
Data Synthesis via Differentially Private Markov Random Fields
Kuntai Cai

National University of Singapore

caikt@comp.nus.edu.sg

Xiaoyu Lei

University of Connecticut

xiaoyu.lei@uconn.edu

Jianxin Wei

National University of Singapore

jianxinwei@u.nus.edu

Xiaokui Xiao

National University of Singapore

xkxiao@nus.edu.sg

ABSTRACT
This paper studies the synthesis of high-dimensional datasets with

differential privacy (DP). The state-of-the-art solution addresses

this problem by first generating a setM of noisy low-dimensional

marginals of the input data 𝐷 , and then use them to approximate

the data distribution in 𝐷 for synthetic data generation. However,

it imposes several constraints onM that considerably limits the

choices of marginals. This makes it difficult to capture all important

correlations among attributes, which in turn degrades the quality

of the resulting synthetic data.

To address the above deficiency, we propose PrivMRF, a method

that (i) also utilizes a setM of low-dimensional marginals for syn-

thesizing high-dimensional data with DP, but (ii) provides a high

degree of flexibility in the choices of marginals. The key idea of

PrivMRF is to select an appropriateM to construct a Markov ran-
dom field (MRF) that models the correlations among the attributes

in the input data, and then use the MRF for data synthesis. Exper-

imental results on four benchmark datasets show that PrivMRF
consistently outperforms the state of the art in terms of the accu-

racy of counting queries and classification tasks conducted on the

synthetic data generated.

PVLDB Reference Format:
Kuntai Cai, Xiaoyu Lei, Jianxin Wei, and Xiaokui Xiao. Data Synthesis via

Differentially Private Markov Random Fields. PVLDB, 14(11): 2190 - 2202,

2021.

doi:10.14778/3476249.3476272

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/caicre/PrivMRF.

1 INTRODUCTION
Releasing relational data while preserving privacy is an important

problem that has attracted extensive research interests over the

past decades. A canonical solution to this problem is synthetic data
generation [11], which releases a synthesized version of the data

containing carefully calibrated noise for privacy protection. For

example, consider the dataset 𝐷 in Table 1, where each attribute

has a binary domain {𝛼, 𝛽}. Suppose that we are to generate a

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 11 ISSN 2150-8097.

doi:10.14778/3476249.3476272

Table 1: Dataset 𝐷 .

𝑨1 𝑨2 𝑨3

𝛼 𝛼 𝛽

𝛼 𝛼 𝛽

𝛼 𝛼 𝛽

𝛼 𝛽 𝛼

𝛽 𝛼 𝛼

𝛽 𝛼 𝛼

𝛽 𝛼 𝛼

𝛽 𝛼 𝛼

𝛽 𝛽 𝛼

Table 2: Contingency table 𝑇𝐷 .

𝑨1 𝑨2 𝑨3 Count

𝛼 𝛼 𝛼 0

𝛼 𝛼 𝛽 3

𝛼 𝛽 𝛼 1

𝛼 𝛽 𝛽 0

𝛽 𝛼 𝛼 4

𝛽 𝛼 𝛽 0

𝛽 𝛽 𝛼 1

𝛽 𝛽 𝛽 0

Table 3: Noisy table 𝑇𝐷 .

𝑨1 𝑨2 𝑨3 Count

𝛼 𝛼 𝛼 −0.2
𝛼 𝛼 𝛽 2.9

𝛼 𝛽 𝛼 −0.3
𝛼 𝛽 𝛽 2.2

𝛽 𝛼 𝛼 1.7

𝛽 𝛼 𝛽 0.2

𝛽 𝛽 𝛼 0.8

𝛽 𝛽 𝛽 −0.1

Table 4: Synthetic data �̃� .

𝑨1 𝑨2 𝑨3

𝛼 𝛼 𝛽

𝛼 𝛼 𝛽

𝛼 𝛼 𝛽

𝛼 𝛽 𝛽

𝛼 𝛽 𝛽

𝛽 𝛼 𝛼

𝛽 𝛼 𝛼

𝛽 𝛽 𝛼

Table 5: Marginal 𝑇𝐷,𝑀1
.

𝑨1 𝑨2 Count

𝛼 𝛼 3

𝛼 𝛽 1

𝛽 𝛼 4

𝛽 𝛽 1

Table 6: Marginal 𝑇𝐷,𝑀2
.

𝑨1 𝑨3 Count

𝛼 𝛼 1

𝛼 𝛽 3

𝛽 𝛼 5

𝛽 𝛽 0

synthetic version of 𝐷 . Then, a straightforward approach is to first

convert 𝐷 into the contingency table 𝑇𝐷 in Table 2, where each row

(i) corresponds to a possible tuple 𝑥 in the attribute domain of𝐷 and

(ii) counts the number of 𝑥 ’s occurrences in 𝐷 . After that, we add

noise to the count in each row of𝑇𝐷 to obtain the noisy contingency

table 𝑇𝐷 in Table 3. Finally, we round each noisy count in 𝑇𝐷 to

the nearest non-negative integer, and then transform the 𝑇𝐷 to the

synthetic dataset �̃� in Table 4. When the noise in 𝑇𝐷 following an

appropriate distribution, we can show that �̃� ensures differential
privacy (DP) [10], which is a rigorous notion of privacy that has

been widely adopted in both academia and industry [8, 12, 31].

The aforementioned approach, however, suffers from the curse

of dimensionality. To explain, observe that the number𝑚 of rows

in the contingency table 𝑇𝐷 is exponential to the number 𝑑 of

attributes in the input data 𝐷 . Therefore,𝑚 is prohibitively large

when 𝑑 is large. In that case, it is impractical to materialize 𝑇𝐷 or

its noisy version𝑇𝐷 , due to the excessive space and time overheads

2190

https://doi.org/10.14778/3476249.3476272
https://github.com/caicre/PrivMRF
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3476249.3476272

incurred. Furthermore, given a large 𝑑 , the number of records in 𝐷

would be significantly smaller than𝑚, which implies that the vast

majority of the rows in𝑇𝐷 would have zero counts. Such counts will

be dominated by noise after we inject noise into 𝑇𝐷 , and hence, 𝑇𝐷
would be excessively noisy. As such, the synthetic data �̃� generated

from 𝑇𝐷 would have poor data utility.

To circumvent the curse of dimensionality, existing work [37, 38]

proposes PrivBayes, which avoids generating the contingency ta-

ble 𝑇𝐷 and instead utilizes low-dimensional marginals of 𝑇𝐷 (i.e.,
projections of 𝑇𝐷 on subsets of attributes). For instance, given the

dataset 𝐷 in Table 1, we may generate two marginals 𝑇𝐷,𝑀1
and

𝑇𝐷,𝑀2
on attribute subsets 𝑀1 = {𝐴1, 𝐴2} and 𝑀2 = {𝐴1, 𝐴3}, re-

spectively, as shown in Tables 5 and 6. Intuitively, 𝑀1 (resp. 𝑀2)

captures the joint distribution of 𝐴1 and 𝐴2 (resp. 𝐴1 and 𝐴3) in 𝐷 ,

which could be used to approximate the data distribution in 𝐷 as

follows:

Pr[𝐴1, 𝐴2, 𝐴3] ≈ Pr[𝐴1, 𝐴2] · Pr[𝐴3 | 𝐴1] . (1)

Therefore, we may add noise into𝑀1 and𝑀2, and then use them

to generate synthetic data based on Eq. (1). The advantage of this

approach is that it only deals with low-dimensional marginals,

which are more resilient to noise injection and can be materialized

efficiently, since they have relatively small numbers of entries.

Motivation and Contributions. The effectiveness of PrivBayes
[37, 38] depends on the setM of low-dimensional marginals that

it uses to approximate the data distribution in the input data: if

the marginals inM adequately capture the correlations among

attributes in 𝐷 , then the resulting synthetic data �̃� could be sta-

tistically similar to 𝐷 ; otherwise, the distribution of data �̃� may

deviate significantly from that of 𝐷 . As we discuss in Section 2.3,

however, PrivBayes imposes some constraints onM that consider-

ably limit its choices of marginals. In particular, PrivBayes requires
that the marginals inM should correspond to a Bayesian network
[21], due to which the number of marginals in M is at most 𝑑 .

This, coupled with the requirement that each marginal should be

low-dimensional, makes it difficult for PrivBayes to capture all

important correlations among the attributes in 𝐷 , which in turn

degrades the effectiveness of PrivBayes.
To remedy the deficiency of PrivBayes, we propose PrivMRF,

a new solution for synthetic data generation with DP. Similar

to PrivBayes, PrivMRF also utilizes a setM of low-dimensional

marginals to approximate the distribution of tuples in the input data

𝐷 . Nevertheless, PrivMRF does not require that the marginals inM
form a Bayesian network; instead, it allows arbitrary marginals in

M, as long as it can efficiently derive the distribution of synthetic

data from the marginals. This improved flexibility in marginal selec-

tion enables PrivMRF to more accurately capture the characteristics

of the input data to produce useful synthetic data.

The key idea of PrivMRF is to choose an appropriate marginal set

M to construct a Markov random field (MRF) [34] that effectively
models the dependencies among the attributes in 𝐷 , and then use

a noisy version ofM to generate synthetic data. Existing meth-

ods for MRF construction (e.g., [17, 21, 23, 34, 36, 40]), however, is
inapplicable in our scenario, because they either focus on the non-

private setting, or are of theoretical interests only. Motivated by

this, we devise new algorithms for selecting marginals intoM and

constructing an MRF fromM, in such a manner that not only sat-

isfies DP but also takes into account the space and time overheads

incurred by the whole process of synthetic data generation.

We empirically evaluate PrivMRF against five state-of-the-art

methods using four benchmark datasets. Our experimental results

show that PrivMRF consistently outperforms the competing meth-

ods in terms of the accuracy of counting queries and classification

tasks conducted using the synthetic data. Furthermore, PrivMRF
is able to process each dataset in at most 17 minutes on a machine

with a 2.6GHz CPU and two Nvidia RTX 2080 Ti GPUs.

