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ABSTRACT

Shortest path computation is a building block of various network

applications. Since real-life networks evolve as time passes, the

Dynamic Shortest Path (DSP) problem has drawn lots of attention in

recent years. However, as DSP has many factors related to network

topology, update patterns, and query characteristics, existing works

only test their algorithms on limited situations without sufficient

comparisons with other approaches. Thus, it is still hard to choose

the most suitable method in practice. To this end, we first identify

the determinant dimensions and constraint dimensions of the DSP

problem and create a complete problem space to cover all possi-

ble situations. Then we evaluate the state-of-the-art DSP methods

under the same implementation standard and test them system-

atically under a set of synthetic dynamic networks. Furthermore,

we propose the concept of dynamic degree to classify the dynamic

environments and use throughput to evaluate their performance.

These results can serve as a guideline to find the best solution for

each situation during system implementation and also identify re-

search opportunities. Finally, we validate our findings on real-life

dynamic networks.
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1 INTRODUCTION

The Shortest Path (SP) query is a fundamental operation on various

network related applications such as route planning in road net-

works [5], influential community search and privacy protection in

social networks [27], link analysis in web graphs and more. Given

an Origin and Destination (OD) pair, a SP returns the path of mini-

mum cost between them, where the cost can be distance, travel time,

closeness, proximity, similarity, etc. Figure 1-(a) demonstrates an ex-

ample of SP from 𝐴 to 𝐶 . SP is the building blocking of many other

operations like k Nearest Neighbors (kNN) [66], Top-k Shortest Path

(KSP) [59], Shortest Path Counting (SPC) [42], Constraint Shortest

Path (CSP) [35] and so on. As a result of these applications, SP has

been extensively studied [1, 2, 6, 11, 14, 16ś19, 21ś24, 37, 38, 43, 45ś

48, 51, 54, 60, 67].
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(a) Static Graph 𝐺𝑠𝑝 𝐴, 𝐶 = 𝐴 → 𝐷 → 𝐸 → 𝐶
with shortest distance 6

(d) Graph 𝐺 at time 𝑡3𝑠𝑝 𝐴, 𝐶 = 𝐴 → 𝐵 → 𝐷 → 𝐹 → 𝐶
with shortest distance 5

(c) Graph 𝐺 at time 𝑡2𝑠𝑝 𝐴, 𝐶 = 𝐴 → 𝐹 → 𝐶
with shortest distance 5

(b) Graph 𝐺 at time 𝑡1𝑠𝑝 𝐴, 𝐶 = 𝐴 → 𝐷 → 𝐹 → 𝐶
with shortest distance 6

Figure 1: Example of SP and DSP

Real-life networks often evolve over time in terms of both topol-

ogy and weight. For example, the proximity between two users

may change in social networks because of their activities (likes,

followers, tags, reposts, etc.), and the travel time changes in road

networks because of traffic volumes or road construction. Therefore,

Dynamic Shortest Path (DSP) computation is of great importance in

practical applications. Figure 1-(b) to (d) shows an example of DSP.

Although it is a special case of SP, it gives an example that many

existing SP algorithms are hard to adapt to dynamic situations. Due

to its significant practical value, DSP has been actively investigated

recently. We classify the corresponding algorithms into four cat-

egories: 1) Direct Search methods, such as 𝐴∗ [21] and Dijkstra’s

[11, 56], which calculate the shortest path by traversing graphs

directly in a Best-First Search (BFS) manner. Their independence

from using auxiliary information endows them with flexible adap-

tion to dynamics, while on the other hand makes them inefficient

in query processing because they have to find paths from scratch.

2) Cache-based approaches like Local Cache [31, 64] and Global

Cache [50] that accelerate the query answering by caching previ-

ously answered shortest paths. Their boost on query processing

efficiency comes with some extra overhead and could be vulnerable

to query distribution since the query efficiency is proportional to

both cache size and hit ratio; 3) Contraction Hierarchy (CH)-based

algorithms and 4) Hub Labeling (HL)-based algorithms resort to

index maintenance to adapt to dynamics. The adoption of an index

guarantees efficient query answering, but the index maintenance is

complicated and time-consuming.

Specifically, CH -based update methods include vertex-centric

[16] and shortcut-centric [39, 55] techniques: the vertex-centric al-

gorithm first identifies the affected vertex and then re-contracts

them following the vertex order such that all the invalid shortcuts

can be updated; the shortcut-centric algorithm decides the shortcut

update order by exploring the shortcut priority and then maintains

the shortcut value by keeping the corresponding property.

HL-based update methods contain both search-based and propaga

tion-based approaches. [3, 10, 44] take Pruned Landmark Labeling

(PLL) [2] as the underlying index and maintain correctness through

the graph search, which is essentially maintaining multiple shortest

2127

https://doi.org/10.14778/3476249.3476267
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3476249.3476267


Query Time

Construction Time

Update Time

𝑂(𝑚𝑎𝑥(|𝐿|))𝑂 𝑛 log 𝑛 + 𝑚

0

Ω(𝑛𝑚!/#)

Direct Search Cache CH

0

Storage Overhead

HL

0

𝑛: Vertex Number 𝑚: Edge Number |𝐿|: Label Set Size

Figure 2: Comparison of DSP Algorithms

path trees. [62, 65] take PLL and Hierarchical Labeling (H2H ) [38] as

the underlying indexes and correct label values by propagating the

affected labels to its neighbors. Even though these index mainte-

nance methods perform well in query processing and can make the

index łdynamic", they require additional memory because of index

storage and time for index maintenance. In summary, these four

categories of approaches have respective advantages and disadvan-

tages. These approaches are compared in terms of their storage

overhead, index construction time, query processing time and index

update time in Figure 2.

Motivation and Contributions: Although these four types of

algorithms are all applicable to dynamic scenarios, they all have

their own pros and cons, such that we cannot find one method that

is optimal for all circumstances. For instance, HL is fast for query

answering but suffers from slow update while the Direct Search is

the opposite. However, in each of the original papers, these meth-

ods were only tested in a very limited number of situations, such

that the proposed one outperforms the others, while other sce-

narios are ignored. For example, H2H [38, 62] is very fast in road

networks but is barely tested in other networks. Moreover, the tra-

ditional łconstruction time", łupdate time," and łquery time" metrics

can only reveal the performance without environment considera-

tion. In other words, the existing papers are all algorithm-oriented

but not problem-oriented. Consequently, without investigating the

properties of dynamic networks, it is still unclear which method

to use when facing complicated real-world scenarios. Finally, most

of the DSP algorithms were proposed for unweighted graphs and

claimed to be extended trivially to weighted graphs. However, their

performance deteriorates dramatically during this conversion, and

such phenomenon has been overlooked for a long time. To the best

of our knowledge, the benchmark evaluations only exist in static

networks [34, 56], so we aim to conduct a series of well-designed

benchmark experiments to evaluate all DSP algorithms and provide

insights and guidances towards real-world systems implementation.

We first provide a brief but insightful review of all the DSP

algorithms to compare them theoretically and reveal their relations

comprehensively. More importantly, we identify and explain the

Curse of Increase Update that was hidden by either unweighted or

small tree-width graphs in their existing works. It is this curse that

causes the increase updates to either need more searches or more

pre-computed information, which limits their scalability.

We then identify the following influential dimensions of dynamic

networks: i) Graph Topology such as size, average degree, structure,

and degree distribution are determinate dimensions of a network

that have a profound influence on index construction, size and

maintenance; ii)Update Frequency andUpdate Volume determine the

index unavailability period, which index-free methods are immune

to. We call them constraint dimensions that determines a networks

dynamic environment; iii) Query Amount and Query Frequency

are another type of constraint dimensions that determines if the

current system can satisfy the application need. By combining these

dimensions, we can obtain a complete problem space to describe

all possible real-world scenarios.

After that, we delicately design a set of synthetic dynamic net-

work environments according to our problem space under different

parameters and systematically test the DSP algorithms. To have a

deeper understanding of how each algorithm performs in different

environments, we design a series of dynamic degree-based environ-

ments and compare their throughputs. In this way, we can identify

the most suitable situation for each method. More importantly, for

each situation, we can also obtain its current most suitable DSP

method, which serves as a guideline for system implementation.

Whilst the most suitable solution might still not be satisfactory for

some situations, these results help to identify new problems and

also serve as a guideline for future research. Finally, we use several

real-life dynamic networks to test the above guidelines and validate

their effectiveness.

