
Robust VoiceQuerying with MUVE: Optimally
Visualizing Results of Phonetically SimilarQueries
Ziyun Wei

Cornell University
Ithaca, NY, USA

zw555@cornell.edu

Immanuel Trummer
Cornell University
Ithaca, NY, USA

itrummer@cornell.edu

Connor Anderson
Cornell University
Ithaca, NY, USA

ca339@cornell.edu

ABSTRACT
Recently proposed voice query interfaces translate voice input into
SQL queries. Unreliable speech recognition on top of the intrinsic
challenges of text-to-SQL translation makes it hard to reliably inter-
pret user input. We present MUVE (Multiplots for Voice quEries),
a system for robust voice querying. MUVE reduces the impact of
ambiguous voice queries by filling the screen with multiplots, cap-
turing results of phonetically similar queries. It maps voice input to
a probability distribution over query candidates, executes a selected
subset of queries, and visualizes their results in a multiplot.

Our goal is to maximize probability to show the correct query
result. Also, we want to optimize the visualization (e.g., by color-
ing a subset of likely results) in order to minimize expected time
until users find the correct result. Via a user study, we validate a
simple cost model estimating the latter overhead. The resulting
optimization problem is NP-hard. We propose an exhaustive algo-
rithm, based on integer programming, as well as a greedy heuristic.
As shown in a corresponding user study, MUVE enables users to
identify accurate results faster, compared to prior work.

PVLDB Reference Format:
Ziyun Wei, Immanuel Trummer, and Connor Anderson. Robust Voice
Querying with MUVE: Optimally
Visualizing Results of Phonetically Similar Queries. PVLDB, 14(11): 2397 -
2409, 2021.
doi:10.14778/3476249.3476289

1 INTRODUCTION
Voice interfaces are popular, as evidenced by the rise of devices
and services such as Google Home, Amazon Alexa, or Apple’s Siri.
They provide a particularly natural way to interact with computers
and enable hands-free interaction. This has recently motivated
systems that enable relational databases for voice access, including
for instance EchoQuery [19], CiceroDB [34], SpeakQL [31, 32], and
approaches for voice-based OLAP [6, 36], among others.

Voice query interfaces (VQIs) typically built on prior work on
natural language querying [10, 13, 17, 18, 25, 28, 29, 45]. Here, the
goal is to translate natural language text into corresponding SQL
queries. Despite significant recent advances, text-to-SQL translation
is a hard problem. The intricacies of natural language as well as
similarly named database elements lead to ambiguities in query

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 11 ISSN 2150-8097.
doi:10.14778/3476249.3476289

interpretation. This ambiguity translates to VQIs which built on
the latter. On top of that, VQIs rely on speech recognition which is
notoriously difficult. As established in prior studies [2], this makes
query interpretation for VQIs very hard.

Example 1. At the time of writing, issuing the query “OK Google,
what’s the population in New York?” via voice input on the Web
site www.google.com yields the population count for New York
City. However, ambiguity between New York City and New York
state is not addressed. The approach presented in this paper might
show results for both query interpretations (city and state). This
avoids the need for repeated queries or additional input if the most
likely query interpretation is incorrect.

Prior work on natural language and VQIs typically requests user
feedback to resolve ambiguities. For instance, users may provide
feedback on candidate queries [17] or select query fragments [2,
7]. Alternatively, users may get asked specific clarification ques-
tions [19] (e.g., in case of columns with similar names). All of those
methods have in common that users need to provide additional
input, costing them time. We explore a complementary approach to
resolve ambiguity in voice querying. Instead of resolving ambigui-
ties with the help of the user, we try to display results for all of the
most likely query interpretations. In doing so, we hope to reduce
disambiguation time for users. Our approach is implemented in the
MUVE system (Multiplots for Voice quEries).

MUVE relies on existing components for speech recognition and
to translate input text into a probability distribution over queries.
The primary research challenge we address in MUVE is the auto-
mated design of result multiplots. We formalize the generation of
the result output as an optimization problem. Our search space is
constrained by the screen resolution and minimal requirements on
font sizes and plot space. This means that we can only fit a limited
number of plots and data points onto the output screen. The goal of
optimization is to maximize the probability that the correct result
is shown on the output screen. In addition, the user time for finding
the correct query result in the visualization should be minimized.

Accurately estimating time until users find specific results is, of
course, challenging. We conduct a user study with crowd workers
to obtain a corresponding cost model. In our study, we analyze the
impact of visualization features such as color and positioning on
user response time. Based on our results, we formulate the visu-
alization optimization problem. The search space is the space of
multiplots, distinguished by results shown as well as other proper-
ties (e.g., color) of the visualization. The objective function is based
on our user model and estimates expected time overheads.

The optimization problem becomes challenging due to constraints
between plots and queries. Each plot presents results for a subset

2397

https://doi.org/10.14778/3476249.3476289
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3476249.3476289
www.google.com


of query candidates. Each query result is represented as one bar
in such a plot (we consider aggregation queries that result in a
single numerical result). The y axis of a plot measures the result
quantity. The x axis varies a query property. For instance, we may
vary the aggregation function on the x axis. Alternatively, we may
vary the constant used in one specific query predicate. Besides the
query property varied on the x axis, each plot contains results for
a fixed query template. In doing so, we avoid having to associate
each data point with a complete SQL query (which would require
disproportional amounts of space). It motivates however a judicious
choice of plots to display. For instance, it may not always be best
to display the single, most likely query result. Instead, it may be
better to choose a plot that can contain results for a large number
of likely queries, whose accumulated probability is dominant.

Multiplot selection problem is NP-hard (as we show in our anal-
ysis). Hence, we cannot obtain guaranteed optimal solutions ef-
ficiently (unless 𝑃 = 𝑁𝑃 ). MUVE features two solvers for this
problem. The first one translates a multiplot selection problem in-
stance into an integer linear program. It uses corresponding solver
software to obtain an optimal solution (which is then translated
into a visualization). In addition, MUVE features a greedy heuristic.
This algorithm does not guarantee an optimal solution. However,
it typically generates near-optimal solutions fast.

MUVE processes several alternative query interpretations. For
large data sets, this can lead to significant overheads. We describe
multiple strategies to mitigate such overheads, either by sharing
work between similar queries or by presenting results incremen-
tally. In our experiments, we evaluate different multiplot selection
algorithms as well as different approaches to reduce processing
overheads. We also perform user studies in which we evaluate user
satisfaction and compare MUVE to a baseline.

Our original, scientific contributions are the following.

• We propose the MUVE system, aimed at enabling robust
voice querying despite ambiguities due to noisy speech recog-
nition and text-to-SQL translation.
• We introduce the problem of multiplot selection. The goal is
to cover alternative query interpretations, each associated
with a likelihood, by an optimal result visualization.
• We present and formally analyze two algorithms to solve
the multiplot selection problem.
• We present multiple approaches to reduce the impact of
overheads when processing multiple query interpretations.
• We compare the performance of our algorithms experimen-
tally and perform user studies, validating our user model
and comparing MUVE against a baseline.

The remainder of this paper is organized as follows. We for-
mally introduce our problem model, and associated terminology,
in Section 2. Next, we give an overview of the MUVE system in
Section 3. We discuss user studies by which we established a user
model, as well as the resulting model, in Section 4. The optimization
problem, solved by MUVE, is based upon that model. In Section 5,
we describe how to map multiplot selection to integer program-
ming. In Section 6, we describe a corresponding greedy algorithm.
Then, in Section 7, we analyze our algorithms and properties of
our optimization problem. We discuss strategies to mitigate query
processing overheads, caused by processing multiple queries, in

Section 8. Finally, we report experimental results, comparing our
two solvers and comparing MUVE to baselines, in Section 9.

2 FORMAL MODEL
We introduce our problem model and related terminology.

Definition 1. A Candidate Query is a query into which the
voice input can possibly translate. It is associated with a probability,
indicating the confidence of the system that this query represents
the user’s intent accurately. In the context of this work, we focus on
queries (e.g., aggregates) that produce one single, numerical output.

The goal of MUVE is to cover alternative query interpretations
by a single visualization. This visualization is a multiplot which we
define more formally in the following.

Definition 2. A Query Group Plot (or simply Plot in the fol-
lowing) visualizes results for a group of similar queries. Those queries
are similar in the sense that they instantiate a common query template
with placeholders. In the visualization, the plot title references the
template while labels on the x-axis reference concrete values for the
placeholders. E.g., placeholders may substitute constants in predicates
but also operators or aggregation functions. We consider bar plots for
which a subset of bars may be highlighted with a markup color (red).

Definition 3. AMultiplot consists of plots, structured into one
or multiple rows. Each row contains one or multiple plots (according
to the previous definition).

Primarily, we are concerned with finding optimal multiplots.
Optimality is defined with regards to the following metric.

Definition 4. User Disambiguation Time is the time it takes
users to find the result for the correct interpretation of their voice
query. For a fixed input, disambiguation time is a function of the
selected multiplot. We present a model for disambiguation time, based
on user studies, in Section 4.

Now, we present the problem that this paper focuses on.

Definition 5. Given a set of candidate queries (with their proba-
bilities), a maximal number of rows and the screen width, the goal of
Multiplot Selection is to find a multiplot containing results for some
of the candidate queries, respecting the dimension constraints (i.e., the
number of rows and screen width), while minimizing disambiguation
time according to a given model.

3 SYSTEM OVERVIEW
Figure 1 shows an overview of the MUVE system. MUVE enables
voice-based access to a relational database. It answers voice queries
with a multiplot, capturing results for the most likely query trans-
lations. The system will be demonstrated at the upcoming SIG-
MOD’21 conference [40]. Next, we discuss components of MUVE
(some of which are shown in Figure 1) in more detail.

Voice Query (Input).MUVE supports voice queries on a rela-
tional database. Currently, MUVE supports SQL aggregation queries
with predicates on a single table that produce a single, numerical
result. The result of each such query can be represented as one data
point in a corresponding plot. Users formulate their queries in natu-
ral language. This means that user input needs to be translated into
corresponding SQL queries (a process that leads to ambiguities).

