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ABSTRACT

Log-structured merge (LSM) trees offer efficient ingestion by ap-

pending incoming data, and thus, are widely used as the storage

layer of production NoSQL data stores. To enable competitive read

performance, LSM-trees periodically re-organize data to form a

tree with levels of exponentially increasing capacity, through iter-

ative compactions. Compactions fundamentally influence the per-

formance of an LSM-engine in terms of write amplification, write

throughput, point and range lookup performance, space amplifi-

cation, and delete performance. Hence, choosing the appropriate

compaction strategy is crucial and, at the same time, hard as the LSM-

compaction design space is vast, largely unexplored, and has not

been formally defined in the literature. As a result, most LSM-based

engines use a fixed compaction strategy, typically hand-picked by

an engineer, which decides how and when to compact data.

In this paper, we present the design space of LSM-compactions,

and evaluate state-of-the-art compaction strategies with respect to

key performance metrics. Toward this goal, our first contribution is

to introduce a set of four design primitives that can formally define

any compaction strategy: (i) the compaction trigger, (ii) the data

layout, (iii) the compaction granularity, and (iv) the data movement

policy. Together, these primitives can synthesize both existing and

completely new compaction strategies. Our second contribution

is to experimentally analyze 10 compaction strategies. We present

12 observations and 7 high-level takeaway messages, which show

how LSM systems can navigate the compaction design space.
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1 INTRODUCTION

LSM-based Key-Value Stores. Log-structured merge (LSM) trees

are widely used today as the storage layer of modern NoSQL key-

value stores [36, 42, 45]. LSM-trees employ the out-of-place para-

digm to achieve fast ingestion. Incoming key-value pairs are buffered

in main memory, and are periodically flushed to persistent storage

as sorted immutable runs. As more runs accumulate on disk, they are

sort-merged to construct fewer yet longer sorted runs. This process

is known as compaction [30, 42]. To facilitate fast point lookups, LSM-

trees use auxiliary in-memory data structures (Bloom filters and
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Fig. 1: (a) The different compaction strategies adopted in

state-of-the-art LSM-engines lead to the diverse perfor-

mances offered by the engines; (b) The taxonomy of LSM

compactions in terms of the design primitives.

fence pointers) that help to reduce the average number of disk I/Os

performed per lookup [21, 22]. Because of these advantages, LSM-

trees are adopted by several production key-value stores including

LevelDB [32] and BigTable [17] at Google, RocksDB [30] at Face-

book, X-Engine [34] at Alibaba,WiredTiger at MongoDB [62], Cock-

roachDB at Cockroach Labs [18], Voldemort [40] at LinkedIn, Dy-

namoDB [25] at Amazon, AsterixDB [3], Cassandra [8], HBase [7],

Accumulo [6] at Apache, and bLSM [56] and cLSM [31] at Ya-

hoo. Academic systems based on LSM-trees include Monkey [21],

SlimDB [47], Dostoevsky [22, 23], LSM-Bush [24], Lethe [51], Silk [11,

12], LSbM-tree [58], SifrDB [44], and Leaper [63].

Compactions in LSM-Trees. Compactions in LSM-trees are em-

ployed periodically to reduce read and space amplification at the cost

of write amplification while ensuring data consistency and query

correctness [9, 10]. A compaction merges two or more sorted runs,

between one or multiple levels to ensure that the LSM-tree main-

tains levels with exponentially increasing sizes [45]. Compactions

are typically invoked when a level reaches its capacity, at which

point, the compaction routine moves data from the saturated level

to the next one, that has an exponentially larger capacity. Any

duplicate entries (resulting from updates) and invalidated entries

(resulting from deletes) are removed during a compaction, retain-

ing only the logically correct (latest valid) version [28, 51]. Com-

pactions dictate how and when disk-resident data is re-organized,

and thereby, influence the physical data layout on the disk. Fig. 1(a)

presents qualitatively the performance implications of the various

compaction strategies adopted in state-of-the-art LSM-engines.

TheChallenge:Hand-PickingCompaction Strategies.Despite

compactions being critical to the performance of LSM-engines, the

process of choosing an appropriate compaction strategy requires a

human in the loop. In practice, decisions on łhow to (re-)organize

data on diskž, and thereby, łwhich compaction strategies to imple-

ment or usež in a production LSM-based data store are often subject

to the expertise of the engineers or the database administrators

(DBAs). This is largely due to two reasons. First, the process of com-

paction in LSM-trees is often treated as a black-box and is rarely
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exposed as a tunable knob [61]. While the LSM-compaction design

space is vast, the lack of a formal template for compactions leads to

heavily relying on individual expertise, leaving a large part of the

design space unexplored. Second, there is a lack of analytical and

experimental data on how compactions influence the performance

of an LSM-engine subject to the underlying design of the storage

engine and the workload characteristics. Hence, it is difficult, even

for experts, to answer design questions such as:

(i) My LSM-engine is offering lower write performance than ex-

pected:Would a change in the compaction strategy help? If yes,

which strategies should be used?

(ii) The workload we used to process has changed: How does this

affect the read throughput of my system? Is there a compaction

strategy that can improve the read throughput?

(iii) We are due to design a new LSM-engine for processing a spe-

cific workload: How should I compact my data for best overall

performance? Is there a compaction strategy that I must avoid?

Relying on human expertise to hand-pick the appropriate com-

paction strategies for each application does not scale, especially for

large-scale system deployments.

Contributions. To this end, in this work, we formalize the design

space of compactions in LSM-based storage engines. Further, we

experimentally explore this space, and based on this, we present 7

high-level takeaway messages, and 12 observations that serve as a

comprehensive set of guidelines for LSM-compactions, and lay the

groundwork for compaction tuning and automation.

Conceptual Contribution: Constructing the Compaction De-

sign Space.We identify the defining characteristics of a compaction,

or compaction primitives: (i) the trigger (i.e., when to compact), (ii)

the data layout (i.e., how to organize the data after compaction),

(iii) the granularity (i.e., how much data to compact at a time), and

(iv) the data movement policy (i.e., which data to compact). To-

gether, the four primitives define when and how to compact data in

an LSM-tree. Fig. 1(b) presents the taxonomy of LSM-compactions

along with the various options for each of the design primitives.

Experimental Contribution 1: Unifying the Experimental In-

frastructure of Multiple Compaction Strategies. To establish

a consistent experimental platform, we integrate several state-of-

the-art compaction strategies into a unified codebase, based on

the widely adopted open-source RocksDB [30] LSM-engine. This

integration bridges wild variations of implementation and config-

uration knobs of different compaction strategies across different

LSM-engines. Further, we implement each compaction strategy

through the prism of the aforementioned four primitives on top of

the same data store to ensure an apples-to-apples comparison. We

implement ten state-of-the-art compaction strategies that are popular

among production and academic systems, and are key to the under-

standing of the LSM-compaction design space. We implement these

strategies through significant modifications to the latest RocksDB

codebase [30], and expose more than a hundred design knobs to

enable custom configuration and to ensure a fair evaluation.

Experimental Contribution 2: Analyzing the Compaction De-

sign Space. We provide a comprehensive experimental analysis of

the LSM-compaction design space, which quantifies the impact of

each of the design primitives on a number of performance metrics.

This experimental analysis also serves as a roadmap for selecting

a compaction strategy subject to the workload characteristics and

performance goals. We perform more than 2000 experiments with

10 compaction strategies to take a deep dive on the following.

• Performance Implications.We quantify the impact of compactions

on LSM performance in terms of ingestion throughput, query

latency, space and write amplification, and delete efficacy in ğ5.1.

