
Scaling Replicated State Machines with Compartmentalization
Michael Whittaker

UC Berkeley

mjwhittaker@berkeley.edu

Ailidani Ailijiang

Microsoft

aiailiji@microsoft.com

Aleksey Charapko

University of New Hampshire

aleksey.charapko@unh.edu

Murat Demirbas

University at Buffalo

demirbas@buffalo.edu

Neil Giridharan

UC Berkeley

giridhn@berkeley.edu

Joseph M. Hellerstein

UC Berkeley

hellerstein@berkeley.edu

Heidi Howard

University of Cambridge

hh360@cst.cam.ac.uk

Ion Stoica

UC Berkeley

istoica@berkeley.edu

Adriana Szekeres

VMWare

aszekeres@vmware.com

ABSTRACT
State machine replication protocols, like MultiPaxos and Raft, are

a critical component of many distributed systems and databases.

However, these protocols offer relatively low throughput due to

several bottlenecked components. Numerous existing protocols fix

different bottlenecks in isolation but fall short of a complete solu-

tion. When you fix one bottleneck, another arises. In this paper, we

introduce compartmentalization, the first comprehensive technique

to eliminate state machine replication bottlenecks. Compartmen-

talization involves decoupling individual bottlenecks into distinct

components and scaling these components independently. Compart-

mentalization has two key strengths. First, compartmentalization

leads to strong performance. In this paper, we demonstrate how to

compartmentalize MultiPaxos to increase its throughput by 6× on

a write-only workload and 16× on a mixed read-write workload.

Unlike other approaches, we achieve this performance without the

need for specialized hardware. Second, compartmentalization is a

technique, not a protocol. Industry practitioners can apply com-

partmentalization to their protocols incrementally without having

to adopt a completely new protocol.

PVLDB Reference Format:
Michael Whittaker, Ailidani Ailijiang, Aleksey Charapko, Murat Demirbas,

Neil Giridharan, Joseph M. Hellerstein, Heidi Howard, Ion Stoica,

and Adriana Szekeres. Scaling Replicated State Machines with

Compartmentalization. PVLDB, 14(11): 2203 - 2215, 2021.

doi:10.14778/3476249.3476273

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/mwhittaker/frankenpaxos.

1 INTRODUCTION
State machine replication protocols are a crucial component of

many distributed systems and databases [1–4, 10, 14, 35, 38]. In

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 11 ISSN 2150-8097.

doi:10.14778/3476249.3476273

many state machine replication protocols, a single node has multi-

ple responsibilities. For example, a Raft [29] leader acts as a batcher,

a sequencer, a broadcaster, and a state machine replica. These over-

loaded nodes are often a throughput bottleneck, which can be

disastrous for systems that rely on state machine replication.

Many databases, for example, rely on state machine replication

to replicate large data partitions of tens of gigabytes [2, 34]. These

databases require high-throughput state machine replication to

handle all the requests in a partition. However, in such systems, it

is not uncommon to exceed the throughput budget of a partition.

For example, Cosmos DB will split a partition if it experiences high

throughput despite being under the storage limit. The split, aside

from costing resources, may have additional adverse effects on ap-

plications, as Cosmos DB provides strongly consistent transactions

only within the partition. Eliminating state machine replication

bottlenecks can help avoid such unnecessary partition splits and

improve performance, consistency, and resource utilization.

Researchers have studied how to eliminate throughput bottle-

necks, often by inventing new state machine replication protocols

that eliminate a single throughput bottleneck [5, 6, 9, 12, 17, 22,

23, 25, 26, 37, 44]. However, eliminating a single bottleneck is not

enough to achieve the best possible throughput. When you elim-

inate one bottleneck, another arises. To achieve the best possible

throughput, we have to eliminate all of the bottlenecks.
The key to eliminating these throughput bottlenecks is scaling,

but it is widely believed that state machine replication protocols

don’t scale [6, 19, 25, 26, 43]. In this paper, we show that this is

not true. State machine replication protocols can indeed scale. As a

concrete illustration, we analyze the throughput bottlenecks of Mul-

tiPaxos [21] and systematically eliminate them using a combination

of decoupling and scaling, a technique we call compartmental-
ization. For example, consider the MultiPaxos leader, a notorious

throughput bottleneck. The leader has two distinct responsibilities.

First, it sequences state machine commands into a log. It puts the

first command it receives into the first log entry, the next com-

mand into the second log entry, and so on. Second, it broadcasts

the commands to the set of MultiPaxos acceptors, receives their

responses, and then broadcasts the commands again to a set of state

machine replicas. To compartmentalize the MultiPaxos leader, we

first decouple these two responsibilities. There’s no fundamental

reason that the leader has to sequence commands and broadcast

2203

https://doi.org/10.14778/3476249.3476273
https://github.com/mwhittaker/frankenpaxos
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3476249.3476273


them. Instead, we have the leader sequence commands and intro-

duce a new set of nodes, called proxy leaders, to broadcast the

commands. Second, we scale up the number of proxy leaders. We

note that broadcasting commands is embarrassingly parallel, so we

can increase the number of proxy leaders to avoid them becoming a

bottleneck. Note that this scaling wasn’t possible when sequencing

and broadcasting were coupled on the leader since sequencing is

not scalable. Compartmentalization has three key strengths.

(1) Strong Performance Without Strong Assumptions.We

compartmentalize MultiPaxos and increase its throughput by a

factor of 6× on a write-only workload using 6.66× the number of

machines and 16× on a mixed read-write workload using 4.33× the

number of machines. Moreover, we achieve our strong performance

without the strong assumptions made by other state machine repli-

cation protocols with comparable performance [18, 36, 37, 40, 44].

For example, we do not assume a perfect failure detector, we do not

assume the availability of specialized hardware, we do not assume

uniform data access patterns, we do not assume clock synchrony,

and we do not assume key-partitioned state machines.

(2) General and Incrementally Adoptable. Compartmental-

ization is not a protocol. Rather, it’s a technique that can be sys-

tematically applied to existing protocols. Industry practitioners

can incrementally apply compartmentalization to their current

protocols without having to throw out their battle-tested imple-

mentations for something new and untested. We demonstrate the

generality of compartmentalization by applying it three other pro-

tocols [9, 15, 25] in addition to MultiPaxos.

(3) Easy to Understand. Researchers have invented new state

machine replication protocols to eliminate throughput bottlenecks,

but these new protocols are often subtle and complicated. As a result,

these sophisticated protocols have been largely ignored in industry

due to their high barriers to adoption. Compartmentalization is

based on the simple principles of decoupling and scaling and is

designed to be easily understood.

In summary, we present the following contributions

• We characterize all of MultiPaxos’ throughput bottlenecks

and explain why, historically, it was believed that they could

not be scaled.

• We introduce the concept of compartmentalization: a tech-

nique to decouple and scale throughput bottlenecks.

• We apply compartmentalization to systematically eliminate

MultiPaxos’ throughput bottlenecks. In doing so, we debunk

the widely held belief that MultiPaxos and similar state ma-

chine replication protocols do not scale.

2 BACKGROUND
2.1 System Model
Throughout the paper, we assume an asynchronous network model

in which messages can be arbitrarily dropped, delayed, and re-

ordered. We assume machines can fail by crashing but do not act

maliciously; i.e., we do not consider Byzantine failures. We assume

that machines operate at arbitrary speeds, and we do not assume

clock synchronization. Every protocol discussed in this paper as-

sumes that at most f machines will fail for some configurable f .

2.2 Paxos
Consensus is the act of choosing a single value among a set of

proposed values, and Paxos [20] is the de facto standard consensus
protocol. We assume the reader is familiar with Paxos, but we

pause to review the parts of the protocol that are most important

to understand for the rest of this paper.

A Paxos deployment that tolerates f faults consists of an ar-

bitrary number of clients, at least f + 1 proposers, and 2f + 1

acceptors, as illustrated in Figure 1. When a client wants to pro-

pose a value, it sends the value to a proposer p. The proposer then
initiates a two-phase protocol. In Phase 1, the proposer contacts

the acceptors and learns of any values that may have already been

chosen. In Phase 2, the proposer proposes a value to the acceptors,

and the acceptors vote on whether or not to choose the value. If a

value receives votes from a majority of the acceptors, the value is

considered chosen.