Our contributions are summarized below:

• We identify the dimensions of the dynamic path finding prob-

lem space to model all real-life scenarios and propose a dy-

namic degree-based environment classification and through-

put-based performance measurement to evaluate the actual

performance.

• We present a comprehensive and insightful review of DSP

algorithms to compare them in theory, and identify the curse

of increase update.

• We conduct benchmark tests on all DSP algorithms to find

the best method for each situation, which serves as the guide-

lines for system implementation and research opportunity

identification.

• We conduct experiments on real-life dynamic environments

to validate our guidelines. The source code of our implemen-

tation can be accessed online 1.

The remaining of this paper is organized as follows: We briefly

define DSP problem in Section 2. In Section 3, we review all the ex-

isting DSP techniques. Section 4 discusses DSP problem dimensions

and presents the experimental setups, followed by the experimental

results, analysis and guidelines in Section 5. We discuss DSP related

works in Section 6, followed by a conclusion in Section 7.

2 PRELIMINARIES

In this paper, we focus on a weighted network 𝐺 (𝑉 , 𝐸,𝑊 ) where
𝑉 is the vertex set, 𝐸 is the edge set, and𝑊 → R

+ assigns a non-

negative weight 𝑒 (𝑢, 𝑣) ∈𝑊 to each (𝑢, 𝑣) ∈ 𝐸. For simplicity, we

assume an undirected graph however all the mentioned methods

can be extended to directed graph trivially. In a dynamic graph,

since all the topological evolution can be generalized as edge weight

updates [65], we ignore them in this paper for simplicity and define

the dynamic network as follows:

1https://github.com/MengxuanZhang1/DynamicShortestPath_VLDB21
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Definition 1. (Dynamic Network). In a dynamic network

𝐺𝐷 (𝑉 , 𝐸,𝑊 ), any 𝑒 (𝑢, 𝑣) ∈𝑊 can increase or decrease in the range

of [0,∞] in ad-hoc.

Although the above definition describes the real-life situation

most precisely, we lose control of the dynamic such that we cannot

study its influence in quantity. Therefore, we introduce the Update

Unit 𝛥 = (𝑈 , 𝑡) to discretize the dynamic information, where𝑈 =

{𝑒 (𝑢, 𝑣)} is a set of new edge weights and 𝑡 is the update time. The

unit size |𝑈 | determines the update volume, and the time between

two units 𝛿𝑡 determines the update frequency. 𝐺𝐷 describes the

situation when the future 𝛥 is unknown, while the time-dependent

network is aware of all future 𝛥.

From now on, we refer to 𝐺𝐷 as 𝐺 if the context is clear. We

denote the number of vertices and edges in𝐺 as𝑛 = |𝑉 | and𝑚 = |𝐸 |
respectively. For each vertex 𝑣 ∈ 𝑉 , we represent its neighbors

as 𝑁 (𝑣) = {𝑢 | (𝑣,𝑢) ∈ 𝐸}, and express the vertex degree as the

number of neighbors via 𝑑𝑒𝑔(𝑣) = |𝑁 (𝑣) |. Each vertex 𝑣 ∈ 𝑉 is also

associated with a vertex order 𝑟 (𝑣) indicating its importance in 𝐺 .

A path 𝑝 = ⟨𝑣0, 𝑣1, . . . , 𝑣𝑘 ⟩ ((𝑣𝑖 , 𝑣𝑖+1) ∈ 𝐸, 0 ≤ 𝑖 < 𝑘), is a sequence
of vertices with length of 𝑙 (𝑝) =

∑𝑘−1
𝑖=0 𝑒 (𝑣𝑖 , 𝑣𝑖+1). We denote the

shortest path and shortest distance between 𝑠, 𝑡 as 𝑝 (𝑠, 𝑡) and 𝑑 (𝑠, 𝑡),
respectively. Similar to the network update, we introduce a Query

Set to control the quantity of queries. Given a starting vertex set

𝑆 and a target vertex set 𝑇 , a shortest path query set is denoted as

�̂� = (𝑄, 𝜏), where 𝑄 = {𝑞𝑖 } = {(𝑠𝑖 , 𝑡𝑖 ) |𝑠𝑖 ∈ 𝑆, 𝑡𝑖 ∈ 𝑇 } ⊆ 𝑆 ×𝑇 is a

set of shortest path query issued at time 𝜏 . |𝑄 | represents the query
amount, and 𝛿𝜏 reflects the query frequency.

ProblemDefinition.Given a dynamic network𝐺 with a stream

of updates 𝛥 and stream of queries �̂� , the DSP problem aims to

answer all shortest path queries𝑄𝑖 in �̂�𝑖 after applying the updates

in 𝛥𝑖 to 𝐺 .

3 DSP ALGORITHMS

This section reviews 14 state-of-the-art DSP algorithms from three

categories (Cache is discussed in Section 6.1 because it is a universal

technique to boost all the other three categories). For the algorithms

that were initially proposed for the unweighted graph, we extend

them to the weighted version. We summarize and compare their

complexities in Table 1. Due to the space limit, we omit the detailed

complexity analysis and only show the results with their sources.

3.1 Direct Search Algorithms

The Direct Search algorithms involve no or little precomputed infor-

mation so their construction time, size, and maintenance time are

either 0 or very small. Therefore, they are immune to any dynamic

but are slow at query processing.

3.1.1 Bi-Dijkstra’s Algorithm. Given a shortest path query 𝑞(𝑠, 𝑡),
Bi-Dijkstra’s [56] conducts a forward Dijkstra’s search from 𝑠 on 𝐺

and a backward Dijkstra’s search from 𝑡 on the reversed 𝐺 simul-

taneously, each traverses the vertices in increasing order of their

distances from the source (𝑑𝑓 (𝑣) and 𝑑𝑏 (𝑣) for forward and back-

ward). Suppose𝑑 is the shortest distance ever found. Once a vertex 𝑣

is visited from one search and its neighboring vertex𝑤 has already

been visited reversely, 𝑑 is updated if 𝑑 > 𝑑𝑓 (𝑣) + 𝑒 (𝑣,𝑤) + 𝑑𝑏 (𝑤).
The algorithm terminates once a vertex has been visited in both

searches, and then 𝑑 (𝑠, 𝑡) = 𝑑 is the shortest distance. The Bi-

Dijkstra’s search space consists of two smaller conceptual circles

[5] with the radius sum slightly larger than 𝑑 (𝑠, 𝑡). Therefore, it is
more efficient compared with the Dijkstra’s big conceptual circle

with a radius of 𝑑 (𝑠, 𝑡).

3.1.2 𝐴∗ Algorithm. 𝐴∗ [21] estimates the distanceℎ(𝑣, 𝑡) ≤ 𝑑 (𝑣, 𝑡)
from the current vertex 𝑣 to 𝑡 heuristically and uses 𝑑 (𝑠, 𝑣) +ℎ(𝑣, 𝑡)
as the searching guidance. In this way, it reduces the Dijkstra’s

search space to a smaller conceptual ellipse [5], and the closer

ℎ(𝑣, 𝑡) to 𝑑 (𝑣, 𝑡), the smaller the search space. Although the Eu-

clidean Distance is a widely used heuristic, it requires coordinate

information which does not exist in non-spatial graphs. ALT [18]

can be used on general graphs by pre-computing distances from

some landmarks 𝐿 = {𝑙𝑖 } to all the other vertices and obtaining the

heuristic distance ℎ(𝑣, 𝑡) =𝑚𝑎𝑥{|𝑑 (𝑙𝑖 , 𝑣) − 𝑑 (𝑙𝑖 , 𝑡) |} with triangle-

inequality. Consequently, it needs a set of Dijkstra’s to update the

landmarks when the network changes.

3.2 Dynamic CH Algorithms

This category of methods add shortcuts through graph contrac-

tion and answer queries with the edges and shortcuts, so only the

shortcuts need maintenance.

