
AQueueing-Theoretic Framework for
Vehicle Dispatching in Dynamic Car-Hailing

Peng Cheng
East China Normal University

Shanghai, China
pcheng@sei.ecnu.edu.cn

Jiabao Jin
East China Normal University

Shanghai, China
10175101146@stu.ecnu.edu.cn

Lei Chen
The Hong Kong University of Science

and Technology
Hong Kong, China
leichen@cse.ust.hk

Xuemin Lin
The University of New South Wales

Sydney, Australia
lxue@cse.unsw.edu.au

Libin Zheng
Guangdong Key Laboratory of Big
Data Analysis and Processing, Sun

Yat-sen University
Guangzhou, China

zhenglb6@mail.sysu.edu.cn

ABSTRACT
With the rapid development of smart mobile devices, the car-hailing
platforms (e.g., Uber or Lyft) have attracted much attention from
the academia and the industry. In this paper, we consider a dynamic
car-hailing problem, namely maximum revenue vehicle dispatching
(MRVD), in which rider requests dynamically arrive and drivers
need to serve riders such that the entire revenue of the platform
is maximized. We prove that the MRVD problem is NP-hard and
intractable. To handle the MRVD problem, we propose a queueing-
based vehicle dispatching framework, which first uses existing
machine learning models to predict the future vehicle demand of
each region, then estimates the idle time periods of drivers through
a double-sided queueing model for each region. With the infor-
mation of the predicted vehicle demands and estimated idle time
periods of drivers, we propose two batch-based vehicle dispatching
algorithms to efficiently assign suitable drivers to riders such that
the expected overall revenue of the platform is maximized during
each batch processing. Through extensive experiments, we demon-
strate the efficiency and effectiveness of our proposed approaches
over both real and synthetic datasets. In summary, our methods can
achieve 3% ∼ 10% increase on overall revenue without sacrificing
on running speed compared with the state-of-the-art solutions.

PVLDB Reference Format:
Peng Cheng, Jiabao Jin, Lei Chen, Xuemin Lin, and Libin Zheng. A
Queueing-Theoretic Framework for
Vehicle Dispatching in Dynamic Car-Hailing. PVLDB, 14(11): 2177 - 2189,
2021.
doi:10.14778/3476249.3476271

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/inabao/queue-based-order-dispatching.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 11 ISSN 2150-8097.
doi:10.14778/3476249.3476271

Figure 1: A multi-area vehicle dispatching example.

1 INTRODUCTION
Recently, with the popularity of the smart devices and high quality
of the wireless networks, people can easily access network and
communicate with online services. With the convenient car-hailing
platforms (e.g., Uber [5] and DiDi Chuxing [1]), drivers can share
their vehicles to riders to obtain monetary benefits and alleviate
the pressure of public transportation. One of the crucial issues in
the platforms is to efficiently dispatch vehicles to suitable riders.
Although the platforms become huge recently, during peak hours
(e.g., 8 am) in some high demand areas (e.g., residential areas), riders
need to wait for up to several hours before being served. To mitigate
the shortage of vehicles in particular time and areas and improve
the efficiency of the platforms, we investigate a queueing-theoretic
framework in this paper.

We illustrate the general idea of our framework in the following
motivation example.

Example 1. Consider a scenario of taxi dispatching in Figure 1,
where each one of the four connected areas A1 ∼ A4 maintains a
queue of riders and taxis. The numbers of icons of taxis and riders
near each area reflect the ratio between them in the corresponding
area. For example, in area A1, the number of available taxis is only
half of the number of waiting riders. Riders only want to wait for
a limited time (e.g., 5 minutes), otherwise they will switch to other
public transportation systems (e.g., the bus system). Usually, taxis

2177

https://doi.org/10.14778/3476249.3476271
https://github.com/inabao/queue-based-order-dispatching
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3476249.3476271

can easily pickup riders within the same area (e.g., moving several
hundreds meters). However, if one taxi is assigned with a rider in a
different area, the taxi may need to move several kilometers to pickup
the rider. In addition, after serving its current rider, one taxi will
usually wander around the destination area to pickup a new rider.

When the number of taxis is less than the demanding riders, the
platform needs to smartly select riders to serve, such that the total rev-
enue of the platform can be improved. In the example in Figure 1, the
platform should give higher priorities to the riders whose destination
is within area A1 or A4, where taxis are scarce. On the contrast, the
platform should give lower priorities to the riders whose destination
is within area A2, where taxis are abundant.

Motivated by the example above, in this paper, we propose a
novel vehicle dispatching framework, which aims to take riders’
destinations into consideration to alleviate the shortage of taxis in
particular areas such that the overall revenue of the platform can
be maximized.

Existing works in spatial matching or taxi dispatching only con-
sider the pickup locations of riders and try to minimize the travel
distance of taxis to pick riders [23, 25], which causes some taxis
need to wait for a long time period before picking up new conve-
nient riders after finishing their last orders, which leads to the low
efficiency of the platform (i.e., imbalanced demand-and-supply in
some regions). In our previous poster paper [8], to the best of our
knowledge, we are the first to introduce the general idea of the
queueing theoretic framework to balance the demand-and-supply
of taxi dispatching during a relative long time period to maximize
the overall revenue of the platform. However, in [8] we just ex-
plained the general queueing theoretic framework without detailed
algorithms, analyses, and experimental studies, which will be in-
troduced in this paper.

To improve the overall revenue of the platform during a rela-
tively long time period, we propose a batch-based queueing-theoretic
vehicle dispatching framework in this paper. Specifically, we parti-
tion the whole space into regions and maintain a queue of waiting
riders and drivers for each region. Once there are available dri-
vers, the most-priority rider in the queue of waiting riders will be
served. In addition, riders may quit/renege from the platform if she
is not served for a long period. Usually, a driver, after delivering
her current rider, will continue to serve the next rider around the
destination of the current rider. Thus, through serving the riders,
the distribution of drivers will be changed. To serve as many riders
as possible, intuitively, the platform should match the distributions
of riders and drivers (i.e., one region with more riders should have
more drivers) through associating higher priorities to the riders
whose destinations are in regions lacking of drivers, then drivers
can serve riders quickly before they quit/renege. We first propose
models to estimate the Poisson distributions of riders and drivers.
Then, we utilize the queueing theory to analyzing the idle time
interval for each driver after finishing his/her assigned rider. Finally,
we propose two vehicle/driver dispatching algorithms to maximize
the overall revenue of the platform in each batch processing. Note
that, we maximize the overall revenue of the platform through
improving the efficiency of the entire platform to serve more riders
without increasing the charges to riders or decreasing the payment
to drivers. In fact, the payment to drivers is usually a portion of the

overall revenue of the platform. Thus, the more the overall revenue
of the platform is, the more the payment to drivers is. In conclusion,
our solution will benefit riders, drivers and the platform at the same
time.

To summarize, we make the following contributions in the paper:
• We propose a batch-based queueing theoretic framework for
vehicle dispatching in Section 3.
• We estimate the idle interval time of drivers in Section 4.
• We propose two vehicle dispatching algorithms for each batch
processing in Section 5.
• We have conducted extensive experiments on real and synthetic
data sets, to show the efficiency and effectiveness of our queueing-
theoretic framework in Section 6.
In addition, the remaining sections of the paper are arranged

as follows. We review and compare previous studies on queueing
theory and vehicle dispatching in Section 7 and conclude the work
in Section 8.

2 PROBLEM DEFINITION
In this section, we present the formal definition of the vehicle
dispatching problem, where a system will assign drivers to riders
to deliver them to their destinations.

In this paper, we use a graph G = ⟨V ,E⟩ to represent a road
network, where V is a set of vertices and E is a set of edges. Each
edge (u,v) ∈ E (u,v ∈ V) is associated with a weight cost(u,v)
indicating the travel cost from vertex u to vertex v . Here, the travel
cost could be the travel time or the travel distance. When we know
the travel speed of vehicles, we can convert one to another. In the
rest of this paper, we will not differentiate between them and use
travel cost consistently.

To better manage the riders and drivers, we assume the entire
space is divided into a set of n regions/grids A = {a1,a2, ...,an }.

2.1 Riders and Drivers
Definition 1 (Impatient Rider). Let ri be an impatient rider, who
submit his/her order oi to the platform at timestamp ti , and is
associated with a source location si , a destination location ei and a
pickup deadline τi .

In particular, a rider ri comes to the platform to call for one and
only one driver to deliver him/her from his/her current location si
to his/her destination location ei . The request is sent to the platform
at timestamp ti . As the rider is impatient, if the platform cannot
assign an available driver to pick up him/her within τi time after
ti , he/she will quit/renege from the platform and may switch to
other platforms or use other transportation systems. Usually, rider
ri will not rejoin the platform immediately after he/she is delivered
to his/her destination. Thus, in this paper, we assume that each
rider is unique and only lives for the lifetime of his/her ride in the
platform. In addition, if a rider ri is delivered to his/her destination,
the platform will charge him/her for α · cost(si , ei), where α is the
travel fee rate of the platform.