• Workload Influence on Compactions.While the composition and

(ingestion and access) distribution of the workload influence the

compaction performance, deciding which compaction strategy to

employ is workload-agnostic in existing systems. To analyze the

workload’s impact on compactions performance, we experiment

with a number of representative workloads by varying (i) the

size of ingested data, (ii) the proportion of ingestion and lookups,

(iii) the proportion of empty and non-empty point lookups, (iv)

the selectivity of range queries, (v) the fraction of updates and

(vi) deletes, (vii) the key-value size, as well as (viii) the workload

distribution (uniform, normal, and Zipfian) in ğ5.2.

• Tuning Influence on Compactions. LSM tuning typically focuses

on knobs like memory buffer size, page size, and size ratio which

are not believed to be connected with compaction performance.

We experiment with these knobs to uncover when compactions

are affected (and when not) by these knobs in ğ5.3.

• Answering Design Questions. Finally, throughout ğ5 we present

various observations and key insights of our experimental evalu-

ation, and in ğ6 we discuss a roadmap for designing and choosing

compaction in LSM-engines.

This work defines the LSM compaction design space and presents a

thorough account of how the different primitives affect the overall

performance of a storage engine.

Key Takeaways. Finally, the high-level key takeaways from our

analysis are the following.

A. There is no perfect compaction strategy.When it comes to selecting

a compaction strategy for an LSM-engine, there is no single best.

Thus, a compaction strategy needs to be custom-tailored to specific

combinations of workload, LSM tuning, and performance goals.

B. It is important to look into the compaction łblack-boxž. To under-

stand the performance implications of LSM compactions, it is crucial

to łopen the black-boxž, and treat them as a set of design primi-

tives. Following this approach, we reason about the performance

implications of each design primitive independently. We identify

common pitfalls given a workload and a target performance.

C. The right compaction strategy can significantly boost performance.

Switching between compaction strategies as the workload and/or

the performance goals shift can boost the performance of an LSM-

engine significantly. Understanding the behavior and performance

implications of the compaction primitives allows for modifications

to existing codebases to invoke the appropriate compaction strategy.

2 BACKGROUND

We now present the necessary background of LSM-trees. A more

detailed survey on LSM-basics can be found in the literature [21, 42].

LSM-Basics. To support fast data ingestion, LSM-trees buffer in-

coming inserts, updates, and deletes (i.e., ingestion, in general)

within main memory. Once the memory buffer becomes full, the

entries contained are sorted on the key and the buffer is flushed as
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a sorted run to the disk-component of the tree. In practice, a sorted

run is a collection of one or more immutable files that have typically

the same size. For an LSM-tree with L levels, we assume that its

first level (Level 0) is an in-memory buffer and the remaining levels

(Level 1 to L − 1) are disk-resident [21, 42]. On disk, each Level i

(i > 1) has a capacity that is larger than that of Level i − 1 by a

factor of T , where T is the size ratio of the tree.

LSM-Compactions. To limit the number of sorted runs on disk

(and thereby, to facilitate fast lookups and better space utilization),

LSM-trees periodically sort-merge runs (or parts of a run) from a

Level i with the overlapping runs from Level i + 1. This process of

data re-organization and creating fewer longer sorted runs on disk

is known as compaction. However, the process of sort-merging data

requires the data to be moved back and forth between the disk and

main memory. This results in write amplification, which can be as

high as 40× in state-of-the-art LSM-based data stores [46].

Partial compactions. To amortize data movement, and thus, avoid

latency spikes, state-of-the-art LSM-engines organize data into

smaller files, and perform compactions at the granularity of files

instead of levels [28]. If Level i grows beyond a threshold, a com-

paction is triggered and one file (or a subset of files) from Level i

is chosen to be compacted with files from Level i + 1 that have an

overlapping key-range. This process is known as partial compaction.

Fig. 2 presents a comparative illustration of the full compaction and

partial compaction routines in LSM-trees.

Querying LSM-Trees. Since LSM-trees realize updates and deletes

in an out-of-place manner, multiple entries with the same key may

exist in a tree with only the recent-most version being valid.

Point lookups. A point lookup starts at the memory buffer and

traverses the tree from the smallest level to the largest one, and from

the youngest to the oldest run within a level. A lookup terminates

immediately after a matching key is found. To limit the number of

runs a lookup probes, state-of-the-art LSM-engines use in-memory

data structures, such as Bloom filters and fence pointers [23, 30].

Range scans.A range scan requires sort-merging the runs qualifying

for a range query across all levels of the tree. The runs are sort-

merged in memory and the latest version for each qualifying entry

is returned while discarding all older, logically invalidated versions.

Deletes in LSM-Trees. A point delete operation is realized by in-

serting a special type of key-value entry, known as a tombstone,

that logically invalidates the target entries without necessarily dis-

turbing them. During compactions, a tombstone purges any older

entries with amatching key. A delete is eventually considered as per-

sistent once the corresponding tombstone reaches the last tree-level,

at which point the tombstone can be safely dropped. The time taken

to persistently delete a data object from an LSM-based data store

depends on process of data re-organization. Compactions, thus, also

play a critical role in timely and persistent deletion of entries, espe-

cially in light of the new data privacy regulations [1, 26, 38, 50, 54].

3 THE COMPACTION DESIGN SPACE

In this section, we identify the design primitives that provide a

structured decomposition of arbitrary compaction strategies. This

allows us to create the taxonomy of the universe of LSM compaction

strategies, including all the classical as well as new ones.
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Fig. 2: (a) When invoked, the classical full compaction rou-

tine compacts whole levels at a time, while (b) partial com-

pactions perform compactions at the granularity of files.

3.1 Compaction Primitives

We define a compaction strategy as an ensemble of design primitives

that represents the fundamental decisions about the physical data

layout and the data (re-)organization policy. Each primitive answers

a fundamental design question.

1) Compaction trigger : When to re-organize the data layout?

2) Data layout: How to lay out the data physically on storage?

3) Compaction granularity: How much data to move at-a-time

during layout re-organization?

4) Data movement policy:Which block of data to be moved during

re-organization?

Together, these design primitives define when and how an LSM-

engine re-organizes the data layout on the persistent media. The

proposed primitives capture any state-of-the-art LSM-compaction

strategy and also enables synthesizing new or unexplored com-

paction strategies. Below, we define these four design primitives.

3.1.1 Compaction Trigger. Compaction triggers refer to the set

of events that can initiate a compaction job. The most common

compaction trigger is based on the degree of saturation of a level in

an LSM-tree [3, 30ś32, 35, 56, 57]. The degree of saturation for Level

i (1 ≤ i ≤ L − 1) is typically measured as the ratio of the number of

bytes of data stored in Level i to the theoretical capacity in bytes for

Level i . Once the degree of saturation goes beyond a pre-defined

threshold, one or more immutable files from Level i are marked

for compaction. Some LSM-engines use the file count in a level to

compute degree of saturation [32, 34, 35, 49, 55]. Note that the file

count-based degree of saturation works only when all immutable

files are of equal size, or for systems that have a tunable file size.

The ł#sorted runsž compaction trigger, triggers a compaction if the

number of sorted runs (or łtiersž) in a level goes past a predefined

threshold, regardless of the size of a level.

Other compaction triggers include the staleness of a file, the

tombstone-based time-to-live, and space and read amplification. For

example, to ensure propagation of updates and deletes to the deeper

levels of a tree, some LSM-engines assign a time-to-live (TTL)

for each file during its creation. Each file can live in a level for

a bounded time, and once the TTL expires, the file is marked for

compaction [30]. Another delete-driven compaction trigger ensures
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Fig. 3: The primitives that define LSM compactions: trigger, data layout, granularity, and data movement policy.

bounded persistence latency of deletes in LSM-trees through a dif-

ferent timestamp-based scheme. Each file containing at least one

tombstone is assigned a special time-to-live in each level, and up

on expiration of this timer, the file is marked for compaction [51].