2398



Figure 1: Overview of the MUVE system: voice queries are
mapped to a probability distribution over queries, the visual-
ization planner (our research focus) determines an optimal
multiplot covering results for the most likely queries

Multiplot (Output). MUVE answers voice queries by showing
a multiplot. A multiplot consists of several bar plots, each of them
showing results for different query candidates. We arrange plots in
multiple rows. Each plot is associated with a query template that
is shown as plot title. The template contains one placeholder (e.g.,
the value of a constant in a query predicate). Values on the plot x
axis are associated with different substitutes for the placeholder
(e.g., different values for the predicate constant). Plot data points
correspond to results of query candidates, covering different inter-
pretations of the user input. Figure 2 shows an example output of
our current prototype.

Speech Recognition. MUVE is targeted at voice queries. In a
first step, user voice input needs to be transcribed to text. For that,
MUVE uses the browser-based Web Speech API1.

Text to Multi-SQL. Users describe their queries in natural lan-
guage. Hence, we need to translate text into corresponding SQL
queries. Typically (“text to SQL”), the goal is to translate input into
one single query (whose result is displayed). MUVE’s output covers
multiple alternative query interpretations. Therefore, we translate
input into a probability distribution over candidate queries instead
(“text to multi-SQL”).

We generate candidate queries in multiple steps. First, MUVE
uses sequence-to-sequence translation to map text input to a most
likely query. More precisely, we use the recently proposed SQLova
approach [13]. Next, we take into account uncertainties due to
noisy speech recognition and uncertain text to query translation.
We generate query variations by replacing query fragments by pho-
netically similar alternatives. Specifically, we iterate over all schema
element names and constants that appear in the query. We use a
functionality offered by Apache Lucene2 to find the 𝑘 most phonet-
ically similar entries for each query element (typically, we set 𝑘 to
20). Candidate queries are derived from the original query (raw out-
put of text to query translation) by replacing elements with those
alternatives. Finally, we assign probabilities to the different query
candidates. The probability of a single replacement is based on a
distance function that measures phonetic similarity between text
fragments. More precisely, we map query and database elements

1https://wicg.github.io/speech-api/
2https://lucene.apache.org/

Figure 2: MUVE allows users to speak (or type) natural lan-
guage queries (a). The resulting multiplot contains results
for similar queries whose common elements are outlined
in the headline (b), while covering specific templates in spe-
cific plots (c, d). Results of likely query interpretations are
marked up in red (e).

to a phonetic representation using the Double Metaphone algo-
rithm [24]. Then, we use the Jaro-Winkler [8] distance to calculate
similarity. The probability of multiple replacements corresponds
to the product of probabilities for single replacements. Note that
our algorithms for visualization planning, discussed next, could be
used with more sophisticated candidate generation algorithms.

Visualization Planner. Our research focus is on the visual-
ization planner. The goal of visualization planning is to generate
a multiplot that optimally covers the set of candidate queries. A
candidate query is covered, if one of the result plots contains that
query’s result. More formally, the visualization planner obtains a
set𝑄 of candidate queries with probabilities 𝑟 (𝑞) for 𝑞 ∈ 𝑄 as input.
The result of a query 𝑞 can be shown in one or several plots 𝑃 (𝑞),
covering templates with placeholders that match query 𝑞. Each plot
𝑝 is associated with minimal plot dimensions 𝑚(𝑝), determined
for instance by the plot title. Adding more data points to a plot
increases the (horizontal) width proportionally. Furthermore, the
visualization planner obtains the screen resolution, together with
the desired number of plot rows, as input. The goal of optimization
is to select a visualization that minimizes expected overheads for
the user (we present a corresponding cost model, based on user
studies, in Section 4). Optionally, query processing overheads can
be considered during optimization as well (see Section 8).

Query Executions. After selecting queries for visualization,
those queries are executed to obtain their results. MUVE does not ex-
ecute different candidates independently but merges similar queries
together, e.g. via group by clauses, to reduce overheads.

4 USER BEHAVIOR MODEL
We conducted a user study to find out how visualization features in-
fluence time for finding desired results. We report the study results
and propose a simple user model, consistent with those results.

2399

https://wicg.github.io/speech-api/
https://lucene.apache.org/


0 5 10103

104

Bar Pos.

Av
g.
Ti
m
e
(m

s)

0 5 10
Plot Pos.

2 4 6
Nr. Red Bars

2 4 6
Nr. Plots

Figure 3: Average user perception time as a function of dif-
ferent multiplot visualization features.

Table 1: Results of Pearson correlation analysis.

Feature Bar Pos. Plot Pos. Nr. Red Bars Nr. Plots

𝑅2 0.050 0.079 0.24 0.39

𝑝 0.72 0.6 0.00050 0.000052

4.1 User Study Results
In our study, we verify the following hypotheses. Note that we are
interested specifically in linear relationships to keep the complexity
of the model (and of the user study) reasonable.

Hypothesis 1. Disambiguation time grows linearly in the target
bar position within a plot (counting positions from left to right).

Hypothesis 2. Disambiguation time grows linearly in the target
plot position within a multiplot (counting positions from left to right
and from top to bottom).

Hypothesis 3. If highlighting specific results via color, including
the correct result, disambiguation time grows linearly in the number
of highlighted results.

Hypothesis 4. Disambiguation time grows linearly in the number
of plots shown in the multiplot.

We conducted a user study on the Amazon Mechanical Turk
(AMT) crowd-sourcing platform. Each Human Intelligence Task
(HIT) links to an online version of the MUVE interface. Each link
leads directly to a multiplot (without asking users to submit queries
first). Crowd workers were asked to read a query description, stat-
ing the aggregate as well as a list of column-value pairs (repre-
senting equality conditions), and to identify the associated result
in the multiplot as quickly as possible. We generated queries by
randomly selecting aggregates and columns and values for two
equality predicates (with uniform distribution). We simulated am-
biguity by including results of the 11 most phonetically similar
queries, according to the metric described in Section 3, for a to-
tal of 12 results shown to users. We measure user disambiguation
time as follows. The timer starts once the visualization loads in the
Web browser. The timer stops once crowd workers click on the bar
representing, in their opinion, the result of the target query.

We submitted 520 HITs in total (26 types of tasks, each of which
was available to 20 crowd workers), varying the bar position within
a plot, the plot position within a multiplot, and the number of bars
colored. We paid 10 cents per HIT. We received submissions for 262
out of 520 tasks within the allocated time of six hours.

Figure 3 shows average disambiguation time as a function of
multiple visualization features. From left to right, we report time
as a function of the correct bar position (within a single plot with
12 bars), time as a function of the correct plot position (within a
multiplot containing 6 plots with two bars in two rows), time as a
function of the number of red bars (one of the red bars represents
the correct results), and time as a function of the number of plots
in the multiplot. Table 1 shows the result of an associated Pearson
correlation analysis.

Based on p values, assuming the common cutoff of 𝑝 = 0.05, only
the number of plots and the number of red bars have a statistically
significant relationship with user disambiguation time. This means
that Hypothesis 3 and Hypothesis 4 are validated while we cannot
find enough evidence to support Hypotheses 1 and 2. Hence, we
base our model on the former but not on the latter.

4.2 Derived Time Model
We present a simple model for user disambiguation time, based on
the results from the previous subsection. Our model considers three
factors. First, we consider which results are visualized. Second, we
consider the number of plots in which they are visualized. Third,
we consider which of the bars are highlighted with a markup color
(red). Note that we do not consider position of bars and plots (i.e.,
we model the visualization as a set of plots and each plot as a set of
bars). This is consistent with our user study results.

Primarily, our model distinguishes three cases. First, the correct
result may be present and colored in red. Second, the correct result
may be present but not colored in red. Third, the correct result may
not be present in the current visualization. Next, we outline how to
estimate cost in each of the three cases.

We introduce the following notation. By 𝑝 and 𝑝𝑅 with 𝑝𝑅 ≤ 𝑝 ,
we denote the number of plots containing at least one red bar. By
𝑏 and 𝑏𝑅 with 𝑏𝑅 ≤ 𝑏, we denote the total number of bars and the
number of red bars. We assume that users read plots and bars in
random order (we assume that each permutation is equally likely).
Also, we assume that users first focus on red bars (which requires
reading and understanding their context, i.e. the semantics of the
containing plots, as well). If the correct result is not found after
studying red bars, users turn to the non-highlighted bars.We denote
by 𝑐𝑃 the cost of understanding a plot and by 𝑐𝐵 the cost of reading
a bar (based on our results, it is 𝑐𝑃 > 𝑐𝐵 ). We infer the values for
those constants from our user study results.

If the correct result is highlighted in red, the expected disam-
biguation time is time required for reading red bars and associated
plots, until the right bar is found. As all permutations are equally
likely, we expect to read half of the bars and of associated plots.
Hence, if the correct result is marked up in red, we expect a disam-
biguation cost of𝐷𝑅 = 𝑏𝑅 ·𝑐𝐵/2+𝑝𝑅 ·𝑐𝑃/2. Otherwise, if the correct
result is visualized but not colored up in red, we expect users to
first read all red bars, then read half of the remaining bars in expec-
tation (together with the associated plots). Hence, the associated
cost is 𝐷𝑉 = 2 · 𝐷𝑅 + (𝑏 − 𝑏𝑅) · 𝑐𝐵/2 + (𝑝 − 𝑝𝑅) · 𝑐𝑃/2. Finally, we
consider the case that the correct result is not at all present in the
visualization. In that case, the user first studies red and remaining
bars, then concludes that the desired result is missing. In that case,
the user must ask a new query, causing significant overheads. We

2400



generally model the cost of a missing result by a large constant,
𝐷𝑀 . Given probabilities 𝑟𝑅 , 𝑟𝑉 , and 𝑟𝑀 with 𝑟𝑅 + 𝑟𝑉 + 𝑟𝑀 = 1, rep-
resenting probability of a highlighted, visualized, or missing result,
the expected cost is given as 𝑟𝑅 · 𝐷𝑅 + 𝑟𝑉 · 𝐷𝑉 + 𝑟𝑀 · 𝐷𝑀 .