More concretely, in Phase 1, p sends Phase1a messages to at

least a majority of the 2f + 1 acceptors. When an acceptor receives

a Phase1a message, it replies with a Phase1b message. When the

leader receives Phase1b messages from a majority of the accep-

tors, it begins Phase 2. In Phase 2, the proposer sends Phase2a⟨x⟩
messages to the acceptors with some value x . Upon receiving a

Phase2a⟨x⟩ message, an acceptor can either ignore the message,

or vote for the value x and return a Phase2b⟨x⟩ message to the

proposer. Upon receiving Phase2b⟨x⟩ messages from a majority of

the acceptors, the proposed value x is considered chosen.

c1

c2

c3

p1

p2

a1

a2

a3

Clients

f + 1
Proposers

2f + 1
Acceptors

1
2

2

3

3

(a) Phase 1

c1

c2

c3

p1

p2

a1

a2

a3

Clients

f + 1
Proposers

2f + 1
Acceptors

4

4

5

5

6

(b) Phase 2

Figure 1: An example execution of Paxos (f = 1).

2.3 MultiPaxos
While consensus is the act of choosing a single value, state ma-
chine replication is the act of choosing a sequence (a.k.a. log) of

values. A state machine replication protocol manages a number of

replicas of a deterministic state machine. Over time, the protocol

constructs a growing log of state machine commands, and replicas

execute the commands in log order. By beginning in the same ini-

tial state, and by executing commands in the same order, all state

machine replicas are kept in sync. This is illustrated in Figure 2.

MultiPaxos is one of the most widely used state machine repli-

cation protocols. Again, we assume the reader is familiar with

MultiPaxos, but we review the most salient bits. MultiPaxos uses

one instance of Paxos for every log entry, choosing the command

in the ith log entry using the ith instance of Paxos. A MultiPaxos

2204



0 1 2

(a) t = 0

x

0 1 2

(b) t = 1

x

0 1

z

2

(c) t = 2

x

0

y

1

z

2

(d) t = 3

Figure 2: At time t = 0, no state machine commands are cho-
sen. At time t = 1 command x is chosen in slot 0. At times
t = 2 and t = 3, commands z and y are chosen in slots 2 and
1. Executed commands are shaded green. Note that all state
machines execute the commands x , y, z in log order.

deployment that tolerates f faults consists of an arbitrary number

of clients, at least f + 1 proposers, and 2f + 1 acceptors (like Paxos),
as well as at least f + 1 replicas, as illustrated in Figure 3.

c1

c2

c3

p1

p2

a1

a2

a3

r1

r2

Clients

f + 1
Proposers

2f + 1
Acceptors

f + 1
Replicas

1
2

2

3

3

4

4

5

Figure 3: An example execution of MultiPaxos (f = 1). The
leader is adorned with a crown.

Initially, one of the proposers is elected leader and runs Phase 1

of Paxos for every log entry. When a client wants to propose a state

machine command x , it sends the command to the leader (1). The

leader assigns the command a log entry i and then runs Phase 2 of

the ith Paxos instance to get the value x chosen in entry i . That is,
the leader sends Phase2a⟨i,x⟩ messages to the acceptors to vote

for value x in slot i (2). In the normal case, the acceptors all vote

for x in slot i and respond with Phase2b⟨i,x⟩ messages (3). Once

the leader learns that a command has been chosen in a given log

entry (i.e. once the leader receives Phase2b⟨i,x⟩ messages from a

majority of the acceptors), it informs the replicas (4). Replicas insert

commands into their logs and execute the logs in prefix order.

Note that the leader assigns log entries to commands in increas-

ing order. The first received command is put in entry 0, the next

command in entry 1, the next command in entry 2, and so on. Also

note that even though every replica executes every command, for

any given state machine command x , only one replica needs to

send the result of executing x back to the client (5). For example,

log entries can be round-robin partitioned across the replicas.

2.4 MultiPaxos Doesn’t Scale?
It is widely believed that MultiPaxos does not scale [6, 19, 25, 26,

43]. Throughout the paper, we will explain that this is not true,

but it first helps to understand why trying to scale MultiPaxos in

the straightforward and obvious way does not work. MultiPaxos

consists of proposers, acceptors, and replicas. We discuss each.

First, increasing the number of proposers does not improve per-
formance because every client must send its requests to the leader

regardless of the number proposers. The non-leader replicas are

idle and do not contribute to the protocol during normal operation.

Second, increasing the number of acceptors hurts performance.
To get a value chosen, the leader must contact a majority of the

acceptors. When we increase the number of acceptors, we increase

the number of acceptors that the leader has to contact. This de-

creases throughput because the leader—which is the throughput

bottleneck—has to send and receive more messages per command.

Moreover, every acceptor processes at least half of all commands

regardless of the number of acceptors.

Third, increasing the number of replicas hurts performance. The
leader broadcasts chosen commands to all of the replicas, so when

we increase the number of replicas, we increase the load on the

leader and decreaseMultiPaxos’ throughput.Moreover, every replica

must execute every state machine command, so increasing the num-

ber of replicas does not decrease the replicas’ load.

3 COMPARTMENTALIZING MULTIPAXOS
We now compartmentalize MultiPaxos. Throughout the paper, we

introduce six compartmentalizations, summarized in Table 1. For

every compartmentalization, we identify a throughput bottleneck

and then explain how to decouple and scale it.

3.1 Compartmentalization 1: Proxy Leaders

Bottleneck: leader
Decouple: command sequencing and broadcasting
Scale: the number of command broadcasters

Bottleneck. The MultiPaxos leader is a well known throughput

bottleneck for the following reason. Refer again to Figure 3. To

process a single state machine command from a client, the leader

must receive a message from the client, send at least f + 1 Phase2a
messages to the acceptors, receive at least f + 1 Phase2b messages

from the acceptors, and send at least f + 1 messages to the replicas.

In total, the leader sends and receives at least 3f + 4 messages

per command. Every acceptor on the other hand processes only 2

messages, and every replica processes either 1 or 2. Because every

state machine command goes through the leader, and because the

leader has to perform disproportionately more work than every

other component, the leader is the throughput bottleneck.

Decouple. To alleviate this bottleneck, we first decouple the

leader. To do so, we note that a MultiPaxos leader has two jobs. The

first is sequencing. The leader sequences commands by assigning

each command a log entry. Log entry 0, then 1, then 2, and so on.

The second is broadcasting. The leader sends Phase2a messages,

collects Phase2b responses, and broadcasts chosen values to the

replicas. Historically, these two responsibilities have both fallen

on the leader, but this is not fundamental. We instead decouple

the two responsibilities. We introduce a set of at least f + 1 proxy
leaders, as shown in Figure 4. The leader is responsible for sequenc-
ing commands, while the proxy leaders are responsible for getting

commands chosen and broadcasting the commands to the replicas.

More concretely, when a leader receives a command x from a

client (1), it assigns the command x a log entry i and then forms

a Phase2a message that includes x and i . The leader does not

2205



Table 1: A summary of the compartmentalizations presented in this paper.

Compartmentalization Bottleneck Decouple Scale

1 (Section 3.1) leader command sequencing and command broadcasting the number of proxy leaders

2 (Section 3.2) acceptors read quorums and write quorums the number of write quorums

3 (Section 3.3) replicas command sequencing and command broadcasting the number of replicas

4 (Section 3.4) leader and replicas read path and write path the number of read quorums

5 (Section 4.1) leader batch formation and batch sequencing the number of batchers

6 (Section 4.2) replicas batch processing and batch replying the number of unbatchers

c1

c2

c3

p1

p2

l1

l2

l3

a1

a2

a3

r1

r2

Clients

f + 1
Proposers

≥ f + 1
Proxy Leaders

2f + 1
Acceptors

f + 1
Replicas

1

2

3

3

4

4

5

5

6

Figure 4: An example execution of Compartmentalized Mul-
tiPaxos with three proxy leaders (f = 1). Throughout the pa-
per, nodes and messages that were not present in previous
iterations of the protocol are highlighted in green.

send the Phase2a message to the acceptors. Instead, it sends the

Phase2a message to a randomly selected proxy leader (2). Note

that every command can be sent to a different proxy leader. The

leader balances load evenly across all of the proxy leaders. Upon

receiving a Phase2a message, a proxy leader broadcasts it to the

acceptors (3), gathers a quorum of f + 1 Phase2b responses (4), and
notifies the replicas of the chosen value (5). All other aspects of the

protocol remain unchanged.

Without proxy leaders, the leader processes 3f + 4 messages per

command. With proxy leaders, the leader only processes 2. This

makes the leader significantly less of a throughput bottleneck, or

potentially eliminates it as the bottleneck entirely.

Scale. The leader now processes fewer messages per command,

but every proxy leader has to process 3f + 4 messages. Have we

really eliminated the leader as a bottleneck, or have we just moved

the bottleneck into the proxy leaders? To answer this, we note

that the proxy leaders are embarrassingly parallel. They operate

independently from one another. Moreover, the leader distributes

load among the proxy leaders equally, so the load on any single

proxy leader decreases as we increase the number of proxy leaders.

