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ABSTRACT

Cardinality estimation is a fundamental and critical problem in

databases. Recently, many estimators based on deep learning have

been proposed to solve this problem and they have achieved promis-

ing results. However, these estimators struggle to provide accurate

results for complex queries, due to not capturing real inter-column

and inter-table correlations. Furthermore, none of these estimators

contain the uncertainty information about their estimations. In

this paper, we present a join cardinality estimator called Fauce.

Fauce learns the correlations across all columns and all tables in

the database. It also contains the uncertainty information of each

estimation. Among all studied learned estimators, our results are

promising: (1) Fauce is a light-weight estimator, it has 10× faster
inference speed than the state of the art estimator; (2) Fauce is

robust to the complex queries, it provides 1.3×-6.7× smaller esti-

mation errors for complex queries compared with the state of the

art estimator; (3) To the best of our knowledge, Fauce is the first

estimator that incorporates uncertainty information for cardinality

estimation into a deep learning model.
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1 INTRODUCTION

Cardinality estimation is fundamental and critical in databases. It is

widely applied to query optimization, query processing approxima-

tion, database tuning, etc. For example, the query optimizer uses

the results of the cardinality estimation to determine the best execu-

tion plans. However, the cardinality estimation can be challenging.

In some cases with complex queries where there are correlated

columns or large number of joins, the accuracy of the cardinality

estimation drops dramatically.

Recently, the researchers have been actively using the machine

learning technique to estimate the cardinality [11, 17–19, 21, 24, 56–

58]. These approaches can be mainly classified as two types: data-
driven and query-driven estimators. Both of them have limitation.

The data-driven estimators such as Naru [57], NeuroCard [56],

and MADE [18] leverage the deep autoregressive (AR) models [9, 14]
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to approximate the data distribution of a table or joint tables. Deep

AR models capture the data distribution of a table by multiplying

the estimated data distribution of each column, based on an implicit

assumption that each column is dependent on all the previous

columns. However, such an assumption is oversimplified. In DBMS,

the dependent relationship between columns can be complex. For

example, some columns are independent from each other, while

others have correlation. As a result, the deep AR models result in

large errors for those queries on correlated columns. Furthermore,

recent study [52] reveals that the data-driven estimators tend to

output large errors when the data are skewed.

The query-driven estimators [10, 11, 17, 24, 25, 39] rely on some

regression models to properly learn function mapping between

queries and cardinalities. Since the input of the regression models

are real-valued vectors, the query-driven estimator must use a query
featurization method to convert the queries into feature vectors.

Those vectors should contain informative features of the queries. A

good query featurization method is critical, because it can generate

highly informative feature vectors, which are useful to improve the

accuracy of the regression models. The existing query featurization

methods [11, 18, 24, 46] apply techniques like one-hot encoding, bi-

nary encoding [43], basic statistics, or bitmap [5] to convert queries

into feature vectors. While those methods are simple to use, they

cannot capture the fine-grained correlations between columns and

between tables. As a result, the feature vectors generated by the

existing query featurization methods are not informative enough,

and using such feature vectors for cardinality estimation can be

erroneous. Furthermore, the existing query featurization methods

focus on static data [52]. However, in a dynamic scenario where

the data are dynamically updated, the existing methods cannot

adapt to the new data, hence degrading the accuracy of cardinality

estimation significantly.

Furthermore, both query-driven and data-driven estimators do

not give any quantification of uncertainty or confidence level of the

estimation. The estimation is used in database based on an implicit

assumption that the estimation is always safe to be used. However,

this assumption is not always valid, and using error estimation

can be problematic. For example, an erroneous estimation, when

used by the query optimizer, can lead to bad execution plans. A

better estimation approach is to output the estimated cardinality

together with the corresponding uncertainty. Based on the uncer-

tainty, DBMS can determine when to actually trust the estimator

and use its estimations. However, how to quantify an estimator’s

uncertainties for various queries and leverage the uncertainties to

boost model accuracy remains to be studied.

To address the above limitation, we propose a new cardinality

estimator, Fauce. Fauce includes a new query featurization method

1950

https://doi.org/10.14778/3476249.3476254
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3476249.3476254


(§3) that leverages semantic information contained in the database

and captures real dependent relationships between table columns to

encode the queries into more informative feature vectors. Further-

more, we mathematically define the uncertainty of the estimator

and introduce a new model that incorporates the uncertainty esti-

mation into Fauce (§5). Fauce also includes a new learning paradigm

that leverages the uncertainties to boost the estimation results and

make Fauce robust to be applied in dynamic databases (§5.3).

A query consists of four components, tables, joins, columns, and

predicate values. We leverage the semantic information contained

in the database (e.g., the relationships between two tables) to fea-

turize the tables and joins of a query (§3.1). Fauce captures the

join relationships among database tables. Those relationships are

represented as join graphs, where vertices are tables and each edge

connects two joinable tables. We make the representations of the

tables and joins of a query contain more informative features by

analyzing this graph.

To capture the real correlations across all the table columns in

a database (§3.2), we introduce dependency graphs to capture de-

pendent relationships across columns, and based on the graphs

we embed the columns into a vector to boost the estimation accu-

racy. Using a data structure to capture dependency requires the

capture of implicit dependency relationships in columns across

tables. We introduce a hierarchical dependency graph. In particular,

we first build a local columns-dependency graph for each table.

Then we build the global columns-dependency graph for all the

columns in the database based on the local columns-dependency

graphs developed in the first step. Finally, we use an embedding

technique [16] to represent each column into a vector based on the

global columns-dependency graph. Such vectors can convey real

correlations among the columns.

To include the uncertainties of the cardinality estimator into

Fauce, we design a model based on deep ensembles (§5.3) to compre-

hensively quantify the uncertainty. The uncertainty of the cardinal-

ity estimator comes from multiple sources. First, we are uncertain

about whether the learned model parameters can best describe the

distribution of the queries in the query space. This is referred to

as model uncertainty. Second, the query-based estimators train the

model based on the generated training dataset. But the training

dataset can not well reflect the features for all the queries. That

is to say, there is always a data shift between the training dataset

and the inference queries. This data shift can be large especially for

dynamic databases. Thus, we are also uncertain about whether the

data used to train model can well represent the features for infer-

ence queries, this is referred as data uncertainty. These two types

of uncertainty consist the uncertainty of the learned estimator.

The two types of uncertainty are difficult to quantify. To address

the above problems, we design a model called deep ensembles with
uncertainty to estimate the cardinality and the corresponding un-

certainty. We use the ensemble technique, because it generally pro-

duces the best results among all neural network-based approaches.

Furthermore, it provides the benefit of being able to separately

determine model and data uncertainties.

We conducted an extensive set of experiments over IMDB, a real-

world dataset that exhibits complex correlation and conditional

independence between table columns and have been extensively

used in prior work [21, 24, 56–58]. On the created JOB-base bench-

mark, a schema that contains 6 tables and correlated filters. Fauce

achieves 1.16-4.5× higher accuracy over the state of the art estima-

tor. To check whether Fauce is robust to complicated queries with

large number of filters, we create a more difficult benchmark, JOB-

more-filters. On this benchmark, Fauce achieves 1.31-45.9× higher

accuracy than previous estimators, including IBJS [30], MSCN [24],

DeepDB [21],and NeuroCard [56]. Lastly, to test Fauce ’s ability to

handle queries with more complex join relations, we created JOB-

complex-joins which has 15 tables and complex joins. Experimental

results show that Fauce scales well to this benchmark, it has at

least 1.28× higher accuracy than baselines. The contributions in

the paper are summarized as below:

• We design and implement Fauce, the first learned cardinality

estimator that contains the uncertainties for its results. It

is also light weight with fastest inference time and leading

accuracy among the learnedmethods we studied in the paper.

• Fauce includes a new query featurization (§3) method that

can encode the queries into more informative feature vectors

by leveraging the join schema of the database and capturing

the real correlations across the table columns.

• Fauce mathematically defines the uncertainty of the estima-

tor and designs a model called deep ensembles with uncer-
tainty (§5.3) to estimate the cardinality.

• Fauce includes an uncertainty management module (§5.3).

We also show that how the uncertainty management can be

leveraged to further boost Fauce’s accuracy.

2 PROBLEM DESCRIPTION

In this section, we introduce some notations and describe why the

cardinality estimation can be solved as a regression problem.

2.1 Notations

Consider a database D contains 𝑚 tables, D = {𝑇𝑖 }𝑚𝑖=1. Each ta-

ble 𝑇𝑖 has a number of numeric columns, represented as 𝑇𝑖 =

{𝐶𝑜𝑙1
𝑖
, ...,𝐶𝑜𝑙

𝑐𝑘
𝑖
}, where 𝑐𝑘 is the total number of columns in Ta-

ble 𝑇𝑖 . The total number of columns in D is denoted as 𝐶 , where

𝐶 =
∑𝑚
𝑘=1

𝑐𝑘 . We define the actual cardinality of a query 𝑞 as the

number of rows in joint tables that satisfy all predicates in 𝑞, and

denote it as 𝐴𝑐𝑡 (𝑞). Similarly, we use 𝐶𝑎𝑟𝑑 (𝑞) to represent the esti-

mated cardinality for the query 𝑞. Each query 𝑞 can be represented

as a collection of four sets: ⟨𝑇𝑎𝑏𝑙𝑒𝑠⟩, ⟨𝐽𝑜𝑖𝑛𝑠⟩, ⟨𝐶𝑜𝑙𝑢𝑚𝑛𝑠⟩, ⟨𝑉𝑎𝑙𝑢𝑒𝑠⟩,
and each set is defined as below.

• ⟨𝑇𝑎𝑏𝑙𝑒𝑠⟩: the set of the tables in 𝑞’s FROM clause.

• ⟨𝐽𝑜𝑖𝑛𝑠⟩: the set of the join relations in 𝑞’s WHERE clause.

• ⟨𝐶𝑜𝑙𝑢𝑚𝑛𝑠⟩: the set of the columns involved in 𝑞’s WHERE clause.