3.2.1 Graph Contraction, Shortcut, andQuery. The vertices in 𝐺

are contracted one by one in a pre-defined order (suppose lower to

higher). During the contraction, the contracted vertex is removed,

and path information through it is preserved by adding shortcuts

among its neighbors. Specifically, there are two types of vertex

contraction approaches depending on pruning or not:

Contraction with Pruning (CH-P). For the contracted vertex 𝑣 ,

we go through all its neighbor pairs 𝑢,𝑤 ∈ 𝑁𝐺′ (𝑣) in the partial

contracted graph𝐺 ′ and compare the shortest distance 𝑑𝐺′ (𝑢,𝑤)
with the sum of two edges 𝑒 (𝑢, 𝑣) + 𝑒 (𝑣,𝑤). If 𝑑𝐺′ (𝑢,𝑤) is shorter,
then removing 𝑣 would not affect the distance query, so the shortcut

(𝑢,𝑤) is łpruned". Otherwise, we add (as a shortcut) or update

𝑒 (𝑢,𝑤) with weight 𝑒 (𝑢, 𝑣) + 𝑒 (𝑣,𝑤).
Contractionwithout Pruning (CH-W).Different from the previ-

ous method, we do not compute 𝑑𝐺′ (𝑢,𝑤) as it is time-consuming.

Instead, we assign or update 𝑒 (𝑢,𝑤) with 𝑚𝑖𝑛{𝑒 (𝑢, 𝑣) + 𝑒 (𝑣,𝑤),
𝑒 (𝑢,𝑤)} directly. This method is distance-preserving as proved in

[38]. Because it creates shortcuts between each vertex’s all-pairs

neighbors in the contracted graph𝐺 ′, it has the maximum shortcut

number. Although adding a shortcut is extremely fast, the large

shortcut number prohibits it from applicable to graphs with large

treewidth. On the other hand, this densest shortcut set preserves all

possible information, so it requires no search during maintenance.
𝐺
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Figure 3: Graph Contraction Example

Figure 3-(a) is a graph with vertex in increasing order < 𝑣1, 𝑣2, 𝑣3,

𝑣4, 𝑣5, 𝑣6, 𝑣7, 𝑣8 > and Figure 3-(b) is its intermediate CH-P result.
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Table 1: Comparison of DSP Algorithms

Category Algorithm Construction Time Size Maintenance Time Query Time

Direct
Search

Bi-Dijk [56] 0 0 0 𝑂 (𝑛𝑙𝑜𝑔𝑛 +𝑚)
𝐴∗ [18, 21, 63] 𝑂 (𝑛𝑙𝑜𝑔𝑛 +𝑚) 𝑂 (𝑛) 𝑂 (𝑛𝑙𝑜𝑔𝑛 +𝑚) 𝑂 (𝑛𝑙𝑜𝑔𝑛 +𝑚)

Dynamic
CH

DCH-P
[15, 16]

+ 𝑂 (𝑛2𝑙𝑜𝑔𝑛 + 𝑛𝑚 + |𝑃 |𝑛) 𝑂 (𝑛𝑙𝑜𝑔2
√
𝑛 +𝑚 |𝑃 |)

𝑂 (𝛥ℎ · (𝑛𝑙𝑜𝑔𝑛 +𝑚)) 𝑂 (𝑤 log𝑛)
- 𝑂 (𝑛2𝑙𝑜𝑔𝑛 + 𝑛𝑚) 𝑂 (𝑛𝑙𝑜𝑔2

√
𝑛)

DCH-W [39] 𝑂 (𝑛 (𝑤2𝑙𝑜𝑔𝑛)) 𝑂 (𝑛 · 𝑤2) 𝑂 (𝛿𝑤) 𝑂 (𝑤𝑙𝑜𝑔𝑛)
UE [55] 𝑂 (𝑛 (𝑤2𝑙𝑜𝑔𝑛)) 𝑂 (𝑛 · 𝑤2) 𝑂 (𝛿𝑤) 𝑂 (𝑤 log𝑛)

Dynamic
HL

DPLL-S
[3, 10, 44]

+
𝑂 (𝑤𝑚𝑙𝑜𝑔𝑛 + 𝑤2𝑛𝑙𝑜𝑔3𝑛) 𝑂 (𝑤𝑛𝑙𝑜𝑔𝑛) 𝑂 (𝑝′𝑤𝑚 log𝑛 + 𝑝′𝑤2𝑛𝑙𝑜𝑔2𝑛)

𝑂 (𝑤𝑙𝑜𝑔𝑛)
- 𝑂 (𝑤𝑚 log𝑛 + 𝑤2𝑛𝑙𝑜𝑔2𝑛)

DPLL-P
[65]

+
𝑂 (𝑤𝑚𝑙𝑜𝑔𝑛 + 𝑤2𝑛𝑙𝑜𝑔3𝑛) 𝑂 (𝑤𝑛2𝑙𝑜𝑔𝑛)

𝑂 (𝑤𝑚𝑙𝑜𝑔𝑛) 𝑂 (𝑤𝑙𝑜𝑔𝑛)
- 𝑂 (𝑤𝑛𝑙𝑜𝑔𝑛)

DH2H
[62]

+
𝑂 (𝑛 (𝑙𝑜𝑔𝑛 + ℎ · 𝑤)) 𝑂 (𝑛 · 𝑤2 · ℎ) 𝑂 ( (𝛿 + 𝛥ℎ · (𝜏 + 𝑤))𝑤)

𝑂 (𝑤)
- 𝑂 (𝑛 · ℎ + 𝑛 · 𝑤2) 𝑂 ( (𝛿 + 𝛥ℎ)𝑤)

+: Edge weight increase case. −: Edge weight decrease case. UE’s complexities [55] were analysed on grid network with probability, so we use DCH-
W ’s complexity for general graphs as UE is the streaming version of DCH-W. 𝛥ℎ : Affected tree height. |𝑃 |: Witness path number. 𝑤: treewidth. 𝛿 :
Affected shortcut number. 𝜏 : Affected tree node number. 𝑝′: Affected label number / 𝑛.

When we contract 𝑣3, (𝑣4, 𝑣7) is one of its neighbor pairs with

𝑑 (𝑣4, 𝑣7) = 6 < 𝑒 (𝑣3, 𝑣4) + 𝑒 (𝑣3, 𝑣7) = 5 + 3, so we do not insert

shortcut (𝑣4, 𝑣7). However, as shown in (c), CH-W creates shortcut

(𝑣4, 𝑣7) as 𝑒 (𝑣4, 𝑣7) = 8without comparingwith𝑑 (𝑣4, 𝑣7). To answer
a query 𝑞(𝑠, 𝑡), we only need to run a Bi-Dijkstra’s search upwardly

(only visit the neighbors of higher order).

𝑣

𝑢
𝑤

𝑣

𝑢
𝑤

(a) Case 1 (b) Case 2

𝑣!…

𝑢 𝑤

𝑣" …𝑣#

(c) Support Vertices

Figure 4: CH Update Examples

3.2.2 Shortcut Update. Updating shortcuts is essentially avoiding

the follow lemma:

Lemma 1. (CH Incorrectness Condition): If 𝑒 (𝑢, 𝑣) +𝑒 (𝑣,𝑤) <
𝑑𝐺′ (𝑢,𝑤) on the partial contracted graph, but no shortcut (𝑢,𝑤)
exists, then we cannot find the correct 𝑑 (𝑢,𝑤).

Depending on which contraction type was used in construction,

we have the following two types of updates:

Vertex-based Update. For the shortcuts added by CH-P, we

need to keep the shortcuts satisfying the shortest distance con-

straint, so we have to re-contract the influenced vertices. DCH-P

[16] first identifies the affected vertices by a DFS, then the pruned

vertex contraction is applied to each affected vertex following the

original order. Since it imitates the index construction procedure

to update shortcuts, it suffers from high maintenance costs.

For the weight decrease update, there are two cases as shown in

Figure 4-(a) and (b): a) 𝑒 (𝑢, 𝑣) decreases could affect the shortcut

(𝑢,𝑤). If 𝑒 (𝑢,𝑤) was created by (𝑢, 𝑣) and (𝑣,𝑤), then we update

𝑒 (𝑢,𝑤) to the new value; If there is no shortcut (𝑢,𝑤), then a re-

search from 𝑢 to𝑤 is required to decide if a new shortcut is needed.

b) The decrease could also make a shortest path 𝑝 (𝑢,𝑤) shorter.
If it pruned the shortcut (𝑢,𝑤), then (𝑢,𝑤) is still not needed be-

cause 𝑑𝐺′ (𝑢,𝑤) is still shorter; If it did not prune (𝑢,𝑤) but now
𝑑𝐺′ (𝑢,𝑤) < 𝑒 (𝑢,𝑤), we can just leave (𝑢,𝑤) as it is because it

becomes a redundant shortcut like CH-W.