Below, we present a list of the most common compaction triggers:

i) Level saturation: level size goes beyond a nominal threshold

ii) #Sorted runs: sorted run count for a level reaches a threshold

iii) File staleness: a file lives in a level for too long

iv) Space amplification (SA): overall SA surpasses a threshold

v) Tombstone-TTL: files have expired tombstone-TTL

3.1.2 Data layout. The data layout is driven by the compaction

eagerness, and determines the data organization on disk by control-

ling the number of sorted runs per level. Compactions move data

between storage and memory, consuming a significant portion of

the device bandwidth. There is, thus, an inherent competition for

the device bandwidth between ingestion (external) and compaction

(internal) ś a trade-off depending on the eagerness of compactions.

The data layout is commonly classified as leveling and tiering [21,

22]. With leveling, once a compaction is triggered in Level i , the

file(s) marked for compaction are merged with the overlapping

file(s) from Level i + 1, and the result is written back to Level i + 1.

As a result, Level i + 1 ends up with a (single) longer sorted run

of immutable files [30ś32, 34, 35, 56]. For tiering, each level may

contain more than one sorted runs with overlapping key domains.

Once a compaction is triggered in Level i , all sorted runs in Level

i are merged together and the result is written to Level i + 1 as a

new sorted run without disturbing the existing runs in that level [3,

7, 8, 30, 55, 57]. A hybrid design is proposed in Dostoevsky [23]

where the last level is implemented as leveled and all the remaining

levels on disk are tiered. A generalization of this idea is proposed

in the literature as a continuum of designs [24, 37] that allows each

level to separately decide between leveling and tiering. Among

production systems, RocksDB implements the first disk-level (Level

1) as tiering [49], and it is allowed to grow perpetually in order to

avoid write-stalls [11, 12, 14] in ingestion-heavy workloads. Below

is a list of the most common options for the data layout:

i) Leveling: one sorted run per level

ii) Tiering: multiple sorted runs per level

iii) 1-leveling: tiering for Level 1; leveling otherwise

iv) L-leveling: leveling for last level; tiering otherwise

v) Hybrid: a level can be tiering or leveling independently

3.1.3 Compaction Granularity. Compaction granularity refers

to the amount of data moved during a single compaction job. One

way to compact data is by sort-merging and moving all data from a

level to the next level ś we refer to this as full compaction [2, 3, 58,

62]. This results in periodic bursts of I/Os due to large data move-

ment during compactions, and as a tree grows deeper, the latency

spikes are exacerbated causing prolonged write stalls. To amortize

the I/O costs due to compactions, leveled LSM-based engines em-

ploy partial compaction [30, 32, 34, 45, 51, 55], where instead of mov-

ing a whole level, a smaller granularity of data participates in every

compaction. The granularity of data can be a single file [28, 34, 51]

or multiple files [2, 3, 8, 45] depending on the system design and the

workload. Note that, partial compaction does not radically change

the total amount of data movement due to compactions, but amor-

tizes this data movement uniformly over time, thereby preventing

undesired latency spikes. A compaction granularity of łsorted runsž

applies principally to LSMs with lazy merging policies. Once a com-

paction is triggered in Level i , all sorted runs (or tiers) in Level i are

compacted together, and the resulting entries are written to Level

i + 1 as a new immutable sorted run. Below, we present a list of the

most common compaction granularity options:

i) Level: all data in two consecutive levels

ii) Sorted runs: all sorted runs in a level

iii) Sorted file: one sorted file at a time

iv) Several sorted files: several sorted files at a time

3.1.4 Data Movement Policy. When partial compaction is em-

ployed, the data movement policy selects which file(s) to choose

for compaction. While the literature commonly refers to this deci-

sion as file picking policy [27], we use the term data movement to

generalize for any possible data movement granularity.

A naïve way to choose file(s) is at random or by using a round-

robin policy [32, 35]. These data movement policies do not focus

on optimizing for any particular performance metric, but help in re-

ducing space amplification. To optimize for read throughput, many

production data stores [30, 34] select the łcoldestž file(s) in a level

once a compaction is triggered. Another common optimization goal

is to minimize write amplification. In this policy, files with the least

overlap with the target level are marked for compaction [13, 27]. To

reduce space amplification, some storage engines choose files with

the highest number of tombstones and/or updates [30]. Another

delete-aware approach introduces a tombstone-age driven file pick-

ing policy that aims to timely persist logical deletes [51]. Below, we

present the list of the common data movement policies:

i) Round-robin: chooses files in a round-robin manner

ii) Least overlapping parent: file with least overlap with łparentž

iii) Least overlapping grandparent: as above with łgrandparentž

iv) Coldest: the least recently accessed file

v) Oldest: the oldest file in a level

vi) Tombstone density: file with #tombstones above a threshold

vii) Tombstone-TTL: file with expired tombstones-TTLs
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AsterixDB [3]
Leveling ✓ ✓ ✓

Tiering ✓ ✓ ✓

Tarantool [57] L-leveling ✓
L

✓
T

✓
L

✓
T

✓

ScyllaDB [55]
Tiering ✓ ✓ ✓ ✓ ✓

Leveling ✓ ✓ ✓ ✓ ✓ ✓ ✓

bLSM [56], cLSM [31] Leveling ✓ ✓ ✓

Accumulo [6] Tiering ✓ ✓ ✓ ✓ ✓

LSbM-tree [58, 59] Leveling ✓ ✓ ✓

SifrDB [44] Tiering ✓ ✓ ✓

Table 1: Compaction strategies in state-of-the-art systems.

[✓
L : for levels with leveling; ✓

T : for levels with tiering.]

3.2 Compaction as an Ensemble of Primitives

Every compaction strategy takes one or more values for each of the

four primitives. The trigger, granularity, and data movement policy

are multi-valued primitives, whereas data layout is single-valued.

For example, a common LSM design [2] has a leveled LSM-tree

(data layout) that compacts whole levels at a time (granularity)

once a level reaches a nominal size (trigger). This design does

not implement many subtle optimizations including partial com-

pactions, and by definition, does not need a data movement policy.

A more complex example is the compaction strategy for a leveled

LSM-tree (data layout) in which compactions are performed at the

granularity of a file. A compaction is triggered if either (a) a level

reaches its capacity or (b) a file containing tombstones is re-

tained in a level longer than a pre-set TTL [51]. Once triggered,

the data movement policy chooses (a) the file with the highest

density of tombstones, if there is one or (b) the file with the

least overlap with the parent level, otherwise.

The Compaction Design Space Cardinality. Two compaction

strategies are considered different from each other if they differ

in at least one of the four primitives. Compaction strategies that

differ in only one primitive, can have vastly different performance

when subject to the same workload while running on identical

hardware. Plugging in some typical values for the cardinality of the

primitives, we estimate the cardinality of the compaction universe

as >104, a vast yet largely unexplored design space. Table 1 shows a

representative part of this space, detailing the compaction strategies

used in more than twenty academic and production systems.