• ⟨𝑉𝑎𝑙𝑢𝑒𝑠⟩: the set of the predicates values in 𝑞’s WHERE clause.

These four sets together depict the features of a query.

2.2 Formulation as a Regression Problem

As the cardinality of a query is a real-valued number, we develop

a regression modelM, such that for any range query 𝑞 on joint

tables, the estimated cardinality 𝐶𝑎𝑟𝑑 (𝑞) produced byM matches

or closes to the actual cardinality 𝐴𝑐𝑡 (𝑞).
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Figure 1: Overview of Fauce. The Query Featurization (§3)

transforms the queries into vectors, it includes Tables En-

coding (§3.1), Joins Encoding(§3.1), Columns Encoding (§3.2),

and basic statistical information (§3.3). The generated train-

ing dataset (§4.2) is used to train the appropriately designed

regression model (§5). At last, the trained model is used to

estimate the query cardinalities (§5.2).

The input of the modelM must be a real-valued vector. There-

fore, we must transform the query 𝑞 into a real-valued vector which

represents the features of 𝑞. This transformation is called query fea-
turization. For a query 𝑞 = ⟨𝑇𝑎𝑏𝑙𝑒𝑠⟩, ⟨𝐽𝑜𝑖𝑛𝑠⟩, ⟨𝐶𝑜𝑙𝑢𝑚𝑛𝑠⟩, ⟨𝑉𝑎𝑙𝑢𝑒𝑠⟩,
we transform 𝑞 into a query feature vector

®𝑓 = ⟨𝑓𝑇 , 𝑓𝐽 , 𝑓𝐶 , 𝑓𝑉 ⟩,
where 𝑓𝑇 , 𝑓𝐽 , 𝑓𝐶 , and 𝑓𝑉 are the features extracted from ⟨𝑇𝑎𝑏𝑙𝑒𝑠⟩,
⟨𝐽𝑜𝑖𝑛𝑠⟩, ⟨𝐶𝑜𝑙𝑢𝑚𝑛𝑠⟩, and ⟨𝑉𝑎𝑙𝑢𝑒𝑠⟩ respectively. The vector ®𝑓 serves
as the input to the regression model M. The actual cardinality,

𝐴𝑐𝑡 (𝑞), serves as the labels, which guides the model training. Given

a training set of labeled queries S, the modelM trained on S is

expected to produce accurate cardinalities for unseen queries.

2.3 Overview of Fauce

Figure 1 shows the architecture of Fauce at a high level. Fauce con-

sists of two stages. First, Fauce transforms input queries into feature

vectors through a new query featurization method (§3), including

tables encoding and joins encoding). Tables encoding (§3.1) is based

on a graph embedding method that can capture semantic informa-

tion of the database tables and achieve more accurate encoding

results than widely used one-hot encoding and binary encoding

methods. Joins encoding (§3.1) is based on our proposed joins2vec
algorithm to featurize joins into vectors. Without any assumption

on the independence of columns, our column encoding (§3.2) can

capture real dependency information among the columns. Besides

the encoding information, Fauce also collects statistics of the data-

base tables (e.g., row counts and domain bounds) to represent the

point predicate and/or range predicate of a query (§3.3).

Second, we train the modelM based on the generated training

dataset (§4.2). Once the training is finished, the model is ready to

estimate the cardinalities for a given query. For each input query,

we use a query featurization method to transform the query into a

feature vector. This vector is plugged into the modelM, and the

output ofM is the estimated cardinality together with the corre-

sponding uncertainty. The trained modelM can handle queries

joining any subset of tables, with arbitrary range selection.

3 QUERY FEATURIZATION

Before using the modelM to estimate the cardinality, we must

convert input queries into vectors. A query 𝑞 can be represented

as: ⟨𝑇𝑎𝑏𝑙𝑒𝑠⟩, ⟨𝐽𝑜𝑖𝑛𝑠⟩, ⟨𝐶𝑜𝑙𝑢𝑚𝑛𝑠⟩, and ⟨𝑉𝑎𝑙𝑢𝑒𝑠⟩. Each of them is

represented by a vector. These four vectors combined together is

the outcome of the query featurization for 𝑞. The result is directly

plugged into the model for both training and inference. Section 3.1

introduces how to encode ⟨𝑇𝑎𝑏𝑙𝑒𝑠⟩ and ⟨𝐽𝑜𝑖𝑛𝑠⟩ into vectors; Sec-

tion 3.2 introduces themethod to encode ⟨𝐶𝑜𝑙𝑢𝑚𝑛𝑠⟩; and Section 3.3
introduces how to represent ⟨𝑉𝑎𝑙𝑢𝑒𝑠⟩ of a query.

Algorithm 1: Joins2Vec (𝐽𝑆, 𝐷, 𝜆, 𝜖)
Input: 𝐽𝑆 = (𝑉 , 𝐸): The join schema of a database

𝐷 : Maximal number of allowed joins in a query

𝜆: Encoding size of each join relationship

𝜖 : Number of the epochs

Output:Matrix of vector representations of joins: Θ
1 𝐽𝐺𝑠 = {}; // Initialize an empty join graph set

2 foreach 𝑡 ∈ 𝑉 do

3 for 𝑑 = 0 to 𝐷 do

4 𝐽𝐺𝑠∪ =GetJoinGraphs(𝐽𝑆, 𝑡, 𝑑); // Algorithm 2

5 Initialize Θ ∈ R | 𝐽𝐺𝑠 |×𝜆 ; // Uniform initialization

6 for 𝑒 = 0 to 𝜖 do
7 foreach 𝑡 ∈ 𝑉 do

8 for 𝑑 = 0 to 𝐷 do

9 𝑗𝑔
(𝑑)
𝑡 := GetJoinGraphs(𝐽𝑆, 𝑡, 𝑑);

10 𝑐𝑜𝑛𝑡𝑒𝑥𝑡
(𝑑)
𝑡 = {};

11 foreach 𝑡
′ ∈ Neighbours(𝐽𝑆 , 𝑡 ) do

12 foreach 𝜙 ∈ {𝑑 − 1, 𝑑, 𝑑 + 1} do
13 if 𝜙 ≥ 0 and 𝜙 ≤ 𝐷 then

14 𝑐𝑜𝑛𝑡𝑒𝑥𝑡
(𝑑)
𝑡 ∪ =

GetJoinGraphs(𝐽𝑆, 𝑡 ′, 𝜙);
15 foreach 𝑗𝑔𝑐𝑜𝑛𝑡 ∈ 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 (𝑑)𝑡 do

16 𝐿𝑜𝑠𝑠 (Θ) = -log Pr( 𝑗𝑔𝑐𝑜𝑛𝑡 |Θ( 𝑗𝑔 (𝑑)𝑡 ));
17 Θ = Θ − 𝛼 𝜕𝐿𝑜𝑠𝑠 (Θ)

𝜕Θ ;

18 return Θ

3.1 Tables and Joins Encoding

Tables encoding. Instead of using one-hot and binary encoding

methods, we use a graph embedding method [36] to encode the

database tables. The join schema of a database is considered as

an undirected graph 𝐺 , where vertices are tables and each edge

connects two joinable tables. We use 𝐺 as the input for the graph

emebedding method, and the output is a group of vectors. Each

vector is the encoding result for a corresponding table. In a database

D = {𝑇𝑖 }𝑚𝑖=1, if a table is not involved in a query, we use a vector

with all zeros to represent this table. Similar to the binary encoding,

our tables encoding method represents each table as a ⌈log(𝑚 + 1)⌉
dimensional vector, where𝑚 is the number of tables in a database.

Finally, the ⟨𝑇𝑎𝑏𝑙𝑒𝑠⟩ of a query 𝑞 is represented as a vector 𝑓𝑇 with

length of𝑚⌈log(𝑚 + 1)⌉.
Joins encoding. Using the existing coarse-grained joins encoding

methods [24] for query featurization always causes large errors in
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cardinality estimation. We propose a new fine grained algorithm

called Joins2Vec (Algorithm 1) for the joins encoding.

Algorithm 2: GetJoinGraphs (𝐺, 𝑡, 𝑑)
Input: 𝐽𝑆 = (𝑉 , 𝐸): The join schema of a database

𝑡 : Table which is the root of a join relationship

𝑑 : Neighbours considered for extracting join graph

Output: 𝑗𝑔
(𝑑)
𝑡 : rooted join graph of degree 𝑑 around table 𝑡

1 𝑗𝑔
(𝑑)
𝑡 = {};

2 if 𝑑 = 0 then

3 𝑗𝑔
(𝑑)
𝑡 := 𝑡 ;

4 else

5 N𝑡 := 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠 (𝐺, 𝑡); // Breath First Search

6 𝑀𝑑𝑡 := {GetJoinGraphs(𝐺, 𝑡 ′, 𝑑 − 1) |𝑡 ′ ∈ N𝑡 };
7 𝑗𝑔

(𝑑)
𝑡 := 𝑗𝑔

(𝑑)
𝑡 ∪ GetJoinGraphs(𝐺, 𝑡, 𝑑 − 1) ⊕ 𝑀𝑑𝑡 ;

8 return 𝑗𝑔
(𝑑)
𝑡

The ⟨𝐽𝑜𝑖𝑛𝑠⟩ of a query 𝑞 is based on the join graphs derived from
the join schema 𝐽𝑆 . The algorithm Joins2Vec consists of two main

components; the first component discovers all the possible join
graphs based on the join schema 𝐽𝑆 , and the second component

gets the encodings for all the join graphs. The goal of Algorithm 1

is to learn a 𝜆 dimensional encoding for each join graph. We first

search all the join graphs, 𝐽𝐺𝑠 (Lines 2-4) (extensive details are

depicted in Algorithm 2). Then the encodings for the join graphs in

𝐽𝐺𝑠 are initialized as a matrix: Θ ∈ R | 𝐽𝐺𝑠 |×𝜆 (Line 5) where |𝐽𝐺𝑠 | is
the number of possible join graphs extracted from 𝐽𝑆 . After that, we

learn the encoding result Θ (Lines 6-18). These steps are explained

in detail in the following two paragraphs.