The weight increase case is more complicated because it may get

caught by Lemma 1. Similar to the decrease, we also divide it in to

two cases: a) If shortcut (𝑢,𝑤) does not exist, then the increase of

𝑒 (𝑢, 𝑣) also could not create (𝑢,𝑤); If shortcut (𝑢,𝑤) was created by
(𝑢, 𝑣) and (𝑣,𝑤), then increasing the shortcut value won’t affect the

correctness. b) The increase could make a shortest path 𝑑𝐺′ (𝑢,𝑤)
longer. If a shortcut (𝑢,𝑤) exists, then this increase would not affect
it. If a shortcut (𝑢,𝑤) did not exist, then it was pruned by a shortest

path 𝑝𝐺′ (𝑢,𝑤) because 𝑒 (𝑢, 𝑣) + 𝑒 (𝑣,𝑤) > 𝑑𝐺′ (𝑢,𝑤), and 𝑝𝐺′ (𝑢,𝑤)
is called a witness path. Now that 𝑑𝐺′ (𝑢,𝑤) increases, there is a

chance that 𝑒 (𝑢, 𝑣) + 𝑒 (𝑣,𝑤) is shorter than the new 𝑑𝐺′ (𝑢,𝑤), so a

shortcut (𝑢,𝑤) is needed to guarantee the correctness. However,

we do not know which non-existing shortcut is affected so it may

fall into the case of Lemma 1. To help identify the affected shortcuts,

[16] stores the witness paths for all edges, which inflates the index

size. We will discuss this phenomenon in Section 3.4.

Shortcut-based Update. For the shortcuts added by CH-W, al-

though they have the densest shortcut set, they enjoy the structure

intactness property, which avoids any shortcut insertion or deletion

during maintenance, but only requires updating the shortcut values.

In the decrease case when 𝑒 (𝑢, 𝑣) decreases as shown in Figure 4-(a),
we update 𝑒 (𝑢,𝑤) to 𝑒 (𝑢, 𝑣) + 𝑒 (𝑤, 𝑣) if 𝑒 (𝑢, 𝑣) + 𝑒 (𝑤, 𝑣) < 𝑒 (𝑢,𝑤),
and this procedure propagates recursively until no shortcut is up-

dated. Because no pruning search occurs, it is much faster than

DCH-P. In the increase case, suppose 𝑒 (𝑢,𝑤) was constructed from

𝑒 (𝑢, 𝑣1) + 𝑒 (𝑣1,𝑤) as shown in Figure 4-(c) and 𝑒 (𝑢, 𝑣1) increases.
Thenwe need to find the new 𝑒 (𝑢,𝑤) from𝑚𝑖𝑛{𝑒 (𝑢, 𝑣𝑖 )+𝑒 (𝑣𝑖 ,𝑤) |𝑖 ∈
[1, 𝑘]}, and this procedure repeats recursively. To store the sup-

port vertices, DCH-W [39] utilizes a Shortcut Supporting Graph

(SS-Graph) and UE [55] uses Occupant Mapping Table, with shortcut

support and occupant referring to the same support vertices concept.

Another difference between them is that DCH-W can also process

the edge weight change by batch, whereas UE can only process

in stream, so DCH-W is more efficient than UE in maintenance.

Nevertheless, they have the same query answering.

3.3 Dynamic HL Methods

This category of methods uses labels to answer the queries so

maintaining the label correctness is at the center stage.

3.3.1 Label Construction and Query Answering. In hub labeling,

each vertex 𝑣 ∈ 𝑉 is assigned with a label set 𝐿(𝑣) = {(𝑢,𝑑 (𝑢, 𝑣))}.
The projection of 𝐿(𝑣) on the keys is called hub nodes 𝐶 (𝑣) =
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（a）Example Graph （b）Tree Decomposition （c）PLL Hub Labeling

Total Index𝒗𝟏 1,0 , 2,4 , 6,4 , 4,3 , 5,2 , 3,1𝒗𝟐 2,0𝒗𝟑 3,0 , 2,5 , 6,3 , 4,2 , 5,1𝒗𝟒 4,0 , 2,6 , 6,1𝒗𝟓 5,0 , 2,5 , 6,2 , 4,1𝒗𝟔 6,0 , 2,7𝒗𝟕 7,0 , 2,3 , 6,4 , 9,2𝒗𝟖 8,0 , 2,2 , 6,8 , 9,2 , 7,4𝒗𝟗 9,0 , 2,4 , 6,6𝒗𝟏𝟎 10,0 , 2,5 , 6,5 , 9,1𝒗𝟏𝟏 11,0 , 2,7 , 6,3 , 9,3 , 10,2
（d）H2H Hub Labeling
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Figure 5: HL Example. Label (𝑢,𝑑 (𝑢, 𝑣))

{𝑢 | (𝑢,𝑑 (𝑢, 𝑣)) ∈ 𝐿(𝑣)}. We say the shortest distance can be cor-

rectly calculated through hub labeling 𝐿 if it satisfies the 2-hop

cover constraint: 𝐶 (𝑠) ∩ 𝐶 (𝑡) shares at least one nodes in 𝑝 (𝑠, 𝑡),
∀𝑠, 𝑡 ∈ 𝑉 . Therefore, given one hub labeling satisfying the 2-hop

cover constraint, we can compute the shortest distance between 𝑠

and 𝑡 as 𝑑 (𝑠, 𝑡) = min𝑐∈𝐶 (𝑠)∩𝐶 (𝑡 ) {𝑑 (𝑠, 𝑐) + 𝑑 (𝑐, 𝑡)}. It is faster than
all the previously mentioned methods because it does not traverse

the graph.

There are two main streams of hub labeling: Pruned BFS-based

(PBHL) including PLL [2] and PSL [33], and Tree Decomposition-

based (TDHL) including H2H [38], Multi-Hop [9], and TEDI [54].

We discuss the PLL and H2H here because they are the state-of-the-

art of each category.

PLL Construction. Pruned Landmark Labeling got its name

because its new labels are created through searches pruned by the

previously created labels (landmarks). Specifically, it is constructed

through the following two principles: Principle 1) Dijkstra’s search

for label assignment: We run a Dijkstra’s search from each vertex

𝑣 in the decreasing order. When we have reached a vertex 𝑢, we

can obtain the shortest distance 𝑑 (𝑣,𝑢) and then insert (𝑣, 𝑑 (𝑣,𝑢))
into 𝑢’s label 𝐿(𝑢). In this way, the labels are added incrementally.

Principle 2) Query answering on partial label for search pruning:

When 𝑤 is visited in the search from 𝑣 and 𝑞(𝑣,𝑤, 𝐿) ≤ 𝑑 (𝑤, 𝑣),
then (𝑣, 𝑑 (𝑤, 𝑣)) will not be inserted into 𝐿(𝑤) and we do not visit

𝑤 ’s neighors, where 𝑞(𝑣,𝑤, 𝐿) is the shortest distance obtained

from the existing labels 𝐿. An PLL example is shown in Figure 5-(c).

H2H Construction. Hierarchical 2-Hop Labeling got its name

because it creates a hierarchy of the 2-hop through tree decomposi-

tion. Specifically, it is built through the following three steps: 1) Tree

Node Formation: Following the same procedure as CH-W ’s graph

contraction, each contracted vertex 𝑣 forms a tree node 𝑋𝑣 that

contains all its neighbors 𝑁𝐺′ (𝑣) and the shortcuts between 𝑣 and

𝑢 ∈ 𝑁𝐺′ (𝑣). 2) Tree Construction: The tree nodes are connected by

setting 𝑋𝑢 as the parent of 𝑋𝑣 , where 𝑢 has the minimum order in

𝑋𝑣 apart from 𝑣 . A tree decomposition example is shown in Figure

5-(b). 3) Top-Down Label Assignment: 𝐿(𝑣) contains the distance
from 𝑣 to all its ancestors, which is calculated as min{𝑒 (𝑣,𝑢) +
𝑑 (𝑢, 𝑎𝑖 )},∀𝑢 ∈ 𝑋𝑣 . Because the assignment is conducted from root

to leaves, 𝑑 (𝑢, 𝑎𝑖 ) has already been obtained in the ancestors’ la-

bels. 𝑞(𝑠, 𝑡) can be answered by𝑚𝑖𝑛{𝑑 (𝑠, 𝑣𝑖 ) + 𝑑 (𝑣𝑖 , 𝑡) |∀𝑣𝑖 ∈ 𝑋𝑎},
where 𝑋𝑎 is the Lowest Common Ancestor (LCA) tree node [9] of

𝑋𝑠 and 𝑋𝑡 . For example, 𝐿𝐶𝐴(𝑋𝑣1 , 𝑋𝑣10 ) is 𝑋𝑣6 with 𝑣2 and 𝑣6, then

𝑑 (𝑣1, 𝑣10) = 4 + 5 = 9.