5 INTEGER PROGRAMMING SOLVER
In the following, we show how to transform multiplot selection
into integer linear programming. After that transformation, we can
apply existing solvers to find an optimal solution.

5.1 Decision Variables
Our cost model does not consider the position of a bar within a plot.
Also, it does not consider the position of a plot within a multiplot.
Hence, it is sufficient to introduce decision variables, modeling
which bars and plots are visualized (but no the precise position).
While position does not matter for the cost model, we still need to
make sure that plots fit on the screen with a given resolution. For
that purpose, we keep track of the row (within the multiplot) in
which each plot is placed.

We are given a set of candidate plots. Each plot is characterized
by a query template and can display a subset of query results.
We introduce binary variables of the form 𝑝

𝑗
𝑖
, indicating whether

the 𝑖-th plot is shown in multiplot row number 𝑗 (if so, 𝑝 𝑗
𝑖
= 1,

otherwise 𝑝 𝑗
𝑖
= 0). For each plot, we can choose which query results

to show within it. We introduce binary variables of the form 𝑞𝑘
𝑖,𝑗

to
indicate whether the result of query candidate 𝑖 is shown in plot 𝑗
in row 𝑘 . We introduce those variables only for pairs of queries and
plots that are “compatible” (i.e., the query instantiates the query
template associated with the plot). Furthermore, we have the choice
to highlight specific results. We introduce binary variables of the
form ℎ𝑘

𝑖,𝑗
to indicate whether query 𝑖 in plot 𝑗 , shown in row 𝑘 , is

marked up in red.

5.2 Constraints
First, we can only assign query results to plots that are on display.
We introduce constraints of the form 𝑞𝑘

𝑖,𝑗
≤ 𝑝

𝑗
𝑖
to capture this fact.

Also, we can only highlight query results that are on display. This
is expressed via constraints of the form ℎ𝑘

𝑖,𝑗
≤ 𝑞𝑘

𝑖,𝑗
. It is not useful to

display the same result multiple times in a multiplot. We introduce
constraints of the form

∑
𝑗,𝑘 𝑞

𝑘
𝑖,𝑗
≤ 1 to capture this fact.

We use plots of equal height and limit the number of rows, in
accordance with the vertical screen resolution. Hence, no addi-
tional constraints are required to avoid exceeding the screen height.
However, we must avoid exceeding the horizontal dimensions.

We introduce constraints for each row to limit the width. We
represent the width of the 𝑖-th plot (without any bars) by constants
𝑊𝑖 . We assume that each bar has the same width and assume, with-
out restriction of generality, that this width is one (we can scale𝑊𝑖

accordingly). For each row 𝑟 , we introduce constraints of the form∑
𝑖 (𝑝𝑟𝑖 ·𝑊𝑖 ) +

∑
𝑖,𝑘 𝑞

𝑟
𝑖,𝑘
≤𝑊 where𝑊 is the screen width.

5.3 Objective Function
Our objective function is based on the user model, established in
the last section. We assume that exactly one of the query candidates

correspond to the correct interpretations. We can express expected
cost, 𝐸, as a sum 𝐸 =

∑
𝑖 𝑟𝑖 ·𝐸𝑖 . Here, 𝑟𝑖 is the probability that the 𝑖-th

query candidate is the correct interpretation and 𝐸𝑖 is expected cost
under that assumption. Note that 𝑟𝑖 is a constant while 𝐸𝑖 depends
on the visualization. Next, we express 𝐸𝑖 as a linear function.

There are three possible cases with regards to query 𝑖 . First, it
may not be shown in the visualization. Second, it may be on display
but not highlighted. Third, it may be highlighted. We show how to
calculate cost 𝐸𝑖 for each of those mutually exclusive cases.

First, we consider the case that query 𝑖 is not on display. In
that case, the expected cost equals a constant 𝐷𝑀 . We introduce
auxiliary variable 𝑞𝑖 , representing whether query 𝑖 is on display
in at least one row. Note the reduced set of indices, compared to
our decision variable 𝑞 𝑗

𝑖
(which distinguishes by row). We add the

term (1 − 𝑞𝑖 ) · 𝐷𝑀 to the expected cost 𝐸𝑖 . Clearly, setting 𝑞𝑖 = 1
is preferable to minimize the cost function. We must ensure that
𝑞𝑖 can only be set to one if that is consistent with the assignments
for variables 𝑞 𝑗

𝑖
. We introduce constraints of the form 𝑞𝑖 ≤

∑
𝑗 𝑞

𝑗
𝑖

to express that fact.
Second, we consider the case that the result of query 𝑖 is on

display and highlighted. In that case, we assume that users read,
in expectation, half of the other highlighted bars and half of the
associated plots before discovering query 𝑖 . First, we introduce
auxiliary variables, capturing whether specific plots in specific rows
contain at least one highlighted bar. We introduce binary variables
𝑠
𝑗
𝑖
, indicating whether plot 𝑖 in row 𝑗 has at least some highlighted

bars. For consistency, we add constraints of the form 𝑠
𝑗
𝑖
≤ 𝑝

𝑗
𝑖

(capturing that plots must be on display to become eligible). We add
constraints of the form 𝑠𝑟

𝑖
≤ ∑

𝑖 ℎ
𝑟
𝑗,𝑖

to ensure that plots without
highlighted bars cannot qualify. Also, we add constraints of the form
𝑠𝑟
𝑖
≥ ∑

𝑖 ℎ
𝑟
𝑗,𝑖
/𝑛𝑖 where 𝑛𝑖 represents the number of query results

that can be displayed within plot number 𝑖 . The latter constraint
forces variable 𝑠𝑟

𝑖
to one if at least one result is highlighted.

Each query is shown (and highlighted) at most once on the screen.
We introduce binary variable ℎ𝑖 =

∑
𝑗,𝑘 ℎ

𝑘
𝑖,𝑗

to indicate whether
query 𝑖 is highlighted. If query 𝑖 is correct and highlighted, the
probability that users read any other highlighted query 𝑗 first is 50%.
We add terms of the form

∑
𝑗 ℎ𝑖 ·ℎ 𝑗 ·𝑐𝐵/2 to 𝐸𝑖 . Note that wemultiply

two variables which is typically inadmissible for linear objectives.
However, we multiply two binary decision variables. Such products
can be easily linearized by introducing an auxiliary variable (e.g.,
introduce variable 𝑦 for the product of binary variables 𝑥1 · 𝑥2 and
enforce 𝑦 ≤ 𝑥1, 𝑦 ≤ 𝑥2, and 𝑦 ≥ 𝑥1 + 𝑥2 − 1). We use the product
notation, exclusively between binary variables and constants, in
the following, without explicitly introducing auxiliary variables.
Also, the probability that users study another plot, containing some
highlighted bars first, is 50%. We add the term

∑
𝑗,𝑘 ℎ𝑖 · 𝑠𝑘𝑗 · 𝑐𝑃/2 to

𝐸𝑖 to express that fact (here, 𝑐𝑃 is the cost for reading one plot).
Finally, we consider the case that query 𝑖 is on display but not

highlighted. In this case, we assume that users read all red bars
first, together with the associated plots. We introduce variable
𝑑𝑖 = 𝑞𝑖 · (1 − ℎ𝑖 ), indicating whether query 𝑖 is displayed but not
highlighted. Now, we add the terms

∑
𝑗 𝑑𝑖 ·ℎ 𝑗 ·𝑐𝐵 and

∑
𝑗,𝑘 𝑑𝑖 ·𝑠𝑘𝑗 ·𝑐𝑃

to 𝐸𝑖 (representing the cost of reading highlighted bars and plots
first). For all other bars that are on display but not highlighted, the

2401



probability that users read them before query 𝑖 is again 50%. Hence,
we add the terms

∑
𝑗 𝑑𝑖 ·𝑑 𝑗 · 𝑐𝐵/2 and

∑
𝑗,𝑘 𝑑𝑖 · 𝑝𝑘𝑗 · (1− 𝑠

𝑘
𝑗
) · 𝑐𝑃/2 to

𝐸1 (accounting for the cost of reading other, non-highlighted bars
and their associated plots).

5.4 Incremental Optimization
As we will see in more detail in Section 9, optimization can take
non-negligible amounts of time. To reduce latency, MUVE supports
incremental optimization for the integer programming approach.
Here, optimization time is divided into short sequences. The 𝑖-th
sequence has duration 𝑘 · 𝑏𝑖 for appropriately chosen constants 𝑘
and 𝑏, i.e., MUVE uses an exponentially increasing timeout scheme
(to reduce overheads associated with restarting optimization). After
each optimization sequence, the resulting visualization is generated
and shown to the user. Hence, users can see a first visualization
early. We analyze in Section 9.5 whether this approach increases
user satisfaction.

6 GREEDY SOLVER
We present a fast, greedy optimization algorithm as an alternative
to the integer programming approach.

6.1 Problem Analysis
For the following analysis, we consider the cost model presented in
Section 4. This model approximates user disambiguation time by the
formula 𝑟𝑅 ·𝐷𝑅 +𝑟𝑉 ·𝐷𝑉 +𝑟𝑀 ·𝐷𝑀 (𝑟𝑅 , 𝑟𝑉 , and 𝑟𝑀 are probabilities
of highlighting, displaying, or missing the correct query, 𝐷𝑅 , 𝐷𝑉 ,
and 𝐷𝑀 the associated cost of doing so).

The following theorem is useful to restrict the search space for
coloring choices in the multiplot. For its proof, we assume that all
bars considered for highlighting are non-redundant (i.e., no other
plot within the same multiplot is showing the same result).

Theorem 2. Each plot in an optimal multiplot highlights results
of the 𝑘 most likely queries in it (for some 𝑘 ∈ N).