(1) Get all the join graphs. First, we introduce how to use each

table 𝑡 in the databaseD as a root to build the join graphs. The join

graph 𝑗𝑔
(𝑑)
𝑡 rooted at the table 𝑡 with different numbers of joinable

tables 𝑑 in a given join schema 𝐽𝑆 is extracted (Line 9). The join

graphs discovering process is separately explained in Algorithm 2.

The Algorithm 2 takes the join schema 𝐽𝑆 , table 𝑡 , and degree of

the joins 𝑑 as inputs and returns the intended join graph 𝑗𝑔
(𝑑)
𝑡 .

When 𝑑 = 0, no join graphs need to be extracted and the table

𝑡 is returned (Line 3). For the case when 𝑑 > 0, we get all the

(breadth-first) neighbours of 𝑡 inN𝑡 (Line 5), and the neighbours of
𝑡 are those tables that can be joined with the table 𝑡 . Then for each

joinable table, 𝑡
′
, we get its (𝑑−1)-degree join graphs and save them

in 𝑀
(𝑑)
𝑡 (Line 6), where 𝑀

(𝑑)
𝑡 is a list to store the rooted d-degree

join graphs around table 𝑡 . Finally, we get the (𝑑 − 1)-degree join
graph around the table 𝑡 and concatenate these join graphs with

𝑀
(𝑑)
𝑡 to obtain the intended join graphs 𝑗𝑔

(𝑑)
𝑡 (Line 7).

(2) Get the context for each join graph. Then, we introduce

how to get the context for each join graph based on the results

of Algorithm 2. Once the join graphs 𝑗𝑔
(𝑑)
𝑡 of table 𝑡 is extracted,

we learn the encoding of a target join graph using its surrounding

context in a given join schema 𝐽𝑆 (Lines 10-17). We define the

context of a 𝑑-degree join graph 𝑗𝑔
(𝑑)
𝑡 of the table 𝑡 as the set of

join graphs of (𝑑 − 1), 𝑑 and (𝑑 + 1)-degree rooted at each of the

neighbours of 𝑡 (Lines 10-14 in Algorithm 1). Note that we consider

2
Get the context of each Join 

Graph (use JG1 as an example) 

A B C A B C
A

B

B

C A

B C1

Get Join Graphs

(a) Join Schema (b) Join Graphs

JG1 JG2 JG3

JG4 JG5 JG6

(1) Get neighbors: B

(2) Get context of JG1:  

B A

B

B

C

B C

A

(c) Context of JG1

JG1 1.23 1.12 0.44

JG2 0.32 0.70 1.23

JG3 0.21 0.36 0.24

JG4 0.23 0.45 0.35

JG5 3.20 0.32 0.25

JG6 1.22 1.10 0.58

(d) Joins encoding results

3

Encodings 
optimization

Figure 2: An example of Joins2Vec. (a) A join schema with

three tables. (b) Get all the possible join graphs based on (a)

using Algorithm 2. (c) Get the context of each join graph. (d)

Use Algorithm 1 to encode the join graphs into vectors.

join graphs of (𝑑 − 1), 𝑑 and (𝑑 + 1)-degree to be in the context of

a join graph of 𝑑-degree, because a 𝑑-degree join graph is likely to

be rather similar to the join graphs of degrees that are closer to 𝑑

(e.g., 𝑑 − 1 and 𝑑 + 1) and not just the 𝑑-degree join graphs only.

(3) Optimize the encodings for the join graphs. The encoding

of a target join graph, 𝑗𝑔
(𝑑)
𝑡 , with the context 𝑐𝑜𝑛𝑡𝑒𝑥𝑡

(𝑑)
𝑡 is learnt

using the process at Lines 15-17 in Algorithm 1. Given the cur-

rent representation of the target join graph Θ( 𝑗𝑔 (𝑑)𝑡 ), we want to
maximize the probability of every join graph in its context 𝑗𝑔𝑐𝑜𝑛𝑡
(Line 16). Here, we learn such posterior distribution using logistic

regression classifier. Finally, the encodings of all the join graphs

are optimized by gradient descent (Line 17).

Using Algorithms 1 and 2, we get the encoding result for ⟨𝐽𝑜𝑖𝑛𝑠⟩
of a query. Assume there are 𝑛 possible join graphs in a database

and the encoding size 𝜆 is equal to 𝑛, the representation of ⟨𝐽𝑜𝑖𝑛𝑠⟩
of the query 𝑞 is a 𝑛 dimensional vector. Figure 2 shows an example

of applying Joins2Vec on a join schema with three tables, A, B, and
C. All the join graphs derived from this join schema are encoded

into vectors (see (d) in Figure 2).

3.2 Columns Encoding

The correlations of table columns can be utilized as useful informa-

tion to facilitate the columns encoding. We propose a method called

Columns2Vec, which encodes the columns by using real correlations

among the columns. This method includes three steps.

(1) Build local columns-dependency graphs.We calculate the

RandomizedDependence Coefficient [32] (RDC) values for each pair

of columns in each table 𝑇𝑖 from the database D. If the RDC value

for two columns exceeds a threshold 𝜏 , then those two columns are

dependent with each other; otherwise, they are independent. Using

a small value of 𝜏 overestimates the columns-dependency, while

using a large value of 𝜏 underestimates the columns-dependency.

Here, we set 𝜏 as 0.4. Based on the RDC values of each pair of

columns, we can build a local columns-dependency graph 𝑔𝑖 for

each table𝑇𝑖 . The graph 𝑔𝑖 is a DAG. Once there exists a connection

(i.e., an edge) between two columns (i.e., vertices), the graph shows

those two columns are correlated. We get dependency information

between any pair of columns in 𝑔𝑖 by using depth first search to

find whether a path exists between their corresponding vertices.
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id

t_id c_id

Y

S id

c_id

Z

g3

T2:Company
c_id(PK) t_id(FK) Zip

1 12 230
2 36 125
3 50 150

T3:Cast
id(PK) t_id(FK) c_id(FK)
30 12 2
20 36 3
15 13 1

t_id

Y

S

g1

c_id

t_id Z

g2
1

2

3

t_id

t_id 0.13 0.38 0.67
Year 1.13 7.10 3.22
Score 0.5 0.3 0.2
c_id 0.22 0.17 0.14
Zip 5.1 2.3 2.5
id 3.10 2.21 1.58

(d) Columns encoding results

Graph embedding

(a) Tables
T1:Title

t_id(PK) Year Score
12 2001 5
36 2000 3
50 2002 2

(b) Local dependency graphs (c) Global dependency graph

G

Figure 3: End-to-end example of Columns2Vec. (a) Three ta-

bles, and their columns to be encoded. (b) Local columns-

dependency graph for each table, vertices are columns, an

edge represents the correlations between two columns. (c)

Global columns-dependency graph. (d) Use the graph from

(c) as the input for the graph embedding method. Finally,

each column in the database is represented as a vector.

(2) Build a global columns-dependency graph for the data-

base. This graph is represented as 𝐺 . It is built based on the local

column-dependency graphs. Assume that there are two tables 𝑇𝑖
and 𝑇𝑗 and their local columns-dependency graphs are 𝑔𝑖 and 𝑔 𝑗
respectively. We merge 𝑔𝑖 and 𝑔 𝑗 if 𝑇𝑖 and 𝑇𝑗 are joinable. Thus,

we can build the global columns-dependency graph 𝐺 by checking

whether the pair of tables 𝑇𝑖 , 𝑇𝑗 in a database are joinable or not.

(3) Use graph embedding for encoding.We use a graph embed-

ding method [16] to encode each vertex in 𝐺 into a vector. The

results of Columns2Vec are used to represent ⟨𝐶𝑜𝑙𝑢𝑚𝑛𝑠⟩ of a query
𝑞 as a vector 𝑓𝐶 with the length 𝐶 , where 𝐶 is the total number of

different columns in the database. Figure 3 shows an example of

applying Columns2Vec to three tables, Title, Company, and Cast.
Multiple columns from these three tables are encoded into vectors

(see (d) in Figure 3).

3.3 Range Representation

In this section, we discuss how to represent ⟨𝑉𝑎𝑙𝑢𝑒𝑠⟩ of a query.
In a database D = {𝑇𝑖 }𝑚𝑖=1, any conjunctive query 𝑞 on numeric

columns of the databaseD can be represented as a subset of (𝑙𝑏1
1
≤

𝐶𝑜𝑙1
1
≤ 𝑢𝑏1

1
) ∧ ... ∧ (𝑙𝑏𝑐𝑚𝑚 ≤ 𝐶𝑜𝑙𝑐𝑚𝑚 ≤ 𝑢𝑏𝑐𝑚𝑚 ), where 𝐶𝑜𝑙

𝑗
𝑖
is the 𝑗𝑡ℎ

column of the table 𝑇𝑖 , 𝑙𝑏
𝑗
𝑖
and 𝑢𝑏

𝑗
𝑖
are the lower bound and upper

bound on values in the column𝐶𝑜𝑙
𝑗
𝑖
respectively, and {𝑐𝑖 }𝑚𝑖=1 is the

number of columns in the tables {𝑇𝑖 }𝑚𝑖=1. Let the domain of the 𝑗𝑡ℎ

column in table 𝑇𝑖 be 𝑑𝑜𝑚(𝐶𝑜𝑙 𝑗𝑖 ) = [𝑚𝑖𝑛
𝑗
𝑖
,𝑚𝑎𝑥

𝑗
𝑖
]. If a query does

not contain predicate on column 𝐶𝑜𝑙
𝑗
𝑖
, then we have 𝑙𝑏

𝑗
𝑖
= 𝑚𝑖𝑛

𝑗
𝑖

and 𝑢𝑏
𝑗
𝑖
=𝑚𝑎𝑥

𝑗
𝑖
. Then, the predicate on the column 𝐶𝑜𝑙

𝑗
𝑖
becomes

𝑚𝑖𝑛
𝑗
𝑖
≤ 𝐶𝑜𝑙 𝑗

𝑖
≤ 𝑚𝑎𝑥 𝑗

𝑖
. It means that the predicate on 𝐶𝑜𝑙

𝑗
𝑖
does

not filter out any row. For instance, assume that there are two

columns 𝐶𝑜𝑙
𝑗
𝑖
and 𝐶𝑜𝑙𝑘

𝑖
from the table 𝑇𝑖 , each of which is in the

domain [0,100]. Then, the predicate 10 ≤ 𝐶𝑜𝑙 𝑗
𝑖
≤ 20 would have the

following representation: (10 ≤ 𝐶𝑜𝑙 𝑗
𝑖
≤ 20) ∧ (0 ≤ 𝐶𝑜𝑙𝑘

𝑖
≤ 100).