3.3.2 Label Update. Depending on the affected area, the update

algorithms can be categorized into the following three paradigms:

Search-Based Update. The first kind of PLL maintenance DPLL-S

[3, 10, 44] is based on search because PLLwas constructed by pruned

search. For the weight decrease, we only need to re-run the pruned

search from the lower vertex to update or add the labels. This is

because the shortest paths that are affected by this edge decrease

will get the new correct results, while the other paths can still

be answered by other labels. This process may make some labels

redundant, but it will not affect the query correctness. However,

if an edge weight increases, similar to the CH-P’s increase case,

it could invalidate a set of labels that pruned the searches during

construction, so some labels are missing. Therefore, it needs to

run the Dijkstra’s and label testings recursively to identify a set of

affected vertices first, and then re-run pruned search again like the

decrease case.

Affected Area Unbounded Propagation. To avoid the expensive search

operations of the previous method, DPLL-P [65] propagates the

update recursively until no new label is updated. Because the af-

fected area cannot be determined beforehand, we call it unbounded

propagation. Specifically, when 𝑣 ’s label (𝑢,𝑑 (𝑢, 𝑣)) changes, we
propagate this change to 𝑣 ’s neighbors that have lower order than

𝑢 and update the label values with the pruning principle. This proce-

dure works for the decrease case due to the same reason of DCH-P

and search-based update. However, for the increase case, the newly

increased labels are invalid and the correct ones were pruned. There-

fore, we store all the hub nodes that were pruned by each label and

add back the ones that are smaller than the query distance now.

Affected Area Bounded Propagation. BecauseH2H has a hierarchical

structure to organize all the labels, DH2H [62] can propagate the

label changes with the bounded area. Since the labels are created

from CH-W essentially, it first updates the shortcuts in the same

way as DCH-W. For the label update, the sub-tree with the highest

affected tree node is the possible affected area and should be updated

with the same top-down label assignment. However, this is a big

area so we can reduce it by the following pruning techniques: 1)

Lowering the sub-tree root from the highest affected tree node
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to the highest tree node that contains updated shortcut; 2) Only

propagate the changes to those labels that were created by updated

shortcuts and labels by storing which vertex contributed to each

label; 3) Identify the affected area dominance relation such that

several updates could be conducted in a single run.

3.4 The Curse of Increase Update

All the decrease index update is relatively easier because decrease

means adding new shortest path with smaller distances, and such

information can be derived directly by partial re-construction from

the decreased edge. Because no pruning condition can stop a smaller-

than-query value, the decrease update can be processed easily.

However, the increase update will invalidate the current shortest

path, which needs to be replaced by the correct one. For example

in Figure 6, suppose the 𝑝 (𝑠, 𝑡) is the old shortest path. If an edge

(𝑎, 𝑏) ∈ 𝑝 (𝑠, 𝑡) increases and makes 𝑙 (𝑝 (𝑠, 𝑡)) > 𝑑 (𝑠, 𝑡), then the

new shortest path can fall into two categories: 1) The green path

which ∃𝑐 ∈ 𝑝 ′(𝑠, 𝑡) such that 𝑟 (𝑐) > 𝑚𝑎𝑥{𝑟 (𝑠), 𝑟 (𝑡)}. In CH, 𝑝 ′(𝑠, 𝑡)
can exist as the new witness path for correct query answering;

In HL, 𝑑 ′(𝑠, 𝑡) can be correctly computed by its highest 𝑐 ′. 2) The
red path which ∀𝑐 ∈ 𝑝 ′′(𝑠, 𝑡) such that 𝑟 (𝑐) < 𝑚𝑎𝑥{𝑟 (𝑠), 𝑟 (𝑡)}. In
CH, 𝑝 ′′(𝑠, 𝑡) was pruned so we have lost it. In HL, 𝑝 ′′(𝑠, 𝑡) was also
pruned by 𝑝 (𝑠, 𝑡)’s the highest hop 𝑐 . In other words, the informa-

tion of 𝑝 ′′(𝑠, 𝑡) cannot be recovered by just CH or HL, and this

further leads to incorrectness of the index.

𝑎 𝑏 𝑡𝑠
𝑝(𝑠, 𝑡)

𝑝′′(𝑠, 𝑡)
𝑝′(𝑠, 𝑡) Shortest Path before weight change 𝑝(𝑠, 𝑡)

Shortest Path after weight change 𝑝′(𝑠, 𝑡)
Shortest Path after weight change 𝑝′′(𝑠, 𝑡)

𝑐𝑐’
Figure 6: Increase Curse Example

To bring the actual shortest path 𝑝 ′′(𝑠, 𝑡) back, the index-based
DSP algorithm have to store extra information. Specifically, DCH-P

stores all the witness paths of each shortcut, DCH-W and UE create

shortcuts among all neighbor pairs and store their corresponding

support vertices, DPLL-S runs several rounds of Dijkstra’s to identify

the affected vertices, DPLL-P stores all the pruning points of each

label, and DH2H stores all the information of DCH-W. Among these

solutions, DPLL-S trades space with time, so it is the slowest to

update. DCH-P and DPLL-P have to store a huge amount of extra

data to support increase. Although DCH-W, UE, and DH2H seem

to have smaller extra data sizes, they actually use the much larger

index size (the densest CH with size proportional to tree-width

square) to cover it. We call this high extra cost for the increase

maintenance as the Increase Update Curse. This phenomenon was

ignored in the previous works for the following reasons. Firstly,

most of the maintenance works on the big treewidth graphs only

consider the unweighted scenario [3, 10, 44], which has a very small

diameter and the update search is fast with parallel bitwise BFS.

Although they claimed the weighted version is easy to implement,

the larger diameter and the slower Dijkstra’s search deteriorate

the increase update performance dramatically. Secondly, the works

on the small treewidth graphs [39, 55] use CH-W to cover a large

amount of redundant information, whose complexity limits their

applications only on small road networks. Therefore, how to main-

tain the weight increase case efficiently, especially in terms of space

consumption, is still an open problem.

Pruning 
Algorithm

Non-Pruning 

Algorithm

DPSL

DCH-W

DPLL-P

DCH-P

DH2H UE

Stream Version+ Label Increase Curses

Pruning Points

Witness Paths

Pruning Points

Support Vertices

DPLL-S Searches
Superset

Superset

Search-based Construction

Non-Search Construction

Figure 7: DSP Algorithm Relations

In summary, we analyze and demonstrate the relations of dif-

ferent DSP algorithms in Figure 7. Roughly, we categorize them

into two types according to whether there is a pruning condition

during index construction. Specifically, the Non-Pruning Algorithms

include DCH-W, UE and DH2H and their relations are: the index

update of UE is the stream version of DCH-W ; DH2H is built from

DCH-W with further propagation-based label construction; their

constructions all rely on vertex contraction. Among the Pruning Al-

gorithms, DCH-P prunes the unnecessary shortcuts using Dijkstra’s

search; DPSL [65] ignores and stops propagating the unnecessary

labels; with the same underlying index, DPLL-S and DPLL-P prunes

the labels based on Dijkstra’s search. Besides, DPSL has been proved

to be the superset of DPLL [65]. Since it is slower in both query

processing and index update than DPLL-P, we do not include it in

our experiments. Lastly, they all suffer from the curse of increase

update: Non-Pruning Algorithms all require large storage of support

vertices; DCH-P needs to make much space for witness paths; both

DPSL and DPLL-P need to record a large number of pruning points.

These auxiliaries play an important role in increase update as they

preserve that information which cannot be easily retrieved unless

index re-construction. Meanwhile, their sizes are astonishingly or-

ders of magnitudes larger than the index size itself, which in turn

dramatically drags down the update speed. Even though DPLL-S

utilizes no extra auxiliary besides the index in index update, it still

suffers from slow update because it relies on direct graph search.

3.5 Topology Update

In this section, we discuss the deletion and insertion of the edges

and vertices that could change the index structure:

Edge Deletion. It can be reduced to the weight increase as it is

equivalent to increasing the edge weight to∞.

Vertex Deletion. It can be reduced to multiple weight increases

as it is equivalent to deleting its adjacent edges.