Compactions Analyzed. For our analysis and experimentation,

we select ten representative compaction strategies that are preva-

lent in production and academic LSM-based systems. We codify

and present these candidate compaction strategies in Table 2. Full

represents the compaction strategy for leveled LSM-trees that com-

pacts entire levels upon invocation. LO+1 and LO+2 denote two par-

tial compaction routines that choose a file for compaction with the

smallest overlap with files in the parent (i+1) and grandparent (i+2)

levels, respectively. RR chooses files for compaction in a round-robin

fashion from each level. Cold and Old are read-friendly strategies

that mark the coldest and oldest file(s) in a level for compaction,

respectively. TSD and TSA are delete-driven compaction strategies

with triggers and data movement policies that are determined by

the density of tombstones and the age of the oldest tombstone con-

tained in a file, respectively. Tier represents a variant of tiered

data layout, where compactions are triggered when either (a) the

number of sorted runs in a level or (b) the estimated space amplifi-

cation in the tree reaches certain thresholds. This interpretation of

tiering is also referred to as universal compaction in systems like

RocksDB [39, 49]. Finally, 1-Lvl represents a hybrid data layout

where the first disk level is realized as tiered while the others as

leveled. This is the default data layout for RocksDB [39, 48].

4 BENCHMARKING COMPACTIONS

We now discuss our experimental platform, how we integrated new

compactions policies, and our measurement methodology.

4.1 Standardization of Compaction Strategies

We choose RocksDB [30] as our experimental platform, as it (i)

is open-source, (ii) is widely used across industry and academia,

(iii) has a large active community. To ensure fair comparison we

implement all compaction strategies under the same LSM-engine.

Implementation.We integrate our codebase into RocksDB v6.11.4.

We assign to compactions a higher priority than writes to accurately

benchmark them, while always maintaining the LSM structure [53].

Compaction Trigger. The default compaction trigger for (hybrid)

leveling in RocksDB is level saturation [48], and for the univer-

sal compaction is space amplification [49]. RocksDB also supports

delete-driven compaction triggers, specifically whether the #tomb-

stones in a file goes beyond a threshold. We further implement a

trigger based on the tombstones age to facilitate timely deletes [51].

Data layout. By default, RocksDB supports only two different data

layouts: hybrid leveling (tiered first level, leveled otherwise) [48]

and a variation of tiering (with a different trigger), termed universal

compaction [49]. We also implement pure leveling by limiting the

number of first-level runs to one, and triggering a compaction when

the number of first-level files is more than one.

Compaction Granularity. The granularity for leveling is file and

sorted runs for tiering. To implement classical leveling, we mark

all files of a level for compaction. We ensure that ingestion may

resume only after all the compaction-marked files are compacted

thereby replicating the behavior of the full compaction routine.

Data Movement Policy. RocksDB (v6.11.4) provides four different

data movement policies: a file (i) with least overlap with its par-

ent level, (ii) least recently accessed, (iii) with the oldest data in a

level, and (iv) that has more tombstones than a threshold. We also

implement partial compaction strategies that choose a file (v) in a

round-robin manner, (vi) with the least overlap with its grandparent

level, and (vii) based on the age of the tombstones in a file.
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Primitives
Full

[3, 58, 62]

LO+1

[22, 30, 51]

Cold [30] Old [30] TSD [30, 34] RR [31, 32,

35, 56]

LO+2

[32, 35]

TSA [51] Tier

[8, 33, 47]

1-Lvl [30, 39, 48]

Trigger level saturation level sat. level sat. level sat.
1. TS-density

level sat. level sat.
1. TS age 1. #sorted runs 1. #sorted runsT

2. level sat. 2. level sat. 2. space amp. 2. level sat.L

Data layout leveling leveling leveling leveling leveling leveling leveling leveling tiering hybrid

Granularity levels files files files files files files files sorted runs
1. sorted runsT

2. filesL

Data movement
N/A

least overlap.
coldest file oldest file

1. most tombstones
round-robin

least overlap. 1. expired TS-TTL
N/A

1. N/AT

policy parent 2. least overlap. parent grandparent 2. least overlap. parent 2. least overlap. parentL

Table 2: Compaction strategies evaluated in this work. [L : levels with leveling; T : levels with tiering.]

Designing theCompactionAPI.Weexpose the compaction prim-

itives through a new API as configurable knobs. An application can

configure the desired compaction strategy and initiate workload

execution. The API also allows the application to change the com-

paction strategy for an existing database. Overall, our experimental

infrastructure allows us (i) to ensure an identical underlying struc-

ture while setting the compaction benchmark, and (ii) to tune and

configure the design of the LSM-engine as necessary.

4.2 Performance Metrics

We now present the performance metrics used in our analysis.

Compaction Latency. The compaction latency includes the time

taken to (i) identify the files to compact, (ii) read the participating

files to memory, (iii) sort-merge (and remove duplicates from) the

files, (iv) write back the result to disk as new files, (v) invalidate the

older files, and (vi) update the metadata in the manifest file [30].

The RocksDB metric rocksdb.compaction.times.micros is used

to measure the compaction latency.

Write Amplification (WA). The repeated reads and writes due to

compaction cause highWA [46]. We formally defineWA as the num-

ber of times an entry is (re-)written without any modifications to disk

during its lifetime.Weuse the RocksDBmetric compact.write.bytes

and the actual data size to compute WA.

Write Latency. Write latency is driven by the device bandwidth

utilization, which depends on (i) write stalls due to compactions and

(ii) the sustained device bandwidth.We use the db.write.micros

histogram to measure the average and tail of the write latency.

Read Amplification (RA). RA is the ratio between the total num-

ber of disk pages read for point lookups and the pages that should

be read ideally. We use rocksdb.bytes.read to compute RA.

Point Lookup Latency. Compactions determine the position of

the files in an LSM-tree which affects point lookups on entries

contained in those files. Here, we use the db.get.micros histogram.

Range Lookup Latency. The range lookup latency depends on

the selectivity of the range query, but is affected by the data layout.

We also use the db.get.micros histogram for range lookups.

Space Amplification (SA). SA depends on the data layout, com-

paction granularity, and the data movement policy. SA is defined

as the ratio between the size of logically invalidated entries and the

size of the unique entries in the tree [23].We compute SA using the

size of the database and the size of the logically valid entries.

Delete Performance. We measure the degree to which the tested

compaction strategies persistently delete entries within a time-

limit [51] in order to analyze the implications of compactions from

a privacy standpoint [1, 26, 38, 50, 54, 60].We use the RocksDB file

metadata age and a delete persistence threshold.

4.3 Benchmarking Methodology

We now discuss the methodology for varying the key input param-

eters for our analysis: workload and the LSM tuning.

4.3.1 Workload. A typical key-value workload comprises of five

primary operations: inserts, updates, point lookups, range lookups,

and deletes. Point lookups target keys that may or may not exist

in the database ś we refer to these as non-empty and empty point

lookups, respectively. Range lookups are characterized by their

selectivity. To analyze the impact of each operation, we vary the

fraction of each operation as well as their qualitative characteristics

(i.e., selectivity and entry size). We further vary the data distribution

of ingestion and queries focusing on (i) uniform, (ii) normal, and (iii)

Zipfian distributions. Overall, our custom-built benchmarking suite

is a superset of the influential YCSB benchmark [19] as well as the

insert benchmark [15], and supports a number of parameters that

are missing from existing workload generators, including deletes.

Our workload generator exposes over 64 degrees of freedom, and is

available via GitHub [52] for dissemination, testing, and adoption.

4.3.2 LSM Tuning. We further study the interplay of LSM tun-

ing and compaction strategies. We consider questions like which

compaction strategy is appropriate for a specific LSM design and a

given workload? To answer such questions we vary in our experi-

mentation key LSM tuning parameters, like (i) the memory buffer

size, (ii) the block cache size, and (iii) the size ratio of the tree.

5 EXPERIMENTAL EVALUATION

We now present the key experimental results using the ten com-

paction strategies listed in Table 2.

