs with the highest upper bound. It is updated
after comparing each segment. (4) PQS : a min priority queue that
keeps track of the trend pairs with the smallest lowest bound. It is
updated after comparing each segment.

Algorithm 2 Pruning Algorithm for DIFF-based Comparison

1: Compute SegAgg and bitmaps for each trend 𝑐𝑖
2: for each pair of trends 𝑐𝑖 , 𝑐 𝑗 do
3: Compute bounds on scores (Section 5.1)
4: Update PQS

5: end for
6: for each pair of trends (𝑐𝑖 , 𝑐 𝑗 ) do
7: If ((𝑐𝑖 , 𝑐 𝑗 ) upper bound < PQS .Top()) Continue;
8: Initialize (𝑐𝑖 , 𝑐 𝑗 ) TState and push to PQP

9: end for
10: while size of PQP > 𝑘 do
11: (𝑐𝑖 , 𝑐 𝑗 ) = PQP .Top()
12: Compare a segment of 𝑐𝑖 with that of 𝑐 𝑗
13: Update bounds and PQS

14: If ((𝑐𝑖 , 𝑐 𝑗 ) upper bound < PQS .Top()) Continue;
15: Push (𝑐𝑖 , 𝑐 𝑗 ) to PQP

16: end while
17: Return Top 𝑘 trend pairs of trends and their scores from PQP

Algorithm 2 depicts the pseudo-code for a single threaded im-
plementation. We first compute the segment aggregates for trends
(line 1). For each pair of trends, we compute the bounds on scores
as discussed in Section 5.1, and update PQS to keep track of top 𝑘
lower bounds (lines 2Ð5). The upper bound for each pair of trend
is compared with PQS .Top() to check if it can be pruned (line 7).
If not pruned, the TState is initialized and pushed to PQP (line 8).
Once the TState of all unpruned trends are pushed to PQP , we
fetch the pair of trends with the highest upper bound score ((line
11)), and following the process outlined in Section 5.2, compare a
pair of segments (line 12). After the comparison, we check if the
current pair of trends is pruned or if there is another pair of trends
with higher upper bound (line 14ś15). This process is continued
until we are left with 𝑘 pairs of trends . Finally, we output values
of 𝑘 pairs of trends with highest scores (line 17).

Memory Overhead. Given a relation of 𝑛 tuples consisting of
𝑝 trends, Φ𝑝 creates 𝑝 × 𝑙𝑜𝑔(𝑛/𝑝) segment aggregates (assuming
tuples are uniformly distributed across trends), with each segment
aggregate consisting of fixed set of aggregates. In addition, the
operator maintains a TState consisting of bounds on scores between
each pair of trends as well as the priority queues to maintain top-k
pairs of trends. Thus, the overall space overhead is𝑂 (𝑝×𝑙𝑜𝑔(𝑛/𝑝)+

𝑝2).

6 ADDITIONAL ALGEBRAIC RULES
When Compare occurs with other logical operators, we present
transformation rules (see Table 3) that reorder Φ with other opera-
tors to generate more efficient plans.

R1. PushingΦ below join. Datawarehouses often have a snowflake
or star schema, where the input to Compare may involve a PK-FK
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Table 3: Algebraic equivalence rules for Φ: COMPARE [P1 = 𝛼1|P2=𝛼2][(M1, M2)] USING A OVER F

Rule Equivalence rule Pre-condition

𝑅1 Φ(𝑅 ⋈︁𝑇 𝑆) ≡ (Φ𝑘 (𝑅)) ⋈︁𝑇 𝑆 T: PK in S; T ⊆ {P1,P2, M1, M2} ⊆ R ;Φ𝑘 : Φ with PK columns replaced with FK columns
𝑅2 Υ𝐺,𝐴 (Φ(𝑅)) ≡ Φ(Υ𝐺,𝐴 (𝑅)) {P1, P2, M1, M2} ⊆ G and A ∈ {MAX,MIN }
𝑅3 𝜎𝐶 (Φ(𝑅)) ≡ Φ(𝜎𝐶 (𝑅)) 𝐶 ⊆ {P1, P2}
𝑅4 Φ2 (Φ1 (𝑅)) ≡ Φ1 (Φ2 (𝑅))) Φ1 : 𝑃1, 𝑃2 = Φ2 : 𝑃1, 𝑃2

join between fact and dimension tables. If one or more columns
in Φ are the PK columns or have functional dependencies on the
PK columns in the dimension tables , Φ can be pushed down below
the join on fact table by replacing the dimension tables columns
with the corresponding FK columns in the fact table (see Rule 𝑅1 in
Table 3.) For instance, consider example 1a in Section 2.1 that finds
a product with a similar average revenue over week trend to ‘Asia’.
Here, revenue column would typically be in a fact table along with
foreign key columns for region, product and year. In such cases, we
can push Φ below the join by replacing dimension table columns
(e.g., product, week) values with corresponding PK column values.