Thus, we can trivially increase the number of proxy leaders until

they are no longer a throughput bottleneck.

Discussion. Note that decoupling enables scaling. As discussed
in Section 2.4, we cannot naively increase the number of proposers.

Without decoupling, the leader is both a sequencer and broadcaster,

so we cannot increase the number of leaders to increase the number

of broadcasters because doing so would lead to multiple sequencers,

which is not permitted. Only by decoupling the two responsibilities

can we scale one without scaling the other.

Also note that the protocol remains tolerant to f faults regardless
of the number of machines. However, increasing the number of

machines does decrease the expected time to f failures (this is

true for every protocol that scales up the number of machines, not

just our protocol). We believe that increasing throughput at the

expense of a shorter time to f failures is well worth it in practice

because failed machines can be replaced with new machines using

a reconfiguration protocol [21, 29]. The time required to perform

a reconfiguration is many orders of magnitude smaller than the

mean time between failures.

3.2 Compartmentalization 2: Acceptor Grids

Bottleneck: acceptors
Decouple: read quorums and write quorums
Scale: the number of write quorums

Bottleneck. After compartmentalizing the leader, it is possible

that the acceptors are the throughput bottleneck. It is widely be-

lieved that acceptors do not scale: “using more than 2f + 1 [ac-

ceptors] for f failures is possible but illogical because it requires a

larger quorum size with no additional benefit” [43]. As explained

in Section 2.4, there are two reasons why naively increasing the

number of acceptors is ill-advised.

First, increasing the number of acceptors increases the number

of messages that the leader has to send and receive. This increases

the load on the leader, and since the leader is the throughput bottle-

neck, this decreases throughput. This argument no longer applies.

With the introduction of proxy leaders, the leader no longer com-

municates with the acceptors. Increasing the number of acceptors

increases the load on every individual proxy leader, but the in-

creased load will not make the proxy leaders a bottleneck because

we can always scale them up.

Second, every command must be processed by a majority of

the acceptors. Thus, even with a large number of acceptors, every

acceptor must process at least half of all state machine commands.

This argument still holds.

Decouple. We compartmentalize the acceptors by using flexible

quorums [17]. MultiPaxos—the vanilla version, not the compart-

mentalized version—requires 2f + 1 acceptors, and the leader com-

municates with f + 1 acceptors in both Phase 1 and Phase 2 (a

majority of the acceptors). The sets of f + 1 acceptors are called

2206



quorums, and MultiPaxos’ correctness relies on the fact that any

two quorums intersect. While majority quorums are sufficient for

correctness, they are not necessary. MultiPaxos is correct as long as

every quorum contacted in Phase 1 (called a read quorum) inter-

sects every quorum contacted in Phase 2 (called a write quorum).

Read quorums do not have to intersect other read quorums, and

write quorums do not have to intersect other write quorums.

By decoupling read quorums from write quorums, we can reduce

the load on the acceptors by eschewing majority quorums for a

more efficient set of quorums. Specifically, we arrange the acceptors

into an r ×w rectangular grid, where r ,w ≥ f + 1. Every row forms

a read quorum, and every column forms a write quorum (r stands
for row and for read). That is, a leader contacts an arbitrary row

of acceptors in Phase 1 and an arbitrary column of acceptors for

every command in Phase 2. Every row intersects every column, so

this is a valid set of quorums.

A 2 × 3 acceptor grid is illustrated in Figure 5. There are two

read quorums (the rows {a1,a2,a3} and {a4,a5,a6}) and three write
quorums (the columns {a1,a4}, {a2,a5}, {a3,a6}). Because there are
three write quorums, every acceptor only processes one third of all

the commands. This is not possible with majority quorums because

with majority quorums, every acceptor processes at least half of all

the commands, regardless of the number of acceptors.

c1

c2

c3

p1

p2

l1

l2

l3

a1 a2 a3

a4 a5 a6

r1

r2

Clients

f + 1
Proposers

≥ f + 1
Proxy Leaders

(≥ f +1) × (≥ f +1)
Acceptors

f + 1
Replicas

1

2
3

3

4

4

5

5

6

Figure 5: An execution of Compartmentalized MultiPaxos
with a 2×3 grid of acceptors (f = 1). The two read quorums—
{a1,a2,a3} and {a4,a5,a6}—are shown in solid red rectangles.
The three write quorums—{a1,a4}, {a2,a5}, and {a3,a6}—are
shown in dashed blue rectangles.

Scale. With majority quorums, every acceptor has to process at

least half of all state machines commands.With grid quorums, every

acceptor only has to process
1

w of the state machine commands.

Thus, we can increase w (i.e. increase the number of columns in

the grid) to reduce the load on the acceptors and eliminate them as

a throughput bottleneck.

Discussion. Note that, like with proxy leaders, decoupling en-
ables scaling. With majority quorums, read and write quorums are

coupled, so we cannot increase the number of acceptors without

also increasing the size of all quorums. Acceptor grids allow us to

decouple the number of acceptors from the size of write quorums,

allowing us to scale up the acceptors and decrease their load.

Also note that increasing the number of write quorums increases

the size of read quorums which increases the number of acceptors

that a leader has to contact in Phase 1. We believe this is a worthy

trade-off since Phase 2 is executed in the normal case and Phase 1

is only run in the event of a leader failure.

More sophisticated quorum systems, besides grid quorum sys-

tems, can also be used [42].

3.3 Compartmentalization 3: More Replicas

Bottleneck: replicas
Decouple: command sequencing and broadcasting
Scale: the number of replicas

Bottleneck. After compartmentalizing the leader and the accep-

tors, it is possible that the replicas are the bottleneck. Recall from

Section 2.4 that naively scaling the replicas does not work for two

reasons. First, every replica must receive and execute every state

machine command. This is not actually true, but we leave that for

the next compartmentalization. Second, like with the acceptors,

increasing the number of replicas increases the load on the leader.

Because we have already decoupled sequencing from broadcasting

on the leader and introduced proxy leaders, this is no longer true,

so we are free to increase the number of replicas. In Figure 6, for

example, we show MultiPaxos with three replicas instead of the

minimum required two.

Scale. If every replica has to execute every command, does in-

creasing the number of replicas decrease their load? Yes. Recall that

while every replica has to execute every state machine, only one of
the replicas has to send the result of executing the command back

to the client. Thus, with n replicas, every replica only has to send

back results for
1

n of the commands. If we scale up the number of

replicas, we reduce the number of messages that each replica has to

send. This reduces the load on the replicas and helps prevent them

from becoming a throughput bottleneck. In Figure 6 for example,

with three replicas, every replica only has to reply to one third of all

commands. With two replicas, every replica has to reply to half of

all commands. In the next compartmentalization, we’ll see another

major advantage of increasing the number of replicas.

c1

c2

c3

p1

p2

l1

l2

l3

a1 a2 a3

a4 a5 a6

r1

r2

r3

Clients

f + 1
Proposers

≥ f + 1
Proxy Leaders

(≥ f +1) × (≥ f +1)
Acceptors

≥ f + 1
Replicas

1

2
3

3

4

4

5

5

5

6

Figure 6: An example execution of Compartmentalized Mul-
tiPaxos with three replicas as opposed to the minimum re-
quired two (f = 1).

Discussion. Again decoupling enables scaling. Without decou-

pling the leader and introducing proxy leaders, increasing the num-

ber of replicas hurts rather than helps performance.

2207



3.4 Compartmentalization 4: Leaderless Reads

Bottleneck: leader and replicas
Decouple: read path and write path
Scale: the number of read quorums

Bottleneck. We have now compartmentalized the leader, the ac-

ceptors, and the replicas. At this point, the bottleneck is in one of

two places. Either the leader is still a bottleneck, or the replicas are

the bottleneck. Fortunately, we can bypass both bottlenecks with a

single compartmentalization.

Decouple. We call commands that modify the state of the state

machine writes and commands that don’t modify the state of the

state machine reads. The leader must process every write because

it has to linearize the writes with respect to one another, and every
replica must process every write because otherwise the replicas’

state would diverge (imagine if one replica performs a write but

the other replicas don’t). However, because reads do not modify

the state of the state machine, the leader does not have to linearize

them (reads commute), and only a single replica (as opposed to

every replica) needs to execute a read.