Goal of the Study. Our analysis aims to answer the following

three fundamental questions:

i) Performance implications: How do compactions affect the

overall performance of LSM-engines?

ii) Workload influence: How do workload distribution and com-

position influence compactions, and thereby, the perfor-

mance of LSM-engines?

iii) Tuning influence: What is the interplay between LSM com-

pactions and tuning?

Ultimately, the goal of this study is to help practitioners and re-

searchers to make informed decisions when deciding which com-

paction strategies to support and use in an LSM-based engine.

Experimental Setup. For our experiments, we use an AWS EC2

server with t2.2xlarge instances (virtualization: hardware virtual

machine) [5]. Each virtual machine has 8 Intel Scalable Processors

(vCPUs) at 3.0GHz, 32GB of DIMM RAM, 45MB of L3 cache, and

runs Ubuntu 20.04 LTS. For storage, we attach a 40GB SSD volume
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with 4000 provisioned IOPS (volume type: io2) [4]. For experiments

with data size larger than 16GB, we switch to a 500GB SSD.

Default Setup. Unless otherwise mentioned, all experiments are

performed on a RocksDB setup with an LSM-tree of size ratio 10 [21,

27, 30]. The memory buffer is implemented as a hash skiplist [29].

The size of the write buffer is set to 8MB which can hold up to 512

16KB disk pages [21, 22, 27, 34]. Fence pointers are maintained for

each disk page, and Bloom filters are constructed for every file with

10 bits memory allocated for every entry [22, 24]. Additionally, we

have 8MB block cache (RocksDB default) assigned for data, filter,

and index blocks [27]. To capture the true raw performance of

RocksDB as an LSM-engine, we (i) assign compactions a higher

priority than writes, (ii) enable direct I/Os for both read and write

operations, (iii) limit the number of memory buffers (or memtables)

to two (one immutable and one mutable), and (iv) set the number

of background threads responsible for compactions to 1.

Workloads. Unless otherwise mentioned, ingestion and lookups

are uniformly generated, and the average size of a key-value entry is

128B with 4B keys [20, 41, 43]. We vary the number of inserts, going

up to 228. As compaction performance proves to be agnostic to data

size, and in the interest of experimenting with many configurations,

we perform our base experiments with 10M inserts [16, 21], both

interleaved and serial with respect to lookups. Further specifications

of the workloads are presented before each set of experiments.

Presentation. For each experiment, we present the primary obser-

vations (O) along with key takeaway (TA) messages. In the interest

of space, we limit our discussion to the most interesting results. Fur-

ther, note that TSD and TSA, fall back to LO+1 in absence of deletes,

and thus, are omitted from the experiments without deletes.

5.1 Performance Implications

We first analyze the implications of compactions on the ingestion,

lookup, and overall performance of an LSM-engine.

5.1.1 Data loading. In this experiment, we insert 10M key-value

entries uniformly generated into an empty database to quantify the

raw ingestion and compaction performance.

O1: Compactions Cause High Data Movement. Fig. 4(a) shows

that the overall (read and write) data movement due to compactions

is significantly larger than the actual size of the data ingested.

Among the leveled LSM-designs, Full moves 63× (32× for reads

and 31× for writes) the data originally ingested. The data movement

is significantly smaller for Tier, however, it remains 23× of the data

size. The data movement for 1-Lvl is similar to that of the leveled

strategies in partial compaction. These observations conforms with

prior work [46], but also highlight the problem of read amplification

due to compactions leading to poor device bandwidth utilization.

O2: Partial Compaction Reduces Data Movement at the Ex-

pense of Increased Compaction Count. We now shift our at-

tention to the different variations of leveling. Fig. 4(a) shows that

leveled partial compaction leads to 34%ś56% less data movement

than Full. The reason is twofold: (1) A file with no overlap with

its parent level, is only logically merged. Such pseudo-compactions

require simple metadata (file pointer) manipulation in memory, and

no I/Os. (2) A smaller compaction granularity reducing overall data

movement by choosing a file with (i) the least overlap, (ii) the most

updates, or (iii) the most tombstones for compaction. . Specifically,

LO+1 (and LO+2) is designed to pick files with the least overlap with

the parent i + 1 (and grandparent i + 2) level. They move 10%ś23%

less data than other partial compaction strategies.

Fig. 4(b) shows that the partial compaction strategies as well as

1-Lvl perform 4×more compaction jobs than Full, which is equal

to the number of tree-levels. Note that for an LSM-tree with partial

compaction, every buffer flush triggers cascading compactions to all

L levels, while in a full-level compaction system this happens when

a level is full (every T compactions). Finally, since both Tier and

Full are full-level compactions the compaction count is similar.

TA I: Larger compaction granularity leads to fewer but larger com-

pactions. Full-level compactions perform about 1/L times fewer com-

pactions than partial compaction routines, however, full-level compaction

moves nearly 2L times more data per compaction.

O3: Full Leveling has theHighestMeanCompaction Latency.

As expected, Full compactions have the highest average latency

(1.2ś1.9× higher than partial leveling, and 2.1× than tiering). The

mean compaction latency is observed to be directly proportional

to the average amount of data moved per compaction. Full can

neither take advantage of pseudo-compactions nor optimize the

data movement during compactions, hence, on average the data

movement per compaction remains large. 1-Lvl provides the most

predictable performance in terms of compaction latency. Fig. 4(c)

shows the mean compaction latency for all strategies as well as

the median (P50), the 90
th percentile (P90), the 99

th percentile

(P99), and the maximum (P100). The tail compaction latency largely

depends on the amount of data moved by the largest compaction

jobs triggered during the workload execution. We observe that the

tail latency (P90, P99, P100) is more predictable for Full, while

partial compactions, and especially, tiering have high variability

due to differences in the data movement policies.

The compaction latency presented in Fig. 4(c) can be broken to

IO time and CPU time. We observe that the CPU effort is about

50% regardless of the compaction strategy. During a compaction,

CPU cycles are spent in (1) obtaining locks and taking snapshots,

(2) merging the entries, (3) updating file pointers and metadata, and

(4) synchronizing output files post compaction. Among these, the

time spent to sort-merge the data in memory dominates.

The Tail Write Latency is Highest for Tiering. Fig. 4(d) shows

that the tail write latency is highest for tiering. The tail write latency

for Tier is ∼2.5× greater than Full and 5ś12× greater than partial

compactions. Tiering in RocksDB [49] optimizes for writes and

opportunistically seeks to compact all data to a large single level.

This design achieves lower average write latency (Fig. 5(b)) at the

expense of prolonged write stalls in the worst case, which is when

the overlap between two consecutive levels is very high. Full also

has 2ś5× higher tail write stalls than partial compactions because

when multiple consecutive levels are close to saturation, a buffer

flush can result in a cascade of compactions. 1-Lvl too has a higher

tail write latency as the first level is realized as tiering.

TA II: Tier may cause prolonged write stalls. Tail write stall for Tier

is ∼25ms, while for partial leveling (Old) it is as low as 1.3ms.

5.1.2 Querying the Data. In this experiment, we perform 1M

point lookups on the previously generated preloaded database (with
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Fig. 4: Compactions influence the ingestion performance of LSM-engines heavily in terms of (a) the overall data movement,

(b) the compaction count, (c) the compaction latency, and (d) the tail latency for writes, as well as (e, f) the point lookup

performance. The range scan performance (g) remains independent of compactions as the amount of data read remains the

same. Finally, the lookup latency (h) depends on the proportion of empty queries (α ) in the workload.

10M entries). The lookups are uniformly distributed in the domain

and we vary the fraction of empty lookups α between 0 and 1.