Edge Insertion. It can be reduced to the weight decrease from ∞
to a smaller value. Edge insertion is easier for the CH -based and

PLL index maintenance because they can propagate this change to

the affected areas [65]. However, for DH2H, extra efforts are needed

to modify the tree structure [62]. If the two ending vertices have

an ancestor-descendant relation, it will not affect the tree structure.

Otherwise, suppose edge (𝑎, 𝑏) is inserted with𝑋𝑐 being the LCA of

𝑋𝑎 and 𝑋𝑏 , the tree decomposition is partially adjusted by merging

the tree nodes from 𝑋𝑐 to 𝑋𝑎 and from 𝑋𝑐 to 𝑋𝑏 in the increasing

2132



order of their representative vertex’s order such that the two small

branches are merged.

Vertex Insertion. To begin with, the inserted vertex is assigned

with the lowest order. In this way, it would be the łfirst" vertex to

contract in CH, and the last to assign label in HL (would not appear

in other’s label). Depending on the inserted edge number, the vertex

insertion can be classified into the following scenarios: i) No edge:

it is trivial and can be ignored because the vertex is isolated. ii)

One edge: because the inserted vertex is a dead end, it would not

introduce new shortcut in CH and cannot affect other labels in HL

(label inherited from its neighbor). iii) More than one edge: it can be

reduced to scenario ii) plus the multiple edge insertions.

In summary, all the topology update can be generalized to the

edge weight updates.

3.6 Path Retrieval

In this section, we summarize the path retrieval of the above meth-

ods. For the search-related methods, we need to store which neigh-

bor (parent) updated the current vertex (Direct Search), and further

store it in the label (PLL). Then the path can be recovered by travers-

ing the parents reversely from the destination. For the CH -based

methods, the contracted vertex that created each shortcut should

be stored. During the path retrieval, we first obtain a concise path

mixing with shortcuts using the previous search-based method.

Then the shortcuts are recovered to the actual edge recursively.

For H2H, as it is essentially a hierarchical CH-W, we only need to

recover the two CH shortcuts (𝑠 { ℎ and ℎ { 𝑡 ). Because these

methods only visit the vertices on the path, their complexities are

all 𝑂 ( |𝑝 |).

4 EXPERIMENTAL SETUP

The main objective of the experiments is to test the state-of-the-art

DSP methods’ performance systematically in different dynamic en-

vironments. Specifically, we aim to answer the following questions:

Q1: Which factors of the dynamic networks affect the DSP algo-

rithms’ performance?

Q2: Given a using scenario, which algorithm should I choose?

Q3: Are all the scenarios solved satisfactorily?

In this section, we first discuss the possible factors in Section 4.1.

Then we present how to create the dynamic networks synthetically

and categorize the real-life networks according to these factors in

Section 4.2. Section 4.3 explains the performance indicators, and

Section 4.4 describes how the algorithms are implemented.

4.1 DSP Problem Dimensions

From the dynamic network’s perspective, we have a set of factors

that determine each network’s characteristics. From the DSP prob-

lem’s perspective, these factors are the dimensions of the problem

space. In the following, we introduce the dimensions from three

different categories.

4.1.1 Update Volume and Update Frequency. Update 𝛥 (𝑈 , 𝑡) is the
essential feature that distinguishes the dynamic network from the

static network. Specifically, it is the volume |𝑈 | and frequency 𝛿𝑡

together that determine the degree of dynamic. For instance, a large

|𝑈 | happens every short period means the network changes very

dramatically, while a small |𝑈 | happens over a long period means

the network is tending stable. Therefore, we combine these two

parameters and define dynamic degree as followed to measure the

severity of network change:

Definition 2. (Dynamic Degree).We capture the dynamic de-

gree by the number of weight changes within one unit time interval

𝜇 = |𝑈 |/𝛿𝑡 .
Finally, 𝛥 and the DSP algorithm’s update efficiency together

determine the system’s unavailable period as illustrated in the red

blocks of Figure 8.

4.1.2 Query Amount and Query Frequency. The query stream {�̂�}
is another critical factor to consider when implementing a real-

life system. The query amount |𝑄 |, especially the peak amount

𝑚𝑎𝑥{|𝑄𝑖 |}, determines the minimum number of queries a system

should be capable of coping with during 𝛿𝜏 (frequency). If an algo-

rithm can only process a few queries, it needs more servers to meet

the system requirement. Therefore, howmany queries an algorithm

can process is a crucial factor in determining the system size. For

example, in Figure 8, suppose the height of the yellow block repre-

sents the query volume one algorithm can answer during the query

processing period (green), and the whole yellow region represents

the total number of queries issued, then the number of the blocks

is how many servers are required to meet the system need.

Δ!
Δ" Δ#

!𝑄!,! !𝑄!,# !𝑄!,$ !𝑄!,% !𝑄#,! !𝑄#,# !𝑄#,$ !𝑄#,% !𝑄$,! !𝑄$,# !𝑄$,$ !𝑄$,%

Update Processing / System Unavailable Period

Query Processing / System Available Period

𝛿𝑡

𝛿𝜏

Amount	Query	One	Algorithm	can	Process

Figure 8: Update and Query Relation

4.1.3 Graph Topology. Different from the previous two categories,

the graph topology is a set of internal factors that determine the

algorithms’ preprocessing time and space consumption (feasibility),

maintenance time (unavailable time), and query time (available

time). These factors can be roughly categorized into vertex number

|𝑉 |, average degree 𝐷 and graph structures. Specifically, |𝑉 | affects
the scalability, and 𝐷 determines the density. As for the graph

structures, lattice graph represents simple low-degree planar graphs

like road networks, regular graph requires all the vertices to have

the same degree, small-world graph has high clustering and short

average path length, and scale-free graph’s degree has a power-law

distribution. In addition, treewidth 𝑤 is also an important factor

used in many algorithms’ complexity analysis, but it is derived from

the previous factors, so we regard it as an indicator instead of a

controllable variable.

4.2 Dynamic Network Design

In this section, we present the experiment settings. Some of the di-

mensions can influence the algorithm performance, so we call them

determinant dimensions and consider them as part of settings, while
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Table 2: DSP Problem Dimensions and Settings

Category Dimension Values

Determinant
Dimension

Vertex Number 1k, 10k, 100k
Average Degree 5,10,20,30

Graph Structure
Lattice, Regular,

Small-World, Scale-Free

Constraint
Dimension

Update Volume 10, 100, 1k, 10k
Update Frequency 1, 10, 100, 1k
Query Amount Constraint
Query Frequency Constraint

the others affect the system’s usability, so we call them constraint

dimensions and discuss their influence on real-life implementation.

The classification and settings are summarized in Table 2.

4.2.1 Update andQuery Set. Firstly, among the update dimensions,

update volume |𝑈 | determines the algorithm performance, so we

test the volumes of 10𝑖 with 𝑖 = 1 to 4. The update frequency 𝛿𝑡 is a

real-life constraint because a slow algorithm might still be tolerable

as long as the updates seldom occur. Suppose we set the frequency

evenly, then the dynamic degree 𝜇 can be represented by the volume.

We distinguish the increase and decrease for some of the tests to

show the Increase Curse. The updated edges are chosen randomly,

with weights either decrease by 50% or increase by ten times.

Secondly, among the query dimensions, we treat the Query

Amount as a constraint dimension and generate 10k queries ran-

domly for each category. The average query time would be used

to discuss the feasibility. Query frequency 𝛿𝜏 is also a constraint

dimension similar to the update frequency but with shorter periods.

Because 𝛿𝜏 only affects the server number and can be calculated

manually, we do not test it.

4.2.2 Synthetic Networks. The network topology dimensions are

all determinant dimensions so we generate the networks syntheti-

cally to fully test each dimension’s influence. For the vertex number

|𝑉 |, we set it to 1k, 10k and 100k. For the average degree 𝐷 , we set

it roughly to 5, 10, 20, and 30 for small-world and scale-free graph,

3, 4, 6 for lattice graph and 3, 4, 5, 6 for regular graph. Then for

the network structure, we use LightGraphs [49] and NetworkX [20]

to generate them under all the |𝑉 | and 𝐷 combinations randomly.

Specifically, we use Watts-Strogatz model [53] for the small-world

graph, and Barabasi-Albert model [4] for scale-free graph.