We take advantage of this observation by decoupling the read

path from the write path. Writes are processed as before, but we

bypass the leader and perform a read on a single replica by using the

ideas from Paxos Quorum Reads (PQR) [12]. Specifically, to perform

a read, a client sends a PreRead⟨⟩ message to a read quorum of

acceptors. Upon receiving a PreRead⟨⟩ message, an acceptor ai
returns a PreReadAck⟨wi ⟩ message wherewi is the index of the

largest log entry in which the acceptor has voted (i.e. the largest log

entry in which the acceptor has sent a Phase2b message). We call

thiswi a vote watermark. When the client receives PreReadAck

messages from a read quorum of acceptors, it computes i as the
maximum of all received vote watermarks. It then sends a Read⟨x ,i⟩
request to any one of the replicas where x is an arbitrary read (i.e.

a command that does not modify the state of the state machine).

When a replica receives a Read⟨x ,i⟩ request from a client, it

waits until it has executed the command in log entry i . Recall
that replicas execute commands in log order, so if the replica has

executed the command in log entry i , then it has also executed all

of the commands in log entries less than i . After the replica has
executed the command in log entry i , it executes x and returns the

result to the client. Note that upon receiving a Read⟨x ,i⟩ message,

a replica may have already executed the log beyond i . That is, it
may have already executed the commands in log entries i + 1,

i + 2, and so on. This is okay because as long as the replica has

executed the command in log entry i , it is safe to execute x . See
our technical report [41] for a proof that this protocol correctly

implements linearizable reads.

Scale. The decoupled read and write paths are shown in Figure 7.

Reads are sent to a row (read quorum) of acceptors, so we can

increase the number of rows to decrease the read load on every

individual acceptor, eliminating the acceptors as a read bottleneck.

Reads are also sent to a single replica, so we can increase the number

of replicas to eliminate them as a read bottleneck as well.

c1

c2

c3

p1

p2

l1

l2

l3

a1 a2

a3 a4

r1

r2

r3

Clients

f + 1
Proposers

≥ f + 1
Proxy Leaders

(≥ f +1) × (≥ f +1)
Acceptors

≥ f + 1
Replicas

1

1

2

2

3

4

1

2
3

3

4

4

5

5

5

6

Figure 7: An example execution of Compartmentalized Mul-
tiPaxos’ read and write path (f = 1) with a 2×2 acceptor grid.
Thewrite path is shown using solid blue lines. The read path
is shown using red dashed lines.

Discussion. Note that read-heavy workloads are not a special

case. Many workloads are read-heavy [7, 16, 26, 28]. Chubby [10]

observes that fewer than 1% of operations are writes, and Span-

ner [14] observes that fewer than 0.3% of operations are writes.

Also note that increasing the number of columns in an acceptor

grid reduces the write load on the acceptors, and increasing the

number of rows in an acceptor grid reduces the read load on the

acceptors. There is no throughput trade-off between the two. The

number of rows and columns can be adjusted independently. In-

creasing read throughput (by increasing the number of rows) does

not decrease write throughput, and vice versa. However, increasing

the number of rows does increase the size (but not number) of

columns, so increasing the number of rows might increase the tail

latency of writes, and vice versa.

4 BATCHING
All state machine replication protocols, including MultiPaxos, can

take advantage of batching to increase throughput. The standard

way to implement batching [32, 33] is to have clients send their

commands to the leader and to have the leader group the commands

together into batches, as shown in Figure 8. The rest of the protocol

remains unchanged, with command batches replacing commands.

The one notable difference is that replicas now execute one batch

of commands at a time, rather than one command at a time. After

executing a single command, a replica has to send back a single

result to a client, but after executing a batch of commands, a replica

has to send a result to every client with a command in the batch.

4.1 Compartmentalization 5: Batchers

Bottleneck: leader
Decouple: batch formation and batch sequencing
Scale: the number of batchers

Bottleneck. Wefirst discusswrite batching and discuss read batch-

ing momentarily. Batching increases throughput by amortizing the

communication and computation cost of processing a command.

2208



c1

c2

c3

p1

p2

l1

l2

l3

a1 a2

a3 a4

r1

r2

r3

Clients

f + 1
Proposers

≥ f + 1
Proxy Leaders

(≥ f +1) × (≥ f +1)
Acceptors

≥ f + 1
Replicas

1

1

1

2
3

3

4

4

5

5

5

6

6

6

Figure 8: An example execution of Compartmentalized Mul-
tiPaxos with batching (f = 1). Messages that contain a batch
of commands, rather than a single command, are drawn
thicker. Note how replica r2 has to send multiple messages
after executing a batch of commands.

Take the acceptors for example. Without batching, an acceptor

processes two messages per command. With batching, however,

an acceptor only processes two messages per batch. The acceptors
process fewer messages per command as the batch size increases.

With batches of size 10, for example, an acceptor processes 10×

fewer messages per command with batching than without.

Refer again to Figure 8. The load on the proxy leaders and the

acceptors both decrease as the batch size increases, but this is not

the case for the leader or the replicas. We focus first on the leader.

To process a single batch of n commands, the leader has to receive

n messages and send one message. Unlike the proxy leaders and

acceptors, the leader’s communication cost is linear in the number

of commands rather than the number of batches. This makes the

leader a very likely throughput bottleneck.

Decouple. The leader has two responsibilities. It forms batches,

and it sequences batches. We decouple the two responsibilities by

introducing a set of at least f +1 batchers, as illustrated in Figure 9.
The batchers are responsible for forming batches, while the leader

is responsible for sequencing batches.

c1

c2

c3

b1

b2

b3

p1

p2

l1

l2

l3

a1 a2

a3 a4

r1

r2

r3

Clients
≥ f + 1
Batchers

f + 1
Proposers

≥ f + 1
Proxy

Leaders

(≥ f +1) × (≥ f +1)
Acceptors

≥ f + 1
Replicas

1

1

1

2

3 4

4

5

5

6

6

6

7

7

7

Figure 9: An example execution of Compartmentalized Mul-
tiPaxos with batchers (f = 1).

More concretely, when a client wants to propose a state machine

command, it sends the command to a randomly selected batcher (1).

After receiving sufficiently many commands from the clients (or

after a timeout expires), a batcher places the commands in a batch

and forwards it to the leader (2). When the leader receives a batch

of commands, it assigns it a log entry, forms a Phase 2a message,

and sends the Phase2a message to a proxy leader (3). The rest of

the protocol remains unchanged.

Without batchers, the leader has to receive n messages per batch

of n commands. With batchers, the leader only has to receive one.

This either reduces the load on the bottleneck leader or eliminates

it as a bottleneck completely.

Scale. The batchers are embarrassingly parallel. We can increase

the number of batchers until they’re not a throughput bottleneck.

Discussion. Read batching is very similar towrite batching. Clients

send reads to randomly selected batchers, and batchers group reads

together into batches. After a batcher has formed a read batch X , it

sends a PreRead⟨⟩ message to a read quorum of acceptors, com-

putes the resulting watermark i , and sends a Read⟨X ,i⟩ request to
any one of the replicas.

4.2 Compartmentalization 6: Unbatchers

Bottleneck: replicas
Decouple: batch processing and batch replying
Scale: the number of unbatchers

Bottleneck. After executing a batch of n commands, a replica has

to send n messages back to the n clients. Thus, the replicas (like the

leader without batchers) suffer communication overheads linear in

the number of commands rather than the number of batches.

Decouple. The replicas have two responsibilities. They execute

batches of commands, and they send replies to the clients. We de-

couple these two responsibilities by introducing a set of at least

f + 1 unbatchers, as illustrated in Figure 10. The replicas are re-

sponsible for executing batches of commands, while the unbatchers

are responsible for sending the results of executing the commands

back to the clients. Concretely, after executing a batch of commands,

a replica forms a batch of results and sends the batch to a randomly

selected unbatcher (7). Upon receiving a result batch, an unbatcher

sends the results back to the clients (8). This decoupling reduces

the load on the replicas.

c1

c2

c3

b1

b2

b3

p1

p2

l1

l2

l3

a1 a2

a3 a4

r1

r2

r3

d1

d2

d3

Clients
≥ f + 1
Batchers

f + 1
Proposers

≥ f + 1
Proxy

Leaders

(≥ f +1) × (≥ f +1)
Acceptors

≥ f + 1
Replicas

≥ f + 1
Unbatchers

1

1

1

2

3 4

4

5

5

6

6

6

7

8

8

8

Figure 10: An example execution of Compartmentalized
MultiPaxos with unbatchers (f = 1).

2209



Scale. As with batchers, unbatchers are embarrassingly parallel,

so we can increase the number of unbatchers until they are not a

throughput bottleneck.

Discussion. Read unbatching is identical to write unbatching.