Specifically, α = 0 indicates that we consider only non-empty

lookups, while for α = 1 we have lookups on non-existing keys.

We also execute 1000 range queries, while varying their selectivity.

O4: The Point Lookup Latency is Highest for Tiering and

Lowest for Full-Level Compaction. Fig. 4(e) shows that point

lookups perform the best for Full, and the worst for tiering. The

mean latency for point lookups with tiering is between 1.1ś1.9×

higher than that with leveled compactions for lookups on existing

keys, and ∼2.2× higher for lookups on non-existing keys. Note

that lookups on existing keys must always perform at least one

I/O per lookup (unless they are cached). For non-empty lookups

in a tree with size ratio T , theoretically, the lookup cost for tiering

should beT× higher than its leveling equivalent [21]. However, this

worst-case cost is not always accurate; in practice it depends on (i)

the block cache size and the caching policy, (ii) the temporality of

the lookup keys, and (iii) the implementation of the compaction

strategies. RocksDB-tiering has overall fewer sorted runs than text-

book tiering. Taking into account the block cache and temporality

in the lookup workload, the observed tiering cost is less than T×

the cost observed for Full. In addition, Full is 3%ś15% lower than

the partial compaction routines, because during normal operation

of Full some levels might be entirely empty, while for partial com-

paction all levels are always close to being full. Finally, we note

that the choice of data movement policy does not affect the point

lookup latency significantly, which always benefits from Bloom

filters (10 bits-per-key) and the block cache (0.05% of the data size).

Point Lookup Latency Increases for Comparable Number of

Empty and Non-Empty Queries. A surprising result for point

lookups that is also revealed in Fig. 4(e) is that they perform worse

when the fraction of empty and non-empty lookups is balanced.

Intuitively, one would expect that as we have more empty queries

(that is, as α increases) the latency would decrease since the only

data accesses needed by empty queries are the ones due to Bloom

filter false positives [21]. To further investigate this result, we plot

in Fig. 4(h) the 90th percentile (P90) latency which shows a similar

curve for point lookup latency as we vary α . In our configuration

each file uses 20 pages for its Bloom filters, 4 pages for its index

blocks, and that the false positive is FPR = 0.8%. A non-empty

query needs to load the Bloom filters of the levels it visits until it

terminates. For all intermediate levels, it accesses the index and

data blocks with probability FPR, and then fetches the index and

data blocks for the target level. On the other hand, an empty query

probes the Bloom filters of all levels before returning an empty

result. Note that for each level it also accesses the index and data

blocks with FPR. The counter-intuitive shape is a result of the non-

empty lookups not needing to load the Bloom filters for all levels

when α = 0 and the empty lookups accessing index and data only

when there is a false positive when α = 1. Fig. 4(h) also shows the

highly predictable point lookup performance of 1-Lvl.

TA III: The point lookup latency is largely unaffected by the data

movement policy. In presence of Bloom filters (with high enough memory)

and small enough block cache, the point query latency remains largely

unaffected by the data movement policy as long as the number of sorted runs

in the tree remains the same. This is because block-wise caching of the filter

and index blocks reduces the time spent performing disk I/Os significantly.

O5: Read Amplification is Influenced by the Block Cache

Size and File Structure, and is Highest for Tiering. Fig. 4(f)

shows that the read amplification across different compaction strate-

gies for non-empty queries (α = 0) is between 3.5 and 4.4. This is

attributed to the size of filter and index blocks which are 5× and 1×

the size of a data block, respectively. Each non-empty point lookup

fetches between 1 and L filter blocks depending on the position

of the target key in the tree, and up to L · FPR index and data

blocks. Further, the read amplification increases exponentially with

α , reaching up to 14.4 for leveling and 21.3 for tiering (for α = 0.8).

Fig. 4(f) also shows that the estimated read amplification for point

lookups is between 1.2× and 1.8× higher for Tier than for leveling

strategies. This higher read amplification for Tier is owing to the

larger number of sorted runs in the tree, and is in line with O4.

The Effect of Compactions on Range Scans is Marginal. To

answer a range query, LSM-trees instantiate multiple run-iterators
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Fig. 5: (a-c) The average ingestion performance for workloads with interleaved inserts and queries is similar to that of an

insert-only workload, but (d) with worse tail performance. However, (e) interleaved lookups are significantly faster.

scanning all sorted runs containing qualifying data. Thus, its per-

formance depends on (i) the iterator scan time (which relates to

selectivity) and (ii) the time to merge the data. The number of sorted

runs in a leveled LSM-tree remains the same, which results in sim-

ilar range query latency for all leveled variations, especially for

larger selectivity (Fig. 4(g)). Note that without updates or deletes,

the amount of data qualifying for a range query remains largely

identical for different data layouts despite the number of runs being

different. The ∼5% higher average range query latency for Tier is

attributed to the additional I/Os needed to handle partially qualify-

ing disk pages from each run (O(L ·T ) in the worst case).

5.1.3 Executing mixed workloads. We now discuss the perfor-

mance implications when ingestion and queries are mixed. We

interleave the ingestion of 10M unique key-value entries with 1M

point lookups. The ratio of empty to non-empty lookups is varied

across experiments. All lookups are performed after L− 1 levels are

full. Fig. 5 compares side by side the results for serial and interleaved

execution of workloads with same specifications.

O6: Mixed Workloads have Higher Tail Write Latency. Fig-

ures 5(a) and (b) show that the mean latency of compactions that

are interleaved with point queries is only marginally affected for all

compaction strategies. This is also corroborated by the write ampli-

fication remaining unaffected by mixing reads and writes as shown

in Fig. 5(c). On the other hand, Fig. 5(d) shows that the tail write

latency is increased between 2ś15×. This increase is attributed to

(1) the need of point queries to access filter and index blocks that

requires disk I/Os that compete with writes and saturate the device,

and (2) the delay of memory buffer flushing during lookups.

Interleaving Compactions and Point Queries Helps Keeping

the Cache Warm. Since in this experiment we start the point

queries when L − 1 levels of the tree are full, we expect that the in-

terleaved read query execution will be faster than the serial one, by

1/L (25% in our configuration) which corresponds to the difference

in the height of the trees. However, Fig. 5(e) shows this difference

to be between 26% and 63% for non-empty queries and between 69%

and 81% for empty queries. The reasons interleaved point query

execution is faster than expected are that (1) about 10% of lookups

terminate within the memory buffer, without requiring any disk

I/Os, and (2) the block cache is pre-warmed with filter, index, and

data blocks cached during compactions. Fig. 5(d) and 5(e) show how

1-Lvl brings together the best of both worlds and offer reasonably

good ingestion and lookup performance simultaneously.

TA IV: Compactions help lookups by warming up the caches. As the

file metadata is updated during compactions, the block cache is warmed up

with the filter, index, and data blocks, which helps subsequent point lookups.

5.2 Workload Influence

Next, we analyze the implications of the workloads on compactions.

5.2.1 Varying the Ingestion Distribution. In this experiment,

we use an interleaved workload that varies the ingestion distribu-

tion (Zipfian with s = 1.0, normal with 34% standard deviation),

and has uniform lookup distribution. We use a variant of the Zip-

fian distribution, called PrefixZipf, where the key prefixes follow

a Zipfian distribution while the suffixes are generated uniformly.

This allows us to avoid having too many updates in the workload.

IngestionPerformance isAgnostic to InsertDistribution. Fig-

ures 4(a), 6(a), and 6(e) show that the total data movement during

compactions remains virtually identical for (unique) insert-only

workloads generated using uniform, PrefixZipf, and normal distri-

butions, respectively. Further, we observe that the mean and tail

compaction latencies are agnostic of the ingestion distribution (Fig.