R2. Pushing Group-by Aggregate (Υ) below Φ to remove du-
plicates. When an aggregate operation occurs above Compare, in
some cases we can push the aggregate operation below the Com-
pare to reduce the size of each trend. In particular, consider an
aggregate operation Υ𝐺,𝐴 with group by attributes𝐺 and aggregate
function 𝐴 such that all columns used in Φ are in 𝐺 . Then, if all
aggregation functions in Φ ∈ {MAX, MIN}, we can push Υ below Φ

as per the Rule 𝑅2 in Table 3. Pushing aggregation operation below
Φ reduces the size of each trend by removing the duplicate values.

R3. Predicate pushdown. A filter operation (𝜎) on partition col-
umn (e.g., product) can be pushed down below Φ, to reduce the
number of partitions to be compared. While predicate pushdown
in a standard optimization, we notice that optimizers are unable to
apply such optimizations when the Compare are expressed via com-
plex combination of operations as described in Section 1. Adding
an explicit logical Compare, with a predicate pushdown rule makes
it easier for the optimizer to apply this optimization.

R4. Commutativity. Finally, a single query can consist of a chain
of multiple Compare operations for performing comparison based
on different metrics (e.g., comparing products first on revenue, and
then on profit). When multiple Φ operations on the same parti-
tioning attribute, we can swap the order such that more selective
Compare operation is executed first.

7 DISCUSSION
We discuss the generalizability and robustness of our proposed
optimizations as well as potential applications of Compare.

Generalizability of optimizations. The optimizations in Section
4 deal with replacing Compare to a sub-plan of physical operators
supported within database engines. These optimizations can be
incorporated in other database engines supporting cost-based opti-
mizations and transformation rules. We discuss additional transfor-
mation rules (see Table 3) in Section 6 that optimize sub-expressions
involving Compare and other logical operators. Finally, we show
that DIFF-based comparisons can be further optimized by adding a
new physical optimizations that first computes the upper and lower
bounds on the scores of each trend, which can be used for pruning
partitions without performing costly join.

Robustness to physical design changes. A large part of Com-
pare execution involves operators such as group-by, joins and parti-
tion (See Figure 6). Hence, the effect of physical design changes on
Compare is similar to their effect on these operators. For instance,
since column-stores tend to improve the performance of group-by
operations, they will likely improve the performance of Compare.
Similarly, if indexes are ordered on the columns used in constraints

or grouping, they can be leveraged to speed up the aggregation
and join. Finally, if there is a materialized view for a part of the
Compare expression, modern day optimizers can match and replace
the part of the sub-plan with a scan over the materialized view.

Applications of Compare. Compare can be used by data ana-
lysts as well as applications to issue comparative queries over large
datasets stored in relational databases. It has two advantages over
regular SQL and middleware approaches (e.g., Zenvisage, Seedb).
First, it allows succinct specification of comparative queries which
can be invoked from data analytic tools supporting SQL clients.
Second, it helps avoid data movement and serialization and dese-
rialization overheads, and is thus more efficient and scalable. We
classify the applications into two categories:

BI Tools. BI applications such as Tableau and Power BI do not
provide an easier mechanism for analysts to compare visualizations.
However, for supporting complex analytics involving multiple joins
and sub-queries, these tools support SQL querying interfaces. For
comparative queries, users currently have to either write complex
SQL queries as discussed in Introduction, or generate all possible
visualizations and compare them manually. With Compare, users
can now succinctly express such queries (as illustrated in Section
3) for in-database comparison.

Notebooks and Visual Analytic Tools. For large datasets stored in
relational databases, it is inefficient to pull the data into notebook
and use dataframe APIs for processing. Hence, analysts often use
a SQL interface to access and manipulate data within databases.
While one can also expose Python APIs for comparative queries
and automatically translate them to SQL, such features are limited
to the users of the Python library. SQL extensions, on the other
hand, can be invoked from multiple applications and languages
that support SQL clients. Similarly, there are visual analytic tools
such as as Zenvisage and Seedb that perform comparison between
subsets of data in a middleware. With Compare, such tools can
scale to large datasets and decrease the latency of queries as we
show in Section 8. Furthermore, in the same query, one can use
Compare along with other relational operators such as join and
group-by that are frequently used in data analytics (see Section
3.2).

8 PERFORMANCE EVALUATION
Using our prototype implementation on SQL Server (referred as
Compare below), we evaluate the improvement in latency with
respect to current execution strategy in SQL Server as described in
Section 4.1. We also consider two alternative strategies as baselines:
(b)Middleware: Issuing select-aggregate queries to retrieve the
data from SQL Server over a network (average speed of 10 MB/s)
and performing comparison and filtering in a C# implementation;
this approach mimics the data retrieval approach followed by vi-
sualization tools such as Zenvisage [38] while also incorporating
trendwise comparison and segment-aggregates based pruning opti-
mizations (discussed in Section 5), and (c) an UDF implementation
that executes within SQL Server. It takes as input the UNION of
all group-by aggregates (computed via GROUPING SETs clause)
and incorporates trendwise comparison and segment-aggregates
based pruning optimizations.

Datasets and Queries. We use two datasets: Flight [1] and TPC-
DS with a scale factor of 100 [27](summarized in Table 5). We use
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