After executing a batch of reads, a replica forms the corresponding

batch of results and sends it to a randomly selected unbatcher.

5 FURTHER COMPARTMENTALIZATION
The six compartmentalizations that we’ve discussed are not ex-

haustive, and MultiPaxos is not the only state machine replication

protocol that can be compartmentalized. Compartmentalization is

a generally applicable technique. There are many other compart-

mentalizations that can be applied to many other protocols.

For example, Mencius [25] is a multi-leader MultiPaxos variant

that partitions log entries between the leaders. S-Paxos [9] is a

MultiPaxos variant in which every state machine command is given

a unique id and persisted on a set of machines before MultiPaxos

is used to order command ids rather than commands themselves.

In our technical report [41], we explain how to compartmentalize

these two protocols. We compartmentalize Mencius very similarly

to how we compartmentalized MultiPaxos. We compartmentalize S-

Paxos by introducing new sets of nodes called disseminators and
stabilizers which are analogous to proxy leaders and acceptors

but are used to persist commands rather than order them. We

also compartmentalized Scalog [15] and are currently working

on compartmentalizing Raft [29] and EPaxos [26]. Due to space

constraints, we leave the details to our technical report [41].

6 EVALUATION
6.1 Latency-Throughput

Experiment Description. We call MultiPaxos with the six compart-

mentalizations described in this paper Compartmentalized Mul-
tiPaxos. We implemented MultiPaxos, Compartmentalized Multi-

Paxos, and an unreplicated state machine in Scala using the Netty

networking library (see github.com/mwhittaker/frankenpaxos).Mul-

tiPaxos employs 2f + 1 machines with each machine playing the

role of a MultiPaxos proposer, acceptor, and replica. The unrepli-

cated state machine is implemented as a single process on a single

server. Clients send commands directly to the state machine. Upon

receiving a command, the state machine executes the command and

immediately sends back the result. Note that unlike MultiPaxos and

Compartmentalized MultiPaxos, the unreplicated state machine is

not fault tolerant. If the single server fails, all state is lost and no

commands can be executed. Thus, the unreplicated state machine

should not be viewed as an apples-to-apples comparison with the

other two protocols. Instead, the unreplicated state machine sets

an upper bound on attainable performance.

We measure the throughput and median latency of the three

protocols under workloads with a varying numbers of clients. Each

client issues state machine commands in a closed loop. It waits to

receive the result of executing its most recently proposed command

before it issues another. All three protocols replicate a key-value

store state machine where the keys are integers and the values are

16 byte strings. In this benchmark, all state machine commands are

writes. There are no reads.

We deploy the protocols with and without batching for f = 1.

Without batching, we deploy Compartmentalized MultiPaxos with

two proposers, ten proxy leaders, a two by two grid of acceptors,

and four replicas. With batching, we deploy two batchers, two

proposers, three proxy replicas, a simple majority quorum system

of three acceptors, two replicas, and three unbatchers. For simplicity,

every node is deployed on its own machine, but in practice, nodes

can be physically co-located. In particular, any two logical roles can

be placed on the same machine without violating fault tolerance

constraints, so long as the two roles are not the same.

We deploy the three protocols on AWS using a set of m5.xlarge

machines within a single availability zone. Everym5.xlarge instance

has 4 vCPUs and 16 GiB of memory. Everything is done in memory,

and nothing is written to disk (because everything is replicated, data

is persistent even without writing it to disk). In our experiments,

the network is never a bottleneck. All numbers presented are the

average of three executions of the benchmark. As is standard, we

implement MultiPaxos and Compartmentalized MultiPaxos with

thriftiness enabled [26]. For a given number of clients, the batch

size is set empirically to optimize throughput. For a fair comparison,

we deploy the unreplicated state machine with a set of batchers

and unbatchers when batching is enabled.

Results. The results of the experiment are shown in Figure 11.

The standard deviation of throughput measurements are shown as a

shaded region.Without batching,MultiPaxos has a peak throughput

of roughly 25,000 commands per second, while Compartmentalized

MultiPaxos has a peak throughput of roughly 150,000 commands

per second, a 6× increase. The unreplicated state machine outper-

forms both protocols. It achieves a peak throughput of roughly

250,000 commands per second. Compartmentalized MultiPaxos

underperforms the unreplicated state machine because—despite de-

coupling the leader as much as possible—the single leader remains

a throughput bottleneck. Note that after fully compartmentaliz-

ing MultiPaxos, either the leader or the replicas are guaranteed to

be the throughput bottleneck because all other components (e.g.,

proxy leaders, acceptors, batchers, unbatchers) can be scaled ar-

bitrarily. Implementation and deployment details (e.g., what state

machine is being replicated) determine which component is the ul-

timate throughput bottleneck. All three protocols have millisecond

latencies at peak throughput. With batching, MultiPaxos, Com-

partmentalized MultiPaxos, and the unreplicated state machine

have peak throughputs of roughly 200,000, 800,000 and 1,000,000

commands per second respectively.

Compartmentalized MultiPaxos uses 6.66× more machines than

MultiPaxos. On the surface, this seems like a weakness, but in real-

ity it is a strength. MultiPaxos does not scale, so it is unable to take

advantage of more machines. Compartmentalized MultiPaxos, on

the other hand, achieves a 6× increase in throughput using 6.66×

the number of resources. Thus, we achieve 90% of perfect linear scal-

ability. In fact, with the mixed read-write workloads below, we are

able to scale throughput superlinearly with the number of resources.

This is because compartmentalization eliminates throughput bottle-

necks. With throughput bottlenecks, non-bottlenecked components

are underutilized. When we eliminate the bottlenecks, we eliminate

underutilization and can increase performance without increasing

the number of resources. Moreover, a protocol does not have to

2210

https://github.com/mwhittaker/frankenpaxos/


0 50 100 150 200 250
Throughput (thousands of commands per second)

0.0

2.5

5.0

7.5

10.0

M
ed

ia
n 

la
te

nc
y 

(m
s)

MultiPaxos
Compartmentalized MultiPaxos
Unreplicated

(a) Without batching

0 200 400 600 800 1000
Throughput (thousands of commands per second)

0

5

10

15

M
ed

ia
n 

la
te

nc
y 

(m
s)

MultiPaxos
Compartmentalized MultiPaxos
Unreplicated

(b) With batching

Figure 11: The latency and throughput of MultiPaxos, Compartmentalized MultiPaxos, and an unreplicated state machine.

be fully compartmentalized. We can selectively compartmentalize

some but not all throughput bottlenecks to reduce the number of

resources needed. In other words, MultiPaxos and Compartmental-

ized MultiPaxos are not two alternatives, but rather two extremes

in a trade-off between throughput and resource usage.

6.2 Ablation Study
Experiment Description. We now perform an ablation study to

measure the effect of each compartmentalization. In particular,

we begin with MultiPaxos and then decouple and scale the proto-

col according to the six compartmentalizations, measuring peak

throughput along the way. Note that we cannot measure the effect

of each individual compartmentalization in isolation because de-

coupling and scaling a component only improves performance if

that component is a bottleneck. Thus, to measure the effect of each

compartmentalization, we have to apply them all, and we have to

apply them in an order that is consistent with the order in which

bottlenecks appear. All the details of this experiment are the same

as the previous experiment unless otherwise noted.

Results. The unbatched ablation study results are shown in Fig-

ure 12a. MultiPaxos has a throughput of roughly 25,000 commands

per second. When we decouple the protocol and introduce proxy

leaders (Section 3.1), we increase the throughput to roughly 70,000

commands per second. This decoupled MultiPaxos uses the bare

minimum number of proposers (2), proxy leaders (2), acceptors

(3), and replicas (2). We then scale up the number of proxy lead-

ers from 2 to 7. The proxy leaders are the throughput bottleneck,

so as we scale them up, the throughput of the protocol increases

until it plateaus at roughly 135,000 commands per second. At this

point, the proxy leaders are no longer the throughput bottleneck;

the replicas are. We introduce an additional replica (Section 3.3),

though the throughput does not increase. This is because proxy

leaders broadcast commands to all replicas, so introducing a new

replica increases the load on the proxy leaders making them the

bottleneck again. We then increase the number of proxy leaders to

10 to increase the throughput to roughly 150,000 commands per

coupled

decoupled

3 proxy leaders

4 proxy leaders

5 proxy leaders

6 proxy leaders

7 proxy leaders

3 replicas

8 proxy leaders

9 proxy leaders

10 proxy leaders

0

50

100

150

Th
ro

ug
hp

ut
(th

ou
sa

nd
s c

m
ds

/s
ec

on
d)

(a) Without batching

coupled

decoupled

batch size 50

batch size 100

3 unbatchers

4 unbatchers

5 unbatchers

0

200

400

600

Th
ro

ug
hp

ut
(th

ou
sa

nd
s c

m
ds

/s
ec

on
d)

(b) With batching

Figure 12: An ablation study. Standard deviations are shown
using error bars.

second. At this point, we determined empirically that the leader

was the bottleneck. In this experiment, the acceptors are never the

throughput bottleneck, so increasing the number of acceptors does

not increase the throughput (Section 3.2). However, this is particular

2211



to our write-only workload. In the mixed read-write workloads dis-

cussed momentarily, scaling up the number of acceptors is critical

for high throughput.