4(c), 6(b), and 6(f) are almost identical as well). As long as the data

distribution does not change over time, the entries in each level fol-

low the same distribution and the overlap between different levels

remains the same. Therefore, for an ingestion-only workload the data

distribution does not influence the choice of compaction strategy.

O7: Insert Distribution Influences Point Queries. Figure 6(c)

shows that while tiering has a slightly higher latency for point

lookups, the relative performance of the compaction strategies is

close to each other for any fraction of non-empty queries in the

workload (all values of α ). This is because when empty queries are

drawn uniformly from the key domain, the level-wise metadata

and index blocks help to entirely avoid a vast majority of unnec-

essary disk accesses (including fetching index or filter blocks). In

Fig. 6(d), we observe that the read amplification remains compa-

rable to that in Fig. 4(f) (uniform ingestion) for α = 0 and even

α = 0.4. However, for α = 0.8, the read amplification in Fig. 6(d)

becomes 65%-75% smaller than in the case of uniform inserts. The

I/Os performed to fetch the filter blocks is close to zero. This shows

that all compaction strategies perform equally well while executing an

empty query-heavy workload on a database pre-populated with Pre-

fixZipf inserts. In contrast, when performing lookups on a database

pre-loaded with normal ingestion, the point lookup performance

(Fig. 6(g)) largely resembles its uniform equivalent (Fig. 4(h)), as

the ingestion-skewness is comparable. The filter and index block

hits are ∼ 10% higher for the normal distribution compared to uni-

form for larger values of α , which explains the comparatively lower

read amplification shown in Fig. 6(h). This plot also shows the first

case of unpredictable behavior of LO+2 for α = 0 and α = 0.2. We

observe more instances of such unpredictable behavior for LO+2,

which probably explains why it is rarely used in new LSM stores.

Once again, for both the compaction and tail lookup performance,

1-Lvl offers highly predictable performance.

5.2.2 Varying the Point Lookup Distribution. In this exper-

iment, we change the point lookup distribution to Zipfian and

normal, while keeping the ingestion distribution as uniform.
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Fig. 6: As the ingestion distribution changes to (a-d) PrefixZipf and (e-h) normal with standard deviation, the ingestion perfor-

mance of the database remains nearly identical with improvement in the lookup performance.
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Fig. 7: Skewed lookup distributions like Zipfian (a, b) and normal (c, d) improve the lookup performance dramatically in the

presence of a block cache and with the assistance of Bloom filters.

The Distribution of Point Lookups Significantly Affects Per-

formance. Zipfian point lookups on uniformly populated data

leads to low latency point queries for all compaction strategies, as

shown in Fig. 7(a) because the block cache is enough for the popu-

lar blocks in all cases, as also shown by the low read amplification

in Fig. 7(b). On the other hand, when queries follow the normal

distribution, partial compaction strategies LO+1 and LO+2 dominate

all other approaches, while Tier is found to perform significantly

slower than all other approaches, as shown in Fig. 7(c) and 7(d).

TA V: For skewed ingestion/lookups, all compaction strategies be-

have similarly in terms of lookup performance. While the ingestion

distribution does not influence its performance, heavily skewed ingestion or

lookups impacts query performance due to block cache and file metadata.

5.2.3 Varying the Proportion of Updates. We now vary the

update-to-insert ratio, while interleaving queries with ingestion.

An update-to-insert ratio 0means that all inserts are unique, while a

ratio 8means that each unique insert receives 8 updates on average.

O8: For Higher Update Ratio Compaction Latency for Tier-

ing Drops; LO+2 Dominates the Leveling Strategies. As the

fraction of updates increases, the mean compaction latency de-

creases significantly for tiering because we discard multiple up-

dated entries in every compaction (Fig. 8(a)). We observe similar

but less pronounced trends for Full and LO+2, while the remain-

ing leveling strategies remain largely unchanged. Overall, larger

compaction granularity helps to exploit the presence of updates by

invalidating more entires at a time. Among the leveling strategies,

LO+2 performs best as it moves ∼20% less data during compactions,

which also affects write amplification as shown in Fig. 8(b).

As the fraction of updates increases, all compaction strategies

including Tier have lower tail compaction latency. Fig. 8(c) shows

that Tier’s tail compaction latency drops from 6× higher than

Full to 1.2× for an update-to-insert ratio of 8, which demonstrates

that Tier is most suitable for update-heavy workloads. We also

observe that lookup latency and read amplification also decrease

for update-heavy workloads.

The Point Lookup Latency Stabilizes with the Level Count.

Fig. 8(d) shows that as the update-to-insert ratio increases, the mean

point lookup latency decreases sharply before stabilizing. The initial

sharp fall in the latency is attributed to a decrement in the number

of levels (from 4 to 3) in the LSM-tree, when the update-to-insert

ratio increases from 0.4 to 1. The latency then stabilizes because

non-empty point lookups perform at least one disk I/O, which, in

turn, dominates the overall lookup cost.

TA VI: Tiering dominates the performance for update-intensive

workloads. When subject to update-intensive workloads, Tier exhibits su-

perior compaction performance along with comparable lookup performance

(as leveled LSMs), which allows it to dominate the overall performance space.

5.2.4 Varying Delete Proportion. We now analyze the impact

of deletes, which manifest as out-of-place invalidations with special

entries called tombstones [51]. We keep the same data size and vary

the proportion of point deletes in the workload. All deletes are

issued on existing keys and are interleaved with the inserts.

TSD and TSA Offer Superior Delete Performance. We quantify

the efficacy of deletion using the number of tombstones at the end of

the workload execution. The lower this number, the faster deleted

data has been purged from the database, which in turn reduces

space, write, and read amplification. Fig. 8(e) shows that TSD and

TSAmaintain the fewer tombstones at the end of the experiment. For

a workload with 10% deletes, TSD purges 16%more tombstones than

Tier and 5% more tombstones than LO+1 by picking the files that

have a tombstone density above a pre-set threshold for compaction.
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Fig. 8: Experiments with varying workload and data characteristics (a-l) and LSM tuning (m-r) show that there is no perfect

compaction strategy ś choosing the appropriate compaction strategy is subject to the workload and the performance goal.

For TSA, we experiment with two different thresholds for delete

persistence: TSA33 and TSA50 is set to 33% and 50% of the experi-

ment run-time, respectively. As TSA guarantees persistent deletes

within the thresholds set, it compacts more data aggressively, and

ends up with 7ś10% fewer tombstones as compared to TSD. Full

manages to purge more tombstones than any partial compaction

routine, as it periodically compacts entire levels. Tier retains the

highest number of tombstones as it maintains the highest number

of sorted runs overall. As the proportion of deletes in the workload

increases, the number of tombstones remaining the LSM-tree (after

the experiment is over) increases. TSA and TSD along with Full

scale better than the partial compaction routines and tiering. By

compacting more tombstones, TSA and TSD also purge more invalid

data reducing space amplification, as shown in Fig. 8(f).

O9: Optimizing for Deletes Comes at a (Write) Cost. The re-

duced space amplification offered by TSA and TSD is achieved by

compacting the tombstones eagerly, which increases the overall

amount of data moved due to compaction. Fig. 8(g) shows that

TSD and TSA50 compacts 18% more data than the write optimized

LO+1 (for TSA33 this becomes 35%). Thus, TSD and TSA are useful

when the objective is to (i) persist deletes timely or (ii) reduce space

amplification caused by deletes.