Definition 2 (Driver). Let dj be a driver, who is located at position
lj (t) at timestamp t . His/her status is either busy (i.e., on delivering
any riders) or available (i.e., free to be assigned to a rider).

2178

When a new driver dj joins the platform, he/she is considered to
be available to serve riders. Once a rider ri is assigned to a driver dj ,
the driver will move to the source location si to pickup rider ri , then
send rider ri to his/her destination location ei . During that period,
driver dj is considered busy. After driver dj finishes his/her current
task, dj will become available again. For region ak at timestamp t ,
we denote the set of available drivers as Dk (t) and the number of
them as |Dk (t)|.

2.2 The Maximum Revenue Vehicle
Dispatching Problem

Before presenting the formal definition of the maximum revenue
vehicle dispatching problem, we first define the valid rider-and-
driver dispatching pair.

Definition 3 (Valid Rider-and-Driver Dispatching Pair). Let ⟨ri ,dj ⟩
be a valid rider-and-driver dispatching pair, where driver dj can
arrive at the pickup location si of rider ri before the pickup deadline
τi and driver dj is in available status when he/she is picking up
rider ri .

Now we give the formal definition of the maximum revenue
vehicle dispatching problem as follows:

Definition 4 (Maximum Revenue Vehicle Dispatching Problem,
MRVD). For a given time period T, a set of impatient riders RT
and a set of drivers DT, the maximum revenue vehicle dispatching
problem is to select a set, IT, of valid rider-and-driver dispatching
pairs such that the overall revenue of the platform is maximized,
which is:

max
∑

⟨ri ,dj ⟩∈IT

α · cost(si , ei), (1)

where α is the travel fee rate of the platform.

Intuitively, to maximize the overall revenue the platform should
serve as many long travel distance riders as possible as shown in
Equation 1. However, the platform has no control on riders (i.e.,
the platform cannot schedule the arrivals and enlarge the waiting
deadlines of riders), and can only affect the behaviors of drivers
(i.e., dispatching drivers to pickup different riders). We will have
a reduction in the end of this section to show practical rules to
dispatching drivers to maximize the overall revenue of the platform.

2.3 Hardness of MRVD
We prove MRVD is NP-hard through a reduction from a variant of
traveling salesman problem (TSP), the deadline TSP [7], which is a
known NP-hard problem.

Theorem 2.1. (Hardness of MRVD) The problem of maximum
revenue vehicle dispatching (MRVD) is NP-hard.

Proof. We prove the theorem by a reduction from the deadline
TSP [7]. A deadline TSP problem can be described as follows: given
a set of nodes V , each node vi ∈ V is located at location vli with
a deadline vdi . There is a salesman s locating at position sl at the
beginning, who wants to visit the nodes. If s can visit nodevi before
its deadline vdi , s will receive a reward v

r
i . The problem is to find a

path for s to visit nodes such that the total reward is maximized.

Table 1: Symbols and Descriptions.

Symbol Description
ak a region/grid
ri an impatient rider
oi the order of the impatient rider ri
ti the timestamp when ri posts her ride request
si the source location of rider ri
ei the destination location of rider ri
τi the pickup deadline of rider ri
dj a driver
lj (t) the position of driver dj at timestamp t
Dk (t) a set of available drivers in region ak at time t

For the deadline TSP instance, we can transform it to an instance
of MRVD as follows: we give only one driver dj with unlimited
lifetim located at position sl at the very beginning. In addition,
for each node vi ∈ V , we generate a rider ri , who is located at vli
with a pickup deadline of vdi . All the riders post their orders at the
beginning of time. We set the travel fee rate α to a large enough
value such that the destination ei of each rider ri is very close to
his/her origin location vli and the travel time of serving ri can be
ignored. In addition, the travel cost α · cost(vli , ei) is equal to the
visiting reward of the corresponding node vri . Then, for this MRVD
instance, we want to arrange a schedule for the given driver such
that his/her overall revenue is maximized.

Thus, to maximize the overall revenue satisfying the pickup
deadlines of riders is same to maximize the total reward in the
deadline TSP problem.

Given this mapping, it shows that the deadline TSP instance can
be solved if and only if the corresponding MRVD problem instance
can be solved. This way, we reduce the deadline TSP to the MRVD
problem. Since the deadline TSP is known to be NP-hard [7], MRVD
is also NP-hard, which completes our proof. □

In real platform, orders are created at different timestamps, which
means our MRVD problem is an online problem. To evaluate the
effectiveness of algorithms on online problems, competitive ratio is
a common used metric, which is the ratio of the result achieved by
a online algorithm to the optimal result achieved in the correspond-
ing offline problem. However, in the existing study about online
deadline TSP problem [28], the authors prove that there is no algo-
rithm can achieve a constant competitive ratio for online deadline
TSP problem even the arriving timestamps of orders are known in
advance. Moreover, in MRVD, usually multiple drivers need to be
arranged, which means that the MRVD problem is more complex
than the online deadline TSP problem. Thus, we turn to use the
experimental results to show the effectiveness of our approaches.

2.4 Reductions of MRVD
Let Tj be the lifetime of driver dj from the time he/she joins to
the time he/she exits the platform. During Tj , the status of driver
dj keeps switching between available and busy. We notice that
only when driver dj is in busy status, he/she contributes to the
overall revenue of the platform. Then, we can rewrite the objective
function of MRVD as below:

2179

max
∑

⟨ri ,dj ⟩∈IT

α · cost(si , ei)

⇒max
∑

dj ∈DT

∑
ri ∈Rj

α · cost(si , ei)

⇒maxα
∑

dj ∈DT

∑
ri ∈Rj

cost(si , ei) (2)

where DT is the set of drivers on the platform during the given
time period T, and Rj is the set of riders that are served by driver
dj in the selected set, IT, of valid rider-and-driver dispatching pairs.
According to Equation 2, the platform should maximize the length
of the total busy time of each driver to maximize its overall revenue.
Since the lifetime Tj of each driver dj is fixed, to maximize his/her
total busy time,

∑
ri ∈Rj cost(si , ei), is equivalent to minimize his/her

total idle time,Tj −
∑
ri ∈Rj cost(si , ei). Then, the objective of MRVD

can be rewritten as follows:

maxα
∑

dj ∈DT

∑
ri ∈Rj

cost(si , ei)

⇒min
∑

dj ∈DT

(
Tj −

∑
ri ∈Rj

cost(si , ei)
)

⇒min
∑

dj ∈DT

|Rj |∑
i=0

ψi j (3)

whereψi j is the idle time of driver dj after delivering rider ri . Here,
ψ0j indicates the idle time of driver dj before picking up his/her
first rider.

According to Equation (3), to maximize the overall revenue, the
platform intuitively should reduce the number of served riders
(e.g., |Rj |) and the idle time interval (e.g., ψi j) between any two
consecutive riders for each driver. It may be confused that reducing
the number of served riders for each driver seems to contradict
the goal of maximizing the overall revenue. To explain this contra-
diction, we denote the time period of serving a rider and the idle
time before serving the next rider as a service round for a driver. In
fact, the lifetime of a driver dj is fixed as Tj , when driver dj serves
fewer riders, the average length of service rounds will be longer
(i.e., Tj

|Rj |
). Then, for a service round that driver dj is assigned to

serve rider ri , minimizing the idle time intervalψi j will lead to that
the travel cost cost(si , ei) increases, which agrees with the intuition
from Equation (2). In conclusion, we can have two practical and con-
trollable rules for the platform in its online processes to maximize
the overall revenue during a given time period T: a) associating
higher priorities to the riders whose travel costs are high; b)
reducing the length of the idle time between serving any two
consecutive riders for each driver.

In the rest of this paper, we propose a queueing-theoretic frame-
work, taking into consideration of the travel cost and the idle time
length after each ride request, to maximize the overall revenue of
the platform during a given time period.

3 OVERVIEW OF QUEUEING-BASED
VEHICLE DISPATCHING FRAMEWORK

In this section, we introduce an overview of our queueing-based
vehicle dispatching framework. In general, the framework includes

Figure 2: Illustration of the Framework Work Flow.

three parts: vehicle demand-supply prediction, queueing analysis
of each region and queueing-based vehicle dispatching algorithms.
From the other perspective, our framework contains offline predic-
tion processes and online analysing and dispatching processes as
shown in Figure 2. In the offline processes, the platform predicts
the number of orders for each region in each time periods based on
the historical order records. In the online processes, the platform
utilizes the predicted order demands and supplies to assign avail-
able drivers to orders with a goal to maximizing the overall revenue
of the platform subjected to the deadline constraint of orders. In
addition, the driver dispatching process and the queueing analyses
process can affect each other, thus we interactively assign orders
to drivers and update the results of queueing analyses of regions.