The batched ablation study results are shown in Figure 12b. We

decouple MultiPaxos and introduce two batchers and two unbatch-

ers with a batch size of 10 (Section 4.1, Section 4.2). This increases

the throughput of the protocol from 200,000 commands per second

to 300,000 commands per second. We then increase the batch size

to 50 and then to 100. This increases throughput to 500,000 com-

mands per second. We then increase the number of unbatchers to

3 and reach a peak throughput of roughly 800,000 commands per

second. For this experiment, two batchers and three unbatchers are

sufficient to handle the clients’ load. With more clients and a larger

load, more batchers would be needed to maximize throughput.

Compartmentalization allows us to decouple and scale protocol

components, but it doesn’t automatically tell us the extent to which

we should decouple and scale. Understanding this, through ablation

studies like the one presented here, must currently be done by hand.

As a line of future work, we are researching how to automatically

deduce the optimal amount of decoupling and scaling.

6.3 Read Scalability
Experiment Description. Thus far, we have looked at write-only

workloads. We now measure the throughput of Compartmentalized

MultiPaxos under a workload with reads and writes. In particular,

we measure how the throughput of Compartmentalized MultiPaxos

scales as we increase the number of replicas. We deploy Compart-

mentalized MultiPaxos with and without batching; with 2, 3, 4, 5,

and 6 replicas; and with workloads that have 0%, 60%, 90%, and

100% reads. For any given workload and number of replicas, proxy

leaders, and acceptors is chosen to maximize throughput. The batch

size is 50. In the batched experiments, we do not use batchers and
unbatchers. Instead, clients form batches of commands themselves.

This has no effect on the throughput measurements. We did this

only to reduce the number of client machines that we needed to

saturate the system. This was not an issue with the write-only

workloads because they had significantly lower peak throughputs.

Results. The unbatched results are shown in Figure 13a. We also

show MultiPaxos’ throughput for comparison. MultiPaxos does not

distinguish reads andwrites, so there is only a single line to compare

against. With a 0% read workload, Compartmentalized MultiPaxos

has a throughput of roughly 150,000 commands per second, and

the protocol does not scale much with the number of replicas. This

is consistent with our previous experiments. For workloads with

reads and writes, our results confirm two expected trends. First, the

higher the fraction of reads, the higher the throughput. Second, the

higher the fraction of reads, the better the protocol scales with the

number of replicas. With a 100% read workload, for example, Com-

partmentalized MultiPaxos scales linearly up to a throughput of

roughly 650,000 commands per second with 6 replicas. The batched

results, shown in Figure 13b, are very similar. With a 100% read

workload, Compartmentalized MultiPaxos scales linearly up to a

throughput of roughly 17.5 million commands per second.

Our results also show two counterintuitive trends. First, a small

increase in the fraction of writes can lead to a disproportionately

large decrease in throughput. For example, the throughput of the

90% read workload is far less than 90% of the throughput of the 100%

read workload. Second, besides the 100% read workload, throughput

does not scale linearly with the number of replicas. We see that the

throughput of the 0%, 60%, and 90% read workloads scale sublinearly

with the number of replicas. These results are not an artifact of

our protocol; they are fundamental. Any state machine replication

protocol where writes are processed by every replica and where

reads are processed by a single replica [12, 37, 44] will exhibit these

same two performance anomalies.

We can explain this analytically. Assume that we have n replicas;

that every replica can process at most α commands per second;

and that we have a workload with a fw fraction of writes and a

fr = 1 − fw fraction of reads. Because writes are processed by

every replica, and reads are processed by a single replica, the peak
throughput of our system is

nα

nfw + fr

This formula is plotted in Figure 14 with α = 100,000. The limit

of our peak throughput as n approaches infinity is
α
fw

. This explains

both of the performance anomalies described above. First, it shows

that peak throughput has a
1

fw
relationship with the fraction of

writes, meaning that a small increase in fw can have a large impact

on peak throughput. For example, if we increase our write fraction

from 1% to 2%, our throughput will half. A 1% change in write

fraction leads to a 50% reduction in throughput. Second, it shows

that throughput does not scale linearly with the number of replicas;

it is upper bounded by
α
fw

. For example, a workload with 50% writes

can never achieve more than twice the throughput of a 100% write

workload, even with an infinite number of replicas.

5 10 15 20 25 30
Number of replicas

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Pe
ak

 th
ro

ug
hp

ut
(m

illi
on

s o
f c

om
m

an
ds

 p
er

 se
co

nd
)

100% reads
99% reads
98% reads
95% reads
90% reads
75% reads
0% reads

Figure 14: Analytical throughput vs the number of replicas.

6.4 Skew Tolerance
Experiment Description. CRAQ [37] is a chain replication [40]

variant with scalable reads. A CRAQ deployment consists of at

least f + 1 nodes arranged in a linked list, or chain. Writes are sent

to the head of the chain and propagated node-by-node down the

chain from the head to the tail. When the tail receives the write,

it sends a write acknowledgement to its predecessor, and this ack

is propagated node-by-node backwards through the chain until it

reaches the head. Reads are sent to any node. When a node receives

a read of key k , it checks to see if it has any unacknowledged write

2212



2 3 4 5 6
Number of replicas

0

200

400

600

Th
ro

ug
hp

ut
(th

ou
sa

nd
s c

m
ds

/s
ec

on
d)

0% reads
60% reads
90% reads

100% reads
MultiPaxos

(a) Unbatched linearizable reads

2 3 4 5 6
Number of replicas

0

5

10

15

Th
ro

ug
hp

ut
(m

illi
on

s c
m

ds
/s

ec
on

d)

0% reads
60% reads
90% reads

100% reads
MultiPaxos

(b) Batched linearizable reads

Figure 13: Peak throughput vs the number of replicas

to that key. If it doesn’t, then it performs the read and replies to

the client immediately. If it does, then it forwards the read to the

tail of the chain. When the tail receives a read, it executes the read

immediately and replies to the client.

We now compare Compartmentalized MultiPaxos with our im-

plementation of CRAQ. In particular, we show that CRAQ (and

similar protocols like Harmonia [44]) are sensitive to data skew,

whereas Compartmentalized MultiPaxos is not. We deploy Com-

partmentalized MultiPaxos with two proposers, three proxy leaders,

twelve acceptors, and six replicas, and we deploy CRAQ with six

chain nodes. Though, our results hold for deployments with a dif-

ferent number of machines as well, as long as the number of Com-

partmentalized MultiPaxos replicas is equal to the number of CRAQ

chain nodes. Both protocols replicate a key-value store with 10,000

keys in the range 1, . . . ,10,000. We subject both protocols to the

following workload. A client repeatedly flips a weighted coin, and

with probability p chooses to read or write to key 1. With probabil-

ity 1 −p, it decides to read or write to some other key 2, . . . ,10,000

chosen uniformly at random. The client then decides to perform a

read with 95% probability and a write with 5% probability. As we

vary the value of p, we vary the skew of the workload. When p = 0,

the workload is completely uniform, and when p = 1, the workload

consists of reads and writes to a single key. This artificial workload

allows to study the effect of skew in a simple way without having

to understand more complex skewed distributions.

Results. The results are shown in Figure 15, with p on the x-axis.
The throughput of Compartmentalized MultiPaxos is constant; it

is independent of p. This is expected because Compartmentalized

MultiPaxos is completely agnostic to the state machine that it is

replicating and is completely unaware of the notion of keyed data.

Its performance is only affected by the ratio of reads to writes and is

completely unaffected by what data is actually being read or written.

CRAQ, on the other hand, is susceptible to skew. As we increase

skew from p = 0 to p = 1, the throughput decreases from roughly

300,000 commands per second to roughly 100,000 commands per

second. As we increase p, we increase the fraction of reads which

are forwarded to the tail. In the extreme, all reads are forwarded to

the tail, and the throughput of the protocol is limited to that of a

single node (i.e. the tail).