Table 1: Query Features Segmentation

Type Table Join Column Predicate

Segment ⟨𝑇𝑎𝑏𝑙𝑒𝑠 ⟩ ⟨𝐽 𝑜𝑖𝑛𝑠 ⟩ ⟨𝐶𝑜𝑙𝑢𝑚𝑛𝑠 ⟩ ⟨𝑉𝑎𝑙𝑢𝑒𝑠 ⟩
Method Embedding Joins2Vec Columns2Vec Range

Seg. Size 𝑚 ⌈log(𝑚 + 1) ⌉ 𝑛 𝐶 2 ×𝐶

The above definition includes one-sided range predicates and point

predicates, i.e., 𝐶𝑜𝑙
𝑗
𝑖
= 𝑥 can be specified as 𝑙𝑏

𝑗
𝑖
= 𝑥 and 𝑢𝑏

𝑗
𝑖
= 𝑥 .

Finally, we use a vector 𝑓𝑉 with 2𝐶 dimensions to represent

⟨𝑉𝑎𝑙𝑢𝑒𝑠⟩ of a query: ⟨𝑙𝑏1
1
, 𝑢𝑏1

1
, ..., 𝑙𝑏

𝑐𝑚
𝑚 , 𝑢𝑏

𝑐𝑚
𝑚 ⟩. This vector is used

as a part of input features for the modelM. To facilitate learning,

all the vectors constructed by the query featurization have the same

dimension and the same format as depicted in Table 1, where𝑚 is

the number of tables in the database, 𝑛 is the number of possible

join relationships among the database tables, and 𝐶 is the total

number of different columns in the database. Therefore, the feature

vector for the query 𝑞 after the query featurization has a length of

𝐿 =𝑚⌈log(𝑚 + 1)⌉ + 𝑛 + 3𝐶 .

4 CHOICE OF REGRESSION METHODS

We use an ensembles of deep neural networks (DNNs), or deep en-
sembles for short, to estimate the cardinalities. We choose DNN,

because the distribution of queries is very complex and DNNs are

powerful models that have achieved impressive accuracy on many

tasks. Furthermore, previous work [11, 40] has shown the advantage

of using the ensemble technique to boost the cardinality estimation.

Deep ensembles. Deep ensembles is a learning paradigm where

a collection of a finite number of DNNs is trained for the same

task. In general, deep ensembles is constructed in two steps: (1)

training a number of DNNs in parallel without any interaction, and

(2) calculating the weighted average of the estimation results of

each DNN as the final output of the deep ensembles.

4.1 Cardinality Transformation

In this section, we discuss how to create proper training labels

through transformations. We generate a set of labeled queries (§4.2)

S = (𝑞1 : 𝐴𝑐𝑡 (𝑞1)), ..., (𝑞𝑁 : 𝐴𝑐𝑡 (𝑞𝑁 )) with actual cardinality as

the label, where S contains 𝑁 labeled queries. The cardinality vari-

ation across different queries in S can be huge, and the distribution

of the actual cardinalities for different queries can be skewed. Build-

ing an accurate model on such data is challenging. We alleviate this

problem by normalizing the actual cardinalities in S before train-

ing (i.e., the normalized values of the actual cardinalities belong to

[0, 1]). We use the log transformation and min-max scaling to do

the transformation. At runtime when using Fauce for estimation,

we apply inverse transformation to get the true estimations.

Log transformation. The log transformation allows the model

M to capture the abrupt variation. We apply log transformation

(using the base 2) on the cardinalities to mitigate such variation.

Min-max scaling. We rescale the outcomes of the log transfor-
mation into the range [0, 1] using min-max scaling. Given a set

of log transformed cardinalities CARD = {𝑐𝑎𝑟𝑑1, 𝑐𝑎𝑟𝑑2, ..., 𝑐𝑎𝑟𝑑𝑛},
the max cardinality in CARD (𝑚𝑎𝑥𝑐𝑎𝑟𝑑 ), the min cardinality in

CARD (𝑚𝑖𝑛𝑐𝑎𝑟𝑑 ), the result of the min-max scaling for 𝑐𝑎𝑟𝑑𝑖 in
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Figure 4: Training and inference process of Fauce. We first train the model offline, then we use the trainedmodel for the infer-

ence online. The outcome of the inference includes, estimated cardinality and both model uncertainty and data uncertainty.

𝐶𝑎𝑟𝑑 denotes the estimated cardinality;𝑈𝑚 is themodel uncertainty with respect to the estimation;𝑈𝑚 is the query-dependent

data uncertainty. Queries with high uncertainties are used for the incremental learning. Dotted neurons represent Dropout.

CARD is calculated as, 𝑐𝑎𝑟𝑑
′
𝑖
=

𝑐𝑎𝑟𝑑𝑖−𝑚𝑖𝑛𝑐𝑎𝑟𝑑
𝑚𝑎𝑥𝑐𝑎𝑟𝑑−𝑚𝑖𝑛𝑐𝑎𝑟𝑑 . Therefore, the fi-

nal cardinality estimation is formulated by inverse transformation:

𝑒𝑠𝑡 (𝑞𝑖 ) = 2
𝑐𝑎𝑟𝑑

′
𝑖×(𝑚𝑎𝑥𝑐𝑎𝑟𝑑−𝑚𝑖𝑛𝑐𝑎𝑟𝑑 )+𝑚𝑖𝑛𝑐𝑎𝑟𝑑 .

4.2 Training Data Generation

Since the distribution of the cardinalities for the queries can be eas-

ily skewed, naive sampling from the space of all queries can result

in a highly non-uniform training dataset and a sub-optimal cardi-

nality estimator. In order to generate a uniform training dataset,

our training data generation uses the following two rules: (1) Gen-

erality. The queries should come from different join graphs derived
from the join schema of the database; (2) Diversity. The training
data of the queries should be diverse in the number of predicates

and their cardinalities. Based on these two rules, our training data

is generated as follows.

We make the generated queries uniformly distributed to each

join graph. To generate a query to a join graph, we first draw a

tuple from the inner join result and get the number of non-null

columns of this tuple, denoted as𝑁𝑐 . Second, we choose the number

of predicates 𝑛𝑝 ∈ {2, 3, ..., 𝑁𝑐 } uniformly at random. Then we

randomly choose 𝑛𝑝 columns, and randomly place 𝑛𝑝 comparison

operators associated with these columns based on whether each

column can support range ({≤, ≥,=}) or equality filters (=). These

two steps guarantee a diverse set of multi-predicate queries.

5 MODEL DESIGN

Fauce includes two complementary approaches that operate in

two phases, shown in Figure 4. In the offline phase, we train the

modelM based on the generated training data (Section 4.2); In

the online phase, the modelM accepts queries and outputs their

estimated cardinalities together with the estimation uncertainties.

The training first generates a set of labeled queries S (§4.2). Then

we apply query featurization (§3) and cardinality transformation
(§4.1) on S to get the training dataset 𝐷 . 𝐷 consists of 𝑁 featurized

queries {𝑥𝑖 , 𝑦𝑖 }𝑁𝑖=1, where 𝑥𝑖 ∈ R𝐿 represents the L-dimensional

query features, and𝑦𝑖 ∈ R is a real value in the range of [0, 1]. Let𝐾
denote the number of DNNs in the deep ensemble, and𝑊 = {𝑤𝑖 }𝐾𝑖=1
denote the parameters of the ensemble where𝑤𝑖 is the parameters

of a DNN. Once the training is finished offline, the parameters𝑊

will be used for inference online.

A query for inference is featurized as a real valued vector, and

then this vector is plugged into the trained model to estimate the

cardinality and uncertainty of this estimation. The uncertainty

consists ofmodel uncertainty and data uncertainty, where the model

uncertainty describes how confident the learned model is, and

the data uncertain measures how noisy the collected query data

are. These two types of uncertainty values will be leveraged to

boost the model accuracy. The high model uncertainty means the

learned parameters𝑊 cannot best describe the distribution of the

features of a query. In this case, this query will be collected for the

future retraining. The high data uncertainty means the noisy of the

query data (e.g., new updated data in database) is high. In this case,

we generate a bunch of new training queries based on this query

with the high data uncertainty by a sampling method [6], and use

these queries for the future training. That is, we use an incremental
learning strategy to boost the model accuracy.

5.1 Uncertainty Quantification

Model uncertainty can be quantified using the Bayesian neural

network [45, 53] (BNN) that captures uncertainty about the learned

parameters. Data uncertainty describes the shift between the gener-

ated training data and input queries. To quantify the uncertainty, we

use the following definition of the total variance in each estimated

cardinality, based on [2]. Assuming 𝑥 is the feature vector of the

query𝑞,𝑦 is𝑞’s estimated cardinality before inverse-transformation,

the variance in 𝑦 is formulated as follows.

𝑉𝑎𝑟 (𝑦) = 𝑉𝑎𝑟 (E[𝑦 |𝑥]) + E[𝑉𝑎𝑟 (𝑦 |𝑥)] (1)

Based on Equation 1, we define the model uncertainty and data

uncertainty as follows.