Proof. We conduct a proof by contradiction. Assume one plot in
the optimal multiplot shows results for two queries, 𝑞1 and 𝑞2 with
probabilities 𝑟1 and 𝑟2. Assume the result of𝑞1 is highlighted but not
the one for 𝑞2 and that 𝑟1 < 𝑟2. We use 𝛿 = 𝑟2 − 𝑟1 in the following.
Assume we “swap” the coloring of 𝑞1 and 𝑞2 (i.e., 𝑞2 is highlighted
but not 𝑞1). The terms in our cost formula will change as follows.
The total number of highlighted and non-highlighted bars and plots
do not change. Hence,𝐷𝑅 and𝐷𝑉 (which only depend on the latter)
do not change either. On the other side, 𝑟𝑅 increases by 𝛿 while 𝑟𝑉
decreases by 𝛿 . Hence, overall cost changes by 𝛿 · 𝐷𝑅 − 𝛿 · 𝐷𝑉 . It is
𝐷𝑉 ≥ 𝐷𝑅 (since𝐷𝑉 = 2 ·𝐷𝑅+(𝑏−𝑏𝑅) ·𝑐𝐵/2+(𝑝−𝑝𝑅) ·𝑐𝑃/2). Hence,
as 𝛿 > 0, overall cost cannot increase by that change. Therefore,
the initial plot was not optimal, contradicting our assumption. □

Next, we analyze cost savings by adding plots.

Definition 6. Cost savings of a multiplot𝑀 is the difference in
cost between an empty multiplot and𝑀 , according to our cost model
(i.e., C(∅) − C(𝑀) where C(𝑀) denotes cost of a set of plots).

We make the following assumption.

Assumption 1. Cost components 𝐷𝑅 and 𝐷𝑉 , denoting cost of
reading highlighted and non-highlighted results respectively, are
smaller than the cost 𝐷𝑀 of a miss (i.e., 𝐷𝑅 < 𝐷𝑀 and 𝐷𝑉 < 𝐷𝑀 ).

The latter assumption seems realistic. If the correct query is
missing, users must ask a new voice query which takes significant
amounts of time. This assumption implies the following.

Lemma 1. Cost savings are non-decreasing in the set of plots.

Proof. Denote by 𝛿𝑟𝑅 and 𝛿𝑟𝑉 the change in probability, after
adding a plot, of having the correct result highlighted or visualized.
Denote by Δ𝐷𝑅 and Δ𝐷𝑉 the changes in plot reading costs. Of
course, it is Δ𝐷𝑅 ≤ 𝐷𝑅 and Δ𝐷𝑉 ≤ 𝐷𝑉 . Hence, the total change to
the cost savings function is at least (𝛿𝑟𝑅+𝛿𝑟𝑉 )·(𝐷𝑀−max(𝐷𝑉 , 𝐷𝑅))
which is positive due to Assumption 1. □

Next, we show that cost savings have diminishing returns. First,
we define this property formally.

Definition 7. A set function 𝑓 : 𝑆 ↦→ R is submodular if the
following holds. If adding an element 𝑠 ∈ 𝑆 to two sets 𝑆1 ⊆ 𝑆2 ⊆ 𝑆

then 𝑓 (𝑆1 ∪ {𝑠}) − 𝑓 (𝑆1) ≥ 𝑓 (𝑆2 ∪ {𝑠}) − 𝑓 (𝑆2).
We analyze cost savings with regards to submodularity. We

assume that𝐶𝑀 , the cost of not showing the correct query, is larger
than either 𝐷𝑅 (cost for reading highlighted bars and plots) or 𝐷𝑉

(cost for reading non-highlighted bars and plots).

Theorem 3. Disambiguation cost savings are sub-modular as a
function of the set of selected plots.

Proof. Consider a multiplot showing plots 𝑃1 and another one
showing plots 𝑃2. Further, assume that 𝑃1 ⊆ 𝑃2 (i.e., the second mul-
tiplot contains a superset of plots, compared the the first one). Now,
assume we add the same plot 𝑝 to both, 𝑃1 and 𝑃2. We will analyze
the relative change in cost savings. Denote by Δ𝑄𝑉 (𝑝, 𝑃) the set of
queries whose results are visualized (but not highlighted) in a newly
added plot 𝑝 but not in any of the plots in 𝑃 . Denote by Δ𝑄𝑅 (𝑝, 𝑃)
the set of newly added query results that are highlighted. Now, we
can express changes to different elements of the cost formula as
follows. It is 𝛿𝑟𝑅 =

∑
𝑞∈Δ𝑄𝑅 (𝑝,𝑃 ) Pr(𝑞) (where Pr(𝑞) denotes the

likelihood of query candidate 𝑞) and 𝛿𝑟𝑉 =
∑
𝑞∈Δ𝑄𝑉 (𝑝,𝑃 ) Pr(𝑞). At

the same time, it is 𝛿𝑟𝑀 = −(𝛿𝑟𝑅 + 𝛿𝑟𝑉 ) (since all queries that are
not highlighted or visualized must be missing).

Next, we compare the changes by adding 𝑝 to 𝑃1 and 𝑃2. We
use superscript 1 (e.g., 𝛿𝑏1

𝑅
) to denote parameters related to 𝑃1 and

superscript 2 for 𝑃2. The number of added bars and plots does not
depend on which plots are already present. Hence, the change in
reading cost for highlighted (Δ𝐷𝑅 ) and non-highlighted compo-
nents (Δ𝐷𝑉 ) does not depend on prior plots either. When adding 𝑝
to 𝑃𝑖 , the change in cost savings can be expressed as Δ𝐶𝑖 = 𝐷𝑀 ·
(𝛿𝑟 𝑖

𝑅
+𝛿𝑟 𝑖

𝑉
)−𝛿𝑟 𝑖

𝑅
·𝐷𝑖

𝑅
−Δ𝐷𝑅 · (𝑟 𝑖𝑅+𝛿𝑟

𝑖
𝑅
)−𝛿𝑟 𝑖

𝑉
·𝐷𝑖

𝑉
−Δ𝐷𝑉 · (𝑟 𝑖𝑉 +𝛿𝑟

𝑖
𝑉
).

Equivalently, it is Δ𝐶𝑖 = 𝛿𝑟 𝑖
𝑅
· (𝐷𝑀 −𝐷𝑖

𝑅
−Δ𝐷𝑅) +𝛿𝑟 𝑖𝑉 · (𝐷𝑀 −𝐷𝑖

𝑉
−

Δ𝐷𝑉 ) − 𝑟 𝑖𝑅 · Δ𝐷𝑅 − 𝑟 𝑖𝑉 · Δ𝐷𝑉 . However, it is 𝑟2𝑅 ≥ 𝑟1
𝑅
and 𝑟2

𝑉
≥ 𝑟1

𝑉
(since 𝑃2 visualizes a superset of highlighted and non-highlighted
results, compared to 𝑃1). Also, it is 𝐷2

𝑅
≥ 𝐷1

𝑅
and 𝐷2

𝑉
≥ 𝐷1

𝑉
(since

reading cost is monotone in the number of bars and plots). We
have 𝛿𝑟1

𝑅
≥ 𝛿𝑟1

𝑅
and 𝛿𝑟1

𝑉
≥ 𝛿𝑟2

𝑉
. At the same time, we assume that

𝐷𝑀 > 𝐷𝑖
𝑅
+ Δ𝐷𝑅 and 𝐷𝑀 > 𝐷𝑖

𝑉
+ Δ𝐷𝑉 (Assumption 1). Hence, it

is Δ𝐶1 ≥ Δ𝐶2, proving sub-modularity. □

2402



Algorithm 1 Greedy algorithm for multiplot selection.
1: // Greedily generates multi-plot with 𝑛 rows for screen width 𝑤

2: // covering results for query candidates𝑄 .
3: function GreedyViz(𝑄,𝑛, 𝑤)
4: // Generate uncolored plot candidates
5: 𝑃 ←PlotCandidates(𝑄, 𝑤)
6: // Try different highlighting options
7: 𝐶 ←AddColors(𝑃 )
8: // Select plots for multiplot
9: 𝑀 ←PickPlots(𝑄,𝑛, 𝑤,𝐶)
10: // Final cleanup of multiplot
11: 𝐹 ←Finalize(𝑀)
12: // Return generated multiplot
13: return 𝐹

14: end function

Algorithm 2 Generate set of plot candidates.
1: // Given queries𝑄 with probabilities, returns plot candidates.
2: function PlotCandidates(𝑄)
3: // Group queries by template
4: 𝑇 = ∅
5: // Iterate over candidate queries
6: for 𝑞 ∈ 𝑄 do
7: // Iterate over associated templates
8: for 𝑡 ∈ T (𝑞) do
9: 𝑇 (𝑡 ) ← 𝑇 (𝑡 ) ∪ {𝑞 }
10: end for
11: end for
12: // Generate plots for query groups
13: 𝑃 ← ∅
14: // Iterate over templates with queries
15: for ⟨𝑡,𝑄𝑡 ⟩ ∈ 𝑇 do
16: // Iterate over subsets of likely queries
17: for 𝑆 ⊆ 𝑄𝑡 : �𝑠 ∈ 𝑆,𝑞 ∈ 𝑄𝑡 \ 𝑆 : Pr(𝑞) > Pr(𝑠) do
18: 𝑃 ← 𝑃 ∪ {P(𝑆) }
19: end for
20: end for
21: return 𝑃

22: end function

6.2 Greedy Algorithm
Algorithm 1 is the main function of our greedy algorithm. As input,
it receives a set of candidate queries𝑄 with associated probabilities,
the number of multiplot rows,𝑛, and the screenwidth𝑤 . The output
is a greedily constructed multiplot (i.e., plots with assigned rows).

The algorithm executes four phases that are discussed in more
detail in the following. First, it generates a set of candidate plots
without highlighting. Those plots are characterized by the set of
queries for which results are shown. Second, for each candidate
plot, the algorithm generates multiple versions that differ by the
subset of results that are highlighted. Those plots, characterized by
a set of queries on display and by a subset of queries highlighted,
form the basic building blocks of the multiplot. Typically, screen
resolution is too limited to show all candidate plots at once. Hence,
in a third step, Algorithm 1 picks a subset of plots to show. Finally,
the algorithm “polishes” the multiplot, as explained later, to obtain
the final version. Next, we discuss those four steps in more detail.