2 PRELIMINARIES
2.1 Problem Definition
Let 𝐷 be a dataset with 𝑑 attributes A = {𝐴1, 𝐴2, . . . , 𝐴𝑑 } and 𝑛

tuples 𝒙 (1) , 𝒙 (2) , . . . , 𝒙 (𝑛) . For all 𝐴 ∈ A and 𝑗 ∈ [𝑛], 𝒙 (𝑗)
𝐴

is the

value of attribute 𝐴 of the 𝑗-th tuple, which takes values from a

discrete finite spaceX𝐴 . Accordingly,X =
∏

𝐴∈A X𝐴 is the domain

of each tuple in 𝐷 , whose size is exponential in the number of

attributes 𝑑 . For any attribute set 𝑀 ⊆ A, let 𝒙𝑀 = (𝑥𝐴)𝐴∈𝑀
denote the subvector of tuple 𝑥 restricted to𝑀 andX𝑀 =

∏
𝐴∈𝑀 X𝐴

denote the domain of 𝑥𝑀 .

Let 𝑇𝐷,𝑀 denote the vector that counts the number of occur-

rences of all tuples 𝒎 ∈ X𝑀 . That is,

𝑇𝐷,𝑀 (𝒎) =
∑
𝑗 ∈[𝑛]

I(𝒙 (𝑗)
𝑀

= 𝒎), ∀𝒎 ∈ X𝑀 .

Note that we can derive the marginal distribution of𝑀 by dividing

the value of each entry of𝑇𝐷,𝑀 by 𝑛. LetM denote a set of attribute

sets. By abuse of notation, we use 𝑇𝐷,M = (𝑇𝐷,𝑀 , 𝑀 ∈ M) to
denote the vector obtained by concatenating 𝑇𝐷,𝑀 for all𝑀 ∈ M.

We refer to 𝑇𝐷,M as the concatenated marginal distribution vector.
Our objective is to release a synthetic version �̃� of 𝐷 using an

algorithm that satisfies (𝜖 , 𝛿)-differential privacy (DP) [10], which is

defined based on the notion of neighboring datasets, as formalized

in the following.

Definition 1 (Neighboring Datasets). Two datasets are neigh-
boring, if and only if one of them can be obtained by removing a tuple
from the other one.

Definition 2 (Differential Privacy [10]). A randomized al-
gorithm 𝐹 satisfies (𝜖, 𝛿)-differential privacy (DP), if for any two
neighboring datasets 𝐷1 and 𝐷2 and for any set O of possible outputs
of 𝐹 , we have

Pr[𝐹 (𝐷1) ∈ O] ≤ 𝑒𝜖 · Pr[𝐹 (𝐷2) ∈ O] + 𝛿. (2)

2.2 Gaussian Mechanism
To make an algorithm 𝐹 differentially private, a typical approach is

to inject noise into 𝐹 so that its output distribution satisfies Eq. (2).

The amount of noise needed depends on the parameters 𝜖 and 𝛿 of

DP, the noise distribution, as well as how sensitive 𝐹 is with respect

to the addition or omission of a tuple in its input. In this paper, we

adopt the Gaussian mechanism [2], which injects Gaussian noise

based on 𝐿2 sensitivity of the algorithm, as defined in the following.

Definition 3 (𝐿2 Sensitivity [11]). Let 𝑓 be a function thatmaps
its input data to a ℎ-dimensional vector in Rℎ . The 𝐿2 sensitivity of

2191

𝑓 , denoted as 𝑆 (𝑓), is defined as
𝑆 (𝑓) = max

neighboring datasets 𝐷1,𝐷2

∥ 𝑓 (𝐷1) − 𝑓 (𝐷2)∥2 .

The following lemma shows the amount of Gaussian noise

needed to achieve (𝜖 , 𝛿)-DP.

Lemma 1 ([2]). Let 𝑓 be a function that maps the input data to a
ℎ-dimensional vector in Rℎ . Suppose that we add i.i.d. Gaussian noise
N(0, 𝜎2) to each coordinate of 𝑓 ’s output. Then, the noisy 𝑓 satisfies
(𝜖, 𝛿)-DP if and only if

Φ

(
𝑆 (𝑓)
2𝜎
− 𝜖𝜎

𝑆 (𝑓)

)
− exp(𝜖) · Φ

(
−𝑆 (𝑓)

2𝜎
− 𝜖𝜎

𝑆 (𝑓)

)
≤ 𝛿, (3)

where Φ(𝑥) = 1√
2𝜋

∫ 𝑥

−∞ exp

(
− 𝑦2

2

)
𝑑𝑦 is the cumulative distribution

function of the standard normal distribution, and 𝑆 (𝑓) is the 𝐿2 sen-
sitivity of 𝑓 .

2.3 PrivBayes
PrivBayes [38] generates synthetic data using a 3-step approach:

(1) Select a setM of marginals from the input data 𝐷 using a

differentially private algorithm.

(2) Inject noise into the concatenated marginal distribution vec-

tor 𝑇𝐷,M , obtaining a noisy version 𝑇𝐷,M .

(3) Use 𝑇𝐷,M to synthesize a noisy dataset �̃� .

In particular, Step (1) of PrivBayes ensures that the marginals inM
can be arranged in a sequence𝑀1, 𝑀2, . . . ,, such that for any 𝑖 ≥ 2,

𝑀𝑖 contains exactly one attribute 𝑌𝑖 that is not in𝑀1, 𝑀2, . . . , 𝑀𝑖−1.
As such, the marginals in M correspond to a specific type of

Bayesian network [21], which is a probabilistic model of the depen-

dencies among the attributes in 𝐷 . Based on the Bayesian network,

we can approximate the data distribution in 𝐷 as follows:

Pr[𝐴1, 𝐴2, . . . , 𝐴𝑑] ≈ Pr[𝑀1] ·
|M |∏
𝑖=2

Pr[𝑌𝑖 | 𝑀𝑖 \ {𝑌𝑖 }] . (4)

Step (2) of PrivBayes generates a noisy version 𝑇𝐷,𝑀𝑖
of each

marginal 𝑇𝐷,𝑀𝑖
. Observe that, for any 𝑖 ≥ 2, we can derive a noisy

version of Pr[𝑌𝑖 | 𝑀𝑖 \ {𝑌𝑖 }] based on the noisy counts in 𝑇𝐷,𝑀𝑖
. In

addition, we can obtain a noisy version of Pr[𝑀1] from𝑇𝐷,𝑀1
in the

same manner. Given these noisy distributions, Step (3) of PrivBayes
generates each synthetic tuple 𝑥 in �̃� as follows. First, we sample

𝑥𝑀1
from the noisy Pr[𝑀1]. Then, for each 𝑖 = 2, . . . , |M|, we sam-

ple 𝑥𝑌𝑖 based on the noisy Pr[𝑌𝑖 | 𝑀𝑖 \ {𝑌𝑖 }] and the sampled values

of 𝑥 on𝑀1 and 𝑌2, . . . , 𝑌𝑖−1. For example, suppose thatM contains

the two marginals𝑀1 and𝑀2 in Tables 5 and 6, respectively. Then,

in accordance to Eq. (1), we would generate each synthetic tuple

𝑥 by first sampling 𝑥 {𝐴1,𝐴2 } from the noisy version of Pr[𝐴1, 𝐴2].
After that, we examine the sampled value of 𝑥 {𝐴1,𝐴2 } , and then

sample 𝑥𝐴3
from Pr[𝐴3 | 𝐴1] based on 𝑥𝐴1

.

PrivBayes’s utilization of Bayesian networks yields two advan-

tages. First, it enables us to approximate the input data 𝐷 using

the low-dimensional marginals inM, thus mitigating the curse of

dimensionality. Second, it allows us to generate synthetic tuples effi-

ciently using the noisy marginals and Eq. (4). Nevertheless, the way

that PrivBayes constructs Bayesian networks considerably restricts

the choices of marginals inM. Specifically, it requires that each𝑀𝑖

should contain exactly one attribute absent from𝑀1, . . . , 𝑀𝑖−1, due
to which the number of marginals inM is at most 𝑑 . Further, each

marginal can only have a small number of attributes. With these

constraints, it is challenging to ensure thatM sufficiently captures

the dependencies among the attributes in 𝐷 . As a consequence, the

quality of the synthetic data generated by PrivBayes still leaves
room for improvement.

2.4 PGM and Junction Trees
To overcome the limitation of PrivBayes, we may relax its con-

straints and letM contain marginals that do not correspond to

a Bayesian network. But then, an immediate challenge is that we

can no longer apply Eq. (4) to approximate the joint distribution in

the input data 𝐷 using 𝑇𝐷,M . Fortunately, there exist a relatively

efficient algorithm, referred to as PGM [25], for deriving the joint

distribution based on an arbitrary set of noisy marginals.

The basic idea of PGM is to construct a junction tree [34] from
M to facilitate the approximation of Pr[𝐴1, 𝐴2, . . . , 𝐴𝑑]. In par-

ticular, a junction tree consists of an ordered set of marginals

C = {𝐶1,𝐶2, . . .} that satisfies the following two conditions:

(1) Each attribute in 𝐷 is contained in at least one marginal in

C;
(2) For any 𝑖 > 1, the attribute set 𝑆𝑖 = 𝐶𝑖 ∩

(
∪𝑖−1
𝑗=1

𝐶 𝑗

)
appears

in one of 𝐶1,𝐶2, . . . ,𝐶𝑖−1.
Formally, each 𝐶𝑖 (resp. 𝑆𝑖) is referred to a clique (resp. separator).
By the property of the junction tree, we can approximate the data

distribution in 𝐷 as:

Pr[𝐴1, 𝐴2, . . . , 𝐴𝑑] ≈ Pr[𝐶1] ·
|C |∏
𝑖=2

Pr[𝐶𝑖 \ 𝑆𝑖 | 𝑆𝑖] . (5)

Specifically, PGM obtains a junction tree C from M using a

standard algorithm as follows. (Interested readers are referred to

[34] for details.)

(1) Construct an attribute graph 𝐺 where (i) each node is an

attribute in 𝐷 , and (ii) there is an undirected edge between

two nodes 𝐴 and 𝐵 if and only if 𝐴 and 𝐵 appear in the same

marginal inM.