𝑈𝑚 (𝑦 |𝑥) = 𝑉𝑎𝑟 (E[𝑦 |𝑥]) (2)

𝑈𝑑 (𝑦 |𝑥) = E[𝑉𝑎𝑟 (𝑦 |𝑥)] (3)

where𝑈𝑚 and𝑈𝑑 represent the model and data uncertainty respec-

tively. We can see that both uncertainties explain the variance in

the estimation. The model uncertainty explains the variance related

to E[𝑦 |𝑥], and the data uncertainty explains the variance inherent

to the conditional distribution 𝑉𝑎𝑟 (𝑦 |𝑥).
Model uncertainty. BNNs are used to find the posterior distribu-

tion of parameters𝑊 for Fauce, given the dataset 𝐷 = {𝑥𝑖 , 𝑦𝑖 }𝑁𝑖=1.
Assume that the posterior distribution of𝑊 is 𝑝 (𝑊 |𝐷), and 𝑓𝑊 =

{𝑓𝑤𝑖
}𝑁
𝑖=1

is the function mapping for the deep ensembles between

{𝑥𝑖 }𝑁𝑖=1 and {𝑦𝑖 }
𝑁
𝑖=1

. Given an inference query 𝑞∗, its feature vector
is 𝑥∗. The estimated cardinality is calculated by marginalizing over
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the posterior distribution, shown as follows.

𝑝 (𝑦∗ |𝑥∗, 𝐷) =
∫
𝑊

𝑝 (𝑦∗ |𝑓𝑊 (𝑥∗))𝑝 (𝑊 |𝐷)𝑑𝑊 (4)

In Equation 4, 𝑦∗ is the estimated cardinality for the query 𝑞∗

before the inverse- transformation. Here, the exact computation for

𝑝 (𝑊 |𝐷) is intractable, so we use a variational inferencemethod [13]

to find an approximation𝑞(𝑊 ) to the posterior distribution 𝑝 (𝑊 |𝐷).
The estimation distribution is approximated by switching 𝑝 (𝑊 |𝐷)
to 𝑞(𝑊 ) in Equation 4 and performing the Monte Carlo integration,

E(𝑦∗ |𝑥∗) ≈ 1

𝐾

∑𝐾
𝑖=1 𝑓𝑤𝑖

(𝑥∗). The predictive variance can also be

approximated as,𝑉𝑎𝑟 (𝑦∗) ≈ 1

𝐾

∑𝐾
𝑖=1 𝑓𝑤𝑖

(𝑥∗)2−E(𝑦∗ |𝑥∗)2.𝑉𝑎𝑟 (𝑦∗)
arises because of the uncertainty about the model parameters𝑊 .

We use 𝑉𝑎𝑟 (𝑦∗) to quantify the model uncertainty in Fauce.

Data uncertainty. Data uncertainty is dependent on the input

queries. We need a model that not only estimates the output cardi-

nalities, but also estimates the variances of the cardinalities given

the input queries. That is, the model must give an estimation of

𝑉𝑎𝑟 (𝑦 |𝑥) mentioned in Equation 3. Assume that 𝜇 (𝑥) and 𝜎 (𝑥) are
the functions parameterized by𝑊 that calculate the mean and stan-

dard deviation of the estimation for a query 𝑞 respectively, and 𝑥 is

𝑞’s feature vector. We have 𝑦 ∼ N(𝜇 (𝑥), 𝜎 (𝑥)2), and the negative

log likelihood is written as follows.

𝐿𝑜𝑠𝑠 (𝑊 ) = 1

𝑁

𝑁∑
𝑖=1

( log𝜎
2 (𝑥𝑖 )
2

+ (𝑦𝑖 − 𝜇 (𝑥𝑖 ))
2

2𝜎2 (𝑥𝑖 )
+ 1

2

𝑙𝑜𝑔2𝜋) (5)

Comparing Equation 5 with a standard mean squared loss used

in the traditional regression, we can see that the ensemble model in-

troduces higher estimation variances for queries where the mean of

estimated cardinality 𝜇 (𝑥𝑖 ) is more deviated from the true cardinal-

ity 𝑦𝑖 . On the other hand, a regularization term on 𝜎 (𝑥𝑖 ) prevents
themodel from introducing high estimation variances for all queries.

After the model is optimized, we use 𝜎2 (𝑥∗) to estimate the data

uncertainty of a new query 𝑞∗, where 𝑥∗ is the feature vector after
𝑞∗ is featurized.

5.2 Training and Inference

Ensembles training. Fauce uses the entire training dataset 𝐷

to train each DNN. To improve the model’s robustness, Fauce

also includes the adversarial training. In particular, we use the

fast gradient sign method [15] to generate adversarial query ex-

amples. Given a query 𝑞, 𝑥 as 𝑞’s feature vector, and 𝑦 as the

query’s true cardinality, an adversarial example is generated by

𝑥
′
= 𝑥 + 𝜂𝑠𝑖𝑔𝑛(▽𝑥𝐿𝑜𝑠𝑠 (𝑊,𝑥,𝑦)), where Loss(W, x, y) is from Equa-

tion 5. Here, 𝜂 is a small value to bound the max perturbation.

Those adversarial examples generated by the above formulation

are used to augment the original training set 𝐷 by treating (𝑥 ′, 𝑦)
as additional training examples.

Ensembles inference. We treat the ensemble as a uniformly-

weighted mixture model to calculate the final estimation results.

Assume that 𝑥∗ is the feature vector of the query 𝑞∗. The esti-

mated cardinality of 𝑞∗ is calculated with, 𝐶𝑎𝑟𝑑 (𝑞∗) = E(𝑦∗ |𝑥∗) ≈
1

𝐾

∑𝐾
𝑖=1 𝜇𝑤𝑖

(𝑥∗). The model uncertainty for the query 𝑞∗ is calcu-
lated with,𝑈𝑚 (𝑞∗) = 1

𝑀

∑𝑀
𝑖=1 𝜇𝑤𝑖

(𝑥∗)2−E(𝑦∗ |𝑥∗)2. The data uncer-
tainty for the query𝑞∗ is calculatedwith𝑈𝑑 (𝑞∗) = 1

𝐾

∑𝐾
𝑖=1 (𝜎2𝑤𝑖

(𝑥∗)+
𝜇2𝑤𝑖
(𝑥∗)) − E(𝑦∗ |𝑥∗)2.

5.3 Management of Estimation Uncertainty

Uncertainty management.We propose an algorithm calledman-
age uncertainty (Algorithm 3) to use the uncertainties to make the

estimation safer to use and improve model accuracy. In Algorithm 3,

𝜙𝑚 and 𝜙𝑑 are two thresholds for the model uncertainty 𝑈𝑚 (𝑞∗)
and data uncertainty𝑈𝑑 (𝑞∗) respectively.

When comparing the uncertainty values with the thresholds, we

have three situations. First, 𝑈𝑚 (𝑞∗) ≤ 𝜙𝑚 and 𝑈𝑑 (𝑞∗) ≤ 𝜙𝑑 . This
means that Fauce is confident on its estimation, so the estimated

cardinality is safe to use (Lines 2-3). Second, 𝑈𝑚 (𝑞∗) > 𝜙𝑚 and

𝑈𝑑 (𝑞∗) ≤ 𝜙𝑑 . This happens when the training dataset 𝐷 well repre-

sents the features of 𝑞∗, but the trained parameters underestimate

𝑞∗. We store the query 𝑞∗ into a buffer 𝐵 for an incremental learn-
ing strategy to eliminate the underestimation (Lines 4-5). Third,

𝑈𝑚 (𝑞∗) > 𝜙𝑚 and 𝑈𝑑 (𝑞∗) > 𝜙𝑑 . This happens when the training

dataset 𝐷 cannot represent the features of the query 𝑞∗, and the

parameters underestimate 𝑞∗. Besides storing the query 𝑞∗ into the

buffere 𝐵, we enlarge the number of queries in 𝐵 by sampling [6]

additional training data based on 𝑞∗ for the incremental learning

(Lines 6-9). At last, we update the modelM (Line 10).

Algorithm3:ManageUncertainty(𝑈𝑚 (𝑞∗),𝑈𝑑 (𝑞∗), 𝜙𝑚, 𝜙𝑑 )
Input:𝑈𝑚 (𝑞∗): Model uncertainty for new query 𝑞∗

𝑈𝑑 (𝑞∗): Data uncertainty for new query 𝑞∗

𝐶𝑎𝑟𝑑 (𝑞∗): Estimated cardinality for 𝑞∗

𝜙𝑚 , 𝜙𝑑 : Threshold for the model, data uncertainty

Output: 𝑆𝑎𝑓 𝑒_𝐶𝑎𝑟𝑑 : Cardinality that is safety to use

Output:M∗: updated modelM
1 𝐵 = {}; // Buffer to store queries for retraining

2 if 𝑈𝑚 (𝑞∗) ≤ 𝜙𝑚 and𝑈𝑑 (𝑞∗) ≤ 𝜙𝑑 then

3 𝑆𝑎𝑓 𝑒_𝐶𝑎𝑟𝑑 := 𝐶𝑎𝑟𝑑 (𝑞∗);
4 else if 𝑈𝑚 (𝑞∗) > 𝜙𝑚 and𝑈𝑑 (𝑞∗) ≤ 𝜙𝑑 then

5 𝐵 = 𝐵 ⊕ 𝑞∗;
6 else if 𝑈𝑚 (𝑞∗) > 𝜙𝑚 and𝑈𝑑 (𝑞∗) > 𝜙𝑑 then

7 𝐵 = 𝐵 ⊕ 𝑞∗;
8 𝐵∪ = Sampling(𝑞∗); // Sampling queries[6]

9 M∗ ← IncrementalLearning(M, 𝐵);
10 return 𝑆𝑎𝑓 𝑒_𝐶𝑎𝑟𝑑,M∗

When is the incremental learning triggered? In Algorithm 3,

the incremental learning can be triggered when the number of

queries in 𝐵 is beyond 𝐵’s maximal size. In Fauce, we set the max-

imal size of 𝐵 as 2000 queries. A small maximal size of 𝐵 can fre-

quently trigger the incremental learning, which increases the over-

head of using the incremental learning. In contrast, a large maximal

size of 𝐵 may rarely trigger the incremental learning, which means

that a large number of queries will be estimated by a stale model.