Algorithm 3 Highlight likely query results in plots.
1: // Generate colored versions of uncolored plots 𝑃 .
2: function AddColors(𝑃 )
3: 𝐶 ← ∅
4: // Iterate over uncolored plots
5: for 𝑝 ∈ 𝑃 do
6: // Iterate over sets of likely queries
7: for 𝑆 ⊆ 𝑝.𝑄 : �𝑠 ∈ 𝑆,𝑞 ∈ 𝑝.𝑄 \ 𝑆 : Pr(𝑞) > Pr(𝑠) do
8: // Add plot version with highlighted results
9: 𝐶 ← 𝐶 ∪ {ColorPlot(𝑝, 𝑆)}
10: end for
11: end for
12: return𝐶

13: end function

Algorithm 2 implements the first step (generating a set of candi-
date plots). As input, it obtains a set of candidate queries 𝑄 with
associated probabilities. The output is a set of candidate plots (with-
out highlighting). All queries within the same plot must instantiate
a common query template. This template forms the title of the plot,
while query-specific substitutions of placeholders form entries on
the x-axis.

First, Algorithm 2 groups queries according to their query tem-
plates. Each query may instantiate multiple templates. More pre-
cisely, we obtain possible templates for a query by replacing con-
stants or operators within a query with placeholders. For a given
query, we introduce placeholders for a limited number of elements.
Function T (𝑞) denotes the templates derived for a query 𝑞. We
maintain a set of associated queries for each template (denoted by
𝑇 (𝑡) in Algorithm 2) that is updated while iterating over all queries.

Next, we generate multiple plots for each template with asso-
ciated queries (we equivalently use 𝑇 as function as well as a set
of ⟨𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒⟩ pairs in the pseudo-code). For each template, we
iterate over subsets of the most likely queries. Hence, we assume
that, given space constraints, we prefer adding more likely queries.
This is a heuristic as it neglects interactions with other selected
plots. The resulting plot candidates are returned.

Algorithm 3 generates multiple colored versions for each plot
candidate. We have proven in Theorem 2 that plots coloring the 𝑘
most likely queries lead to an optimal solution. Hence, Algorithm 3
generates plot versions by highlighting the 𝑘 most likely queries
(considering different values of 𝑘).

Given candidate plots with highlighting, we must select a subset
that is compatible with the screen dimensions. Theorem 3 demon-
strates that cost savings are submodular in the set of selected plots.
Hence, we use greedy algorithms from the domain of submodular
maximization. Algorithm 4 describes a variant exploiting greedy al-
gorithms for maximizing monotone, submodular functions, subject
to multi-dimensional knapsack constraints (e.g., Yu et al. [42] pro-
pose a corresponding algorithm). Algorithm 4 transforms multiplot
selection into submodular maximization as follows. It generates a
set of items where each item is associated with the combination of a
plot candidate and a multiplot row. Each row forms one dimension
of the corresponding knapsack problem. Given an item represent-
ing a specific plot in a specific row 𝑟 , the associated weight is zero
for each dimension except for the one associated with row 𝑟 (and
weight is proportional to the plot width). Weight bounds are defined

2403



Algorithm 4 Select subsets of plots for multiplot.
1: // Given queries𝑄 , number of rows 𝑛, screen width 𝑤,
2: // colored plot candidates𝐶 , pick plots for multiplot.
3: function PickPlots(𝑄,𝑛, 𝑤,𝐶)
4: // Generate plot-row combinations
5: 𝐼 ← ∅
6: // Iterate over colored plots
7: for 𝑝 ∈ 𝐶 do
8: // Iterate over multiplot rows
9: for 𝑟 ∈ 1, . . . , 𝑛 do
10: 𝐼 ← 𝐼 ∪ {⟨𝑝, 𝑟, 𝑝.𝑤𝑖𝑑𝑡ℎ · ®𝑒𝑟 ⟩ }
11: end for
12: end for
13: // Submodular maximization under constraints
14: return𝑀 ← argmax𝑀⊆𝐼 C(∅) − C(𝑀) s.t. F(𝑀,𝑤)
15: end function

... ... ...

Figure 4: The greedy algorithm generates candidate plots,
highlights results of likely queries, selects a near-optimal
plot subset, and finally removes redundant query results.

by the screen width (predicate F , used in Algorithm 4, is satisfied if
and only if multiplot𝑀 is compatible with the screen dimensions).
The function to maximize is cost savings, comparing cost of an
empty multiplot to the ones of the current selection (represented
as C(∅) − C(𝑀) in the pseudo-code).

As a variant of the algorithm presented so far, we can fix the
width of generated plot candidates. Then, the multidimensional
knapsack constraint reduces to one single cardinality constraint
(i.e., we limit the number of plots to select). Then, algorithms for
cardinality-constrained, submodular maximization (e.g., the classi-
cal algorithm by Nemhauser [21]) can be used for picking plots.

Finally, we “polish” the multiplot resulting from the previous
step (pseudo-code omitted). Here, we remove redundant results
that appear in multiple plots. After removing a (redundant) result
from a plot, we try to fill the resulting gap with the most likely,
non-redundant query that fits into the corresponding plot. Figure 4
illustrates the four steps of the greedy algorithm.

6.3 Output Quality Analysis
We heuristically generate plot candidates by selecting the most
likely queries from each query group. Relative to the best multiplot
that can be constructed from those components, the greedy algo-
rithm achieves the following guarantee (we assume that plots are
picked using the algorithm by Yu et al. [42]).

Theorem 4. The greedy algorithm achieves cost savings within
𝑂 (1/(1+2·𝑟 )−𝜀) of the optimum, relative to the initial plot candidates.

Proof. Algorithm 1 only considers a limited number of possibil-
ities to highlight results in each plot. However, based on Theorem 2,
the optimal solution is among them. Cost savings are sub-modular
(see Theorem 3) and monotone under Assumption 1 (according to
Lemma 1). Hence, the postulated guarantees derive directly from
the guarantees offered by Yu et al. [42] (setting 𝑟 instead of 𝑑 in
their equations). □

7 COMPLEXITY ANALYSIS
First, we analyze the complexity of multiplot selection.

Theorem 5. Multiplot selection is NP-hard.

Proof. Consider an instance of the knapsack problem, defined
by a set 𝐼 of items with weights 𝑏𝑖 and utility 𝑢𝑖 (𝑖 ∈ 𝐼 ), as well as a
a weight bound 𝐵. We reduce to multiplot selection in polynomial
time. For each item 𝑖 , we introduce a plot 𝑝𝑖 with one associated
query candidate 𝑞𝑖 (i.e., the query can be shown in that plot but in
no other plots). We set the width of each plot with its bar,𝑊𝑖 + 1,
proportional to 𝑏𝑖 , the screen width𝑊 proportional to 𝐵. We set
the probability of 𝑞𝑖 , 𝑟𝑖 , proportional to 𝑢𝑖 . We assume that the cost
of reading bars and plots is negligible (i.e., 𝑐𝐵 = 𝑐𝑃 = 0). We set
the cost of a missing result, 𝐷𝑀 , to one. No bars are highlighted.
Therefore, the probability that the correct bar is highlighted is zero
(𝑟𝑅 = 0). The probability to display the correct result is the sum of
probabilities 𝑟𝑖 (summing over query results shown in the selected
plots). The optimal solution maximizes the probability sum, given
width constraints. This is equivalent to maximizing the utility sum
under weight constraints for the original knapsack instance. □

Next, we analyze complexity of the proposed algorithms. We
denote by 𝑛𝑞 the number of queries, by 𝑛𝑟 the number of rows,
and by 𝑛𝑝 the number of candidate plots. For the ILP approach,
we analyze how the ILP problem size evolves as a function of the
multiplot selection instance.

Theorem 6. The number of ILP variables for multiplot selection is
in 𝑂 (𝑛𝑝 · 𝑛𝑞 · 𝑛𝑟 + 𝑛𝑞 · (𝑛𝑞 + 𝑛𝑝 )).

Proof. Decision variables 𝑞𝑘
𝑖,𝑗

and ℎ𝑘
𝑖,𝑗

reference combinations
of plots, queries, and rows. Their number is in 𝑂 (𝑛𝑝 · 𝑛𝑞 · 𝑛𝑟 ). We
also introduce auxiliary variables, representing the product of two
decision variables, for each combination of queries or queries and
plots (i.e., 𝑂 (𝑛𝑞 · (𝑛𝑞 + 𝑛𝑝 ))). □

Theorem 7. The number of constraints for multiplot selection is
in 𝑂 (𝑛𝑝 · 𝑛𝑞 · 𝑛𝑟 + 𝑛𝑞 · (𝑛𝑞 + 𝑛𝑝 )).

Proof. We introduce constraints for each decision variable 𝑞𝑘
𝑖,𝑗

representing combinations of queries, plots, and rows.We introduce
constraints for auxiliary variables connecting query pairs. □

Finally, we analyze time complexity of the greedy algorithm
from Section 6. We assume that the algorithm for submodular max-
imization by Yu et al. [42] is used internally. In addition to the
previous notations, we use𝑊 to denote the horizontal screen reso-
lution (measured as the number of bars) and 𝜀 denotes the tuning

2404



parameter used to trade optimality for optimization time during
submodular optimization.

Theorem 8. Greedy multiplot selection has time complexity in
𝑂 ((𝑛𝑞 · 𝑛𝑝 · (log𝑊 )/𝜀).

Proof. Algorithm 2 iterates over combinations of queries and
query templates, i.e. the number of steps is in 𝑂 (𝑛𝑞 · 𝑛𝑝 ) (since 𝑛𝑝
restricts the number of plots and, equivalently, query templates).
Algorithm 3 may generate up to𝑂 (𝑛𝑞) colored versions for each un-
colored plot. Its complexity is therefore in 𝐼 (𝑛𝑞 ·𝑛𝑝 ). The algorithm
by Yu et al. has a complexity of 𝑂 (log𝑊 /𝜀) per input element
and iterates once over the input [42]. Hence, the complexity of
Algorithm 4 is in 𝑂 (𝑛𝑞 · 𝑛𝑝 · (log𝑊 )/𝜀). Post-processing can be
implemented by iterating at most twice over all combinations of
plots and queries (with a complexity in 𝑂 (𝑛𝑞 · 𝑛𝑝 )). □

8 QUERY PROCESSING OVERHEADS
MUVE considers different interpretation of a voice input query.
To show results for them in a multiplot, it must first process the
associated queries. This creates additional processing overheads,
compared to executing only the most likely query. Next, we discuss
several mechanisms by which MUVE reduces those overheads.