(2) Triangulate 𝐺 by inserting edges into 𝐺 , such that for every

cycle (𝑣1, . . . , 𝑣𝑘 , 𝑣1) in𝐺 , the subgraph induced by 𝑣1, . . . , 𝑣𝑘
contains at least one triangle. For example, if (𝑣1, 𝑣2, 𝑣3, 𝑣4)
is a cycle in 𝐺 , then (𝑣1, 𝑣3) or (𝑣2, 𝑣4) should be an edge in

𝐺 .

(3) Let 𝐺△ be the triangulated version of 𝐺 . Take each maximal

clique in 𝐺△ as a clique in C.
(4) Derive a proper order of the cliques so that C = {𝐶1,𝐶2, . . .}

satisfies the requirements of a junction tree.

The above algorithm incurs zero privacy cost, since it only ex-

amines the attributes in each marginal inM, without looking into

the counts in the marginals. In addition, the algorithm guarantees

that each marginal inM is contained in at least one marginal in

C. For convenience, we refer to the transformation fromM to C
as the junction tree transform. Once C is obtained, PGM derives

the marginal distributions in C from 𝑇𝐷,M by performing graph-

ical model estimation and inference. After that, we can generate

synthetic data based on Eq. (5).

2192

Limitation of PGM. Although PGM offers an effective means of

generating synthetic data from a set of noisy marginals, it does not

provide any method to decide which marginals should be used in

the first place. In other words, it requires that the noisy marginals

should be given by the user. However, the quality of the synthetic

data generated from PGM highly depends on the given setM of

marginals. For example, ifM contains 𝑑 single-attribute marginals

(i.e., one for each attribute in 𝐷), then the joint data distribution de-

rived fromM would be a Cartesian product of the single-attribute

marginal distributions. Such a joint data distribution is highly un-

likely to be close to the original data distribution in 𝐷 . One may

attempt to address this problem by inserting intoM every possible

multi-dimensional marginal that contains correlated attributes, but

it would still lead to inferior synthetic data due to two issues:

Issue 1: Excessive noise in marginals. Recall that we need to inject

noise into each marginal inM to achieve DP. WhenM contains

a large number of marginals, the amount of private information

revealed byM is substantial, in which case we would require a

large amount of noise in each marginal for privacy protection. This

severely degrades the accuracy of the noisy marginals and the

resulting synthetic data. □

Issue 2: Prohibitive overheads. Recall that PGM derives a joint data

distribution based on Eq. (5), which requires materializing the mar-

ginal distribution for each clique𝐶𝑖 in a junction tree. In turn, each

𝐶𝑖 is a maximal clique in the graph 𝐺△ triangulated from the at-

tribute graph 𝐺 . When𝑀 contains a sizable number of marginals,

𝐺 would be a dense graph, since every pair of attributes appearing

in the same marginal is mapped to an edge in 𝐺 . Accordingly, 𝐺Δ

would also be dense (since it contains all edges in 𝐺), and hence, it

is likely that some maximal clique𝐶𝑖 in𝐺△ contains a large number

of attributes. In that case, the marginal corresponding to 𝐶𝑖 is a

high-dimensional marginal, which cannot be materialized without

prohibitive space and time overheads. □

In summary, we can conclude that M needs to be carefully

constructed according to three constraints:

CSTR1. The marginals in M should be low-dimensional and

should capture important characteristics of the input data;

CSTR2. The size ofM is reasonably small;

CSTR3. Applying a junction tree transform onM does not result

in any clique with large domain size.

Unfortunately, there is no existing algorithm for constructingM
that satisfies all of the above constraints. For example, the marginal

selection algorithm in PrivBayes [38] satisfies CSTR2 and CSTR3

(due to the property of the Bayesian network that it uses), but it

violates CSTR1 because, as mentioned in Section 2.3, its choice

of marginals is inadequate to capture complex correlations in the

input data. Previous work [25] also considers combining PGM with

a few other existing algorithms [13, 16, 24], but shows that none

of them yields better overall result than combining PGM with the

marginal selection algorithm in PrivBayes. This leads to a natural

question: can we design a marginal selection algorithm that satisfies

DP as well as constraints CSTR1-3, so as to achieve more effective

synthetic data generation? In Section 3, we answer this question

positively with a new DP algorithm for marginal selection.

Table 7: Comparison of PrivMRF, PrivBayes [38], and PGM
[25].

Method Selection of Marginals Modeling fromnoisy
marginals

PrivBayes based on a Bayesian net-

work

uses a Bayesian net-

work

PGM - uses a probablistic

graphical model

PrivMRF based on Markov random

fields

uses PGM

3 OUR SOLUTION
This section introduces our PrivMRF method for data synthesis

under differential privacy. In a nutshell, PrivMRF utilizes a DP al-

gorithm to select a marginal setM that satisfies the constraints

CSTR1-3 mentioned in Section 2.4, and then it feeds a noisy distribu-

tion vector 𝑇𝐷,M ofM to PGM to generate synthetic data. Table 7

shows a comparison of PrivMRF, PrivBayes [38], and PGM [25]. The

novelty of PrivMRF lies in its new DP method to select marginals

that can be combined with PGM for effective synthetic data gen-

eration. In contrast, PGM itself does not provide any method for

marginal selection, while PrivBayes has a restrictive marginal se-

lection approach that degrades the accuracy of synthetic data, as

discussed in Section 2.

Specifically, PrivMRF uses a two-step approach for marginal

selection. First, it generates an attribute graph 𝐺 , such that (i) each

edge in 𝐺 connects two highly correlated attributes, and (ii) the

triangulation 𝐺△ of 𝐺 does not contain any large cliques. Let C =

{𝐶1,𝐶2, . . .} be the maximal cliques in 𝐺△ .
Second, PrivMRF selects a setM of marginals, such that each

𝑀𝑖 ∈ M contains a subset of the attributes in some clique in C. As
such, if we apply a junction tree transform onM, each clique in

the resulting junction tree would be a sub-clique of some 𝐶 𝑗 ∈ C
[21]. Therefore, the largest clique in the junction tree is at most the

same size as the largest clique in C. This guarantees thatM satisfies

CSTR3. To ensure thatM also satisfies CSTR1 and CSTR2, PrivMRF
carefully controls the size ofM, and it selects a marginal𝑀𝑖 into

M only if 𝑀𝑖 is low-dimensional and provides useful additional

information with respect to those marginals that have been selected.

In what follows, Section 3.1 explains how PrivMRF generates

the attribute graph𝐺 , while Sections 3.2-3.4 detail the construction

of marginal setM based on C. After that, Section 3.5 clarifies the

synthesis of data based on C, and Section 3.6 analyzes the privacy

guarantee of PrivMRF.

3.1 Generation of Attribute Graph
Given a dataset 𝐷 , PrivMRF starts by generating an attribute graph

𝐺 where each node is an attribute in𝐷 . It aims to ensure that (i) each

edge in𝐺 links up two attributes that are highly correlated, and (ii)

if we triangulate 𝐺 , the resulting graph 𝐺△ does not contain any

large clique. Once𝐺 is generated, the maximal cliques in𝐺△ would
be used in subsequent steps of PrivMRF to construct a marginal set

for synthetic data generation.

Algorithm 1 illustrates the pseudo-code of PrivMRF’s construc-
tion of 𝐺△ . It first examines every pair of attributes 𝐴, 𝐵 in 𝐷 , and

2193

Algorithm 1: Construction of Attribute Graph

Input: Dataset 𝐷 , noise scale 𝜎𝑅 , threshold 𝜏𝑐
Output: Set C of cliques, noisy R-score �̃�(𝐴, 𝐵) for each

pair of attributes 𝐴, 𝐵

1 for each pair of attributes 𝐴, 𝐵 ∈ 𝐷 do
2 �̃�(𝐴, 𝐵) ← 𝑅(𝐴, 𝐵) + N (0, 𝜎2

𝑅
);

3 Let E be the set of all attribute pairs in 𝐷 ;

4 Let 𝐺 be an edgeless graph where each node is an attribute

in 𝐷 ;

5 𝑏𝑜𝑜𝑙 ← true;

6 while 𝑏𝑜𝑜𝑙 is true do
7 𝑏𝑜𝑜𝑙 ← false;

8 for each attribute pair (𝐴, 𝐵) in E in descending order of
�̃�(𝐴, 𝐵) do

9 Let 𝐺△ be triangulation of 𝐺 , assuming edge (𝐴, 𝐵)
is inserted into 𝐺 ;

10 if every maximal clique in 𝐺△ has a domain size no
more than 𝜏𝑐 then

11 insert edge (𝐴, 𝐵) into 𝐺 , and remove (𝐴, 𝐵)
from E;

12 𝑏𝑜𝑜𝑙 ← true;

13 break;

14 C ← the set of maximal cliques in the graph 𝐺△
triangulated from 𝐺 ;

15 return C as well as �̃�(𝐴, 𝐵) for each attribute pair 𝐴, 𝐵;

computes their R-score 𝑅(𝐴, 𝐵) [38] as follows:

𝑅(𝐴, 𝐵) = 𝑛

2

 Pr[𝐴, 𝐵] − Pr[𝐴] Pr[𝐵]
1

, (6)

where𝑛 is the number of tuples in𝐷 . Observe that𝑅(𝐴, 𝐵) measures

the difference between Pr[𝐴, 𝐵] and Pr[𝐴] · Pr[𝐵], and it tends to

be large when 𝐴 and 𝐵 are highly correlated. PrivMRF tries to

ensure that node pairs with high R-score are mapped to edges in𝐺 .

Towards this end, it first injects Gaussian noise N(0, 𝜎2
𝑅
) into the

R-score 𝑅(𝐴, 𝐵) of each attribute pair𝐴, 𝐵 (Lines 1-2 of Algorithm 1).