As a consequence, the estimation quality of Fauce is decreased.

Re-encoding for tables/joins/columns. The tables and joins en-

coding is based on the join schema of a database. Thus, re-encoding

of them is not necessary when incremental learning happens in

both static and dynamic environments. The columns encoding is

based on the inter-column correlations. Such correlations do not

change in a static environment. Thus, re-encoding of columns is not

necessary. However, in a dynamic environment, the inter-column
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Figure 5: Integration of Fauce with existing DBMS

correlations could change when data are continuously updated.

However, Fauce does not need to re-encode of all the columns from

scratch. First, Fauce calculates the inter-column correlations only

based on the new coming data. Then, Fauce filters out those pair-

wise columns whose correlations are significantly changed, and

only re-encodes those columns. Therefore, re-encoding of columns

only happens on a portion of columns in a dynamic environment.

5.4 Integration with DBMS

Figure5 shows how Fauce is integrated into a DBMS. Fauce is per-

formed before the query optimizer as an additional phase that

estimates the cardinalities and uncertainties. If the estimated uncer-

tainties are less than the threshold𝜙𝑚 and𝜙𝑚 , then the cardinalities

are injected into the query optimizer. In Fauce, the cardinality es-

timation techniques have online and offline phases. The offline

phase includes three components: (1) statistical information col-

lection; (2) deep ensembles training; and (3) incremental learning.

These three components happen in both static and dynamic scenar-

ios. But in a dynamic scenario, the statistical information can be

outdated as new data are continuously coming. Thus, Fauce must

update the statistics in the dynamic scenario. In dynamic scenario,

the re-encoding of columns is required when incremental learning

happens. The updated data may change the correlations among

columns. Thus, Fauce must update the global column-dependency

graph(§3.2) for the database. The online phase is for inference. This

phase is the same in both static and dynamic scenarios. Before

inference, a query must be featurized into vectors. As Fauce has

received the statistics information about the database tables and

encoding results of all the tables, joins, and columns in the offline

phase, the time overhead for query featurization is small, which

usually takes 2-6ms in our evaluation.

How is the incremental learning tied to the database system?

Figure 5 shows that the incremental learning is tied to the database

system in two ways. For the first way, we can get uncertainty feed-

back when use Fauce to estimate the cardinalities. The queries with

large estimated uncertainties will be stored in a buffer 𝐵 for the of-

fline incremental learning. For the second way, we can directly use

feedback from the query executor for incremental learning. How-

ever, the incremental learning based on new queries could affect the

existing queries. In other words, the model “forgets” the old data

and focuses exclusively on the new data. We use the Dropout [47]

technique to avoid the above problem. In Fauce, we utilize a dropout

value of 𝑝 = 0.2 when updating the modelM over the queries in 𝐵.

Table 2: Workloads used for evaluation. Tables: Number of

base tables in each workload. Rows: Number of rows after

the outer join. Cols: Total number of columns in the base ta-

bles. Feature: Characteristic of the queries in eachworkload.

Workload Tables Rows Cols Feature

JOB-base 6 2 · 1012 13 correlated filters

JOB-more-filters 6 2 · 1012 22 + more filters

JOB-complex-joins 15 2 · 1013 22 + complex joins

6 EVALUATION

We compare Fauce with state-of-the-art cardinality estimators using

point and range queries. We aim to answer the following questions:

• Compared with the prior methods, how does Fauce perform in

terms of accuracy and efficiency? (§6.2 and §6.4)

• How does the improvement on the cardinality estimation impact

the performance of the query optimiser (§6.3)

• How does the Fauce perform in a dynamic environment? (§6.5)

• How does Fauce perform on data profiling task? (§6.7)

6.1 Experimental Setup

Platform.We use a machine with an NVIDIA V100 GPU and an

Intel i9 CPU with 128GB RAM, and Tensorflow 2.3.

Workloads. We use a real-world dataset: IMDB [29]. IMDB has

complex correlated columns. It consists of 21 tables. We focus on

testing queries with correlated filters, larger number of filters, and

complex joins in their predicates. In our experiments, eachworkload

contains 2000 testing queries. Those workloads are discussed as

follows (see Table 2).

• JOB-base: the queries in JOB-base are generated based on nu-

meric columns in JOB-light. The schema in JOB-light is a typi-

cal star schema. JOB-light contains six tables, title (primary),

cast_info, movie_info, movie_company, movie_keyword, and
movie_info_idx. The predicates of the queries have 3-7 filters.
• JOB-more-filters: this benchmark tests Fauce ’s scalability to

complicated predicates. Some queries involve large number of

columns in their predicates. The schema is the same as JOB-base’s.

The predicates of the testing queries have 8-13 filters.

• JOB-complex-joins: this benchmark contains 15 tables in IMDB

and involves multiple join keys. For instance, movie_companies
is not only joined with title on movie_id, but also joined with

company_name on company_id, etc. Each query joins 2–11 ta-

bles. JOB-complex-joins is used to test Fauce ’s scalability to

complicated join conditions.

Evaluation metrics. To evaluate the accuracy of Fauce on the

above workloads, we use the q-error metric. The q-error of Fauce

on a query 𝑞 is calculated as, 𝑒𝑟𝑟𝑜𝑟 = 𝑚𝑎𝑥 ( 𝑒𝑠𝑡 (𝑞)
𝑎𝑐𝑡 (𝑞) ,

𝑎𝑐𝑡 (𝑞)
𝑒𝑠𝑡 (𝑞) ). Here,

we assume that 𝑎𝑐𝑡 (𝑞) ≥ 1 and 𝑒𝑠𝑡 (𝑞) ≥ 1, so the minimum 𝑒𝑟𝑟𝑜𝑟

is 1×. We report the median, 75𝑡ℎ, 90𝑡ℎ, 95𝑡ℎ and 99𝑡ℎ percentile

errors across all queries.

Baselines.We compare Fauce against a variety of representative

cardinality estimators, including:

1) Postgres: Using Postgres, we evaluate the cardinality esti-

mation that can be obtained from a real DBMS. The cardinality

estimation in Postgres relies on 1D histograms and heuristics.
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Table 3: Estimation errors on the JOB-base, JOB-more-filters, JOB-complex-joins workloads. “MU” and “DU” denote model

uncertainty and data uncertainty respectively. “Fauce +MU”means training with model uncertainty only, “Fauce +DU”means

training with data uncertainty only, and “Fauce +Both” means training with both model uncertainty and data uncertainty.

Estimator

JOb-base JOB-more-filters JOB-complex-joins

50th 75th 90th 95th 99th 50th 75th 90th 95th 99th 50th 75th 90th 95th 99th

Postgres 13.4 623 1960 2 · 105 7 · 105 8.1 162 1429 1 · 104 2 · 105 17.4 1679 7928 4 · 105 8 · 105
IBJS 11.6 125 2321 4 · 104 7 · 106 7.6 77.1 963 8 · 103 4 · 105 14.5 239 5014 3 · 104 7 · 104
MSCN 6.13 44.5 142 3568 2 · 104 4.8 16.3 121 1680 5 · 104 6.9 34.4 163 2820 4 · 104
DeepDB 4.61 17.3 145 3348 3 · 104 4.2 14.5 86 1182 4 · 104 5.3 17.3 268 3717 3 · 104
NeuroCard 3.04 10.2 69 1093 9 · 103 3.8 8.2 59 538 2 · 104 3.5 8.8 56.7 608 8 · 103
Fauce +DU 4.12 9.6 46.5 1246 8 · 103 3.9 7.7 43 464 1 · 104 4.1 8.4 48.0 598 9 · 103
Fauce +MU 2.86 5.5 17.2 375 3 · 103 3.2 5.6 25 245 5 · 103 3.4 7.2 25.8 366 5 · 103
Fauce +Both 2.58 5.1 15.3 279 2 · 103 2.9 5.1 21 206 3 · 103 2.7 6.3 21.6 227 3 · 103

2) IBJS: We use the Index-based Join Sampling method (IBJS) [30]

as a non-learned baseline. IBJS estimates a query’s cardinality using

a sampling-based approach based on the query’s join graph and

executing per-table filters.

3) MSCN: This is a representative supervised query-driven esti-

mator [24]. We generate 10K training queries for each workload to

train the model and use a bitmap size of 2K.

4) DeepDB: This is an unsupervised data-driven estimator [21].

DeepDB uses a non-neural sum-product network as the density esti-

mator for each table subset chosen by correlation tests. Conditional

independence is assumed across subsets.

5) NeuroCard: This is also an unsupervised data-driven estima-

tor [56]. NeuroCard is a join cardinality estimator that builds a

single neural density estimator over the entire database.

6.2 Estimation Quality

Tables 3 shows that Fauce exceeds the baseline estimators on all

the three workloads (§ 6.1).

(1) Results on JOB-base.

Postgres has the largest median, 75th, and 90th error. Post-

gres only relies on 1D histogram and heuristics, and does not con-

tain cross-column statistics. Thus, Postgres cannot fully capture

the characteristics of queries, and has high estimation error.

IBJS has the largest 95th and 99th errors. IBJS is a sampling

based method. We set the maximum sampling budget as 10,000,

as a larger sampling budget does not bring too much benefit [30].

Because the joint space is very large, those samples have small

chances to hit testing queries, hence can cause large estimation

errors. IBJS’s inference time varies from 3 to 20 ms.

MSCNhas large estimation errors on somequerieswith small

true cardinalities.MSCN’s training is based on a number of fea-

turized queries. MSCN does not contain uncertainty information

about testing queries. Furthermore, its query featurization method

cannot leverage semantic information in a database. As a result,

MSCN has large errors on some queries.