However, with low skew, CRAQ can perform reads in a single

round trip to a single chain node. This allows CRAQ to implement

reads with lower latency and with fewer nodes than Compartmen-

talized MultiPaxos. However, we also note that Compartmentalized

MultiPaxos outperforms CRAQ in our benchmark even with no

skew. This is because every chain node must process four mes-

sages per write, whereas Compartmentalized MultiPaxos replicas

only have to process two. CRAQ’s write latency also increases

with the number of chain nodes, creating a hard trade-off between

read throughput and write latency. Ultimately, neither protocol

is strictly better than the other. For very read-heavy workloads

with low-skew, CRAQ will likely outperform Compartmentalized

MultiPaxos using fewer machines, and for workloads with more

writes or more skew, Compartmentalized MultiPaxos will likely

outperform CRAQ. For the 95% read workload in our experiment,

Compartmentalized MultiPaxos has strictly better throughput than

CRAQ across all skews, but this is not true for workloads with a

higher fraction of reads.

7 RELATEDWORK
MultiPaxos. Unlike protocols like Raft [29] and Viewstamped

Replication [24], MultiPaxos [20, 21, 39] is designed with the roles

of proposer, acceptor, and replicas logically decoupled. This de-

coupling alone is not sufficient for MultiPaxos to achieve the best

possible throughput, but the decoupling allows for the compart-

mentalizations described in this paper.

PigPaxos. PigPaxos [13] is a MultiPaxos variant that alters the

communication flow between the leader and the acceptors to im-

prove scalability and throughput. Similar to compartmentalization,

2213



0.0 0.2 0.4 0.6 0.8 1.0
Skew

0

100

200

300

400

Th
ro

ug
hp

ut
(th

ou
sa

nd
s c

m
ds

/s
ec

on
d)

Compartmentalized MultiPaxos
CRAQ

Figure 15: The effect of skew on Compartmentalized Multi-
Paxos and CRAQ.

PigPaxos realizes that the leader is doing many different jobs and

is a bottleneck in the system. In particular, PigPaxos substitutes

direct leader-to-acceptor communication with a relay network. In

PigPaxos the leader sends a message to one or more randomly se-

lected relay nodes, and each relay rebroadcasts the leader’s message

to the peers in its relay-group and waits for some threshold of re-

sponses. Once each relay receives enough responses from its peers,

it aggregates them into a single message to reply to the leader. The

leader selects a new set of random relays for each new message

to prevent faulty relays from having a long-term impact on the

communication flow. PigPaxos relays are comparable to our proxy

leaders, although the relays are simpler and only alter the communi-

cation flow. As such, the relays cannot generally take over the other

leader roles, such as quorum counting or replying to the clients.

Unlike PigPaxos, whose main goal is to grow to larger clusters,

compartmentalization is more general and improves throughput

under different conditions and situations.

Scalog. Scalog [15] is a replicated shared log protocol that achieves
high throughput using an idea similar to Compartmentalized Mul-

tiPaxos’ batchers and unbatchers. A client does not send values

directly to a centralized leader for sequencing in the log. Instead,

the client sends its values to one of a number of servers. Periodically,

the servers’ batches are sealed and assigned an id. This id is then

sent to a state machine replication protocol, like MultiPaxos, for

sequencing. Compartmentalization and Scalog differ in many ways.

The biggest difference is the fact that compartmentalization is a

transferable technique, while Scalog is a specific protocol. Restrict-

ing our attention to Compartmentalized MultiPaxos, the two still

differ. For exmaple, Scalog cannot perform fast linearizable reads

like Compartmentalized MultiPaxos can (see Section 3.4). Scalog

aggregators must also be carefully managed. If the root fails, for

example, “goodput” in Scalog drops to zero.

Read Leases. A common way to optimize reads in MultiPaxos is

to grant a lease to the leader [10, 11, 14]. While the leader holds

the lease, no other node can become leader. As a result, the leader

can perform reads locally without contacting other nodes. Leases

assume some degree of clock synchrony, so they are not appropriate

in all circumstances. Moreover, the leader is still a read bottleneck.

Raft has a similar optimization that does not require any form of

clock synchrony, but the leader is still a read bottleneck [29]. With

Paxos Quorum Leases [27], any set of nodes—not just the leader—

can hold a lease for a set of objects. These lease holders can read

the objects locally. Paxos Quorum Leases assume clock synchrony

and are a special case of Paxos Quorum Reads [12] in which read

quorums consist of any lease holding node and write quorums

consist of any majority that includes all the lease holding nodes.

Compartmentalized MultiPaxos does not assume clock synchrony

and has no read bottlenecks.

Harmonia. Harmonia [44] is a family of state machine replica-

tion protocols that leverage specialized hardware—specifically, a

specialized network switch—to achieve high throughput and low

latency. Like CRAQ, Harmonia is sensitive to data skew. It performs

extremely well under low contention, but degrades in performance

as contention grows. Harmonia also assumes clock synchrony,

whereas Compartmentalized MultiPaxos does not. FLAIR [36] is

replication protocol that also leverages specialized hardware, simi-

lar to Harmonia.

Sharding. In this paper, we have discussed state machine replica-

tion in its most general form. We have not made any assumptions

about the nature of the state machines themselves. Because of this,

we are not able to decouple the state machine replicas. Every replica

must execute every write. This creates a fundamental throughput

limit. However, if we are able to divide the state of the state machine

into independent shards, then we can further scale the protocols

by sharding the state across groups of replicas. For example, in [8],

Bezerra et al. discuss how state machine replication protocols can

take advantage of sharding.

Low Latency Replication Protocols. While compartmentalization

increases throughput, it also increases the number of network

delays required to get a state machine command executed. For

example, starting from a client, MultiPaxos can execute a state

machine command and return a response to a client in four net-

work delays, whereas Compartmentalized MultiPaxos requires six.

Within a single data center, this translates to a small increase in

latency, but when deployed on a wide area network, the latency is

increased substantially. Thus, if your goal is to minimize latency,

you should choose latency optimized protocols like CURP [30] or

SpecPaxos [31] over a compartmentalized protocol.

8 CONCLUSION
In this paper, we analyzed the throughput bottlenecks in state ma-

chine replication protocols and demonstrated how to eliminate

them using a combination of decoupling and scale, a technique we

call compartmentalization. Using compartmentalization, we estab-

lish a new baseline for MultiPaxos’ performance. We increase the

protocol’s throughput by a factor of 6× on a write-only workload

and 16× on a 90% read workload, all without the need for complex

or specialized protocols.

2214



REFERENCES
[1] [n.d.]. A Brief Introduction of TiDB. https://pingcap.github.io/blog/2017-05-23-

perconalive17/. Accessed: 2019-10-21.

[2] [n.d.]. Global data distribution with Azure Cosmos DB - under the hood. https:

//docs.microsoft.com/en-us/azure/cosmos-db/global-dist-under-the-hood. Ac-

cessed: 2019-10-21.

[3] [n.d.]. Lightweight transactions in Cassandra 2.0. https://www.datastax.com/

blog/2013/07/lightweight-transactions-cassandra-20. Accessed: 2019-10-21.

[4] [n.d.]. Raft Replication in YugaByte DB. https://www.yugabyte.com/resources/

raft-replication-in-yugabyte-db/. Accessed: 2019-10-21.

[5] Ailidani Ailijiang, Aleksey Charapko, Murat Demirbas, and Tevfik Kosar. 2019.

WPaxos: Wide Area Network Flexible Consensus. IEEE Transactions on Parallel
and Distributed Systems (2019).

[6] Balaji Arun, Sebastiano Peluso, Roberto Palmieri, Giuliano Losa, and Binoy

Ravindran. 2017. Speeding up Consensus by Chasing Fast Decisions. In 2017
IEEE/IFIP International Conference on Dependable Systems & Networks (DSN). IEEE,
49–60.

[7] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Paleczny.

2012. Workload analysis of a large-scale key-value store. In Proceedings of the 12th
ACM SIGMETRICS/PERFORMANCE joint international conference on Measurement
and Modeling of Computer Systems. 53–64.

[8] Carlos Eduardo Bezerra, Fernando Pedone, and Robbert Van Renesse. 2014. Scal-

able state-machine replication. In 2014 IEEE/IFIP International Conference on
Dependable Systems & Networks (DSN). IEEE, 331–342.

[9] Martin Biely, Zarko Milosevic, Nuno Santos, and Andre Schiper. 2012. S-paxos:

Offloading the leader for high throughput state machine replication. In 2012 IEEE
31st Symposium on Reliable Distributed Systems (SRDS). IEEE, 111–120.