TA VII: TSD and TSA are tailored for deletes. TSA and TSD, by design,

choose files with tombstones for compactions to reduce space amplification.

TSA ensures timely persistent deletion by compacting more data eagerly for

smaller persistence thresholds, which increases the write amplification.

5.2.5 Varying the Ingestion Count. We now report the scala-

bility results by varying the data size from 2
27B to 2

35B.

O10: Tier Scales Poorly Compared to Leveled and Hybrid

Strategies. The mean compaction latency scales sub-linearly for

all compaction strategies barring Tier, as shown in Fig. 8(h). The

relative advantages of compaction strategies with leveled and hybrid

data layouts remain similar regardless of the data size. This obser-

vation is further backed up by Fig. 8(i) which shows how write

amplification scales. We also observe that the advantages of the

RocksDB-implementation of tiering (i.e., universal compaction) [49]

diminishes as the data size grows beyond 8GB. Fig. 8(j) shows that

as the data size increases, the tail compaction latency for Tier

increases, as the worst-case overlap between files from consecu-

tive levels increase significantly. This makes Tier unsuitable for

latency-sensitive applications. When the data size reaches 2GB,

Full triggers a cascading compaction that writes all data to a new

level, causing spikes in write amplification and compaction latency.

5.2.6 Varying Entry Size. Here, we keep the key size constant

(4B) and vary the value from 4B to 1020B to vary the entry size.

O11: For Smaller Entry Size, Leveling Compactions areMore

Expensive. Smaller entry size increases the number of entries per

page, which in turn, leads to (i) more keys to be compared during

merge and (ii) bigger Bloom filters that require more space per

file and more CPU for hashing. Fig. 8(k) shows these trends. We

also observe similar trends for write amplification in Fig. 8(l) and

for query latency. They both decrease as the entry size increases.

However, as the overall data size increases with the entry size, we

observe the compaction latency and write amplification to increase

steeply for Tier (similarly to Fig. 8(h) and (i)).

5.3 LSM Tuning Influence

In the final part of our analysis, we discuss the interplay of com-

pactions with the standard LSM tunings knobs, such as memory

buffer size, page size, and size ratio.

O12: Compactions with Tiering Scale Better with Buffer Size.

Fig. 8(m) shows that as the buffer size increases, the mean com-

paction latency increases across all compaction strategies. The size

of buffer dictates the size of the files on disk, and larger file size

leads to more data being moved per compaction. Also, for larger

2226



file size, the filter size per file increases along with the time spent

for hashing, which increases compaction latency. Further, as the

buffer size increases, the mean compaction latency for Tier scales

better than the other strategies. Fig. 8(n) shows that the high tail

compaction latency for Tier plateaus quickly as the buffer size

increases, and eventually crossovers with that for the eagerer com-

paction strategies when the buffer size becomes 64MB.

We also observe in Fig. 8(o) that among the partial compaction

routines Old experiences an increased write amplification through-

out, while LO+1 and LO+2 consistently offer lower write amplifi-

cation and guarantee predictable ingestion performance. Fig. 8(p)

shows that as the memory buffer size increases, the mean point

lookup latency increases superlinearly. This is because, for larger

memory buffers, the files on disk hold a greater number of pages,

and thereby, more entries. Thus, the combined size of the index

block (one index per page) and filter block (typically, 10 bits per

entry) per file grows proportionally with the memory buffer size.

The time elapsed in fetching the index and filter blocks causes the

mean latency for point lookups to increase significantly.

All Compaction Strategies React Similarly to Varying the

Page Size. In this experiment, we vary the logical page size, which

in turn, changes the number of entries per page. The smaller the

page size, the larger the number of pages per file ś meaning more

I/Os are required to access a file on the disk. For example, when the

page size shrinks from 2
10B to 29B, the number of pages per file dou-

bles. With smaller page size, the index block size per file increases

as more pages should be indexed, which also contributes to the

increasing I/Os. Thus, an increase in the logical page size, reduces

the mean compaction latency, as shown in Fig. 8(q). In Fig. 8(r), we

observe that as the page size increases, the size of the index block

per file decreases, and on average fewer I/Os are performed to fetch

the metadata block overall for every point lookup.

Miscellaneous Observations. We also vary LSM tuning parame-

ters such as the size ratio, the memory allocated to Bloom filters,

and the size of the block cache. We observe that changing the values

of these knobs affects the different compaction strategies similarly,

and hence, does not influence the choice of the appropriate com-

paction strategy for any particular set up.

6 DISCUSSION

The design space detailed in Section 3 and the experimental analysis

presented in Section 5 aim to offer to database researchers and

practitioners the necessary insights to make educated decisions

when selecting compaction strategies for LSM-based data stores.

Know Your LSM Compaction. LSM-trees are considered łwrite-

optimizedž, however, in practice their performance strongly de-

pends on when and how compactions are performed. We depart from

the notion of treating compactions as a black-box, and instead, we

formalize LSM compactions as an ensemble of four fundamental

compaction primitives. This allows us to reason about each of these

primitives and navigate the LSM compaction design space in search

of the appropriate compaction strategy for a workload or for cus-

tom performance goals. Further, the proposed compaction design

space provides the necessary intuitions about how simple modifica-

tions (like data movement policy or compaction granularity) to an

existing engine (like RocksDB) can be key to achieving significant

performance improvement or cost benefits. For instance, RocksDB

canmodularize their compaction implementation by decoupling the

code logic for every primitive. This will not only expose the primi-

tives as tunable knobs, but will facilitate synthesizing and testing

new compaction algorithms tailored to a developer’s requirements.

Avoiding the Worst Choices. We discuss how to avoid com-

mon pitfalls. For example, tiering is often considered as the write-

optimized variant, however, we show that it comes with high tail

latency, making it unsuitable for applications that need worst-case

performance guarantees. Also, applications requiring stable perfor-

mance should avoid LO+2 due to its unpredictable performance. On

the other hand, partial compactions with leveling, and especially,

hybrid leveling (e.g., 1-Lvl) offer the most stable performance.

AdaptingwithWorkloads. In prior work tiering is used for write-

intensive use-cases, while leveling offers better read performance.

However, in practice, in mixed HTAP-style workloads, lookups

have a strong temporal locality, and are essentially performed on

recent hot data. In such cases, the block cache is frequently proved

to be enough for holding the working set and eliminate the need

for other costly optimizations for read queries.

Exploring New Compaction Strategies. Ultimately, this work

lays the groundwork for exploring the vast design space of LSM

compactions. A key intuition we developed during this analysis is

that contrary to existing designs, LSM-based systems can benefit

by employing different compaction primitives at different levels,

depending on the exact workload and the performance goals. The

compaction policies we experimented with already support a wide

range of metrics they optimize for including system throughput,

worst-case latency, read, space, and write amplification, and delete

efficiency. Using the proposed design space, new compaction strate-

gies can be designed with new or combined optimization goals. We

also envision systems that automatically select compaction strate-

gies on the fly depending on the current context and workload.

7 CONCLUSIONS

LSM-based engines offer efficient ingestion and competitive read

performance, while being able tomanage various optimization goals

like write and space amplification. A key internal operation that is

at the heart of how LSM-trees work is the process of compaction

that periodically re-organizes the data on disk.

We present the LSM compaction design space that uses four prim-

itives to define compactions: (i) compaction trigger, (ii) the data

layout, (iii) compaction granularity, and (iv) the data movement

policy. We map existing approaches in this design space and we

select several representative policies to study and analyze their

impact on performance and other metrics including write/space

amplification and delete latency. We present an extensive collection

of observations, and we lay the groundwork for LSM systems that

can more flexibly navigate the design space for compactions.
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