DeepDB has large errors on high quantiles. DeepDB uses a

sum-product network to estimate the density for each table sub-

set. Each table subset is chosen based on the correlations among

tables in the database. DeepDB assumes conditional independence

across table subsets. But this assumption is not always true in

real databases as some table subsets may have close relationships.

Furthermore, DeepDB assumes inter-column independence when

building the density model via the sum-product network. Therefore,

it does not reflect real column dependencies in the databases. As a

result, Fauce’s accuracy gain on each quantile is 1.8×, 3.4×, 9.5×,
12×, and 15×, compared with DeepDB.

Fauce exceeds NeuroCard. NeuroCard uses deep autoregressive

models as a density estimator to learn high-dimensional data distri-

butions. It works as follows. Given a range query with 𝐾 predicates,

first, NeuroCard obtains the probability of 𝑖-th predicate condi-

tioned on previous values. Then, it generates a sample value for

𝑖-th column. Finally, the conditional probabilities are multiplied

together to estimate the cardinality. We find NeuroCard tends to

have large errors on some range queries with correlated columns in

their predicates. In contrast, Fauce is robust to this kind of queries.

The overall Fauce ’s accuracy gain on each quantile is 1.16×, 2×,
4.5×, 3.9×, and 4.5×, compared with NeuroCard.

(2) Results on JOB-more-filters. This workload is used for test-

ing Fauce ’s scalability on queries with a large number of filters

in their predicates. As Table 3 shows, all estimators produce less

accurate cardinalities than Fauce. Compared with Postgres, Fauce’s

accuracy gain is from 2.8× to 70×, because the accumulative error

caused by the 1D histogram grows as the number of filters grows.

Compared with IBJS, Fauce’s accuracy gain is from 2.6× to 46×.
This is because the sampling results can easily be empty as the num-

ber of filter grows. Compared with MSCN, Fauce’s accuracy gain

is 1.7×, 3.2×, 5.9×, 8.1× and and 16.7× at median, 75th, 90th, 95th,

and 99th respectively. Compared with DeepDB, Fauce improves

the accuracy by 1.5×, 2.8×, 4×, 5.7×, and 13.3× at median, 75th,

90th, 95th, and 99th respectively. At last, compared with NeuroCard,

Fauce’s accuracy gains is 1.3×, 1.6×, 2.8×, 2.6× and 6.7× at median,

75th, 90th, 95th, and 99th respectively. Existing estimators fail to

capture the more complex inter-column correlations. As a result,

their estimations are vulnerable to queries with a large number of

columns in predicates. The results demonstrate Fauce’s scalability

to the number of filters.

(3) Results on JOB-complex-joins. This workload is used for

testing the Fauce’s ability to scale to queries with a large number

of filters and multiple join keys. The number of filters in the predi-

cates of the queries varies from 4 to 13; The possible number of join

keys varies from 2 to 10, and the predicates of the queries can have

multiple join keys. Table 3 shows that Fauce ’s accuracy remains

high on this complex schema. Postgres and IBJS have the largest

errors, because many intermediate samples become empty. Com-

pared with MSCN and DeepDB, Fauce’s accuracy improvement is
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Figure 7: The impact of the improved cardinality estimation

of Fauce on query performance.

up to 13.3× and 10× respectively. NeuroCard also achieves high

accuracy, but it still has large estimation errors on queries with

correlated columns in predicates. Fauce overcomes this challenge

and offers better accuracy than NeuroCard.

(4) Results on queries with no joins.We use the methods in [11]

as the baseline. The estimators in [11] are based on light-weight

models (i.e., simple NNs and boosting trees). We refer to the meth-

ods usingNNs and boosting trees in [11] as “LW-NN” and “LW-XGB”

respectively. Our experiments use the same datasets as [11], includ-

ing “Forest”, “Power”, and “Weather”. Fauce, LW-NN, and LW-XGB

are trained and tested on the same queries. Figure 6 shows the

testing results. We can see Fauce has the higher accuracy than

LW-NN and LW-XGB on all the datasets. The main difference be-

tween Fauce and LW-NN lies in the query featurization method.

LW-NN and LW-XG extract features from ⟨𝑉𝑎𝑙𝑢𝑒𝑠⟩ of queries, and
use AVI [28], EBO[3], and MinSel[35] as extra features during query
featurization. Fauce, besides extracting features from ⟨𝑉𝑎𝑙𝑢𝑒⟩, uses
the Columns2vec algorithm to extract features from ⟨𝐶𝑜𝑙𝑢𝑚𝑛⟩ of a
query. The higher accuracy of Fauce on these datasets indicates that

Fauce’s featurization method can capture more informative features

of a query than the query featurization method used in [11].

6.3 Impacts on Query Performance

We evaluate whether the improvement of cardinality estimation in

Fauce leads to better query performance. Our evaluation is based

on the workloads introduced in Section 6.1. We test 2000 queries for

each workload. After we get the estimated cardinalities from Fauce,

these estimations are then fed into a version of PostgreSQL modi-

fied to accept external cardinality estimations [4]. Figure 7 shows

the performance impact of the cardinalities estimated by Fauce,

compared to the default cardinality estimations from PostgreSQL.

For the Job-base (Figure7(a)), the execution time for these queries

ranges from < 1s up to 200s. Fauce improves the performance of

81.4% of the queries. For the Job-more-filters (Figure7(b)), the major-

ity of the queries’ runtime ranges from 0.5 to 350s. Fauce improves

the performance for 80.3% of the queries. 8.4% of the queries’ ex-

ecution time is extended, and the rest of queries have the same

performance as PostgreSQL. For the Job-complex-joins (Figure7(c)),

Fauce improves the performance for 78.2% of the queries.
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6.4 Efficiency of Fauce

Training time comparison. Figure 8(a) shows the training time.

Once the training queries are collected, training MSCN takes 55-60

mins for the three workloads. DeepDB can only run on parallel

CPUs (not on GPU as other methods), so DeepDB takes the longest

training time (60-75 mins). Fauce has higher efficiency on query
featurization compared with MSCN, so training Fauce requires less

time than MSCN: Fauce takes 50-54 mins on all the three work-

loads. Note that DNNs in the ensemble are independent in Fauce

and can be trained independently. Therefore, Fauce’s training time

can be further optimized through parallel training, which reduces

the training time to less than 20 mins (see Fauce-p in Figure 8(b)).

Training NeuroCard has to calculate the join count tables and per-

form parallel sampling first, and then trains the auto-regressive

model for some epochs. Even if training process of NeuroCard is

accelerated by GPUs, training Neurocard still takes more than 20

mins on Job-more-filters and Job-complex-joins workloads.

Inference time comparison. Figure 8(b) shows the inference time

of MSCN, DeepDB, NeuroCard, and Fauce on JOB-base workload.

MSCN, NeuroCard, and Fauce run on GPU while DeepDB runs

on CPU; These estimators are implemented in Python. Fauce and

MSCN are the fastest because they are based on lightweight net-

work and involve fewer calculation during the inference. DeepDB’s

inference time spans from 1 ms to 200ms, and its inference time is

short for queries with a small number of joins and filters. However,

its inference time can be more than 150ms for complex queries.

NeuroCard’s inference time is smaller than DeepDB, but it is still 2

to 10× larger than those of Fauce and MSCN. The inference time

of DeepDB and NeuroCard is more sensitive to the number of the

predicates in a query than Fauce and MSCN.

6.5 Handling Data Updates

We analyze how Fauce performs in a dynamic environment.

Threshold values. In Algorithm 3, we use two thresholds 𝜙𝑚 and

𝜙𝑑 to control the model uncertainty and data uncertainty respec-

tively. Here, we discuss how we set proper values for 𝜙𝑚 and 𝜙𝑑
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Figure 11: Estimation quality under dynamic environment.

as the thresholds. In our study, the threshold values for 𝜙𝑚 and 𝜙𝑑
are measured based on additional 10K queries, not those for testing.

Those queries are derived from JOB-light. We estimate cardinalities

and uncertainties for those 10K queries. The uncertainty value of

each query is in the range of [0,1]. We set the length of a uncertainty

interval as 0.1 and use ten uncertainty intervals. We count the num-

ber of queries in each of the ten uncertainty intervals. Figure 9(a)

and (b) show that queries with 𝜙𝑚 higher than 0.5 or 𝜙𝑑 higher than

0.4 tend to have large errors. Based on the above observation, we

set the threshold value for model uncertainty and data uncertainty

as 0.5 and 0.4 respectively. In Fauce, if a query’s model uncertainty

is below 𝜙𝑚 or a query’s data uncertainty is below 𝜙𝑑 , then its

estimated cardinality is safe to use. We refer to such cardinality as

“safe_card”. Figure 10(a) and (b) show the number of queries within

the ten intervals. We can see the percentage of safe_card is about

70%. The errors of queries within safe_card and unsafe_card are

shown in Figure 10(c), based on which we conclude that the queries

with safe_card have much smaller errors than with unsafe_card.

Dynamic environment setup. Suppose that there are 𝑛 queries

uniformly distributed in a time range [𝑇𝑖 ,𝑇𝑖+1], and 𝑇 = 𝑇𝑖+1 −𝑇𝑖 .
The queries based on updated data begin to come at timestamp 𝑇𝑖 .

Those queries with high uncertainties are stored in the buffer 𝐵

for the incremental learning. Once the number of queries in the

buffer 𝐵 is beyond 𝐵’s maximum capacity, the model update begins.

Suppose themodel update finishes at timestamp𝑇𝑓 (𝑇𝑖 < 𝑇𝑓 ≤ 𝑇𝑖+1).
For the first ⌈𝑛 · 𝑇𝑓 −𝑇𝑖

𝑇
⌉ queries, their cardinalities are estimated

using the stale modelM𝑠𝑡𝑎𝑙𝑒 . For the remaining ⌊𝑛 · (1 − 𝑇𝑓 −𝑇𝑖
𝑇
)⌋

queries, the updated modelM𝑢𝑝𝑑𝑎𝑡𝑒 are used. Since some queries

are handled by the (inaccurate) stale model, the estimation results

for these queries can be erroneous.