8.1 Query Merging
MUVE processes multiple queries that are all possible interpreta-
tions of the same voice input. Those queries tend to be similar,
creating opportunities to share processing tasks between them.

For a givenmultiplot, MUVE generally considers merging similar
queries before query processing starts. More precisely, it merges
queries on the same table with similar predicates. For instance,
it replaces multiple equality predicates on the same column by a
corresponding IN condition while adding result columns for each
aggregate of the merged queries. To decide whether to merge, we
use the cost model of the Postgres optimizer (which is used for
data processing in the current MUVE version). Our current imple-
mentation does not support merging for more complex queries
(e.g. queries with sub-queries). Existing techniques from the area
of multiple query optimization [4, 27, 39] could be used to expand
the scope of query merging.

In addition, MUVE can already consider processing costs and
merging opportunities when selecting plots. For instance, among
several multiplots with similar cost estimates according to the user
cost model, MUVE can select oneminimizing (estimated) processing
overheads. Alternatively, MUVE can select plots under constraints
on added processing overheads, compared to executing the most
likely query alone.

MUVE supports this more proactive approach via its integer
programming based solver. MUVE compares candidate queries to
find out which of them could be merged into a single query. We
introduce binary variables of the form 𝑔𝑖 for each of those groups of
queries. Those variables indicate whether the corresponding query
group is processed (𝑔𝑖 = 1) or not. For each query, there may be
multiple associated processing groups.We impose constraints of the
form 𝑞𝑖 ≤

∑
𝑗 ∈𝐺 (𝑖) 𝑔 𝑗 to ensure that queries can only be selected for

the multiplot if at least one of their associated groups is processed.
Here, 𝑞𝑖 indicates whether the 𝑖-th query is shown in the multiplot

...

...

Figure 5: Overview of different processing methods.

and 𝐺 (𝑖) denotes indices of all groups such that processing the
group yields a result for query 𝑖 . We obtain processing cost estimates
for query groups via the Postgres explain statement. Now, we can
estimate processing overheads by summing up groups, weighted
by their processing cost estimates (i.e., the sum

∑
𝑖 𝑔𝑖 · 𝑐𝑖 represents

processing costs with 𝑐𝑖 representing overheads for each group).

8.2 Progressive Presentation
We can reduce the impact of large processing overheads (rather than
processing overheads themselves) by showing users visualizations
of partial results early. We demonstrate that this approach can
increase user satisfaction in Section 9.5.

In our scenario, partial results can be defined in two ways. First,
a partial result may contain a subset of plots. Second, a partial result
may contain approximate results for all plots in the multiplot. The
first kind of partial results requires generating a subset of plots
(and processing the associated queries). The second kind requires
processing a data sample.

MUVE supports both strategies. The first strategy, called incre-
mental plotting in the following, generates single plots sequen-
tially. After each newly generated plot, the visualization is updated.
Hence, users see plots appear sequentially on the screen (and may
thereby obtain the result for the correct query even before the entire
multiplot is generated). The second strategy, called approximate
processing in the following, presents results for a data sample first.
While users consider the approximate visualization, processing con-
tinues in the background on the full data set. The visualization is
updated once the precise result is available. Figure 5 illustrates the
different processing methods. It includes default processing (visual-
ization after all queries are processed) and incremental optimization,
described in more detail in Section 5.4.

9 EXPERIMENTAL EVALUATION
We evaluate the proposed methods experimentally.

9.1 Experimental Setup
All algorithms are implemented in Java 1.8. We run queries on the
Postgres database system (version 13.1). We used Gurobi version
9 as integer programming solver, implementing the ILP described
in Section 53. For the following experiments, we use four data sets.
3For ease of exposition, we use slightly different auxiliary variables in Section 5,
compared to our actual implementation. The asymptotic number of variables and
constraints is however equivalent.

2405



10−4
10−1
102

Av
g.
Ti
m
e
(m

s)

10−4
10−1
102

10−4
10−1
102

−2,000
0

2,000

Δ
Co

st

−2,000
0

2,000

−2,000
0

2,000

20 40
0

0.2
0.4
0.6
0.8
1

Nr. Queries

Ti
m
eo
ut

Ra
te

2 4
0

0.2
0.4
0.6
0.8
1

Nr. Rows
500 1,500

0
0.2
0.4
0.6
0.8
1

Nr. Pixels

ILP Greedy

Figure 6: Solver performance on 311 request data.

The first one contains contacts for advertisement, provided by a
partner in industry. The second one contains data of the department
of buildings in NYC (DOB)4. The third one contains data describing
NYC’s 311 service requests5. Finally, we use a data set on flight
delays6, the largest one with a size of 10 GB. All of the following
experiments are executed on a MacBook Pro with Intel Core i9
2.9 GHz CPU and 32 GB of main memory, running MacOS 10.15.7.
We show 95% confidence bounds for all plots showing arithmetic
averages in the following (confidence bounds are not applicable for
plots showing counts and ratios).

9.2 Visualization Planning
We compare the greedy planner (described in Section 6) against the
integer programming approach (described in Section 5). For each
of our three data sets and each setting of the parameters we vary in
the following, we generate 100 aggregation queries, randomly gen-
erating up to five equality predicates by randomly picking columns
and constants. Then, we search for phonetically similar queries
and plan a multiplot for the resulting candidates. We vary the num-
ber of candidate queries considered, the number of multiplot rows,
and the number of pixels. For the latter parameter, we consider
common screen resolutions, ranging from phones over tablets to
typical computer screens. We use one row, 20 candidate queries,
and a resolution of the iPhone as defaults. We set a timeout of one
second for all compared approaches (as we target interactive data
analysis). We measure optimization time, the ratio of timeouts, as
well as the delta between cost of the proposed solutions, according
to our cost model (the cost unit is estimated milliseconds of user
disambiguation time).

Figure 6 shows results for the 311 service request data set. Clearly,
the greedy algorithm is significantly faster and does not incur
4https://data.cityofnewyork.us/Housing-Development/DOB-Job-Application-
Filings/ic3t-wcy2
5https://data.cityofnewyork.us/Social-Services/311-Service-Requests-from-2010-to-
Present/erm2-nwe9
6http://stat-computing.org/dataexpo/2009/

Merge Split
0

1

2
·104

Av
g.
Ti
m
e
(m

s)

Figure 7: Impact of query merging on execution costs.

0

500

1,000

Pl
an
ni
ng

(m
s)

0
200
400
600
800

1,000

Ex
ec
ut
io
n
(m

s)

200 400 600
−1
0
1
·104

P-Cost Bound

Δ
D
-C
os
t

200 400 600
0

0.2
0.4
0.6
0.8
1

P-Cost Bound

Ti
m
eo
ut

Ra
te

ILP(D-Cost) ILP(D+P Cost) Greedy

Figure 8: Disambiguation cost versus processing cost when
varying processing cost bound.

any timeouts. Integer programming, on the other side, generates
better solutions over a range of scenarios. As the ratio of timeouts
increases, the solutions of the greedy algorithm become preferable.
Scalability is particularly limited in the number of rows. Already for
three rows, the ratio of timeouts reaches nearly 100%. Note that, in
case of a timeout, the ILP approach still produces a solution (which
is however not guaranteed to be optimal anymore). On the other
side, the ILP approach seems to scale quite well in the number of
query candidates. Results for the other two data sets show the same
tendencies and can be found in the extended technical report [40].

Altogether, ILP generates better multiplots for problems of rel-
atively small dimensions. ILP scales quite well in the number of
query predicates but less well in the number of rows. For larger
problem instances, the greedy algorithm becomes preferable in
terms of run time as well as in terms of solution quality.

9.3 Processing Cost
MUVE tends to execute many similar queries to cover alternative
interpretations of the user’s voice input. MUVE tries to reduce
processing overheads by merging similar queries for execution, as
opposed to executing them in separation. We performed a micro-
benchmark using our largest data set (DOB with a size of 1 GB). We
generated 10 queries randomly and retrieved the 50 phonetically
most similar candidate queries for each of them. We executed those
50 queries once separately and once merged together. Figure 7
shows corresponding average results. Clearly, merging queries can
reduce query processing overheads significantly.

Next, we analyze possibilities to influence processing overheads
during visualization planning. We presented an extension of the ILP

2406



0 50 100
0

0.2
0.4
0.6
0.8
1

Data Size (%)

Ra
tio

>
𝜃

𝜃 =100 ms

0 50 100
Data Size (%)

𝜃 =500 ms

0 50 100
Data Size (%)

𝜃 =2000 ms

Greedy Inc-Plot App-1% App-5%
App-D ILP ILP-Inc

Figure 9: Non-interactive queries for presentation methods
under different thresholds (𝜃 ) when varying data size.

approach that allows taking into account processing overheads. We
can set a constraint on the added overheads of processing multiple
query interpretations (as opposed to only the most likely one). In
Figure 8 we vary that constraint and compare against the other
planning approaches (“ILP(D-Cost)” and the greedy algorithm only
consider user disambiguation cost). Each data point in Figure 8 rep-
resents an arithmetic average over 10 randomly generated queries
(we set a resolution of 900 pixels).

First, we observe that tightening the constraint can indeed re-
duce execution costs by around 35.7%. This shows that MUVE can
effectively limit overheads by multi-query execution. On the other
side, disambiguation costs increase, the more visualization plan-
ning is restricted by processing cost considerations. Interestingly,
optimization time increases as well for the processing-cost aware
ILP approach. Tight processing cost constraints restrict the search
space significantly, thereby making it easier to explore it.