[10] Mike Burrows. 2006. The Chubby lock service for loosely-coupled distributed sys-

tems. In 7th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 06). 335–350.

[11] Tushar D Chandra, Robert Griesemer, and Joshua Redstone. 2007. Paxos made

live: an engineering perspective. In Proceedings of the 2007 ACM Symposium on
Principles of Distributed Computing. ACM, 398–407.

[12] Aleksey Charapko, Ailidani Ailijiang, and Murat Demirbas. 2019. Linearizable

quorum reads in Paxos. In 11th USENIX Workshop on Hot Topics in Storage and
File Systems (HotStorage 19).

[13] Aleksey Charapko, Ailidani Ailijiang, and Murat Demirbas. 2021. PigPaxos: De-

vouring the communication bottlenecks in distributed consensus. In Proceedings
of the 2021 International Conference on Management of Data. ACM, 235–247.

[14] James C Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost,

Jeffrey John Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser,

Peter Hochschild, et al. 2013. Spanner: Google’s globally distributed database.

ACM Transactions on Computer Systems (TOCS) 31, 3 (2013), 8.
[15] Cong Ding, David Chu, Evan Zhao, Xiang Li, Lorenzo Alvisi, and Robbert van

Renesse. 2020. Scalog: Seamless Reconfiguration and Total Order in a Scalable

Shared Log. In 17th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 20). 325–338.

[16] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. 2003. The Google file

system. In Proceedings of the 19th Symposium on Operating Systems Principles.
ACM, 29–43.

[17] Heidi Howard, Dahlia Malkhi, and Alexander Spiegelman. 2017. Flexible Paxos:

Quorum Intersection Revisited. In 20th International Conference on rinciples of
Distributed Systems (OPODIS 2016) (Leibniz International Proceedings in Informat-
ics (LIPIcs)), Panagiota Fatourou, Ernesto Jiménez, and Fernando Pedone (Eds.),

Vol. 70. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany,

25:1–25:14. https://doi.org/10.4230/LIPIcs.OPODIS.2016.25

[18] Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster, Jeongkeun Lee, Robert Soulé,

Changhoon Kim, and Ion Stoica. 2018. Netchain: Scale-free sub-rtt coordination.

In 15th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 18). 35–49.

[19] Manos Kapritsos and Flavio Paiva Junqueira. 2010. Scalable Agreement: Toward

Ordering as a Service. In HotDep.
[20] Leslie Lamport. 1998. The part-time parliament. ACM Transactions on Computer

Systems (TOCS) 16, 2 (1998), 133–169.
[21] Leslie Lamport. 2001. Paxos made simple. ACM Sigact News 32, 4 (2001), 18–25.
[22] Leslie Lamport. 2005. Generalized consensus and Paxos. (2005).

[23] Leslie Lamport. 2006. Fast paxos. Distributed Computing 19, 2 (2006), 79–103.

[24] Barbara Liskov and James Cowling. 2012. Viewstamped replication revisited.

(2012).

[25] Yanhua Mao, Flavio P Junqueira, and Keith Marzullo. 2008. Mencius: building

efficient replicated state machines for WANs. In 8th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 08). 369–384.

[26] Iulian Moraru, David G Andersen, and Michael Kaminsky. 2013. There is more

consensus in egalitarian parliaments. In Proceedings of the 24th Symposium on
Operating Systems Principles. ACM, 358–372.

[27] Iulian Moraru, David G Andersen, and Michael Kaminsky. 2014. Paxos quorum

leases: Fast reads without sacrificing writes. In Proceedings of the ACM Symposium
on Cloud Computing. 1–13.

[28] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Herman Lee,

Harry C Li, Ryan McElroy, Mike Paleczny, Daniel Peek, Paul Saab, et al. 2013.

Scaling memcache at facebook. In 10th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 13). 385–398.

[29] Diego Ongaro and John K Ousterhout. 2014. In search of an understandable

consensus algorithm. In USENIX Annual Technical Conference. 305–319.
[30] Seo Jin Park and John Ousterhout. 2019. Exploiting commutativity for practical

fast replication. In 16th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 19). 47–64.

[31] Dan RK Ports, Jialin Li, Vincent Liu, Naveen Kr Sharma, and Arvind Krishna-

murthy. 2015. Designing Distributed Systems Using Approximate Synchrony in

Data Center Networks. In 12th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 15). 43–57.

[32] Nuno Santos and André Schiper. 2012. Tuning paxos for high-throughput with

batching and pipelining. In International Conference on Distributed Computing
and Networking. Springer, 153–167.

[33] Nuno Santos and André Schiper. 2013. Optimizing Paxos with batching and

pipelining. Theoretical Computer Science 496 (2013), 170–183.
[34] William Schultz, Tess Avitabile, and Alyson Cabral. 2019. Tunable Consistency

in MongoDB. Proceedings of the VLDB Endowment 12, 12 (2019), 2071–2081.
[35] Rebecca Taft, Irfan Sharif, Andrei Matei, Nathan VanBenschoten, Jordan Lewis,

Tobias Grieger, Kai Niemi, Andy Woods, Anne Birzin, Raphael Poss, Paul Bardea,

Amruta Ranade, Ben Darnell, Bram Gruneir, Justin Jaffray, Lucy Zhang, and Peter

Mattis. 2020. CockroachDB: The Resilient Geo-Distributed SQL Database. In

Proceedings of the 2020 International Conference on Management of Data. ACM,

1493–1509.

[36] Hatem Takruri, Ibrahim Kettaneh, Ahmed Alquraan, and Samer Al-Kiswany.

2020. FLAIR: Accelerating Reads with Consistency-Aware Network Routing. In

17th USENIX Symposium on Networked Systems Design and Implementation (NSDI
20). 723–737.

[37] Jeff Terrace and Michael J Freedman. 2009. Object Storage on CRAQ: High-

Throughput Chain Replication for Read-Mostly Workloads. In USENIX Annual
Technical Conference. San Diego, CA, 1–16.

[38] Alexander Thomson, Thaddeus Diamond, Shu-ChunWeng, Kun Ren, Philip Shao,

and Daniel J Abadi. 2012. Calvin: fast distributed transactions for partitioned data-

base systems. In Proceedings of the 2012 International Conference on Management
of Data. ACM, 1–12.

[39] Robbert Van Renesse and Deniz Altinbuken. 2015. Paxos made moderately

complex. ACM Computing Surveys (CSUR) 47, 3 (2015), 42.
[40] Robbert Van Renesse and Fred B Schneider. 2004. Chain Replication for Support-

ing High Throughput and Availability. In 6th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 04), Vol. 4.

[41] Michael Whittaker, Ailidani Ailijiang, Aleksey Charapko, Murat Demirbas, Neil

Giridharan, Joseph M. Hellerstein, Heidi Howard, Ion Stoica, and Adriana Szek-

eres. 2020. Scaling Replicated State Machines with Compartmentalization [Tech-

nical Report]. arXiv:2012.15762 [cs.DC]

[42] Michael Whittaker, Aleksey Charapko, Joseph M Hellerstein, Heidi Howard, and

Ion Stoica. 2021. Read-Write Quorum Systems Made Practical. In Proceedings of
the 8th Workshop on Principles and Practice of Consistency for Distributed Data.
1–8.

[43] Irene Zhang, Naveen Kr Sharma, Adriana Szekeres, Arvind Krishnamurthy, and

Dan RK Ports. 2018. Building consistent transactions with inconsistent replication.

ACM Transactions on Computer Systems (TOCS) 35, 4 (2018), 12.
[44] Hang Zhu, Zhihao Bai, Jialin Li, Ellis Michael, Dan RK Ports, Ion Stoica, and

Xin Jin. 2019. Harmonia: Near-linear scalability for replicated storage with in-

network conflict detection. Proceedings of the VLDB Endowment 13, 3 (2019),

376–389.

2215

https://pingcap.github.io/blog/2017-05-23-perconalive17/
https://pingcap.github.io/blog/2017-05-23-perconalive17/
https://docs.microsoft.com/en-us/azure/cosmos-db/global-dist-under-the-hood
https://docs.microsoft.com/en-us/azure/cosmos-db/global-dist-under-the-hood
https://www.datastax.com/blog/2013/07/lightweight-transactions-cassandra-20
https://www.datastax.com/blog/2013/07/lightweight-transactions-cassandra-20
https://www.yugabyte.com/resources/raft-replication-in-yugabyte-db/
https://www.yugabyte.com/resources/raft-replication-in-yugabyte-db/
https://doi.org/10.4230/LIPIcs.OPODIS.2016.25
https://arxiv.org/abs/2012.15762