Let �̃�(𝐴, 𝐵) be the noisy version of 𝑅(𝐴, 𝐵) thus obtained.
Then, PrivMRF greedily selects node pairs with large noisy R-

scores, and adds each pair (𝐴, 𝐵) into 𝐺 as an edge, subject to one

constraint: if we triangulate 𝐺 after inserting (𝐴, 𝐵), each maximal

clique 𝐶 in the triangulated graph 𝐺△ should have∏
𝐴∈𝐶
|𝐴| ≤ 𝜏𝑐 , (7)

where |𝐴| denotes the domain size of 𝐴 and 𝜏𝑐 is a constant. In

other words, we require that the marginal corresponding to 𝐶 has

a domain size at most 𝜏𝑐 , which ensures that there is no over-size

clique in 𝐺△ .
Specifically, PrivMRF first initializes a set E that contains all

attribute pairs in 𝐷 , as well as an edgeless graph 𝐺 where each

node is an attribute in 𝐷 (Lines 3-4). After that, PrivMRF iteratively
inserts edges into𝐺 , while making sure that the constraint in Eq. (7)

is satisfied (Lines 5-13). Specifically, in each iteration, PrivMRF

identifies the attribute pair (𝐴, 𝐵) in E with the largest noisy R-

score, and considers the scenario when we (i) add an edge between

𝐴 and 𝐵 in 𝐺 and then (ii) triangulate 𝐺 into another graph 𝐺△
(Lines 8-9). If every maximal clique in𝐺△ has a domain size smaller

than 𝜏𝑐 , then PrivMRF inserts an edge (𝐴, 𝐵) into 𝐺 and removes

(𝐴, 𝐵) from E, and proceeds to the next iteration (Lines 10-13).

Otherwise, PrivMRF ignores (𝐴, 𝐵) and considers the node pair in

E with the next largest noisy R-score, and so on (Line 10). When

none of the node pairs in E can be inserted into𝐺 without violating

the constraint of 𝜏𝑐 , PrivMRF terminates by returning the set C of

maximal cliques in the triangulation of 𝐺 , as well as �̃�(𝐴, 𝐵) for
each attribute pair 𝐴, 𝐵 (Lines 14-15).

3.2 Choosing Candidate Marginal Set
Let C be the set of cliques returned by Algorithm 1, and 𝐺△ be the

triangulated graph from which C is generated. Given C, PrivMRF
would proceed to construct a setU of candidate marginals, which
will subsequently be used to derive the final marginal setM for

synthetic data generation. The construction ofM serves two pur-

poses: (i) to filter out marginals that violates the constraint CSTR1

or CSTR3 mentioned in Section 2.4, and (ii) to narrow the scope of

marginal selection in subsequent steps. Toward this end, PrivMRF
imposes the following two requirements on the marginals inU.

First, eachmarginal inU should contain a subset of the attributes

of some clique in C. This guarantees that if we choose any subset

M ofU and apply a junction tree transform onM, then any clique

in the resulting junction tree is a sub-clique of some 𝐶 𝑗 ∈ C [21].

In other words, the junction tree would not contain any clique

whose domain size is larger than 𝜏𝑐 (see Eq. (7)), thus satisfying the

constraint CSTR3.

Second, each marginal𝑀 inU should be 𝜃 -useful [38], namely,

𝑛∏
𝐴∈𝑀 |X𝐴 |

≥ 𝜃 · 𝑔,

where 𝑔 is the expected absolute value of the noise to be injected

into each count in𝑀 , and 𝜃 is a constant. In other words, we require

that the average count in 𝑀 should be at least 𝜃 times the noise

scale 𝑔, so that the noisy version of 𝑀 could still capture useful

information, which helps comply with the constraint CSTR1.

Algorithm 2 shows the pseudo-code of the derivation ofU. We

first generate a noisy version �̃� of the number 𝑛 of tuples in 𝐷 , and

initializeU as an empty set (Lines 1-2). Then, for each marginal𝑀

such that𝑀 ⊆ 𝐶𝑖 for some 𝐶𝑖 ∈ C, we evaluate whether it satisfies
𝜃 -usefulness based on whether

�̃�∏
𝐴∈𝑀 |X𝐴 |

≥ 𝜃 ·𝑔 (Lines 3-5). (Note

that we use �̃� instead of𝑛, since𝑛 is sensitive information and needs

to be perturbed with noise to ensure DP.) If
�̃�∏

𝐴∈𝑀 |X𝐴 |
≥ 𝜃 ·𝑔, then

we insert𝑀 intoU as a marginal to be considered (Line 6).

After we obtainU, we proceed to select marginals fromU to

form the final marginal setM, in a manner that satisfies constraints

CSTR1-3. For this, we first initializeM with 𝑑 marginals selected

heuristically fromU (see Section 3.3), and then iteratively apply

a greedy approach to insert additional marginals intoM (see Sec-

tion 3.4).

3.3 Initialization of Marginal SetM
Algorithm 3 shows the pseudo-code of our initialization ofM. We

first setM = ∅, and then inspect each attribute 𝐴 in 𝐷 in turn. For

2194

Algorithm 2: Construction of Candidate Marginal Set

Input: Set C of cliques, noise scale 𝜎U , constant 𝜃 ,
expected noise amount 𝑔

Output: Candidate marginal setU
1 �̃� ← 𝑛 + N(0, 𝜎2U);
2 U ← ∅;
3 for each clique 𝐶𝑖 ∈ C do
4 for each𝑀 ⊆ 𝐶𝑖 do

5 if
�̃�∏

𝐴∈𝑀 |X𝐴 |
≥ 𝜃 · 𝑔 then

6 Insert𝑀 intoU;

7 returnU;

Algorithm 3: Initialization of Marginal SetM
Input: Candidate marginal setU, attributes set A in input

data 𝐷 , �̃� for each attribute pairs

Output: Marginal setM
1 M ← ∅;
2 for each attribute 𝐴 ∈ A do
3 Among the marginals inU that contains 𝐴, identify the

marginal𝑀 that maximizes 𝜌 (𝐴,𝑀);
4 Insert𝑀 intoM, and remove𝑀 fromU;

5 returnM;

each 𝐴, we examine the marginals in U that contains 𝐴; among

them, we identify the marginal 𝑀 that maximizes the following

function 𝜌 (𝐴,𝑀):

𝜌 (𝐴,𝑀) =

∑
𝐵∈𝑀\{𝐴}

�̃�(𝐴, 𝐵)√
|𝑀 | + ∑

𝐵∈𝑀\{𝐴}

(∑
𝐵′∈𝑀\{𝐴,𝐵 }

�̃�(𝐵, 𝐵′)
) . (8)

Then, we insert𝑀 intoM, and remove𝑀 fromU. We returnM
after repeating the above process for all attributes in 𝐷 .

The function 𝜌 (𝐴,𝑀) measures the correlations between 𝐴 and

the other attributes in 𝑀 , and is based on the function used in

correlation-based feature selector [14] for evaluating the correlation

between an attribute and a feature set. By inserting intoM the

marginal 𝑀 that contains 𝐴 and maximizes 𝜌 (𝐴,𝑀), we ensure

that M contains at least one marginal that captures the strong

correlations between 𝐴 and other attributes.

3.4 Refinement of Marginal SetM
After the initialization ofM, we proceed to refineM by inserting

additional marginals intoM, aiming to ensure that each inserted

marginal captures as much additional information as possible with

respect to the existing marginals inM. Towards this end, we con-

struct aMarkov random field (MRF) [34], which is a graphical model

for representing the information encapsulated inM. In particular,

our MRF is parameterized with a real vector 𝜽 where each element

corresponds to an entry in a marginal𝑀 ∈ M. Let 𝒙 be an element

of the domain X of 𝐷 , and 𝒙𝑀 be the projection of 𝒙 onto the at-

tributes in 𝑀 . Let 𝜽𝑀 (𝒙𝑀) be the element in 𝜃 corresponding to

Algorithm 4: Refinement of Marginal SetM
Input: input data 𝐷 , clique set C, candidate marginal setU,

initial marginal setM, iteration number 𝑡 , constant

𝑘 , noise scales 𝜎𝑚 and 𝜎ℎ
Output: the marginal distributions pertinent to C

1 Obtain a noisy distribution vector 𝑇𝐷,M by injecting i.i.d.

Gaussian noise N(0, 𝜎2𝑚) into each entry in 𝑇𝐷,M ;

2 Set the initial MRF parameter 𝜽0 as an all-zero vector of

length

��𝑇𝐷,M
��
;

3 for 𝑖 = 1 to 𝑡 do
4 𝜽𝑖 ← Algorithm 5

(
𝑇𝐷,M , 𝜽𝑖−1

)
;

5 U ′ ← a random sample set of 𝑘 marginals fromU;

6 for each marginal𝑀 ∈ U ′ do
7 𝝁𝑖,𝑀 ← the marginal distribution vector of𝑀

decided by 𝜽𝑖 ;

8 ˜ℎ(𝑀) ← ∥𝝁𝑖,𝑀 −𝑇𝐷,𝑀 ∥1 + N(0, 𝜎2ℎ);

9 Let𝑀 ′ be the marginal inU ′ that maximizes
˜ℎ(𝑀 ′);

10 Insert𝑀 ′ intoM, and remove𝑀 ′ fromU;

11 Obtain a noisy distribution vector 𝑇𝐷,𝑀′ by injecting

i.i.d. Gaussian noise N(0, 𝜎2𝑚) into each entry in 𝑇𝐷,𝑀′ ;

12 𝑇𝐷,M ← the concatenation of 𝑇𝐷,M and 𝑇𝐷,𝑀′ ;

13 Update 𝜽𝑖 by inserting zeroes at positions corresponding

to the entries in𝑀 ′;

14 𝜽𝑖 ← Algorithm 5

(
𝑇𝐷,M , 𝜽𝑖−1

)
;

15 Use 𝜽𝑖 to infer the marginal distributions pertinent to C;
16 return the marginal distributions pertinent to C;

𝒙𝑀 . Our MRF models the distribution of 𝒙 as:

𝑝 (𝒙) ∝
∏

𝑀 ∈M
exp (𝜽𝑀 (𝒙𝑀)) , (9)

where exp (𝜽𝑀 (𝒙𝑀)) is referred as the potential function for 𝒙𝑀 .

In other words, given 𝜽 , we can compute 𝑝 (𝒙) by first taking the

product of the potential function of 𝒙’s projection onto each𝑀 ∈
M, and then normalizing it against all 𝒙 ∈ X. Accordingly, we can
use 𝜽 to infer the marginal distribution of any marginal𝑀 ′ as:

𝑝𝑀′ (𝑦) =
∑

𝒙∈X,𝑥𝑀′=𝑦
𝑝 (𝑥) . (10)

In addition, it is shown in [34] that, for any 𝑀 ′, we can avoid

materializing 𝑝 (𝑥) in the computation of 𝑝𝑀′ (𝑦), by utilizing a

junction tree constructed fromM.