Table 3: Real-life Networks

Networks Name |𝑉 | |𝐸 | 𝐷

Road Network Beijing (BJ) 1 296,710 774,660 2.61

Social Network Skitter (SKIT) 2 1,696,415 21,990,934 12.96

Web Graph Wikipedia (WIKI) 2 3,333,397 200,943,616 60.28

1 NavInfo: https://www.navinfo.com/en, private data;
2 http://konect.uni-koblenz.de

4.2.3 Real-life Networks. We select several real-life networks of

various graph topologies and different scales to test our claims ob-

tained from the synthetic tests. The network description is shown in

Table 3. For the BJ road network, we extract the traffic information

from taxi trajectories collected on 1𝑠𝑡 April 2015 [32, 61], which has

288 5-minutes snapshots of traveling time. Its number of updates

between snapshots are shown as bars in Figure 15. The weights

of SKIT and WIKI are generated randomly from 100 to 1000 to

simulate the closeness, similarity, proximity, intimacy, information

transmission, and contacts between the vertices. The update and

query data follow the same rules used in Section 4.2.1.

4.3 Performance Metrics

Index Construction Time: We report the construction time in

second and exclude the I/O time. This metric determines the static

feasibility of a network.

Space Overhead: We use the 32-bit integer to save the vertex

ID, weight value, or path ID in the index and demonstrate the

index sizes. Specifically, CH stores the shortcut in form of (vertexID,

weight), and HL stores the labels in form of (vertexID, d). This metric

also determines the static feasibility in terms of memory usage.

Query Answering Time 𝑇𝑄 : We report the average answering

time of randomly generated or real-life queries and use it to derive

the query set answering time. This metric corresponds to the query

amount and frequency constraints.

Index Maintenance Time 𝑇𝑈 : We report the average index up-

date time caused by randomly generated or real-life edge weight

updates and use it to derive the update set processing time. This

metric corresponds to the update volume and frequency constraints.

System Throughput 𝜃 : Given a specific dynamic environment

with |𝑈 |, 𝛿𝑡 and |𝑄 |, the system throughput 𝜃 = (𝛿𝑡 − |𝑇𝑈 |)/𝑇𝑄
is the maximum number of queries a system can process during

𝛿𝑡 after all 𝑈 are updated. This metric corresponds to the query

amount constraint.

4.4 Algorithm Implementation

We implement and evaluate the following 13 algorithms: i) Direct

Search Algorithms (DS) including 𝐴∗ and Bi-Dijk’s depending on if

the coordinate is available; ii) Dynamic CH including DCH-P [16],

DCH-W [39], and UE [55]; and iii) Dynamic HL containing DPLL-S

[10], DPLL-P [65] and DH2H [62]. The algorithms ending with -Inc

are their increasing version, while -Dec are their decreasing version.

We implement all the algorithms by ourselves to make sure

they share the same base data structure, library, and optimization

standard and do not involve any specific heuristic to make the

comparison unfair. The algorithms that require ordering use the

same order on different graphs. Specifically, for the regular and

lattice graph, we use Minimum Degree Elimination (MDE) [8] order

(computed from CH-W ) as it has a good performance and fast to

obtain. For the small-world and scale-free graph, we use degree

order [22] as it represents the vertex importance. We do not discuss

the influence of order since it is a different topic from this paper. All

the algorithms are implemented in C++ with -O3 optimization and

tested on a Dell R730 PowerEdge Server, which has two Xeon E5-

2630 2.2GHz (each has 10 cores and 20 threads) and 378G memory.

5 EXPERIMENT RESULT ANALYSIS

This section discusses the experimental results comprehensively,

followed by the guidance obtained for future research and validation

on real-life networks.

5.1 Evaluation on Synthetic Network

5.1.1 Experimental Results. Figure 9 shows the index construction

time and space consumption of the four synthetic graph types, and
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Figure 10 shows the corresponding maintenance and query pro-

cessing time. The algorithms that exceed 200G memory or takes

more than one day to finish construction are regarded as ∞ con-

struction time and index space, and we draw them on the top of

the 𝑦-axis. We first discuss from the perspective of the algorithms.

For starters, 𝐷𝑆 is the only algorithm that works on every network

because it has no index to construct or maintain. Among the CH -

based methods, DCH-W always has the largest shortcut number

because it is the densest scenario. As the graph becomes larger or

denser, it exceeds the memory limit easily and takes longer time to

construct, so it is only suitable for small lattice graphs. Due to the

same reason, it is also the slowest to process queries. UE is worse at

maintenance than DCH-W because it is essentially the streaming

version of DCH-W. Moreover, their supportive vertices also increase

dramatically because of the increase curse. DCH-P-Dec always has

the smallest shortcut number because it applies pruning during

construction. It can tolerate larger and denser graphs than DCH-W

and fast to update. However, for the DCH-P-Inc, it has to store a

huge number of witness paths, so it always performs the worst. In

fact, its large space consumption, long construction time, and slow

update time is a vivid example of the increase curse. Finally, among

the HL-based methods, DPLL can apply to most networks. Although

it is slow to construct because its weighted version cannot run in

parallel, it takes much smaller memory than DCH-W and DH2H.

Constraint by the performance of DCH-W, DH2H is more limited

than DCH-W even though it has the fastest query time. DPLL has

the second-fastest query time for most cases, and its propagation

version DPLL-P also takes a shorter time to update. DPLL-S is al-

ways among the slowest to maintain, so we will not mention it in

the future.

Next, we discuss from the perspective of the networks. Gen-

erally, as the graph becomes larger and denser, the indexes are

harder to build and maintain. For the lattice graph, all algorithms

except DCH-P-Inc work well. Because it has a smaller tree-width,

the CH-W -based methods work best. For the regular graph, due to

its randomness, all methods suffer even when the degree is small.

The small-world graph has similar behavior but with larger degrees.

Only the pruning-based methods survive while all CH-W -based

methods explode. The scale-free graph is more friendly to the prun-

ing-based methods as even DCH-P-Inc can scale and DPLL can
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Figure 11: Synthetic Throughput Network View

further work in the 100k graphs. On the other hand, CH-W -based

methods fail earlier than others.

In summary, the CH-W -based methods are only suitable for

smaller and looser graphs with smaller tree-width but cannot scale

due to their huge memory consumption. The pruning-based meth-

ods have longer construction time but require smaller memory, so

they have the potential to scale to more graph types.

5.1.2 Throughput Analysis. The previous discussions focus on the

traditional metrics. However, because they ignore the dynamic

constraint dimensions, their results could be misleading. In this

section, we divide the dynamic environments based on update

volume |𝑈 | (from 10 to 10k) and update interval 𝛿𝑡 (from 1000s

to 1s) into 4×4 scenarios. For example, in Figure 11, the update

becomes more frequent from left to right and becomes more from

bottom to top. All the grids with the same color have the same

dynamic degree 𝜇 = |𝑈 |/𝛿𝑡 , which increases from bottom-left to

top-right (light to dark red). It should be noted all the throughput

tests are undertaken in the mix update scenario with equal number

of increase and decrease.

We test the following five representative algorithms: 1) DS that

has no maintenance time; 2) DCH-W that represents CH-W be-

cause it has the same query efficiency as UE but faster in index

maintenance; 3) DCH-P’s performance is limited by its increase

version, so we choose the largest graph that DCH-P-Inc succeeded

in construction; 4) DPLL-P represents PLL because it has the same

query efficiency with DPLL-S but faster in maintenance; 5) DH2H.

Firstly, Figure 11 compares the throughput of different algo-

rithms in four selected networks. In the first lattice graph, DS al-

ways shows the best durability, which indicates its capability of

query processing in all dynamic scenarios, followed by DCH-W,

DH2H, DPLL-P, and DCH-P. DCH-W fails only when 𝜇 = 10𝑘 and

works in more scenarios than DCH-P, since DCH-P suffers from

slow increase update. DH2H works up to 𝜇 = 100 with the highest

throughput. Besides, its throughput is always higher than DPLL-P

since it has faster maintenance and query processing. In the second

regular graph, most algorithms leave no time to process queries

except DS because their index update can hardly catch up with the

graph evolution. DPLL-P and DCH-W can only work when 𝜇 ≤ 1,

with DPLL-P having higher throughput. In the third small-world

graph, the algorithm performance is similar to those in the second

graph, except for DPLL-P showing better durability. This tendency

also appears in the forth scale-free graph with DPLL-P can further

work in 𝜇 ≤ 100, whilst DH2H only survives 𝜇 ≤ 0.01, due to the

large treewidth.