We first briefly introduce the major parts of our queueing-based
vehicle dispatching framework, then propose a batch-based vehicle
dispatching algorithm to handle the orders from riders.

3.1 Major Parts of Queueing-Based Vehicle
Dispatching Framework

Our queueing-based vehicle dispatching framework includes three
major parts: offline vehicle demand-supply prediction, region queue-
ing analysis and queueing-based vehicle dispatching algorithm.

3.1.1 Offline Vehicle Demand-Supply Prediction. In our framework,
we predict the order demand of each region for given time periods.
For the rejoined drivers, we can estimate their availability based on
their assignments and travel costs. In practice, it is hard to predict
the accurate location and timestamp of a particular rider since the
uncertain behaviors of a single user. To utilize the distribution of
riders, we predict the number of riders for a given region (i.e., a
spatial range of area, such as square regions or hexagon regions)
in a given time period (i.e., next 30 minutes). Existing work can
be applied offline to predict the demand of riders in given regions
and time periods, such as demand-supply prediction of traffic [13,
22], and spatial-temporal data prediction [16, 30]. In this paper,
we test the representative prediction algorithms, e.g., Historical

2180

Average (HA) method, Linear Regression (LR) method, Gradient
Based Regression Tree (GBRT) method [18] and DeepST [29] on the
real-world taxi demand-supply dataset and select the most effective
one, DeepST [29], for our offline demand-supply prediction process,
which can achieve very accurate order demand prediction results
(i.e., 2.3 % RMSE) on our testing data set. Specifically, DeepST uses
Convolutional Neural Network (CNN) [21] on historical data of
order counts and meta data (e.g., time of day, day of week and city
weather) to predict the order demand for each region in each time
slot (e.g., a period of 30 minutes). Due to space limitation, we put
the detailed comparison of the spatial temporal prediction models
in Appendix A of our technical report [9].

3.1.2 Region Queueing Analysis. The available drivers in a region
ax in a time period T come from the rejoined active drivers and
unassigned drivers in the previous batch. With the predicted num-
bers of orders for the region ax in a given time period T and the
schedules of active drivers, we can know the demand and supply of
drivers for the region ax in time period T . We estimate the waiting
times (idle time intervals) for vehicles from finishing last order
to receiving next order in Section 4. According to the analyses in
Section 2, shorter idle time intervals are better. Thus, the estimated
waiting times of vehicles can be used to guide the order dispatching
process to achieve a high overall revenue.

3.1.3 Queueing-Based Vehicle Dispatching. The platform needs to
dispatch drivers to serve most “valuable” riders with high prior-
ities. According to the analyses in Section 2, orders having high
travel costs and ending in “hot regions” (i.e., regions with many
future orders) can contribute more to the platform, which should
be associated with high priorities. In addition, since drivers usually
prefer to serve riders close to their locations after they finish the
last orders, the platform’s selection on serving orders will affect
the vehicle supply in future, which in turn will affect the queueing
analyses of the related regions. In Example 1, if the platform dis-
patch a driver to serve a rider having a destination in region A1,
the driver supply in region A1 will increase slightly after finishing
the order. We propose efficient and effective algorithms in Section
5 to dispatch available drivers to riders with an optimization goal
of maximizing the overall revenue of the platform subjected to the
deadline constraint of orders.

3.2 The Batch-based Vehicle Dispatching
Algorithm

To handle the online processes of vehicle dispatching, we propose
a batch-based processing framework to iteratively assign drivers to
riders every ∆ seconds. Note that, in real applications (e.g., DiDi
Chuxing [1]), ∆ is set very small (e.g., several seconds) such that the
customers cannot notice the delay of the batch processing. To solve
the assignment problem in each batch, we propose two heuristic
algorithms to greedily maximize the revenue summation of the
platform for the current scheduling time period [t̄ , t̄ + tc], where t̄
indicates the current timestamp and tc is the length of the current
scheduling time period.

As shown in Algorithm 1, we iteratively assigns drivers to riders
for multiple batches with a time interval ∆ between every two
successive batches. Specifically, for a batch starting at timestamp

Algorithm 1: Batch-based Vehicle Dispatching Algorithm
Input: The overall time period T
Output: A set of rider-and-driver dispatching pairs within the time

period T
1 while current time t̄ is in T do
2 foreach ak ∈ A do
3 retrieve the waiting riders in region ak to Rk
4 retrieve the available drivers in region ak to Dk
5 predict the number of upcoming riders in region ak

during [t̄ , t̄ + tc] as |R̂k |
6 count the number of upcoming rejoined drivers in

region ak during [t̄ , t̄ + tc] as |D̂k |

7 use task-priority greedy or local search approach to obtain a
set of rider-and-driver pairs It̄

8 foreach ⟨ri ,dj ⟩ ∈ It̄ do
9 inform driver dj to pick rider ri

10 wait till t̄ + ∆

t̄ , we first retrieve a set, Rk , of waiting riders and a set, Dk , of
available drivers for each region ak (lines 3-4). Here, waiting riders
Rk include the riders that are not assigned with any drivers during
the last batch and the newly coming riders after the last batch
in region ak . Moreover, available drivers Dk includes the drivers
that are not assigned with any riders in the last batch, and the
drivers that have finished the previous assigned tasks then rejoin
the platform in region ak . To estimate the arrival rates of riders
and serving rates drivers for the current scheduling time period
[t̄ , t̄ + tc], we predict the number, |R̂k |, of upcoming riders and
estimate the number, |D̂k |, of rejoin drivers in region ak (lines 5-6).
Then, we use our proposed heuristic vehicle dispatching algorithms
to achieve a set It̄ of rider-and-driver dispatching pairs to greedily
maximize the revenue summation of the platform for the current
scheduling time period [t̄ , t̄ + tc] (line 7). For every rider-and-driver
dispatching pair ⟨ri ,dj ⟩ in It̄ , we inform the driver dj to pick up
rider ri (lines 8-9). Finally, we wait until the time comes to the next
batch t̄ + ∆ (line 10).

In the following sections, we will first introduce the queueing
analyses of regions in Section 4, then propose our queueing based
vehicle dispatching algorithms in Section 5.

4 QUEUEING ANALYSES OF REGIONS
In this section, we analyze the waiting riders for each single region
through a queueing model. In queueing theory, customers join
queue in an arrival (or “birth”) rate λ, then the platform will serve
the customers in a service (“death”) rate µ. We first introduce the
queue configuration, then estimate the idle time for a driver after
he/she finishes his/her current order.

4.1 Queue Configuration of a Single Region
In this paper, the platform can be considered as a server to match
available drivers and waiting riders in each region. The riders come
to the platform and wait for drivers to pick them. However, the
riders are impatient and will leave the platform if they are not
served before their deadlines. The available drivers come from the

2181

Figure 3: Birth-death chain for the queue of a region.

rejoined active drivers, who are the ones continuing to work on
the platform after finishing their assigned orders.

Similar to the previous assumption in the related work [6], we
assume the arrival rate of riders (in number per minute) follows the
Poisson distribution with rates λ in a region a during a short time
period with length tc (e.g., a half hour). In addition, we also model
the arrivals of rejoined active drivers follow a Poisson distribution
with a rate of µ in a region a during a short time period with length
tc . Note that, although the arrival rate of riders and drivers may
change during different time periods in a day (e.g., 8 to 9 A.M. and
8 to 9 P.M.), to facilitate the analysis of the queueing situation in a
short time period (e.g., a half hour), we model the arrival rates of
riders and drivers as stable rates. We verify our assumption that the
arrivals of orders and rejoined drivers follow Poisson distributions
through chi-square (χ2) tests [19]. Due to the space limitation,
please refer to Appendix B of our technical report [9] for details.

When the riders are more than the drivers in a region, the plat-
form will select a subset of riders with “higher priorities” to serve
first. Usually a driver will rejoin the platform in the same region
of the destination of her/his last served rider. It leads to that the
drivers appear in the regions where the destinations of the selected
high-priority riders are, and then the arrival rates of drivers in the
corresponding “selected” regions will increase. In our queueing
model, the priority of a rider is determined in line with his/her
travel cost and the demand-supply situation in his/her destination
region. According to the analysis in Section 2.4, to improve the
overall revenue, the platform prefers to give higher priorities to the
riders who have higher travel costs and are going to “hot” regions.