Overall, the MRF enables us to use M to infer the marginal

distributions pertinent to C as follows:

(1) GivenM, we derive the parameter vector 𝜽 of the MRF based

on the noisy marginal distribution vector 𝑇𝐷,M ofM.

(2) Based on 𝜽 , we infer the marginal distribution of each clique

𝐶𝑖 ∈ C, according to Eq. (10).

Apparently, this approach is effective only ifM and 𝜽 are chosen

carefully to facilitate an accurate estimation of 𝐶𝑖 ’s marginal dis-

tribution. In what follows, we explain how we address this in our

method by refiningM.

2195

Algorithm 5: Mirror Descent Estimation

Input: noisy marginal distribution vector 𝑇𝐷,M , MRF

parameter vector 𝜽𝑖−1
Output: updated parameter vector 𝜽𝑖 , updated marginal

distribution vector 𝝁𝑖
1 𝜽𝑖 ← 𝜽𝑖−1;
2 repeat
3 𝝁𝑖 ← the marginal distribution vector ofM decided by

𝜽 according to Eq. (10);

4 𝜽𝑖 ← 𝜽𝑖 − 𝜂 · (𝝁𝑖 −𝑇𝐷,𝑀);
5 until 𝝁𝑖 converges;
6 return 𝜽𝑖

Algorithm 4 shows the pseudo-code of our method. We first

generate the noisy marginal distribution vector 𝑇𝐷,M of M by

injecting i.i.d. Gaussian noise into 𝑇𝐷,M (Line 1 in Algorithm 4).

After that, we initialize the MRF parameter as a vector 𝜽0 that

contains |𝑇𝐷,M | zero elements (Line 2).

The subsequent part of the algorithm consists of 𝑡 iterations

(Lines 3-13). In the 𝑖-th (𝑖 ≥ 1) iteration, we first invoke Algo-

rithm 5 to update 𝜽𝑖−1 into a new parameter vector 𝜽𝑖 that is as
consistent as 𝑇𝐷,M as possible. Algorithm 5 is an adoption of the

mirror descent method used in PGM [25] for estimating graphical

model parameters from noisy marginals. It first sets 𝜽𝑖 = 𝜽𝑖−1,
and then derives the marginal distribution vector 𝝁𝑖 decided by 𝜽𝑖
based on Eq. (10). After that, it measures the difference between 𝝁𝑖
and 𝑇𝐷,M , and updates 𝜽𝑖 based on this difference (Line 4 of Algo-

rithm 5). Subsequently, it repeatedly computes 𝝁𝑖 from 𝜽𝑖 and then

updates 𝜽𝑖 based on 𝝁𝑖 −𝑇𝐷,M , until 𝝁𝑖 converges. This iterative

process makes 𝝁𝑖 as close to 𝑇𝐷,M as possible, by adjusting the

parameter vector 𝜽 . Finally, the algorithm returns 𝜽𝑖 and terminates.

After obtaining 𝜽𝑖 and 𝝁𝑖 , we proceed to select a random set

U ′ of marginals from U, and choose the “best” among them to

insert into M (Lines 5-8 in Algorithm 4). (We avoid inspecting

all marginals in U, so as to reduce the privacy and computation

overheads incurred.) Specifically, for each marginal 𝑀 ∈ U ′, we
compute its marginal distribution vector 𝜇𝑖,𝑀 decided by 𝜽𝑖 , and

then computes
˜ℎ(𝑀) ← ∥𝝁𝑖,𝑀 − 𝑻𝐷,𝑀 ∥1 + N(0, 𝜎2ℎ) as a noisy

version of the 𝐿1 distance between 𝝁𝑖,𝑀 and 𝑻𝐷,𝑀 . Intuitively, a

large
˜ℎ(𝑀) indicates that our MRF based on the current marginal

setM is unable to accurately model the information in 𝑀 ; in that

case, it is beneficial to insert 𝑀 intoM and update 𝜽𝑖 accordingly,
so as to improve the quality of our MRF. Therefore, we identify the

marginal𝑀 ′ inU ′ with the maximum
˜ℎ(𝑀 ′), and insert𝑀 ′ into

M after removing it from U (Lines 9-10). After that, we update

𝑇𝐷,M and 𝜽𝑖 to reflect the insertion of𝑀 ′ intoM (Lines 11-13), and

then proceed to the next iteration to insert new marginals. After 𝑡

iterations, we invoke Algorithm 5 one last time to update 𝜽𝑖 , and
then use it to infer the marginal distributions pertinent to C, which
are then returned as the output of Algorithm 4.

Discussion. One may wonder why we construct the initial mar-

ginal setM based on the function 𝜌 in Eq. (8) but refineM based

Algorithm 6: PrivMRF

Input: input data 𝐷 , attribute set A, noise scales 𝜎𝑅 , 𝜎U ,
𝜎ℎ , and 𝜎𝑚 , constants 𝜏𝑐 , 𝜃 , 𝑡 , and 𝑘

Output: the marginal distributions pertinent to C
1 C, {�̃�} ← Algorithm 1 (𝐷, 𝜎𝑅, 𝜏𝑐);
2 U ← Algorithm 2

(
C, 𝜎U , 𝜃, 𝜎𝑚

√
2/𝜋

)
;

3 M ← Algorithm 3

(
U,A, {�̃�}

)
;

4 return the output of Algorithm 4 (𝐷, C,U,M, 𝑡, 𝑘, 𝜎𝑚, 𝜎ℎ)

on an MRF instead. The reason is as follows. First, for the refine-

ment ofM, we need to identify new marginals that complements
those inM in terms of the information captured. The function 𝜌

is unsuitable for this task, since it only measures the correlations

among the attributes in the same marginal, but does not lead to a

meaningful way to infer whether a new marginal is useful with re-

spect to the existing marginal setM. In contrast, the MRF provides

us a principled approach to gauge the amount of new information

that a new marginal provides on top ofM. Therefore, the MRF is

much more suitable for the refinement ofM.

Alternatively, one may omit Algorithm 3, and directly invoke

Algorithm 4 with M = ∅ to construct M from scratch. In that

case, however, the first few iterations of Algorithm 4 (in Lines 3-13)

would have to evaluate a large random setU ′ of marginals, so as

to ensure thatU ′ contains good choices for the initialization ofM.

This would incur tremendous computation and privacy costs, since

the evaluation of each marginal 𝑀 ∈ U ′ requires (i) deriving the
marginal distribution of𝑀 from the MRF parameter vector and (ii)

injecting noise to the 𝐿1 distance between this marginal distribution

and 𝑇𝐷,𝑀 . In contrast, initializingM using Algorithm 3 strikes a

much better trade-off between efficiency, privacy, and the quality

ofM, which explains why we incorporate both Algorithms 3 and 4

in PrivMRF.

3.5 Synthesizing Data from C
Given the marginal distributions of C returned by Algorithm 5, we

generate each synthetic tuple 𝑥 based on Eq. (5) as follows. First, we

sample 𝑥𝐶1
(i.e., the subvector of 𝑥 on𝐶1) from themarginal distribu-

tion of𝐶1. After that, for 𝑖 = 2, 3, . . ., we examine 𝑥𝑆𝑖 , and then sam-

ple 𝑥𝐶𝑖\𝑆𝑖 from the conditional distribution Pr[𝐶𝑖 \ 𝑆𝑖 | 𝑆𝑖 = 𝑥𝑆𝑖]
(which can be derived from the marginal distribution of𝐶𝑖). In other

words, 𝑥 can be generated by sampling once from each𝐶𝑖 ∈ C. The
generation of each synthetic tuple is processed independently.

3.6 Privacy Analysis
Algorithm 6 presents the pseudo-code of PrivMRF. There are only
four places in PrivMRF that access the input dataset 𝐷 :

(1) Lines 1-2 in Algorithm 1 computes the R-score of every pair

of attributes in 𝐷 , and injects Gaussian noise N(0, 𝜎2
𝑅
) into

each R-score.

(2) Line 1 in Algorithm 2 derives a noisy version �̃� of the number

of tuples in 𝐷 , using Gaussian noise N(0, 𝜎2U).
(3) Lines 3-13 in Algorithm 4 consists of 𝑡 iterations, each of

which inspects 𝑘 marginals in a random set U ′. For each

2196

marginal 𝑀 ∈ U ′, Algorithm 4 computes the 𝐿1 distance

between 𝝁𝑖,𝑀 and𝑇𝐷,𝑀 , and injects Gaussian noiseN(0, 𝜎2
ℎ
)

into it.

(4) Each iteration in Lines 3-13 in Algorithm 4 also selects a

marginal 𝑀 ′ fromU ′ and computes a noisy version 𝑇𝐷,𝑀′

of its marginal distribution, using Gaussian noise N(0, 𝜎2𝑚).
The following lemma shows the privacy guarantee of PrivMRF.

Lemma 2. Let

𝑔 =
2𝑑 (𝑑 − 1)

𝜎2
𝑅

+ 1

𝜎2U
+ 𝑡 · 𝑘

𝜎2
ℎ

+ 𝑑 + 𝑡
𝜎2𝑚

. (11)

Then, PrivMRF satisfies (𝜖, 𝛿)-differential privacy if

Φ

(√
𝑔

2

− 𝜖
√
𝑔

)
− 𝑒𝜖 · Φ

(
−
√
𝑔

2

− 𝜖
√
𝑔

)
≤ 𝛿. (12)

The proof of Lemma 2 is included in the full version of this paper

[28], and it utilizes the following three lemmas.

Lemma 3. For 𝑚 queries 𝑄1, 𝑄2, . . . , 𝑄𝑚 with 𝐿2 sensitivity
𝑆 (𝑄1), 𝑆 (𝑄2), . . . , 𝑆 (𝑄𝑚), we inject independent Gaussian noise of
standard deviation 𝜎𝑖 into the query result of 𝑄𝑖 . Let

𝑔 =

𝑚∑
𝑖=1

𝑆 (𝑄𝑖)2

𝜎2
𝑖

(13)

Then, the composition of the𝑚 queries satisfies (𝜖, 𝛿)-DP if:

Φ

(√
𝑔

2

− 𝜖
√
𝑔

)
− 𝑒𝜖 · Φ

(
−
√
𝑔

2

− 𝜖
√
𝑔

)
≤ 𝛿. (14)

Lemma 4. The 𝐿2 sensitivity of the R-score is at most 2.