Secondly, Figure 12 shows the throughputs from the perspective

of the algorithms, which can help to identify the best use scenar-

ios of each algorithm. Specifically, DS can adapt to all dynamic

scenarios but with relatively low throughput. DCH-W and DH2H

are both mostly applicable on the lattice graph and have the worst

performance on the scale-free network since they are more suit-

able on networks with low treewidth. DCH-P can only work when

the dynamic degree is low because its increase update is seriously

stumbled by the heavy auxiliary information (the support vertices

and witness paths). Finally, DPLL-P is suitable for both small-world

and scale-free networks.

5.1.3 Guidelines. Now we are ready to answer our questions and

provide the following guidelines:

DSP Implementation Guidelines. 1) DSP Factors: Internally, the

performance of DSP algorithms can be affected by the determinate

dimensions which include various elements like vertex number,

average degree, and graph structure. Externally, their performance

can be affected by the update volume and update frequency and

constraint by query amount and query frequency.

2) DSP System Implementation: We first need to obtain the up-

date and query performance of each candidate algorithm. Then we

can draw a throughput plot to compare their performance under

different dynamic scenarios. After that, the dynamic degree analysis

can rule out the impossible algorithms. Depending on the query

constraints of the application scenarios, we can use the algorithms

that satisfy the constraints safely.

3) General DSP Using Scenarios: i) When 𝜇 is high, DS is almost

the only choice. ii) In lattice graph (like road network), DH2H is

the best choice when the 𝜇 is not too big. iii) In both small-world

and scale-free graphs, DPLL-P is a good choice in most situations

as long as 𝜇 is not too big. iv) DCH always has a lower throughput

than HL in all dynamic scenario.

Open Challenges and Future Directions. 1) Highly Dynamic Low

Throughput Problem: For the scenarios with high dynamic de-

grees, the current index methods cannot scale so the overall system

throughput suffers. Moreover, as the business increases, the query

number also keeps increasing. Therefore, how to increase the scal-

ability of the existing indexes in terms of both construction and

maintenance is crucial for the real-life application.

2) The Curse of Increase Update: As it either requires a tremen-

dous amount of searches during update or huge pre-computed

information during construction, the index increase is still a severe
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Figure 12: Synthetic System Throughput Algorithm Perspective
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open problem to solve. Theoretically hard, but a practical solution

is in urgent need.

3)PLLParallel Construction andMaintenance: PLL is a promis-

ing index structure that can apply to a wider range of network

structures, but it is limited to its slow construction. Although a

parallel [26] algorithm exists, it still suffers from the accuracy is-

sue. PSL [33] can construct in parallel but it creates a superset of

PLL. Meanwhile, the current DPLL-P’s maintenance efficiency is

still slower than the others, and its throughput stands out only

because of its scalability. Therefore, constructing and updating PLL

efficiently would benefit the DSP problem a lot.

4) Hybrid DSP: As the real-life network keeps changing with dif-

ferent updates and query patterns at different times, how to utilize

different algorithms together for different scenarios to keep the

maximum system availability and throughput is also a significant

practical problem.

5.2 Validation on Real-Life Network

In this section, we validate our results on real-life networks. Figure

13 shows the construction time and index size. Specifically, the

CH-W -based methods work well on road network, but they can-

not scale to social network and web graph. CH-P works well in

decrease, but its increase version fails to construct because of the

huge amount ofwitness paths. The PLL-based methods are generally

slower in construction, but they can scale to larger and complex

networks. Figure 14 compares the update and query performance.

The index-based methods all have smaller query time but larger

maintenance time, with H2H faster than PLL, and PLL faster than

CH. For the maintenance time, CH -based methods are faster than

PLL. But on SKIT and WIKI, only DCH-P-Dec and PLL-based meth-

ods survive, and PLL-P performs best. Moreover, we test with the

real-life update data of BJ [32] as shown in Figure 15. It contains

287 sets of mix updates between 288 pieces of 5-min intervals of on

1𝑠𝑡 Apr 2015. DCH-W and DH2H are the only two methods that can

finish updating within each update period because they take ad-

vantage of the batch processing. DPLL-P is fast for the small-world

network but slow in the road network, and the current sequen-

tial maintenance method cannot work in real life. CH-P is slightly

slower than DH2H but its query is much slower. To further iden-

tify their performance under the dynamic environments, Figure 16

reveals the similar trends we got from the synthetic environments:

although theDS algorithms are slow to run, they are the only choice

when the 𝜇 is high. CH and H2H are suitable for road network, and

PLL is suitable for other networks. Figure 17 further presents the
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Figure 17: Real-Life System Throughput Algorithm Perspective

most suitable environments of each algorithm: DS has the broadest

adaptability in terms of both network type and update frequency.

DCH and DH2H are only available on BJ road network in case

of no frequent update. DPLL is more suitable for small-world and

scale-free networks under lower dynamic.

6 RELATED WORK

6.1 Static Shortest Path Algorithms

These algorithms work in the most basic scenarios where the net-

works remain static. To speed up query processing performance, dif-

ferent kinds of indexes are proposed. Specifically, the Goal-Directed

approaches [18, 19, 37, 43, 51, 63] make use of the coordinate in-

formation in road networks and drag the search space towards the

target based on the information in indexes (such as Landmark and

Flag). The Separator approaches [24, 60] divide a road network into

several small separators which are connected by boundary vertices

or cuts, and queries can be processed in each separator. The Hierar-

chical Techniques [6, 17, 46, 67] construct a hierarchical structure

for a network and prune the search space by only allowing graph

traversal towards the upper layer. Tree Decomposition [38, 54] is an-

other type of hierarchical structure using the cut property to reduce

the search space. Hop Labeling [1, 2, 14, 22, 23] techniques associate

each vertex with a distance label that contains coverage property to

ensure that the shortest distance between any two vertices can be

answered with these labels only.Materialized Techniques [45, 47, 48]

store all-pair shortest path information to reduce index sizes by tak-

ing advantage of the path coherence property. To further improve

query processing performance, caching techniques can also be used

by reusing the results from previous answered queries. One way to

improve hit ratios is to create a cache for each cluster of queries

locally [31, 64] instead of globally [50]. However, its usability is lim-

ited as spatial information such as coordinates is required to cluster

queries. Another way is to reduce the vertex number by mapping

the vertices within a distance range 𝜖 to their central vertex, such

that the paths in a cache become more concise. To deal with the

dynamic environment, such caches have to be rebuilt often. It is a

technique that can be applied to all other algorithms and but the

performance depends highly on query distribution.

6.2 Dynamic Shortest Path Algorithms

Apart from the ones described in this paper, [55] also compare

with SILC-Adapt [45], AH-Adapt [67] and H2H-Adapt [38]. These

algorithms are essentially based on re-construction, so we do not

test them in this paper. There also exist other attempts to solve DSP

approximately. The Region-to-Region method [31] decomposes the

query set into several subsets by referring to a given approximation

error 𝜂 and process each query subset together with bounded error

𝜂. A similar approach has been developed without error bound [36].

[61] strategically selects a set of snapshots and performs query

answering by matching the current snapshot to the most similar

one. It is also an approximation bound with no error bound.

The time-dependent model [12, 13, 25, 28, 32] uses a time-

dependent function to tell the weight at different time. It can sched-

ule the routes when the network weight change is periodically

predicable. As for the index-based methods, TCH [7] extends CH,

[52] extends G-Tree, and [29, 30] extend PLL. Neverthesfless, as the

time-dependent function is essentially a static function, this model

cannot work in the ad-hoc dynamic environment.

Stochastic shortest path [40, 41, 57, 58] is another attempt to

capture the dynamic by viewing the ever-changing travel time as

uncertainty and use the probability distribution function to describe

it. [58] first combines it with time-dependent and multiple costs

to achieve eco-routing, and [41] improves efficiency with CH. [57]

and [40] further improve the probability computation accuracy by

computing the probability over paths instead of edges. Nevertheless,

the probability distribution is still essentially static and cannot cope

with the ad-hoc changes in the dynamic scenario.

7 CONCLUSION

In this work, we have thoroughly studied the Dynamic Shortest Path

problem. We first review, analyze, compare, and provide relations

for previously proposed DSP algorithms theoretically to give deep

insights on the DSP problem. We also discuss the curse of increase

update challenge which explains why all DSP problems are hard

in terms of increased update costs, especially on weighted graphs.

Then we identify and classify the DSP problem dimensions and use

system throughput to evaluate the algorithm performance under

different environments. With this benchmark test, we provide a

guideline for system implementation and identify research oppor-

tunities. Finally, we validate our results on real-world networks.
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