Figure 3 illustrates the birth-death chain of the queueing model
for a region, where each circle indicates a state and the numbers
in the circles represent the numbers of waiting riders in the cor-
responding states. For example, the state of 2 indicates that there
are 2 waiting riders in the region. Each link represents the transfer
event from the tail state to the head state along its direction, where
the value close to the link indicates the transfer rate. For example,
the link with value λ0 pointing from state 0 to state 1 indicates the
transfer rate from state 0 to state 1 is λ0. Since drivers may also
congest in a region, if the arrival rate of drivers is higher than that
of riders (i.e., µ > λ), to uniformly represent the queueing situation
of a region, we utilize the state of -n (−n < 0) to indicate that there
are n congested drivers in the region.

Another issue to change the number of waiting riders is that the
impatient riders may quit from the platform if they are not served
after a time period, which is called reneging in queueing theory.
As defined in the existing work [24], we can define a state related
reneging function π (n) as the reneging rate of riders for the state n
(n > 0) of the birth-death chain in Figure 3. As suggested in [24], a
good practice for the reneging function π (n) is to define it as eβn/µ ,
where β is a parameter determined based on the historical reneging

records in the corresponding region. Then, the death/service rate
µn of the state n can be adjusted as follows:

µn =

{
µ, n ≤ 0
µ + π (n), n > 0 (4)

For the birth/arrival rate λn of state n, we define it as λn = λ,
since drivers do not renege in our queueing model.

4.2 Expected Idle Time Interval of Drivers
In this section, we analyze the expected idle time interval of a driver
dj . Let region a be the destination region of the last rider ri of dj
and dj will join the queue of region a after serving ri . Thus, the
state of the region a (i.e., the length of waiting drivers or riders) will
directly affect the waiting time (idle time) of dj before serving the
next rider. For example, if the region a is in a state of na and na > 0,
which means there are na riders are waiting for drivers, driver dj
can be immediately assigned with a new rider after finishing the
last order. On the contrary, if the region a is in a state of nb and
nb < 0, which means there are nb available drivers are waiting for
riders, driver dj will not be assigned with any new riders before
nb available drivers are assigned with riders first. For region a, we
assume the arrives of the riders and rejoined drivers follow Poisson
distributions with rates λ and µ, respectively. Then, the region a
can be in any state n with the corresponding probability pn .

Figure 4: Flow balance between states.

We here briefly introduce the flow balancing rule in analyzing
the recursive relation betweenpn andpn−1 [24]. As shown in Figure
4, the mean flows across the dash line must be equal in a steady
situation for the queue. In other words, for a relatively long period
(e.g., 30 minutes), the rate of transitions (λn−1pn−1) from state n-1
to state n must equal the rate of transitions (µnpn) from state n to
state n-1, which is as follows:

µnpn = λn−1pn−1 (5)

By iteratively applying Equation (5), we can derive:

pn =

{
p0 · (

µ
λ)
−n , n < 0

p0 ·
∏n

i=1
λ

µ+π (i) , n > 0 (6)

Different from the traditional queueing model with only one-
sided queue, our queueing model of a single region is a double-sided
queue. We need to analyze the particular idle times of drivers with
our new queueing model. We estimate the expected idle time in
different conditions: 1) more riders arrive; 2) more drivers rejoin; 3)
balanced riders and drivers, since they have different properties.

2182

4.2.1 More Riders Arrive (λ > µ). When λ > µ, the summation
of probabilities of states {n}, n < 0, can be calculated through a
summation of geometric sequence, which is:

−∞∑
i=−1

pi = p0
∞∑
i=1

(µ
λ

)i
=

µ

λ − µ
p0 (7)

In addition, we have the fact that the summation of the probabil-
ities {pn },n ∈ [−∞,∞], must be 1.

−∞∑
i=−1

pi + p0 +
∞∑
i=1

pi = 1 (8)

Putting Equations (6) and (7) into Equation 8, we have:

p0
(µ

λ − µ
+ 1 +

∞∑
n=1

n∏
i=1

λ

µ + π (i)

)
= 1

Then, we have

p0 =
(λ

λ − µ
+

∞∑
n=1

n∏
i=1

λ

µ + π (i)

)−1
(9)

Drivers are dispatched in a first come, first served order. LetT (n)
be the expected idle time interval of an arrival driver dj when the
queue is in state n. When there are waiting riders (n > 0), the idle
time interval of dj is just the processing time of the platform to
arrange a new rider, which can be ignored.When there is no waiting
riders (n ≤ 0), the driver needs to wait until the next (|n |+1)th rider
appears in the region, which needs |n |+1

λ time on average. Finally,
we can estimate the expected idle time, ET (λ, µ), of a driver after
join a queue of region having the arrival rate λ of riders and the
arrival rate µ of drivers as follows:

ET (λ, µ) =
−∞∑
i=0

|n | + 1
λ
· pi +

∞∑
i=1

0 · pi

=
p0
λ

∞∑
i=0
(i + 1)

(µ
λ

)i
=

λp0
(λ − µ)2

(10)

4.2.2 More Drivers Rejoin (λ < µ). We notice that when λ < µ,
the queue will congest more and more drivers when time elapses,
which will harm the efficiency of the platform much. The platform
will avoid that the rate of drivers µ become larger than the rate
of riders λ for each region. However, when there are indeed more
drivers rejoining, we still can estimate the expected idle time.

Let K be the number of available drivers during the current
scheduling time period with length tc . Then, the queue of the region
can at most congest with K drivers. Let θ = µ

λ . We can calculate
the summation of probabilities of states {n}, −K ≤ n < 0, with the
equation as follows:

−K∑
i=−1

pi = p0
K∑
i=1

(µ
λ

)i
=
θK+1 − θ
θ − 1 p0 (11)

Then, we can update Equation 9 when λ < µ as follows:

Algorithm 2: Idle Ratio Oriented Greedy Algorithm
Input: A set of Regions A, current timestamp t̄
Output: A set of rider-and-driver dispatching pairs It̄

1 It̄ ← {∅}

2 Iv ← {∅}

3 foreach ak ∈ A do
4 retrieve a set Ik of valid rider-and-driver dispatching pairs

from Rk and Dk
5 Iv ← Iv ∪ Ik
6 estimate the arrival rate λ(k) of riders and arrival rate µ(k)

of rejoined drivers in region ak during [t̄ , t̄ + tc]
7 sort dispatching pairs in Iv based on their idle ratio
8 while Iv is not empty do
9 select the rider-and-driver pair ⟨ri ,dj ⟩ having the smallest

idle ratio from Iv
10 add ⟨ri ,dj ⟩ to It̄
11 update µ(k) of the destination region ak of ri
12 remove ⟨ri , .⟩ and ⟨.,dj ⟩ from Iv

13 return It̄

p0 =
(θK+1 − 1

θ − 1 +

∞∑
n=1

n∏
i=1

λ

µ + π (i)

)−1
(12)

In addition, when the expected number of rejoined drivers during
the current scheduling time period with length tc is K and λ < µ,
we can estimate the expected idle time ET (λ, µ) as follows:

ET (λ, µ) =
p0
λ

(K + 1)θK+2 − (K + 2)θK+1 + 1
(θ − 1)2

. (13)

4.2.3 Balanced Riders and Drivers (λ = µ). When λ = µ, we can
update Equation 11 as follows:

−K∑
i=−1

pi = p0
K∑
i=1

(µ
λ

)i
= Kp0 (14)

Then, we have

p0 =
(
K + 1 +

∞∑
n=1

n∏
i=1

λ

µ + π (i)

)−1
(15)

Next, we can estimate the expected idle time ET (λ, µ)when λ = µ
as follows:

ET (λ, µ) = p0
(K + 1)(K + 2)

2λ (16)

5 QUEUEING-BASED VEHICLE
DISPATCHING ALGORITHMS

5.1 The Idle Ratio Oriented Greedy Approach
We first propose an idle ratio oriented greedy approach to solve each
batch process in line 7 of Algorithm 1 with a goal to maximize the
revenue summation of the platform during the current scheduling
time period [t̄ , t̄ + tc], where t̄ is the current timestamp and tc is
the length of the current scheduling time window. We first define
the idle ratio of driver dj to server rider ri , whose destination ei is
in region ak , as follows:

2183

IR(ri ,dj) =
ET (λ(k), µ(k))

cost(si , ei) + ET (λ(k), µ(k))
, (17)

where ET (λ(k), µ(k)) is the expected idle time of driver dj when
he/she rejoins the platform at region ak , and cost(si , ei) is the travel
cost (travel time) on serving rider ri . Recall that, in Section 2.4, we
have two guiding rules for the platform to maximize its overall rev-
enue after analyzing the MRVD problem: a) associating higher
priorities to the riders whose travel costs are higher; b) reduc-
ing the length of the idle time between serving any two consec-
utive riders for each driver.We notice that when the travel cost
cost(si , ei) increases, IR(ri ,dj) will decrease; when the expected
idle time ET (λ(k), µ(k)) decreases, IR(ri ,dj) will also decrease. As
a result, we only need to greedily select the rider-and-driver dis-
patching pairs with low idle ratios (as defined in Equation 17), then
we can follow the above mentioned two guiding rules to maximize
the overall revenue of the platform. Based on the observation, we
propose an idle ratio oriented greedy approach as shown in Algo-
rithm 2, which greedily selects the rider-and-driver dispatching
pair having the smallest idle ratio value in each iteration.