9.4 Scaling Up Data Size
We test scalability of all proposed methods in the data size. We
use samples from the data set on flight delays, scaling up sample
size up to the full size of 10 GB. We generate queries by randomly
selecting one aggregation column and one equality predicate (i.e.,
a random column and a random value with uniform distribution).
As candidates, we use the 20 most similar queries according to
our matching method. Figure 9 links combined optimization and
processing time to the data size. The x-axis shows data size (as
percentage of the full data size) while the y-axis shows the ratio of
test cases (of 100 test cases per data point) for which the specified
time threshold 𝜃 was reached. We use multiple values for 𝜃 .

We compare the following baselines. Greedy is the default ap-
proach (i.e., one single visualization is generated) with greedy opti-
mization and reactive query merging. ILP is the default approach
with ILP optimization, integrating processing cost into the optimiza-
tion objective to favor multiplots with low estimated processing
overheads among the ones minimizing the user cost model. ILP-Inc
is the ILP approach with incremental optimization with 𝑘 = 62.5𝑚𝑠

and 𝑏 = 2 (see Section 5.4). Inc-Plot visualizes plots incrementally
(see Section 8.2 while App visualizes an approximation first. App-
1% and App-5% visualize results for a fixed sample size of 1% and 5%
respectively. App-D dynamically estimates the sample size to use
in order to meet the current interactivity threshold. For all methods
generating a sequence of visualizations, we report time until the

0 50 100
0
20
40

Data size (%)

Er
ro
r(
%) App-1%

App-5%
App-D (𝜃 =500 ms)

Figure 10: Relative error of initialmultiplot for approximate
processing methods.

102
102
103
104

F-Time (ms)

T-
Ti
m
e
(m

s)

size=100 M

102 103

F-Time (ms)

size=1 G

102 103 104

F-Time (ms)

size=10 G

Greedy Inc-Plot App-1% App-5%
App-D ILP ILP-Inc

Figure 11: Time until correct result appears first (F-Time)
versus total multiplot generation time (T-Time).

Advertisement DOB
0
2
4
6
8

Ti
m
e
(s
) Baseline

MUVE

Figure 12: Average disambiguation time for users with
MUVE, compared to baseline.

correct query results becomes visible (at least as an approximation)
in Figure 9. The result quality, according to our user disambiguation
cost model, was near-optimal for all compared methods (cost within
0.9% of the minimum for each test case).

Clearly, the ratio of test cases for which the interactivity thresh-
old was reached increases for increasing data sizes and decreases
with increasing threshold 𝜃 . While incremental plot visualization
improves slightly over the other methods, only approximation can
meet interactivity thresholds for large data sets.

Figure 10 analyzes relative error (average over all test cases) of
the initial visualization for approximate processing. Clearly, the
error is limited in particular for large data sizes. Figure 11 compares
time until the correct result is shown first (F-Time) to time until
the final visualization is generated (T-Time). For small data sizes,
approximation increases T-Time noticeably. For large data sizes, the
effect is negligible. This can be explained by per-query overheads
that do not depend on data size (e.g., query parsing) but become
dominated as data size grows. ILP-Inc has highest overheads for
large data sizes as it implies repeated processing.

2407



Default Inc-Plot AppILP-Inc
0
2
4
6
8

La
te
nc
y Small

Large

Default Inc-Plot AppILP-Inc
0
2
4
6
8

Cl
ar
ity

Figure 13: Average rating for latency and clarity by users in
user study on small and large datasets.

9.5 User Studies
We conducted two user studies (both focused on comparing meth-
ods and therefore exempt from IRB requirements [3]). The major-
ity of our participants are students outside of computer science
(thereby representative for non-experts who may benefit most from
natural language query interfaces). We assume that users issue
voice queries in the browser (a feature offered by Web sites such as
www.gooogle.com) via a desktop computer.

The first study compares MUVE (generating one multiplot via
greedy optimization) to a baseline. We used Zoom and recruited 10
participants, nine of them college students with four CS students.
Our baseline lets users resolve ambiguities by choosing correct
columns and constants via a drop down menu (showing likely alter-
natives), inspired by systems such as DataTone [7]. We measured
time after the voice query was processed and until the user verbally
reports the query result. Each user issued 30 queries, 10 on each of
the three aforementioned datasets, alternating between MUVE and
the baseline (half of participants started with MUVE). We specified
queries for users, generating each query by randomly selecting
column and value for one equality predicate and an aggregation
column. We discard the first 10 queries per participant (on the 311
request data) as warmup and report arithmetic averages for queries
on advertisement and DOB data in Figure 12. Clearly, visually iden-
tifying the desired result is faster than resolving ambiguities by
clicking buttons.

We conducted a second study comparing MUVE variants. We
recruited 10 graduate students, two of them in computer science. For
one large (flight delays) and one small (311 requests) data set, using
one randomly generated query with one predicate per data set, we
asked users to rate the approaches illustrated in Figure 5 on a scale
from one to ten. Users were shown all visualization variants for the
same query and data before submitting their rating. Figure 13 shows
arithmetic averages for “latency” as well as “clarity”. For latency,
user satisfaction clearly decreases for the default approach once data
size increases. Approximation receives statistically significantly
better ratings, compared to the default approach, for large data
sets. On the other side, the 95% confidence bounds overlap for all
approaches when it comes to clarity (while ILP-Inc has the lowest
average, likely due to a sequence of changing plots shown to the
user). Overall, approximation seems preferable for large data sets.

10 RELATEDWORK
Our work connects to prior work on natural language query inter-
faces [1, 17, 28]. Recently, advanced natural language processing
processing methods, exploiting for instance sequence-to-sequence
models [41, 45] or pre-trained language models [13, 16, 38], based
on the Transformer architecture [37], have enabled significant im-
provements for text-to-SQL benchmarks such as WikiSQL [45] or
SPIDER [43]. Nevertheless, text to query translation remains dif-
ficult [14] and subject to ambiguity. Voice-to-SQL interfaces [6,
19, 31, 35] exacerbate the problem due to noisy speech recogni-
tion. Prior work often requests additional input from users to
resolve ambiguities [5, 7, 17, 19, 30, 31]. We compare against a
corresponding baseline in our experiments. Other work aims at
reducing ambiguity by considering more information (e.g., query
logs [1]). Such approaches are complementary and can be com-
bined with our approach (used to resolve remaining ambiguity
after pruning). More generally, our work connects to prior work
on visualization [15, 20, 22, 26, 33, 44], in particular work on vi-
sualization planning. However, our work differs by the goal of
visualization planning (covering alternative query interpretations
in voice query interfaces). To select multiplots, we propose a user
cost model, based on user studies. Hence, to a moderate degree,
our work connects to prior work studying human perception of
visualizations [9, 11, 12, 23]. Our primary research contribution is
however in the design and analysis of MUVE.

11 CONCLUSION AND FUTUREWORK
We presented an approach to deal with ambiguities in voice query-
ing via multiplot visualizations. Our current implementation sup-
ports simple aggregation queries that yield a single number as
result. Queries with multiple result rows and up to two numerical
result columns (e.g., time series) could be plotted as lines or scatter
plots. For more than two result columns per query, our visualization
method would have to change fundamentally. We do not consider
queries with entirely non-numerical results as they are typically not
supported by data visualization tools. Our methods for visualization
planning (Sections 5 and 6) and process optimization (Section 8)
abstract away from the concrete structure of query templates. How-
ever, they use information on which queries can overlap work (see
Section 8) or can be presented in the same plot (e.g., Section 5).
Determining this becomes harder for complex query templates (a
common problem with other areas [27]).

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their valuable feedback,
notably for proposing several extensions to our original approach.

REFERENCES
[1] Christopher Baik, Hosagrahar V Jagadish, and Yunyao Li. 2019. Bridging the

semantic gap with SQL query logs in natural language interfaces to databases.
In 2019 IEEE 35th International Conference on Data Engineering (ICDE). IEEE,
374–385.

[2] Dharmil Chandarana, Vraj Shah, Arun Kumar, and Lawrence Saul. 2017. SpeakQL:
towards speech-driven multi-modal querying. In HILDA. 1–6.

[3] Cornell University. 2021. https://researchservices.cornell.edu/sites/default/files/2019-
05/IRB%20Decision%20Tree.pdf.

[4] Ahmet Cosar, E.P. Lim, and J. Srivastava. 1993. Multiple query optimization with
depth-first branch-and-bound and dynamic query ordering. In Information and

2408

www.gooogle.com


Knowledge Management. 433–438. http://portal.acm.org/citation.cfm?id=170088.
170181

[5] Kenneth Cox, Rebecca E Grinter, Stacie L Hibino, Lalita Jategaonkar Jagadeesan,
and David Mantilla. 2001. A multi-modal natural language interface to an infor-
mation visualization environment. International Journal of Speech Technology 4,
3-4 (2001), 297–314.

[6] Matteo Francia, Enrico Gallinucci, and Matteo Golfarelli. 2020. Towards conver-
sational OLAP. CEUR Workshop Proceedings 2572 (2020), 6–15.

[7] Tong Gao, Mira Dontcheva, Eytan Adar, Zhicheng Liu, and Karrie G Karahalios.
2015. Datatone: Managing ambiguity in natural language interfaces for data
visualization. In Proceedings of the 28th Annual ACM Symposium on User Interface
Software & Technology. 489–500.

[8] Wael H. Gomma and Aly A. Fahmy. 2013. A Survey of Text Similarity Approaches.
International Journal of Computer Applications 68, 13 (2013), 13–18.

[9] Connor C Gramazio, Karen B Schloss, and David H Laidlaw. 2014. The relation
between visualization size, grouping, and user performance. IEEE transactions on
visualization and computer graphics 20, 12 (2014), 1953–1962.

[10] Jiaqi Guo, Zecheng Zhan, Yan Gao, Yan Xiao, Jian-Guang Lou, Ting Liu, and
Dongmei Zhang. 2019. Towards Complex Text-to-SQL in Cross-Domain Database
with Intermediate Representation. (2019), 4524–4535. https://doi.org/10.18653/
v1/p19-1444 arXiv:1905.08205

[11] Weidong Huang, Peter Eades, and Seok-Hee Hong. 2009. Measuring effectiveness
of graph visualizations: A cognitive load perspective. Information Visualization
8, 3 (2009), 139–152.