Lemma 5. For any marginal 𝑀 and any MRF parameter 𝜃 , let 𝜇
be the marginal distribution vector of 𝑀 decided by 𝜃 , and ℎ(𝑀) =
∥𝝁𝑖,𝑀 −𝑇𝐷,𝑀 ∥1. Then, the 𝐿2 sensitivity of ℎ is 1.

In our implementation of PrivMRF, we set its parameters as

follows. First, given privacy parameters 𝜖 and 𝛿 , we compute the

largest 𝑔 that satisfies Eq. (12). Then, we set 𝜎𝑅, 𝜎U , 𝜎ℎ, 𝜎𝑚 so that

2𝑑 (𝑑 − 1)
𝜎2
𝑅

= 0.1 · 𝑔, 1

𝜎2U
= 0.01 · 𝑔,

𝑡 · 𝑘
𝜎2
ℎ

= 0.1 · 𝑔, 𝑑 + 𝑡
𝜎2𝑚

= 0.79 · 𝑔.

In other words, we allocate 10% of the “privacy budget” to comput-

ing R-scores in Algorithm 1, 1% to deriving �̃� in Algorithm 2, 10%

to choosing a marginal𝑀 ′ ∈ U ′ in each iteration in Algorithm 4,

and 79% to computing the marginal distributions pertinent toM.

In addition, we set 𝑡 = ⌊0.8 · 𝑑⌋, 𝑘 = 400, and 𝜃 = 6 (see Line 5 in

Algorithm 3); these values are chosen based on our experiments in

Section 5.2. Finally, for the threshold 𝜏𝑐 on the domain size of each

maximal clique 𝐶 in the triangulated graph 𝐺△ (see Algorithm 1),

we set 𝜏𝑐 = 10
7
, which is a relatively large value that provides

flexibility in the choices of𝐶 without incurring excessive space and

time overheads on the machine used in our experiments.

4 OTHER RELATEDWORK
In the existing literature on differential privacy (DP), the work most

related to ours is on synthetic data generation and Markov random

fields (MRF). In what follows, we review the existing methods on

these two topics.

A comprehensive survey of non-DP data synthesis methods (e.g.,
[33]) is beyond the scope of this paper.

Data Synthesis with DP. Early work on synthetic data gener-

ation with DP focuses on releasing the full distribution of low-

dimensional data [3, 7, 18, 35]. The common idea is to first project

the input data 𝐷 onto a different space (e.g., the Fourier domain [3]

or the wavelet domain [35]) that is more resilient to noise injection,

and then perturb the transformed data and project it back to the

original space. As pointed out in [38], however, the solutions in

[3, 7, 18, 35] all suffer from the curse of dimensionality, in the sense

that their computation cost and/or data utility degrades signifi-

cantly when 𝑑 increases. PrivBayes [37, 38] addresses this issue
by using a Bayesian network to approximate the input data distri-

butions with a set 𝑀 of noisy low-dimensional marginals. As we

discuss in Section 2.3, however, PrivBayes has considerable restric-
tions on the choice of marginals in𝑀 , which degrades its ability to

accurately model the input data. A subsequent study [6] attempts

to improve PrivBayes using an alternative approach for Bayesian

network construction, but as pointed in [39], the solution in [6]

fails to achieve differential privacy, due to a gap in the theoretical

analysis.

More recently, Bindschaedler et al. [5] also present a Bayesian-

network-based approach (referred to as BSG) that is similar to

PrivBayes but differs in the DP procedure used for Bayesian network
construction. However, our experiments in Section 5 show that BSG
does not offer better data utility than PrivBayes does.

There also exist a number of other DP data synthesis methods

based on alternative techniques, including DP-Copula [22] (based
on Copula functions), DP-WGAN [30] and PATE-GAN [19] (based

on generative adversarial networks), and MWEM [16] and Dual-
Query [13] (based on game theoretic approaches). Among them,

both MWEM and DualQuery require as input a set 𝑄 of linear

queries, and the synthetic data that they generate is specifically

optimized for 𝑄 . Similarly, PATE-GAN assumes that one of the at-

tributes in the data is a dependent variable while all other attributes

are explanatory variables, and it optimizes the synthetic data for

classification of the dependent variable. In contrast, DP-Copula and
DP-WGAN do not assume such prior knowledge of the query work-

load or machine learning tasks to be performed, which makes them

more comparable to PrivMRF. Therefore, we include DP-Copula
and DP-WGAN in our expeirments in Section 5, but omit MWEM,

DualQuery, and PATE-GAN.

MRF with DP. Existing studies on Markov random fields (MRF)

(e.g., [15, 21, 23, 32, 34, 36, 40]) has mostly considered the non-

private setting, and they typically tackles two issues:

(1) Structure learning: given a dataset 𝐷 , how to identify a suit-

able set of potential functions to construct an MRF?

(2) Parameter learning: given a set of potential functions for an

MRF, how to learn the parameter vector 𝜽 of the MRF?

2197

In the context of our paper, the structure learning of an MRF is

equivalent to the selection of a marginal setM for MRF construc-

tion. To our knowledge, the only existing work on MRF structure

learning under DP is a theoretical study by Zhang et al. [36], and it

assumes that the MRF is either pairwise or binary. In our context,

this means that either all marginals inM should contain at most

two attributes, or all attributes in 𝐷 should be Boolean. We note

that these conditions seldom hold in practice. This motivates us to

design new algorithms for MRF construction in PrivMRF.
In contrast, for MRF parameter learning with DP, existing work

[4, 25] has presented two practical algorithms for real data. In par-

ticular, Bernstein et al. [4] present a DP parameter learning method

based on expectation maximization, while McKenna et al. propose
PGM, which is an improved method based on mirror descent that

achieves faster convergence. Nevertheless, neither of these two

methods addresses the structure learning problem, and hence, they

require that the set𝑀 of marginals for the MRF is obtained in ad-

vance using other DP techniques, such as PrivBayes. As we show
in Section 5, however, the combination of PrivBayes and PGM is

significantly outperformed by PrivMRF, which demonstrates the

effectiveness of the structure learning approach in PrivMRF.

5 EXPERIMENTS
This section empirically evaluates PrivMRF against the state of the

art. All of our experiments are conducted on a machine with an

Intel 2.6GHz 18-core CPU, 384GB RAM, and two Nvidia RTX 2080

Ti GPUs.

5.1 Settings
Datasets. We use four benchmark datasets that are also used in

previous work [5, 6, 25, 38]. Table 8 shows the details of the datasets.

ACS contains 47,461 records of personal information obtained from

IPUMS [29]. Adult consists of 45,222 records from the 1994 US

Census [9]. BR2000 contains 38,000 census records collected from

Brazil in 2000 [29]. NLTCS consists of 21,574 records from the

National Long Term Care Survey [20].

Tasks.We evaluate the performance of PrivMRF on two different

tasks, namely, SVM classification and 𝛼-way marginals. For SVM
classification, we use 80% of the dataset 𝐷 as training data, and

the other 20% as testing data. We generate a synthetic version of

the training data, and then use it to train 𝑑 SVM classifiers, such

that the 𝑖-th classifier takes the 𝑖-th attribute in 𝐷 as the target

attribute, while using all other attributes as features. We measure

the mis-classification rate of each classifier on the testing data, and

compute the average mis-classification rate. Further, we use 5-fold

cross-validation, and report the average results over 5 runs.

For 𝛼-way marginals, we generate a synthetic version of the

input dataset 𝐷 , and then randomly select 300 𝛼-way marginals

(i.e., marginals containing 𝛼 attributes each). For each marginal𝑀 ,

we compare the total variation distance (TVD) between the noisy

and original versions of𝑀 , defined as
1

𝑛 ∥𝑇�̃�,𝑀
−𝑇𝐷,𝑀 ∥1. For each

𝛼 ∈ {3, 4, 5}, we measure the average TVD over all 𝛼-marginals,

and report the average measurement over 10 runs.

Table 8: Dataset characteristics

Dataset # of Tuples # of Attributes Domain size
NLTCS 21,574 16 ≈ 6.55 × 104
ACS 47,461 23 ≈ 8.39 × 106
Adult 45,222 15 ≈ 9.06 × 1014
BR2000 28,000 14 ≈ 3.23 × 109

Methods.We compare PrivMRF against five state-of-the-art meth-

ods, PrivBayes [38], PGM [25], BSG [5], DP-Copula [22], and DP-
WGAN [30]. We implement PrivBayes1, BSG, and PrivMRF us-

ing Python, and adopt the Python implementations of PGM, DP-
Coupla, and DP-WGAN available from [26, 27, 30].

Note that PGM requires an external method that selects an ap-

propriate set of marginals for synthetic data generation. Following

[25], we first invoke the marginal selection algorithm in PrivBayes
to identify a set of marginals and inject noise into them, and then

apply PGM on the noisy marginals to generate synthetic data. We

refer to this combination of PrivBayes and PGM as PB-PGM. For

both PrivBayes and PB-PGM, we follow the setting in [38] to allo-

cate 30% of the privacy budget to marginal selection.

PrivBayes, PB-PGM, and DP-Copula all satisfy 𝜖-DP. In contrast,

PrivMRF, BSG, and DP-WGAN are designed for (𝜖, 𝛿)-DP. We set

𝛿 = 10
−5
, which is a small value commonly used in previous work

(e.g., [1]). The other parameters of PrivMRF are set in accordance

with our discussion in Section 3.6, unless otherwise specified.

5.2 Experimental Results
Parameter tuning for PrivMRF. In our first set of experiments,

we evaluate the performance of PrivMRF on NLTCS while varying

its three internal parameters: (i) the constant 𝜃 in Algorithm 2 to

decide whether a maringal is 𝜃 -useful; (ii) the number 𝑡 of iterations

in Algorithm 4; (iii) the size 𝑘 of the random marginal setU ′ used
in each iteration of Algorithm 4.