Specifically, we first initialize the selected rider-and-driver pairs
It̄ and the valid rider-and-driver pairs Iv with empty sets (lines 1-2).
Then, for each region ak , we put the valid rider-and-driver pairs
Ik between the waiting riders Rk and available drivers Dk in the
region into Iv (lines 4-5) and estimate the arrival rates, λ(k) and µ(k),
of new riders and rejoined drivers during the current scheduling
period [t̄ , t̄ + tc] as follows:

λ(k) =

|R̂k |
tc , |Rk | ≤ |Dk |
|R̂k |+ |Rk |− |Dk |

tc , |Rk | > |Dk |
(18)

µ(k) =

|D̂k |+ |Dk |− |Rk |

tc , |Rk | ≤ |Dk |
|D̂k |
tc , |Rk | > |Dk |

(19)

where |R̂k | and |D̂k | are the numbers of predicted riders and future
rejoined drivers in region ak during [t̄ , t̄ + tc]. Next, after retrieving
all the valid pairs, we sort them based on their idle ratios calcu-
lated with Equation 17 (line 7). Note that, the expected idle time
ET (λ(k), µ(k)) is determined by the arrival rates, λ(k) and µ(k), of
new riders and rejoined drivers in the destination region ak , thus
we only need to estimate that for each region but not for each rider-
and-driver pair individually. In each iteration of the while-loop
(lines 8-12), we select the rider-and-driver pair ⟨ri ,dj ⟩ having the
smallest idle ratio and remove its related pairs, ⟨ri , .⟩ and ⟨.,dj ⟩, of
rider ri and driver dj from Iv (since each driver only can serve one
rider at one time). The selected pair ⟨ri ,dj ⟩ is added in It̄ (line 10)
and all the selected pairs It̄ will be finally returned (line 13).
Complexity Analysis. Let the number of total waiting riders be
m, the number of total available drivers be n and the number of
total regions be x . Assume riders and drivers be evenly distributed
in x regions and x is much smaller thanm and n. In lines 3-6 of
algorithm 2, retrieving all the valid rider-and-driver pairs needs
O(mn

x). To sort the valid pairs in Iv needs O(mn
x log2(

mn
x)) (line

7). In each iteration of the while-loop (lines 8 - 12 of Algorithm
2), selecting the pair having the smallest idle ratio from sorted Iv
needs O(1) (lines 9-10); updating µ(k) and the idle ratio of average

Algorithm 3: Local Search Algorithm
Input: A set of Regions A, current timestamp t̄
Output: A set of rider-and-driver dispatching pairs It̄

1 Obtain a set, It̄ , of pairs with Algorithm 2
2 do
3 FLAG ← False

4 foreach ⟨ri ,dj ⟩ ∈ It̄ do
5 foreach r ′i ∈ Rj do
6 if IR(r ′i ,dj) < IR(ri ,dj) then
7 update ⟨ri ,dj ⟩ to ⟨r ′i ,dj ⟩
8 FLAG ← True

9 while FLAG is True
10 return It̄

mn
x 2 related pairs needsO(mn

x 2) (line 11); removing the related valid
pairs ⟨ri , .⟩ and ⟨.,dj ⟩ from Iv needsO(max(nx ,

m
x)) (line 12). Since

in each iteration, at least one rider and one driver will be matched,
thus there will be at most min(m,n) iterations. Then the complexity
of the while-loop is O(min(m,n)mn

x 2). Thus, the complexity of Algo-
rithm 2 is O(max(mn

x log2(
mn
x),

min(m,n)mn
x 2)). If we consider x as

a constant number, andm is linearly related to n, the complexity
can be considered as O(n3).

5.2 The Local Search Algorithm
In the idle ratio oriented greedy approach, we greedily select the
pair having the “current” smallest idle ratio. However, the arrival
rate µk of rejoined drivers in region ak will change after selecting
some riders whose destinations are in ak . Thus, the idle ratios
of early selected rider-and-driver pairs may slightly increase in
later iterations. To overcome this shortcoming in the idle ratio
oriented greedy approach, we will propose a local search algorithm
to improve the results, which keeps searching for rider-and-driver
pairs ⟨r ′i ,dj ⟩ with a smaller idle ratio for driver dj and update the
assigned rider of dj to r ′i until no such pairs can be found.

Specifically, in Algorithm 3, we first obtain a set, It̄ , of rider-and-
driver pairs for current timestamp t̄ through Algorithm 2 (note that,
we can also obtain It̄ through any other algorithms). Then, in each
iteration, we check whether the rider of a pair ⟨ri ,dj ⟩ ∈ It̄ can be
replaced by any other valid rider r ′i ∈ Rj for dj , where Rj is the
valid riders to dj . If no replacement happens, we will return the
updated set, It̄ , of the selected rider-and-driver pairs.

We prove our local search algorithm can converge. We prove it
in the below lemma.

Lemma 5.1. The local search algorithm (Algorithm 3) can con-
verge.

Proof. Assume Algorithm 3 cannot converge. Then, there is at
least one driver d who keeps switching between two riders ru and
rv . When d selects ru , we have IR(ru ,d) < IR(rv ,d); otherwise, we
have IR(ru ,d) ≥ IR(rv ,d). We denote the regions where ru and rv
will end as au and av , respectively.

Since the travel costs of ru and rv do not change, different
ET (λu , µu) and ET (λv , µv) lead to different IR(ru ,d) and IR(rv ,d).
Specifically, according to the definition of IR(r ,d) in Equation

2184

17, IR(ru ,d) is positively correlated with ET (λu , µu) (e.g., when
ET (λu , µu) increases, IR(ru ,d) will also increase). When more dri-
vers rejoin in region au , the expected waiting time ET (λu , µu) will
increase.

Let driver d select rider ru at the beginning. If driver d switches
from ru to rv in some iteration ζ , there must be some more rejoined
drivers switch to region au , which leads to IR(ru ,d) > IR(rv ,d).
Thus, there must be at least one other driver d ′ who switches from
his/her valid rider r ′v to a new rider r ′u whose destination is also in
region au (i.e., IR(r ′u ,d ′) < IR(r ′v ,d

′)). After d switches to rv , the
number of rejoined drivers in region au will decrease, and IR(r ′u ,d ′)
will also decrease. As a result, d ′ will not switch back to r ′v . Since
no drivers will switch out from region au , IR(ru ,d) will at least
not decrease. As a result, d will not switch back to ru , which is
contradicted with the assumption that d keeps switching between
ru and rv . Thus Algorithm 3 can converge. □

Complexity Analysis. Let the number of total waiting riders be
m, the number of total available drivers be n and the number of total
regions be x . Assume that riders and drivers are evenly distributed
in x regions and x is much smaller thanm and n. The number of
total valid rider-and-driver pairs will be O(mn

x). The number, |Rj |,
of valid riders for driver dj will be O(nx). Then each iteration of
the while-loop needs O(mn2

x 2). Let Lmax be the maximum iteration
numbers, then the complexity of Algorithm 3 will beO(Lmax

mn2

x 2).
If we consider x and Lmax as constant numbers, andm is linearly
related to n, the complexity can be considered as O(n3).

6 EXPERIMENTAL STUDY
In this section, we show the efficiency and effectiveness of our
queueing-theoretic framework with different vehicle dispatching
algorithms embedded through experimental studies on both syn-
thetic and real datasets.

6.1 Data Sets
We use both real and synthetic data to test our framework. Specifi-
cally, for the real data set, we use the taxi trip data sets in NYC [2].
NewYork Taxi Trip Dataset.New York Taxi and Limousine Com-
mission (TLC) Taxi Trip Data [2] is a dataset recording the infor-
mation of taxi trips in New York, USA. The records are collected
and provided to the NYC Taxi and Limousine Commission technol-
ogy under the Taxicab & Livery Passenger Enhancement Programs
(TPEP/LPEP [4]). Trip records can be categories as three types: yel-
low taxi, green taxi and FHV (For Hire Vehicle). However, due to
the privacy issues, only the locations of yellow taxi can be access
in the dataset long time ago. In addition, the number of FHV and
green taxi records is much smaller than that of yellow taxi. Thus,
we only use the taxi trip records of yellow taxis in our experiments.
Each trip record includes its pick-up and drop-off taxi-zones, GPS
locations and timestamps, the number of passengers and the total
travel cost. In our experiment, we use taxi trip data records from
January 1st, 2013 to May 20th, 2013 as training data set and May
28th, 2013 as the test data set. In the taxi records of May 28th, 2013,
there is 282,255 orders. Figure 5 shows the pick-up locations of
orders from 8:00 A.M. to 8:45 A.M. in New York.