[12] Jessica Hullman, Eytan Adar, and Priti Shah. 2011. Benefitting infovis with visual
difficulties. IEEE Transactions on Visualization and Computer Graphics 17, 12
(2011), 2213–2222.

[13] Wonseok Hwang, Jinyeong Yim, Seunghyun Park, and Minjoon Seo. 2019. A
comprehensive exploration on wikisql with table-aware word contextualization.
arXiv preprint arXiv:1902.01069 (2019).

[14] Hyeonji Kim, Byeong-Hoon So, Wook-Shin Han, and Hongrae Lee. 2020. Natural
language to SQL: Where are we today? Proceedings of the VLDB Endowment 13,
10 (2020), 1737–1750.

[15] Georgia Koutrika and Yannis Ioannidis. 2005. Constrained optimalities in query
personalization. In Proceedings of the 2005 ACM SIGMOD international conference
on Management of data. 73–84.

[16] Wenqiang Lei, Weixin Wang, Zhixin Ma, Tian Gan, Wei Lu, Min-Yen Kan, and
Tat-Seng Chua. 2020. Re-examining the Role of Schema Linking in Text-to-SQL.
In Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP). 6943–6954.

[17] Fei Li and Hosagrahar V Jagadish. 2014. NaLIR: an interactive natural language in-
terface for querying relational databases. In Proceedings of the 2014 ACM SIGMOD
international conference on Management of data. 709–712.

[18] Xi Victoria Lin, Richard Socher, and Caiming Xiong. 2020. Bridging Textual and
Tabular Data for Cross-Domain Text-to-SQL Semantic Parsing. (2020), 4870–4888.
https://doi.org/10.18653/v1/2020.findings-emnlp.438 arXiv:2012.12627

[19] Gabriel Lyons, Vinh Tran, Carsten Binnig, Ugur Cetintemel, and TimKraska. 2016.
Making the case for Query-by-Voice with EchoQuery. In SIGMOD. 2129–2132.

[20] Dominik Moritz, Chenglong Wang, Greg L Nelson, Halden Lin, Adam M Smith,
Bill Howe, and Jeffrey Heer. 2018. Formalizing visualization design knowledge
as constraints: Actionable and extensible models in draco. IEEE transactions on
visualization and computer graphics 25, 1 (2018), 438–448.

[21] GL Nemhauser and LA Wolsey. 1978. Best algorithms for approximating the
maximum of a submodular set function. Mathematics of Operations Research 3, 3
(1978), 177–188. http://mor.journal.informs.org/content/3/3/177.short

[22] Deokgun Park, Steven M Drucker, Roland Fernandez, and Niklas Elmqvist. 2017.
Atom: A grammar for unit visualizations. IEEE transactions on visualization and
computer graphics 24, 12 (2017), 3032–3043.

[23] Robert E Patterson, Leslie M Blaha, Georges G Grinstein, Kristen K Liggett,
David E Kaveney, Kathleen C Sheldon, Paul R Havig, and Jason A Moore. 2014. A
human cognition framework for information visualization. Computers & Graphics
42 (2014), 42–58.

[24] Philips and Lawrence. 1994. The double metaphone search algorithm. C/C++
Users Journal 18, 6 (1994), 38–43. http://dl.acm.org/citation.cfm?id=349132

[25] Diptikalyan Saha, Avrilia Floratou, Karthik Sankaranarayanan, Umar Farooq
Minhas, Ashish R Mittal, and Fatma Ozcan. 2016. ATHENA: An ontology-driven
system for natural language querying over relational data stores. VLDB 9, 12
(2016), 1209–1220.

[26] A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer. 2017. Vega-Lite:
A Grammar of Interactive Graphics. IEEE Transactions on Visualization and
Computer Graphics 23, 1 (2017), 341–350. https://doi.org/10.1109/TVCG.2016.
2599030

[27] Timos K Sellis. 1988. Multiple-query optimization. ACM Transactions on Database
Systems (TODS) 13, 1 (1988), 23–52.

[28] Jaydeep Sen, Chuan Lei, Abdul Quamar, Fatma Özcan, Vasilis Efthymiou, Ayushi
Dalmia, Greg Stager, Ashish Mittal, Diptikalyan Saha, and Karthik Sankara-
narayanan. 2020. ATHENA++: natural language querying for complex nested
SQL queries. Proceedings of the VLDB Endowment 13, 12 (2020), 2747–2759.
https://doi.org/10.14778/3407790.3407858

[29] Jaydeep Sen, Greg Stager, Chuan Lei, Fatma Ozcan, Ashish Mittal, Diptikalyan
Saha, Abdul Quamar, Manasa Jammi, and Karthik Sankaranarayanan. 2019. Nat-
ural language querying of complex business intelligence queries. Proceedings
of the ACM SIGMOD International Conference on Management of Data (2019),
1997–2000. https://doi.org/10.1145/3299869.3320248

[30] Vidya Setlur, Sarah E Battersby, Melanie Tory, Rich Gossweiler, and Angel X
Chang. 2016. Eviza: A natural language interface for visual analysis. In Proceedings
of the 29th Annual Symposium on User Interface Software and Technology. 365–377.

[31] Vraj Shah, Side Li, Arun Kumar, and Lawrence Saul. 2019. SpeakQL: towards
speech-driven multimodal querying of structured data. Technical Report. 1–16
pages.

[32] Vraj Shah, Side Li, Kevin Yang, Arun Kumar, and Lawrence Saul. 2019. Demon-
stration of SpeakQL: speech-driven multimodal querying of structured data. In
SIGMOD Demo Track. 2001–2004.

[33] Chris Stolte, Diane Tang, and Pat Hanrahan. 2002. Polaris: A system for query,
analysis, and visualization of multidimensional relational databases. IEEE Trans-
actions on Visualization and Computer Graphics 8, 1 (2002), 52–65.

[34] Immanuel Trummer. 2019. Data Vocalization with CiceroDB. In CIDR.
[35] Immanuel Trummer. 2020. Demonstrating the voice-based exploration of large

data sets with CiceroDB-zero. Proceedings of the VLDB Endowment 13, 12 (2020),
2869–2872. https://doi.org/10.14778/3415478.3415496

[36] Immanuel Trummer, Yicheng Wang, and Saketh Mahankali. 2019. A holistic
approach for query evaluation and result vocalization in voice-based OLAP. In
SIGMOD. 936–953.

[37] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in Neural Information Processing Systems 2017-Decem, Nips
(2017), 5999–6009. arXiv:1706.03762

[38] Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr Polozov, and Matthew
Richardson. 2019. Rat-sql: Relation-aware schema encoding and linking for
text-to-sql parsers. arXiv preprint arXiv:1911.04942 (2019).

[39] Guoping Wang and Chee-Yong Chan. 2013. Multi-Query Optimization in MapRe-
duce Framework. VLDB (2013), 145–156. https://doi.org/10.14778/2732232.
2732234

[40] Ziyun Wei, Immanuel Trummer, and Anderson Connor. 2021. Demonstrating
Robust Voice QueryingwithMUVE: Optimally Visualizing Results of Phonetically
Similar Queries. In SIGMOD.

[41] Xiaojun Xu, Chang Liu, and Dawn Song. 2017. SQLNet: generating struc-
tured queries from natural language without reinforcement Learning. 1–13.
arXiv:1711.04436 http://arxiv.org/abs/1711.04436

[42] Qilian Yu, Easton Li Xu, and Shuguang Cui. 2017. Submodular maximization
with multi-knapsack constraints and its applications in scientific literature rec-
ommendations. 2016 IEEE Global Conference on Signal and Information Processing,
GlobalSIP 2016 - Proceedings (2017), 1295–1299. https://doi.org/10.1109/GlobalSIP.
2016.7906050

[43] Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James
Ma, Irene Li, Qingning Yao, Shanelle Roman, Zilin Zhang, and Dragomir R. Radev.
2020. Spider: A large-scale human-labeled dataset for complex and cross-domain
semantic parsing and text-to-SQL task. Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing, EMNLP 2018 (2020), 3911–3921.
https://doi.org/10.18653/v1/d18-1425 arXiv:1809.08887

[44] Qianrui Zhang, Haoci Zhang, Thibault Sellam, and Eugene Wu. 2019. Mining
precision interfaces from query logs. In Proceedings of the 2019 International
Conference on Management of Data. 988–1005.

[45] Victor Zhong, Caiming Xiong, and Richard Socher. 2017. Seq2SQL: Generating
Structured Queries from Natural Language using Reinforcement Learning. (2017),
1–12. arXiv:1709.00103 http://arxiv.org/abs/1709.00103

2409

http://portal.acm.org/citation.cfm?id=170088.170181
http://portal.acm.org/citation.cfm?id=170088.170181
https://doi.org/10.18653/v1/p19-1444
https://doi.org/10.18653/v1/p19-1444
https://arxiv.org/abs/1905.08205
https://doi.org/10.18653/v1/2020.findings-emnlp.438
https://arxiv.org/abs/2012.12627
http://mor.journal.informs.org/content/3/3/177.short
http://dl.acm.org/citation.cfm?id=349132
https://doi.org/10.1109/TVCG.2016.2599030
https://doi.org/10.1109/TVCG.2016.2599030
https://doi.org/10.14778/3407790.3407858
https://doi.org/10.1145/3299869.3320248
https://doi.org/10.14778/3415478.3415496
https://arxiv.org/abs/1706.03762
https://doi.org/10.14778/2732232.2732234
https://doi.org/10.14778/2732232.2732234
https://arxiv.org/abs/1711.04436
http://arxiv.org/abs/1711.04436
https://doi.org/10.1109/GlobalSIP.2016.7906050
https://doi.org/10.1109/GlobalSIP.2016.7906050
https://doi.org/10.18653/v1/d18-1425
https://arxiv.org/abs/1809.08887
https://arxiv.org/abs/1709.00103
http://arxiv.org/abs/1709.00103