Data update. We use the real-world dataset IMDB [29] for testing

under a dynamic environment. Our experiment is based on two

different kinds of data updates. The first kind of data updates leads

to significant changes in pair-wise correlations, while the second

kind of data updates does not. (a) In the first kind of data update,

we use the similar method introduced in [11] to update the dataset.

In particular, we update 50% tuples of the dataset, which results

in huge change in data distribution; (b) In the second kind of data

update, we partition the table title into two parts on the year
column. The part with the latest year is used as the new data to be

appended into dataset, the pair-wise correlations for this method are

not significantly changed. This kind of data update is used in [56].

After data updates, we apply our workload generation method

on the updated dataset to generate 10K queries for testing. These

queries are uniformly distributed in [𝑇𝑖 ,𝑇𝑖+1]. 𝑇 , which is equal to

𝑇𝑖+1−𝑇𝑖 , is a parameter, which represents how “frequently” the data

are updated.Model update.We update Fauce and NeuroCard, and

then compare their estimation quality. NeuroCard is a data-driven

estimator, so NeuroCard is updated by retraining on the entire new

updated dataset. Fauce is a query-driven estimator, it is updated

via the incremental learning once there are 2K queries contained

in the buffer 𝐵.

Estimations in a dynamic environment.We test the estimation

quality of Fauce and NeuroCard in a dynamic environment. The

value of 𝑇 is varied to control the frequency of data update. We set

three levels of the frequency: high (1 min), medium (100 mins), and

low (500 mins). The estimation quality of NeuroCard and Fauce in

the dynamic environment is shown in Figure 11.

First, we compare Fauce with NeuroCard when 20% of rows in

the table title is appended (Figure11(a)). If the frequency of the

data update is high (shown in the left figure in Figure11(a)), both

Fauce and NeuroCard cannot finish the model update, then the

stale models for Fauce and NeuroCard are used for testing. When

the data update does not change the data distribution, data distri-

bution learned by NeuroCard still works. As a result, NeuroCard

performs better than Fauce. When the data update frequency is

medium and slow (the right two figures in Figure11(a)), both Fauce

and NeuroCard can finish model update. We set the time interval

for data updates as 𝑇 = 𝑇𝑖+1 − 𝑇𝑖 , for the queries coming within

[𝑇𝑖 ,𝑇𝑓 ], and those queries are tested by the stale models. Here, 𝑇𝑓
is the time when the model updates are finished. Queries coming

within [𝑇𝑓 ,𝑇𝑖+1] are tested by the updated models. For queries com-

ing within [𝑇𝑖 ,𝑇𝑓 ], NeuroCard performs better than Fauce. This is

because the appended data does not change the data distribution

in the database. So NeuroCard can still work well. Queries coming

within [𝑇𝑓 ,𝑇𝑖+1] are tested by the updated models in Fauce and

NeuroCard. We can see Fauce performs better than NeuroCard.

Second, we compare Fauce and NeuroCard when 50% rows in

table title are updated (Figure11(b)). Overall, Fauce performs

better than NeuroCard for queries coming within [𝑇𝑖 ,𝑇𝑓 ] (when
the stale models are used) and [𝑇𝑓 ,𝑇𝑖+1] (when the updated models

are used). This is because the inter-column correlations in this

scenario have been significantly changed, so the data distribution

learned by NeuroCard is outdated. In Fauce, the feature vector of a

query 𝑞 = ⟨𝑇𝑎𝑏𝑙𝑒𝑠⟩, ⟨𝐽𝑜𝑖𝑛𝑠⟩, ⟨𝐶𝑜𝑙𝑢𝑚𝑛𝑠⟩, ⟨𝑉𝑎𝑙𝑢𝑒𝑠⟩ after the query
featurization (§3) has the length of 𝐿 =𝑚⌈log(𝑚 + 1)⌉ +𝑛 + 3𝐶 (see

Table1). As the inter-column correlations have been significantly

changed, the features extracted from ⟨𝐶𝑜𝑙𝑢𝑚𝑛𝑠⟩ can not reflect the

new inter-column correlations. The ratio for the features extracted

from ⟨𝐶𝑜𝑙𝑢𝑚𝑛𝑠⟩ among the total length of the feature vector is:

𝐶
𝐿
, where 𝐶 is the length of features extracted from ⟨𝐶𝑜𝑙𝑢𝑚𝑛𝑠⟩.
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Table 4: Impact of encodingmethods(§3). “Ours” denotes our

encoding method. The lowest errors are bolded.

Workload Encoding 50th 90th 95th 99th

JOB-base

One-hot 4.53 87 2029 3 × 104
Binary 4.24 62 1586 2 × 104
Ours 2.58 15.3 279 2 × 103

JOB-more

-filters

One-hot 5.23 84 862 2 × 104
Binary 4.82 69 754 2 × 104
Ours 2.9 21 206 3 × 103

JOB-complex

-joins

One-hot 5.62 78 1446 2 × 104
Binary 4.77 62 1193 1 × 104
Ours 2.7 21.6 227 3 × 103

Here, the schema of the database remains the same, so the features

extracted from ⟨𝑇𝑎𝑏𝑙𝑒𝑠⟩ and ⟨𝐽𝑜𝑖𝑛𝑠⟩ can be reused. Those features

are not required for re-encoding. If the domain of some columns is

changed, we need to update the domain for featurizing ⟨𝑉𝑎𝑙𝑢𝑒𝑠⟩ of
a query 𝑞. Updating the domain of the columns can be finished in a

very short time (similar with updating the 1D histogram in DBMSs).

We conclude that only the
𝐶
𝐿
portion of features after the query

featurization is influenced by data updates. For IMDB [29], 𝐶 is

relatively small, compared with 𝐿, so Fauce’s featurization method

still work well in this scenario. That is why Fauce performs better

than NeuroCard when 50% of rows is updated.

6.6 How Encoding Methods Impact Fauce

We explore how the encoding methods (§3.1 and §3.2) impact

Fauce’s accuracy.

Impact of encoding methods.We encode ⟨𝑇𝑎𝑏𝑙𝑒𝑠⟩, ⟨𝐽𝑜𝑖𝑛𝑠⟩, and
⟨𝐶𝑜𝑙𝑢𝑚𝑛𝑠⟩ of a query with our encoding method. Some existing

estimators [19, 24, 40] use one-hot or binary encoding methods.

Table 4 shows the impact of encodingmethods on the errors over the

three workload (§6.1). We can see the impact brought by different

encoding methods for low-quantile errors is small. However, the

encoding methods have large impact on high-quantile errors. Our

encoding method’s accuracy gain is up to 7.3× and 15× on high-

quantile errors, compared with the one-hot and binary encodings

respectively.

6.7 Data Profiling

The column encoding method (§3.2) in Fauce can be used to find ap-

proximate functional dependencies (AFDs) among database columns.

We compare the efficiency of Fauce with other four data profiling

methods: Pyro [27], Tane [22], Ducc/Dfd [1], and Fdep [12]. Table 5

shows the information of the datasets we use for data profiling.

The results are shown in Figure 12. We can see that Fauce finishes

the job of finding the AFDs on all the datasets within a time limit

(10
4
s). Fauce’s execution time for data profiling is the shortest on

the datasets DB Status, Census, and Entity source. These datasets

have unknown or large number of AFDs. When profiling on the

datasets Reflns and Spots, Fauce’s execution time is still lower than

Tane, Ducc/Dfd, and Fdep (except for Pyro). For an easy-to-process

dataset with a smaller number of rows/columns and AFDs (e.g., the

Wiki image), Fauce is outperformed by the baselines. But for the

hard-to-process datasets (i.e., DB Status, Census, and Entity source),

the speedup of Fauce is larger than 10×, compared with baselines.

100

Pyro Tane Ducc/DfdFauce

DB status Wiki image Census Reflns

102

Entity source

104

R
un

tim
e 

(s
)

Spots

Fdep
Time limit

104s

Dataset
Figure 12: Runtime for data profiling. “x”means out of limit.

Table 5: Datasets used for data profiling.

DB status Wiki image Census Reflns Entity Spots

Cols. 35 12 42 37 46 15

Rows 29,787 777,676 199,524 24,769 26,139 973,510

AFDs 108,003 92 unknown 9,396 unknown 75

7 RELATEDWORK

Query-driven cardinality estimators. Recently, there has been

a surge of interests in using ML-based methods [7, 8, 31, 38, 54, 55]

to solve system problems, especially using ML-based methods

to enhance the performance of database components, e.g., index-

ing [26, 37, 49], query execution [41] and scheduling [33]. Some

work [20, 23, 24, 48, 51] targets on leveraging past queries to learn

functions mapping a query with a prediction domain. While Kipf

et al [24] addressed a generic version of the selectivity estimation

problem, the models in this paper are much more succinct, leading

to significantly faster estimations.

Data-driven cardinality estimators.The data-driven approaches

build unsupervised models, which learn the joint probability den-

sity function (PDF) of table attributes to estimate the probability

of a query. In recent work, there is extensive work on applying

data-driven techniques for solving challenging database problems.

Sample and Kernel-based methods [20, 21, 30, 30] sample records

from tables on-the-fly, or use average kernels centered around sam-

pled points for estimation. Sum-Product Networks (SPNs) [34, 42]
estimate the PDF results using either sum and product operations

to combine children information in a tree structure. Deep Auto-
Regression (DAR) models are the current state-of-the-art density

models [14, 44, 50, 57]. DARmodels capture all possible correlations

among the attributes of tables to produce selectivity estimates.

8 CONCLUSIONS

It is challenging to make accurate cardinality estimations for com-

plex queries using machine learning models. We introduce Fauce to

address this problem. Fauce has a new query featurization method

which can make the input feature vectors more informative for

the cardinality estimation. It also includes uncertainty information

for estimation results. Experimental results show that Fauce has

1.16-6.67× higher accuracy than the state-of-the-art approach when
estimating cardinalites for complex queries.
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