Figure 5: Distribution of Orders.

6.2 Experimental Configurations
For the experiments on the real data set, we use the pickup location
and timestamp of a taxi trip record to initialize the source location
si and the posting timestamp ti of a ride order ri . Then the dropoff
location of the taxi trip record is used to set the destination ei of
the ride order. Thus, there are 282,255 riders in our experiments.
For the pickup deadline τi of rider ri , we configure it by adding a
uniform random noise τ ′ ∈ [1, 10] and a base pickup waiting time τ
(configured with the setting in Table 2) to the posting timestamp ti
(e.g., τi = ti + τ

′ + τ). To initialize the origin locations of drivers at
the beginning timestamp 0, we first randomly select a set of order
records and use their pick-up locations as the origin locations of
drivers. The number of drivers are configured as the parameter n in
Table 2 from 1K to 5K. The whole space of New York City area (i.e.,
−73.77°∼−74.03°, 40.58°∼40.92°) is evenly divide into 16×16 grids.

In our experiment, we run the batch process every time period ∆.
To estimate the arrival rate of new riders and rejoined drivers, we
look up a time window of length tc with the “current” timestamp t̄
as the beginning time of the time window.

6.3 Approaches and Measurements
We conduct experiments to evaluate the effectiveness and efficiency
of our queueing-theoretic vehicle dispatching framework with two
batch processing vehicle dispatching algorithms, namely idle ratio
oriented greedy (IRG) and local search (LS), in terms of the total
revenue and the average batch running time. Note that, we set the
parameter α as 1, such that the total revenue is equal to the total
serving time (e.g., the total travel cost of served ride orders).

Specifically, for IRG (or LS) we can further have two different
combinations: IRG-P and IRG-R (or LS-P and LS-R), which use the
predicted taxi demand and the real taxi demand, respectively. In
addition, we also compare our approaches with three baseline meth-
ods: (1) long trip greedy (LTG), which greedily assigns orders with
the highest revenue to available taxis; (2) nearest trip greedy (NEAR),
which greedily assigns the nearest order to each available taxi; (3)
random (RAND), which randomly assigns orders to available taxis.
We also compare our methods with the state-of-the-art solution,
POLAR [26], on car-hailing problem, which utilizes the predicted
number of orders and drivers to conduct an offline bipartite match-
ing first, then uses the offline result as a blueprint to guide the
online task matching. In addition, we report the upper bound (UP-
PER) by summing up the revenue of the most expensive orders that
can be served by idle drivers ignoring their pick-up distances in
each batch. Our framework can also handle the target of maximiz-
ing the number of total served orders through modifying IRG to

2185

Table 2: Experimental Settings.

Parameters Values

the number, n, of drivers 1K, 2K, 3K, 4K, 5K
base pickup waiting time, τ (seconds) 60, 120, 180, 240, 300
the length of batch interval, ∆ (seconds) 3, 5, 10, 20, 30
the length of time window, tc (minutes) 5, 10, 15, 20, 40, 60, 80, 100

Table 3: Results of the Estimated Idle Time

#Drivers MAE (s) RMSE (%) Real RMSE (s)
1K 2.12 5.02 8.73
2K 1.89 4.76 6.89
3K 1.78 4.53 4.43
4K 2.04 5.11 7.04
5K 2.22 5.47 11.24
6K 2.54 5.93 13.81
7K 3.20 6.45 26.39
8K 4.34 7.43 44.43

select the order with the smallest summation of its travel cost and
expected idle time in each iteration. Due to space limitation, please
refer to Appendix C of our technical report [9] for more details of
maximizing the number of total served orders.

Table 2 shows the settings of our experiments, where the default
values of parameters are in bold font. In each set of experiments,
we vary one of the parameters and keep other parameters in their
default values. For each experiment, we run the tested approaches
on 10 different generated problem instances and report their average
total revenues and average batch processing times for a whole day
(from 00:00:00 to 23:59:59). All our experiments are conducted on
an Intel Xeon X5675 CPU @3.07 GHZ with 32 GB RAM in Java.
The code of our queueing-theoretic vehicle dispatching framework
and prediction methods can be accessed in our github project [3].

6.4 Results of the Estimated Idle Time
In this section, we evaluate the accuracy of our queueing theoretic
model on estimating the idle time of the drivers after finishing their
assigned tasks. To show the results, we vary the number of drivers
from 1K to 8K and keep the other parameters in their default values
as shown in Table 2. We report the mean average error (MAE),
relative root mean square error (RMSE) and real root mean square
error (Real RMSE) of our estimated waiting time periods of drivers
compared with their real waiting time periods in Table 3.

From the results, we find that our queueing theoretic model can
achieve good estimated idle time periods of the drivers after fin-
ishing their assigned tasks. When the number of drivers increases
from 1K to 8K, the MAE, RMSE and real RMSE first decrease then
increase. The reason is that our default batch interval is 3 sec-
onds, when the number of drivers is 1K, the drivers can almost
immediately receive new task after they finish their assigned tasks.
However, due to the batch process, they need to wait until next
batch process, which in fact leads to the major difference between
the estimated waiting time periods and the real ones. When the
number of drivers increases from 1K to 4K, more and more drivers
needs to wait for a while to receive a new task after they finish their
last tasks. Then the estimation errors caused by the batch processes
become tiny. When the number of drivers continues increasing
from 4K to 8K, the idle time of drivers also increases obviously. The

(a) Predicted Idle Time (b) Real Idle Time

Figure 6: Comparison of Predicted and Real Idle Time.

MAE and real RMSE of the results of our queueing theoretic model
also increases obviously, however the relative RMSE only increases
2.32%, which shows that our estimation model is accurate. Figure
6(a) shows the predicted idle times for each regions achieved by
our queueing theoretic model, which is very close to the real idle
times of drivers (shown in Figure 6(b)) during the running of our
vehicle dispatching framework.

6.5 Effects of the Prediction Methods
In this section, we evaluate the effects of prediction methods for
three prediction related approaches, POLAR, IRG and LS. Table 4
shows the achieved total revenue of three prediction related ap-
proaches with default parameters (in Table 2) by using different
prediction methods (introduced in Section 3.1.1). From the results,
we can find that: a) the more accurate the prediction method is, the
higher total revenue that each approach can achieve; b) LS is the
best approach on utilizing the prediction information to improve
the total revenue.

Table 4: Results of Effects of Prediction Methods (108)

HA LR GBRT DeepST Real
IRG 2.2460 2.3203 2.3446 2.3756 2.3899
LS 2.2921 2.3725 2.4267 2.4625 2.4727

POLAR 2.0460 2.2293 2.2767 2.2953 2.3285

6.6 Experimental Results of Vehicle
Dispatching Approaches

In this section, we show the effects of the number, n, of drivers, the
base pickup waiting time τ , the length, ∆, of batch interval, and the
length, tc , of time window to estimate the arrival rates of riders
and rejoined drivers.
Effect of the Number, n, of Drivers. Figure 7 illustrates the ex-
perimental results on varying the number of drivers from 1K to 5K,
where other parameters are in their default values. In Figure 7(a),
when the number of drivers increases from 1K to 5K, all the tested
approaches can achieve results with increasing total revenue. The
reason is that when more drivers are available, more riders can be
served before their pickup deadlines. When the number of drivers
is 1K, our IRG and LS approaches can achieve higher total revenue
than RAND, LTG, NEAR and POLAR. The difference between the
results of our IRG and LS are small. When the number of drivers
increases, the advantage of our IRG and LS in terms of the total
revenue become narrow. We also notice that when the number of

2186

1K 2K 3K 4K 5K

n

0.5

1

1.5

2

2.5

3

T
o
ta

l
R

e
v
e
n
u
e

10
8

(a) Total Revenue

1K 2K 3K 4K 5K

n

0

1

2

3

4

B
a
tc

h
 R

u
n
n
in

g
 T

im
e
 (

s
)

(b) Batch Running Time

Figure 7: Effects of Number of Drivers n.