Figure 1a shows the average total variation distance (TVD) of the

5-way marginals generated from PrivMRF’s output, when 𝜃 and 𝜖

vary. Observe that a small 𝜃 leads to relatively large TVD when 𝜖 is

large, while a large 𝜃 results in considerably increased TVD when

𝜖 is small. Setting 𝜃 = 6 yields balanced performance for all tested

values of 𝜖 . Meanwhile, Figure 1b illustrates the mis-classification

rate of the SVM model trained on PrivMRF’s output, with various

𝜃 and 𝜖 . Again, 𝜃 = 6 provides more balanced performance for all 𝜖 ,

when compared with larger or smaller 𝜃 . Therefore, we set 𝜃 = 6

as the default for PrivMRF.
Figure 2 illustrates the performance of PrivMRF for 5-way mar-

ginal queries and SVM, when 𝑡 varies. Recall that (i) 𝑡 equals the

number of marginals that PrivMRF inserts into the initial marginal

setM generated by Algorithm 3, and (ii) the selection of those 𝑡

marginals is allocated 10% of the total privacy budget. When 𝑡 is

small, PrivMRF can only add a small number of marginals into the

initialM, which compromises its ability to accurately model the

1
Note that the original PrivBayes in [38] considers an alternative definition of neighbor-
ing datasets: two datasets are neighboring if they have the same size but differ in exactly
one tuple. In our implementation of PrivBayes, we adopt the notion of neighboring

datasets in Definition 1 and revise the algorithm accordingly, so that we can have a a

fair comparison between PrivBayes and PrivMRF. As a consequence, the performance

of PrivBayes in our experiments is generally better than that in the experiments of

[38].

2198

2 4 6 8 10
0.00

0.02

0.04

0.06

0.08

TV
D

(a) 5-way marginals

2 4 6 8 10
0.12

0.13

0.14

0.15

0.16

m
is-

cla
ss

ifi
ca

tio
n

ra
te

(b) SVM

non-private = 0.1 = 0.8 = 3.2

Figure 1: Performance of PrivMRF on NLTCS vs. 𝜃

0.4d 0.6d 0.8d 1.0d 1.2d
t

0.00

0.02

0.04

0.06

0.08

TV
D

(a) 5-way marginals

0.4d 0.6d 0.8d 1.0d 1.2d
t

0.12

0.13

0.14

0.15

0.16

m
is-

cla
ss

ifi
ca

tio
n

ra
te

(b) SVM

non-private = 0.1 = 0.8 = 3.2

Figure 2: Performance of PrivMRF on NLTCS vs. 𝑡

100 200 400 800 1600
k

0.00

0.02

0.04

0.06

0.08

TV
D

(a) 5-way marginals

100 200 400 800 1600
k

0.12

0.13

0.14

0.15

0.16

m
is-

cla
ss

ifi
ca

tio
n

ra
te

(b) SVM

non-private = 0.1 = 0.8 = 3.2

Figure 3: Performance of PrivMRF on NLTCS vs. 𝑘

input data. On the other hand, when 𝑡 is large, the selection of each

marginal can only consume a small share of the privacy budget,

in which case the selection would be perturbed with considerable

noise and become error-prone. This explains why 𝑡 = ⌊0.4𝑑⌋ and
𝑡 = ⌊1.2𝑑⌋ yield inferior overall results in Figure 2. Based on these

results, we set 𝑡 = ⌊0.8𝑑⌋ as the default for PrivMRF.
Figure 3 plots the 5-way marginal TVD and SVM mis-

classification rate of PrivMRF when 𝑘 varies. Observe that the

overall performance of PrivMRF is optimized when 𝑘 is not too

large or too small. This is because when 𝑘 is small, the random

marginal setU ′ by PrivMRFmay not contain any useful marginals,

in which case PrivMRF is unable to substantially improveM by

inserting a marginal fromU ′. On the other hand, when 𝑘 is large,

the selection of the “best” marginal from U ′ would be plagued

by noise, since (i) we need to inject noise into the quality score

˜ℎ(𝑀) of each marginal, and (ii) the privacy budget for each noise

injection decreases as 𝑘 increases. Based on these observations, we

set 𝑘 = 400 as the default for PrivMRF.
Note that the above tuning of parameters is only based onNLTCS,

without inspecting the other three datasets. Therefore, our choices

of parameters do not reveal any sensitive information from the other

datasets, nor do they unfairly favor PrivMRF on those datasets.

Comparison on 𝛼-way marginals. Figure 4 compares all meth-

ods in terms of the average TVD of the 𝛼-way marginals derived

from the synthetic data. Observe that PrivMRF consistently out-

performs all competing methods by a large margin, regardless of

𝜖 , 𝛼 , or the dataset used. This demonstrates that the noisy MRF

constructed by PrivMRF is able to more accurately model the input

data than the other methods.

Meanwhile, PB-PGM incurs a lower TVD than PrivBayes does,
which is consistent with the experimental results in [25]. In turn,

PrivBayes consistently outperforms BSG, DP-Copula, and DP-
WGAN. The TVD of DP-Copula is larger than that of BSG on

NLTCS and ACS in most settings, but is slightly better than the

latter on Adult and BR2000. Meanwhile, the TVD of DP-WGAN is

significantly larger than those of the other methods. In particular,

we omit DP-WGAN from Figures 4(a), 4(f), and 4(j), since its TVD

on NLTCS is off the scale when compared to other methods.

Comparison on SVM classification. Figure 5 illustrates the av-
erage mis-classification rates of the SVM classifiers built on the

synthetic data generated by the DP methods, as well as that of a

non-private SVM classifier trained on the input data. When 𝜖 = 3.2,

the mis-classification rates of PrivMRF, PrivBayes, and PB-PGM
are similar, since a large privacy budget makes it easier to model

important correlations among the attributes in the input data. For

the cases when 𝜖 < 3.2, however, PrivMRF provides much higher

classification accuracy than PrivBayes and PB-PGM do, which is

consistent with the results in Figure 4.

The performance PB-PGM and PrivBayes are comparable in

almost all cases, with PB-PGM having a slight edge on NLTCS

and ACS. This indicates that the Bayesian network constructed by

PrivBayes is relatively effective for SVM classifiers, which leaves

little room for improvement by combining PGM with PrivBayes.
On the other hand, the mis-classification rates of BSG is consid-

erably higher than those of PrivMRF, PrivBayes, and PB-PGM in

all cases. In turn, BSG consistently outperforms DP-Copula and

DP-WGAN. Note that we omit DP-WGAN in Figure 5(a), since its

mis-classification rate on NLTCS is excessively large when com-

pared with other methods.

Computation cost of PrivMRF. Figure 6 shows the running time

of PrivMRF as a function of 𝜖 . Generally speaking, the compu-

tation time of PrivMRF tends to increase when 𝜖 is large. To ex-

plain, observe that a large 𝜖 results in a smaller amount of noise in

each marginal cell, and hence, there would be a larger number of

marginals satisfying 𝜃 -usefulness. This increases the size of can-

didate marginal set U considered by PrivMRF, thus incurring a

high computation cost in general. Nevertheless, the computation

time of PrivMRF is not strictly monotone with respect to 𝜖 , and

the reason is as follows. When 𝜖 varies, the MRF constructed by

PrivMRF also varies. In some cases, a small 𝜖 may lead to an MRF

2199

0.1 0.2 0.4 0.8 1.6 3.2
privacy budget

0.00

0.04

0.08

0.12

0.16

0.20

TV
D

(a) NLTCS: 3-way

0.1 0.2 0.4 0.8 1.6 3.2
privacy budget

0.00
0.02
0.04
0.06
0.08
0.10
0.12

TV
D

(b) ACS: 3-way

0.1 0.2 0.4 0.8 1.6 3.2
privacy budget

0.00

0.06

0.12

0.18

0.24

0.30

TV
D

(c) Adult: 3-way

0.1 0.2 0.4 0.8 1.6 3.2
privacy budget

0.00

0.04

0.08

0.12

0.16

0.20

TV
D

(d) BR2000: 3-way

0.1 0.2 0.4 0.8 1.6 3.2
privacy budget

0.00

0.05

0.10

0.15

0.20

0.25

TV
D

(e) NLTCS: 4-way

0.1 0.2 0.4 0.8 1.6 3.2
privacy budget

0.00

0.03

0.06

0.09

0.12

0.15

TV
D

(f) ACS: 4-way

0.1 0.2 0.4 0.8 1.6 3.2
privacy budget

0.00
0.06
0.12
0.18
0.24
0.30
0.36

TV
D

(g) Adult: 4-way

0.1 0.2 0.4 0.8 1.6 3.2
privacy budget

0.00
0.05
0.10
0.15
0.20
0.25
0.30

TV
D

(h) BR2000: 4-way

0.1 0.2 0.4 0.8 1.6 3.2
privacy budget

0.00
0.05
0.10
0.15
0.20
0.25
0.30

TV
D

(i) NLTCS: 5-way

0.1 0.2 0.4 0.8 1.6 3.2
privacy budget

0.00

0.04

0.08

0.12

0.16

0.20

TV
D

(j) ACS: 5-way

0.1 0.2 0.4 0.8 1.6 3.2
privacy budget

0.0

0.1

0.2

0.3

0.4

0.5

TV
D

(k) Adult: 5-way

0.1 0.2 0.4 0.8 1.6 3.2
privacy budget

0.00

0.07

0.14

0.21

0.28

0.35

TV
D

(l) BR2000: 5-way

PrivMRF PrivBayes PB-PGM BSG DP-Copula DP-WGAN

Figure 4: Accuracy of 𝛼-way marginals vs. 𝜖.

whose parameter vector takes a longer time to learn using Algo-

rithm 5. Therefore, the running time of PrivMRF does not always

increase when 𝜖 increases. In all cases tested, PrivMRF takes at

most 17 minutes to generate a synthetic dataset.

Summary. In summary, our experimental results show that

PrivMRF significantly outperforms competing methods in terms

of the quality of the synthetic data, and its computation cost is

reasonable when using GPUs. Therefore, PrivMRF is a preferable
method for data synthesis under (𝜖, 𝛿)-DP. On the other hand, if

the user requires using 𝜖-DP instead of (𝜖, 𝛿)-DP, then PB-PGM is

preferred, since it offers the best data utility among all of the 𝜖-DP

algorithms tested in our experiments.