3 5 10 20 30
2.25

2.3

2.35

2.4

2.45

2.5

T
o
ta

l
R

e
v
e
n
u
e

10
8

(a) Total Revenue

3 5 10 20 30
0

1

2

3

4

B
a
tc

h
 R

u
n
n
in

g
 T

im
e
 (

s
)

(b) Batch Running Time

Figure 8: Effects of Batch Length ∆.

drivers reaches 5K, all the tested approaches can achieve results
with total revenue close to the upper bound. The reason is that
when there are 5K drivers, almost all the riders can be served as
long as he/she joins the platform. Our LS can achieve from 78.1%
to 92.0% of the upper bound revenue when the number of drivers
increases from 1K to 5K. To clearly show the differences between
the total revenues of our tested approaches, we will not plot out the
results of UPPER as they are always same with the results in Figure
7(a). In Figure 7(b), when the number of drivers increases, the batch
running time of all the tested approaches also increases slightly,
which is because in each batch there are more drivers requiring
more time to process. We can see that all the tested approaches
can finish each batch processing within 2 seconds, which is unno-
ticeable to the users and acceptable for the batch processes with
3-second intervals.
Effect of the Length, ∆, of Batch Interval. Figure 8 shows the
experimental results on varying the length, ∆, of the batch interval
from 3 to 30 seconds, while other parameters are set to their default
values. As shown in Figure 8(a), when the length,∆, of batch interval
increases from 3 to 30 seconds, the total revenues of the results
achieved by the tested approaches decrease slightly. The reason is
that when the length of the batch interval increases, more riders
may bemissed before their pickup deadlines within two consecutive
batches. In other words, when ∆ increases, the probability of a rider
becomes time out will increase during the batch intervals, when the
platform does not respond to any riders or drivers. Another reason
is that when drivers become available, they also need to wait for the
next batch to be assigned with new riders, which also leads to the
bad effect on the total revenue. Thus, in real applications, ∆ should
not be too large. In addition, we notice that our IRG-P and LS-P can
achieve higher total revenues than RAND, LTG, NEAR and POLAR.

5 10 15 20 40 60 80 100

t
c

2.25

2.3

2.35

2.4

2.45

2.5

T
o
ta

l
R

e
v
e
n
u
e

10
8

(a) Total Revenue

5 10 15 20 40 60 80 100

t
c

0

1

2

3

4

B
a
tc

h
 R

u
n
n
in

g
 T

im
e
 (

s
)

(b) Batch Running Time

Figure 9: Effects of Time Window tc .

60 120 180 240 300
2.25

2.3

2.35

2.4

2.45

2.5

T
o
ta

l
R

e
v
e
n
u
e

10
8

(a) Total Revenue

60 120 180 240 300
0

1

2

3

4

B
a
tc

h
 R

u
n
n
in

g
 T

im
e
 (

s
)

(b) Batch Running Time

Figure 10: Effects of Base Waiting Time τ .

We find that when we use the ground truth of the taxi demand
for our IRG-R and LS-R algorithms, they can achieve higher total
revenues than IRG-P and LS-P, which shows the importance of the
accuracy of the taxi demand methods. In other words, for the real
applications, a more accurate prediction model can bring increases
on the total revenue. In Figure 8(b), the batch running time of the
tested approaches slightly increases, since the number of riders and
drivers for each batch will increase when ∆ increases.
Effect of the Length, tc , of TimeWindow. Figure 9 presents the
experimental results on varying the length tc of time window on
estimating the arrival rate of new riders and rejoined drivers. In
Figure 9(a), the total revenue achieved by IRG and LS will decrease
when tc becomes larger than 20 minutes. The reason is that most
taxi trips in NYC taxi trip dataset have a travel time of less than 20
minutes [12]. The effect of future rejoined drivers in more than 20
minutes later is almost neglectable for our IRG and LS algorithms.
However, when tc becomes 40 minutes, POLAR can perform better
than itself in the experiment of tc smaller than 20 minutes. Thus,
in real platform, tc should not be too large. Since RAND and LTG
do not consider the demand and supply of the taxis in future, the
length, tc , of time window has no effect on them. In Figure 9(b), tc
has no clear effect on the running time of our tested approaches.
Effect of the BaseWaiting Time τ . Figure 10 illustrates the effect
of the waiting time τ of riders by varying τ from 60 to 300 seconds
while keeping other parameters in their default values. In Figure
10(a), when the waiting time of riders τ increases, the total revenue
of the results achieved by our tested approaches also increases. The
reason is that when riders can wait for longer time, the probability
that they can be served by some drivers will increase, which is
consistent with human intuition. With the help of ground truth of
the taxi demand (more accurate than our predicted demand), LS-R

2187

can achieve slightly higher total revenue than LS-P. IRG, LS and
their variants can all surpass RAND, LTG, NEAR and POLAR. In
Figure 10(b), the batch running time of tested approaches increases
slightly when the waiting time of riders increases. The reason is that
when riders can wait for longer time and the number of drivers does
not change, the number of riders in each batch will also increase,
which leads to the processing time of each batch becomes longer.

In summary, LS and IRG can perform better than RAND, LTG,
NEAR and POLAR in terms of total revenue. Our proposed algo-
rithms are more effective when the number of drivers is smaller
(e.g., 1K drivers our in experiments). The accuracy of taxi demand
prediction method can affect the final results on the total revenue.
Thus, taxi demand prediction models with higher accuracy are
more valuable for the platform. Our framework is efficient. In all
the experiments, the running time of each batch for all the tested ap-
proaches is less than 2 seconds, which is affordable for the platform
to perform a batch process with 3 seconds for each batch interval.

7 RELATEDWORK
Recently, online car-hailing platforms develops rapidly, which has
drawn attention from academia and industry.

Our MRVD problem is related to task assignment in spatial
crowdsourcing [10, 11, 20, 26], which assign a set of workers to
the locations of tasks to conduct subject to various constraints
and optimization goals. However, in our MRVD problem, each or-
der has a pickup location and a destination, while each task in
spatial crowdsourcing usually has only one required location. In
[20], based on the publishing models, the authors classified the
spatial crowdsourcing in two modes: worker selected task (WST)
mode [17] and server assigned tasks (SAT) mdoe [10, 11, 26]. In
WST mode, workers select tasks by themselves. In SAT mode, the
server/system has the control on assign tasks to workers base on
its objectives. In SAT mode, there are two processing styles: online
task assignment mode [26] and batch-based task assignment mode
[10, 11, 20]. Recently, researchers start to utilize the prediction
models to predict the future distributions of workers and tasks to
improve the overall performance in a relatively long time period
(e.g., 1 day). For instance, researchers build an offline blueprint
based on the predicted distributions of workers and tasks, then use
it to guide the online task assignment to maximize the total number
of assigned tasks [26]. Our MRVD targets on maximizing the total
revenue of the platform, which cannot apply existing solutions di-
rectly. Thus, we develop our queueing theoretic framework, which
uses queueing theory to estimate the idle time of drivers based on
the predicted number of orders and drivers in each region.

OurMRVD problem is also related to dial-a-ride problem (DARP),
which assume a fleet of vehicles located at a common depot, and
schedules should be made to accommodatem rider requests based
on their pick-up and drop-off time constraint. Existing works on
DARP have mainly focused on static offline DARP, where the con-
straints are known beforehand. The general DARP is NP-hard and
intractable, unless its scale is not big (e.g., hundreds of vehicles and
riders) [14]. [15] uses a heuristic method called tabu search to find
the neighbourhood solution from current solution, to avoid find-
ing cycle result and local optimum, they forbid the recent visited
answers and use some diversification mechanism.

With the emergence of ridesharing business, many riders prefer
choosing the ridesharing service, as it is cheaper than non-share
car request with limited time delay. The authors [12] designs a
algorithm to dispatch the similar rider to the same car with a goal
of maximizing the total utility, which includes the rider related
utility, vehicle-related utility and trajectory-related utility. In [31],
the authors propose a packing-based approach, which first packs
the riders together then assigns groups of riders to vehicles. To solve
the scheduling problem for a vehicle with a set of assigned riders,
authors in [27] propose a linear time complex method. However,
ridesharing mainly focuses on scheduling and solving conflicts of
route-sharable riders to vehicles, which is different from MRVD.

In addition, traffic prediction is also a critical technology in
urban city transportation scenario. With accurate prediction, we
can foresee the future and make plan to fulfill the long time revenue.
There are many models which focusing on predicting the number
of orders in the next time slot by integrating temporal and spatial
information. [29] proposes a Deep ST model which combines the
geographical and historical traffic data together, to decrease the
difference between estimated traffic flow number and actual count.
With the powerful deep convolutional neural network and rich
daily meta data (e.g., holiday and weather), they get the state of art
prediction results.