6 CONCLUSION
This paper presents PrivMRF, a new algorithm for synthesizing

high-dimensional data with (𝜖, 𝛿)-differential privacy. The basic
idea of PrivMRF is to select an appropriate setM of marginals of

the input data, and then construct a Markov random field (MRF)

based onM for synthetic data generation. Experimental results

on benchmark datasets demonstrate that PrivMRF consistently

outperforms the state of the art in terms of the accuracy of counting

queries and classification tasks conducted on the synthetic data

generated. For future work, we plan to investigate how we may

extend PrivMRF to synthesize other types of data, e.g., trajectories.

2200

0.1 0.2 0.4 0.8 1.6 3.2
privacy budget

0.12

0.14

0.16

0.18

0.20

m
is-

cla
ss

ifi
ca

tio
n

ra
te

(a) NLTCS: SVM

0.1 0.2 0.4 0.8 1.6 3.2
privacy budget

0.09

0.11

0.13

0.15

0.17

m
is-

cla
ss

ifi
ca

tio
n

ra
te

(b) ACS: SVM

0.1 0.2 0.4 0.8 1.6 3.2
privacy budget

0.25

0.30

0.35

0.40

0.45

m
is-

cla
ss

ifi
ca

tio
n

ra
te

(c) Adult: SVM

0.1 0.2 0.4 0.8 1.6 3.2
privacy budget

0.30
0.33
0.36
0.39
0.42
0.45

m
is-

cla
ss

ifi
ca

tio
n

ra
te

(d) BR2000: SVM

PrivMRF PrivBayes PB-PGM BSG DP-Copula DP-WGAN Non-private

Figure 5: Mis-classification rates of different algorithms vs. 𝜖

0.1 0.2 0.4 0.8 1.6 3.2
0

200

400

600

800

1000

tim
e(

s)

NLTCS ACS Adult BR2000

Figure 6: Computation cost of PrivMRF vs. 𝜖.

ACKNOWLEDGMENTS
This research is supported by the Ministry of Education, Singapore

under Grant MOE2018-T2-2-091, and by the National Research

Foundation, Singapore under its Strategic Capability Research Cen-

tres Funding Initiative. Any opinions, findings and conclusions

or recommendations expressed in this material are those of the

authors and do not reflect the views of the funding agencies.

REFERENCES
[1] Martín Abadi, Andy Chu, Ian J. Goodfellow, H. Brendan McMahan, Ilya Mironov,

Kunal Talwar, and Li Zhang. 2016. Deep Learning with Differential Privacy. In

CCS. 308–318.
[2] Borja Balle and Yu-Xiang Wang. 2018. Improving the Gaussian Mechanism

for Differential Privacy Analytical Calibration and Optimal Denoising. In ICML.
403–412.

[3] Boaz Barak, Kamalika Chaudhuri, Cynthia Dwork, Satyen Kale, Frank McSherry,

and Kunal Talwar. 2007. Privacy, accuracy, and consistency too: a holistic solution

to contingency table release. In PODS. 273–282.
[4] Garrett Bernstein, Ryan McKenna, Tao Sun, Daniel Sheldon, Michael Hay, and

Gerome Miklau. 2017. Differentially Private Learning of Undirected Graphical

Models Using Collective Graphical Models. In ICML. 478–487.
[5] Vincent Bindschaedler, Reza Shokri, and Carl A. Gunter. 2017. Plausible Denia-

bility for Privacy-Preserving Data Synthesis. PVLDB 10, 5 (2017), 481–492.

[6] Rui Chen, Qian Xiao, Yu Zhang, and Jianliang Xu. 2015. Differentially private

high-dimensional data publication via sampling-based inference. In SIGKDD.
129–138.

[7] Graham Cormode, Cecilia M. Procopiuc, Divesh Srivastava, and Thanh T. L. Tran.

2012. Differentially private summaries for sparse data. In ICDT. 299–311.
[8] Bolin Ding, Janardhan Kulkarni, and Sergey Yekhanin. 2017. Collecting telemetry

data privately. In NeurIPS. 3571–3580.

[9] Dheeru Dua and Casey Graff. 2017. UCI Machine Learning Repository. University

of California, Irvine, School of Information and Computer Sciences.

[10] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. 2006. Calibrat-

ing noise to sensitivity in private data analysis. In TCC. 265–284.
[11] Cynthia Dwork, Aaron Roth, et al. 2014. The algorithmic foundations of differen-

tial privacy. Foundations and Trends in Theoretical Computer Science 9, 3-4 (2014),
211–407.

[12] Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. 2014. Rappor: Random-

ized aggregatable privacy-preserving ordinal response. In CCS. 1054–1067.
[13] Marco Gaboardi, Emilio Jesús Gallego Arias, Justin Hsu, Aaron Roth, and Zhi-

wei Steven Wu. 2014. Dual query: Practical private query release for high dimen-

sional data. In ICML. 1170–1178.
[14] Mark A. Hall. 2000. Correlation-based Feature Selection for Discrete and Numeric

Class Machine Learning. In ICML. 359–366.
[15] Linus Hamilton, Frederic Koehler, and Ankur Moitra. 2017. Information theo-

retic properties of Markov random fields, and their algorithmic applications. In

Advances in Neural Information Processing Systems. 2463–2472.
[16] Moritz Hardt, Katrina Ligett, and Frank McSherry. 2012. A simple and practical

algorithm for differentially private data release. In NeurIPS. 2339–2347.
[17] Trevor Hastie, Robert Tibshirani, and Martin Wainwright. 2015. Statistical learn-

ing with sparsity: the lasso and generalizations. CRC press.

[18] Michael Hay, Vibhor Rastogi, Gerome Miklau, and Dan Suciu. 2010. Boosting

the Accuracy of Differentially Private Histograms Through Consistency. PVLDB
3, 1 (2010), 1021–1032.

[19] James Jordon, Jinsung Yoon, and Mihaela van der Schaar. 2019. PATE-GAN:

Generating Synthetic Data with Differential Privacy Guarantees. In ICLR.
[20] G. Manton Kenneth. 2010. National Long-Term Care Survey: 1982, 1984, 1989,

1994, 1999, and 2004. Inter-university Consortium for Political and Social

Research.

[21] Daphne Koller and Nir Friedman. 2009. Probabilistic graphical models: principles
and techniques. MIT press.

[22] Haoran Li, Li Xiong, and Xiaoqian Jiang. 2014. Differentially Private Synthesiza-

tion of Multi-Dimensional Data using Copula Functions. In EDBT. 475–486.
[23] Andrey Y Lokhov, Marc Vuffray, Sidhant Misra, and Michael Chertkov. 2018.

Optimal structure and parameter learning of Ising models. Science advances 4, 3
(2018), e1700791.

[24] Ryan McKenna, Gerome Miklau, Michael Hay, and Ashwin Machanavajjhala.

2018. Optimizing error of high-dimensional statistical queries under differential

privacy. PVLDB 11, 10 (2018), 1206–1219.

[25] Ryan McKenna, Daniel Sheldon, and Gerome Miklau. 2019. Graphical-model

based estimation and inference for differential privacy. In ICML. 4435–4444.
[26] Implementation of DP-Copula. [n.d.]. https://github.com/thierryr/dpcopula_

kendall.

[27] Implementation of PGM. [n.d.]. https://github.com/ryan112358/private-pgm.

[28] Technical report. [n.d.]. https://drive.google.com/file/d/

17bJohzhPevbnclmuheiHSok_OZm4Y7go/view?usp=sharing.

[29] Steven Ruggles, Katie Genadek, Ronald Goeken, Josiah Grover, and Matthew

Sobek. 2015. IPUMS USA: VERSION 6.0. Minneapolis: University of Minnesota.

[30] Mani Srivastava and Moustafa Alzantot. 2019. Differentially Private Dataset Re-

lease usingWasserstein GANs. https://github.com/nesl/nist_differential_privacy_

synthetic_data_challenge.

[31] Jun Tang, Aleksandra Korolova, Xiaolong Bai, Xueqiang Wang, and XiaoFeng

Wang. 2017. Privacy Loss in Apple’s Implementation of Differential Privacy on

MacOS 10.12. CoRR abs/1709.02753 (2017).

2201

https://github.com/thierryr/dpcopula_kendall
https://github.com/thierryr/dpcopula_kendall
https://github.com/ryan112358/private-pgm
https://drive.google.com/file/d/17bJohzhPevbnclmuheiHSok_OZm4Y7go/view?usp=sharing
https://drive.google.com/file/d/17bJohzhPevbnclmuheiHSok_OZm4Y7go/view?usp=sharing
https://github.com/nesl/nist_differential_privacy_synthetic_data_challenge
https://github.com/nesl/nist_differential_privacy_synthetic_data_challenge

[32] Marshall F Tappen. 2007. Utilizing variational optimization to learn markov

random fields. In 2007 IEEE Conference on Computer Vision and Pattern Recognition.
IEEE, 1–8.

[33] Synthetic Data Vault. [n.d.]. https://sdv.dev/.

[34] Martin J Wainwright and Michael Irwin Jordan. 2008. Graphical models, exponen-
tial families, and variational inference. Now Publishers Inc.

[35] Xiaokui Xiao, Guozhang Wang, and Johannes Gehrke. 2010. Differential privacy

via wavelet transforms. In ICDE. 225–236.
[36] Huanyu Zhang, Gautam Kamath, Janardhan Kulkarni, and Zhiwei Steven Wu.

2020. Privately Learning Markov Random Fields. In ICML. 11129–11140.

[37] Jun Zhang, Graham Cormode, Cecilia M. Procopiuc, Divesh Srivastava, and

Xiaokui Xiao. 2014. PrivBayes: private data release via bayesian networks. In

SIGMOD. 1423–1434.
[38] Jun Zhang, Graham Cormode, Cecilia M Procopiuc, Divesh Srivastava, and Xi-

aokui Xiao. 2017. Privbayes: Private data release via bayesian networks. TODS
42, 4 (2017), 1–41.

[39] Jun Zhang, Xiaokui Xiao, and Xing Xie. 2016. Privtree: A differentially private

algorithm for hierarchical decompositions. In SIGMOD. 155–170.
[40] Jun Zhu, Ni Lao, and Eric P Xing. 2010. Grafting-light: fast, incremental feature

selection and structure learning of Markov random fields. In SIGKDD. 303–312.

2202

https://sdv.dev/