8 CONCLUSION
In this paper, we study the problem of maximum revenue vehicle
dispatching problem (MRVD), in which rider requests dynamically
arrive and drivers need to serve as many riders as possible such that
the entire revenue of the platform is maximized. We prove that the
MRVD problem is NP-hard and intractable. Through analyses, we
find to maximize the total revenue, we need to give higher priorities
to ride orders with long travel cost and less idle time. We propose
a queueing-theoretic framework, which predicts the taxi demand
(rider orders) offline and schedule the drivers to regions where the
idle time of them will be small. Our framework dispatching drivers
to riders in a batch-based processing for every ∆ seconds. To handle
the batch vehicle dispatching problem, we propose two heuristic
approaches, namely idle ratio oriented greedy (IRG) and local search
(LS). Through experiments on the real and synthetic data sets, we
show the effectiveness and efficiency of our queueing-theoretic
vehicle dispatching framework.

ACKNOWLEDGMENTS
Lei Chen’s work is partially supported by National Key Research
and Development Program of China Grant No. 2018AAA0101100,
the Hong Kong RGC GRF Project 16202218, CRF Project C6030-18G,
C1031-18G, C5026-18G, AOE Project AoE/E-603/18, Theme-based
project TRS T41-603/20R, China NSFCNo. 61729201, Guangdong Ba-
sic and Applied Basic Research Foundation 2019B151530001, Hong
Kong ITC ITF grants ITS/044/18FX and ITS/470/18FX, Microsoft Re-
search Asia Collaborative Research Grant, HKUST-NAVER/LINE AI
Lab, Didi-HKUST joint research lab, HKUST-Webank joint research
lab grants. Peng Cheng’s work is sponsored by Shanghai Pujiang
Program 19PJ1403300. Xuemin Lin’s work is supported by ARC
DP200101338. Libin Zheng’s work is supported by the Fundamental
Research Funds for the Central Universities, Sun Yat-sen University.

2188

REFERENCES
[1] 2021. [Online] DiDi Chuxing. https://www.didichuxing.com.
[2] 2021. [Online] NYC Taxi & Limousine Commission Trip Record Data. http:

//www.nyc.gov/html/tlc/html/about/trip_record_data.shtml.
[3] 2021. [Online] Source Code of Queueing-Theoretic Vehicle Dispatching Frame-

work. https://github.com/inabao/queue-based-order-dispatching.
[4] 2021. [Online] Taxicab Passenger Enhancements Project. http://www.nyc.gov/

html/tlc/html/industry/taxicab_serv_enh.shtml.
[5] 2021. [Online] Uber. https://www.uber.com.
[6] Siddhartha Banerjee, Ramesh Johari, and Carlos Riquelme. 2016. Dynamic pricing

in ridesharing platforms. ACM SIGecom Exchanges 15, 1 (2016), 65–70.
[7] Nikhil Bansal, Avrim Blum, Shuchi Chawla, and Adam Meyerson. 2004. Approxi-

mation algorithms for deadline-TSP and vehicle routing with time-windows. In
Proceedings of the thirty-sixth annual ACM symposium on Theory of computing.
166–174.

[8] Peng Cheng, Chao Feng, Lei Chen, and Zheng Wang. 2019. A queueing-theoretic
framework for vehicle dispatching in dynamic car-hailing. In 2019 IEEE 35th
International Conference on Data Engineering (ICDE). IEEE, 1622–1625.

[9] Peng Cheng, Jiabao Jin, Lei Chen, Xuemin Lin, and Libin Zheng. 2021. A queueing-
theoretic framework for vehicle dispatching in dynamic car-hailing [technical
report]. arXiv preprint arXiv:2107.08662 (2021).

[10] Peng Cheng, Xiang Lian, Lei Chen, Jinsong Han, and Jizhong Zhao. 2016. Task
assignment on multi-skill oriented spatial crowdsourcing. IEEE Transactions on
Knowledge and Data Engineering 28, 8 (2016), 2201–2215.

[11] Peng Cheng, Xiang Lian, Zhao Chen, Rui Fu, Lei Chen, Jinsong Han, and Jizhong
Zhao. 2015. Reliable diversity-based spatial crowdsourcing by moving workers.
Proceedings of the VLDB Endowment 8, 10 (2015), 1022–1033.

[12] Peng Cheng, Hao Xin, and Lei Chen. 2017. Utility-aware ridesharing on road
networks. In Proceedings of the 2017 ACM International Conference on Management
of Data. ACM, 1197–1210.

[13] Jing Chu, Kun Qian, Xu Wang, Lina Yao, Fu Xiao, Jianbo Li, Xin Miao, and Zheng
Yang. 2018. Passenger Demand Prediction with Cellular Footprints. In 2018 15th
Annual IEEE International Conference on Sensing, Communication, and Networking
(SECON). IEEE, 1–9.

[14] Jean-François Cordeau. 2006. A branch-and-cut algorithm for the dial-a-ride
problem. Operations Research 54, 3 (2006), 573–586.

[15] Jean-François Cordeau and Gilbert Laporte. 2003. A tabu search heuristic for
the static multi-vehicle dial-a-ride problem. Transportation Research Part B:
Methodological 37, 6 (2003), 579–594.

[16] Noel Cressie and Christopher K Wikle. 2015. Statistics for spatio-temporal data.
John Wiley & Sons.

[17] Dingxiong Deng, Cyrus Shahabi, and Ugur Demiryurek. 2013. Maximizing the
number of worker’s self-selected tasks in spatial crowdsourcing. In Proceedings
of the 21st acm sigspatial international conference on advances in geographic
information systems. 324–333.

[18] Jerome H Friedman. 2002. Stochastic gradient boosting. Computational Statistics
& Data Analysis 38, 4 (2002), 367–378.

[19] Priscilla E Greenwood and Michael S Nikulin. 1996. A guide to chi-squared testing.
Vol. 280. John Wiley & Sons.

[20] Leyla Kazemi and Cyrus Shahabi. 2012. Geocrowd: enabling query answering
with spatial crowdsourcing. In Proceedings of the 20th international conference on
advances in geographic information systems. ACM, 189–198.

[21] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifica-
tion with deep convolutional neural networks. In Advances in neural information
processing systems. 1097–1105.

[22] Yexin Li, Yu Zheng, Huichu Zhang, and Lei Chen. 2015. Traffic prediction in a bike-
sharing system. In Proceedings of the 23rd SIGSPATIAL International Conference
on Advances in Geographic Information Systems. ACM, 33.

[23] Kiam Tian Seow, Nam Hai Dang, and Der-Horng Lee. 2010. A collaborative
multiagent taxi-dispatch system. IEEE Transactions on Automation Science and
Engineering 7, 3 (2010), 607–616.

[24] John F Shortle, James M Thompson, Donald Gross, and Carl M Harris. 2018.
Fundamentals of queueing theory. Vol. 399. John Wiley & Sons.

[25] Yongxin Tong, Jieying She, Bolin Ding, Lei Chen, Tianyu Wo, and Ke Xu. 2016.
Online minimum matching in real-time spatial data: experiments and analysis.
Proceedings of the VLDB Endowment 9, 12 (2016), 1053–1064.

[26] Yongxin Tong, Libin Wang, Zhou Zimu, Bolin Ding, Lei Chen, Jieping Ye, and Ke
Xu. 2017. Flexible online task assignment in real-time spatial data. Proceedings of
the VLDB Endowment 10, 11 (2017), 1334–1345.

[27] Yongxin Tong, Yuxiang Zeng, Zimu Zhou, Lei Chen, Jieping Ye, and Ke Xu. 2018.
A unified approach to route planning for shared mobility. Proceedings of the
VLDB Endowment 11, 11 (2018), 1633–1646.

[28] Xingang Wen, Yinfeng Xu, and Huili Zhang. 2012. Online Traveling Salesman
Problem with Deadline and Advanced Information. Comput. Ind. Eng. 63, 4 (Dec.
2012), 1048âĂŞ1053.

[29] Junbo Zhang, Yu Zheng, and Dekang Qi. 2017. Deep Spatio-Temporal Residual
Networks for Citywide Crowd Flows Prediction. (2017), 1655–1661.

[30] Junbo Zhang, Yu Zheng, Dekang Qi, Ruiyuan Li, and Xiuwen Yi. 2016. DNN-
based prediction model for spatio-temporal data. In Proceedings of the 24th ACM
SIGSPATIAL International Conference on Advances in Geographic Information
Systems. ACM, 92.

[31] Libin Zheng, Lei Chen, and Jieping Ye. 2018. Order dispatch in price-aware
ridesharing. Proceedings of the VLDB Endowment 11, 8 (2018), 853–865.

2189

https://www.didichuxing.com
http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml
http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml
https://github.com/inabao/queue-based-order-dispatching
http://www.nyc.gov/html/tlc/html/industry/taxicab_serv_enh.shtml
http://www.nyc.gov/html/tlc/html/industry/taxicab_serv_enh.shtml
https://www.uber.com

