
Kamino: Constraint-Aware Differentially Private Data Synthesis
Chang Ge, Shubhankar Mohapatra, Xi He, Ihab F. Ilyas

University of Waterloo
{c4ge,s3mohapatra,xihe,ilyas}@uwaterloo.ca

ABSTRACT

Organizations are increasingly relying on data to support decisions.
When data contains private and sensitive information, the data
owner often desires to publish a synthetic database instance that is
similarly useful as the true data, while ensuring the privacy of indi-
vidual data records. Existing differentially private data synthesis
methods aim to generate useful data based on applications, but they
fail in keeping one of the most fundamental data properties of the
structured data — the underlying correlations and dependencies
among tuples and attributes (i.e., the structure of the data). This
structure is often expressed as integrity and schema constraints,
or with a probabilistic generative process. As a result, the synthe-
sized data is not useful for any downstream tasks that require this
structure to be preserved.

This work presents Kamino, a data synthesis system to ensure
differential privacy and to preserve the structure and correlations
present in the original dataset. Kamino takes as input of a database
instance, along with its schema (including integrity constraints),
and produces a synthetic database instance with differential pri-
vacy and structure preservation guarantees. We empirically show
that while preserving the structure of the data, Kamino achieves
comparable and even better usefulness in applications of train-
ing classification models and answering marginal queries than the
state-of-the-art methods of differentially private data synthesis.

PVLDB Reference Format:

Chang Ge, Shubhankar Mohapatra, Xi He, Ihab F. Ilyas. Kamino:
Constraint-Aware Differentially Private Data Synthesis. PVLDB, 14(10):
1886 - 1899, 2021.
doi:10.14778/3467861.3467876

1 INTRODUCTION

Organizations have been extensively relying on personal data to
support a growing spectrum of businesses, from music recommen-
dations to life-saving coronavirus research [77]. This type of data is
often structured and carries sensitive information about individu-
als. Reckless data sharing for data-driven applications and research
causes great privacy concerns [10, 47] and penalties [1]. Differential
privacy (DP) [28] has emerged as a standard data privacy guarantee
by government agencies [9, 45] and companies [34, 43, 49]. Infor-
mally, the output of a data sharing process that satisfies DP has
a similar distribution whether an individual’s data is used for the
computation or not. Hence, the output cannot be used to infer much
about any individual’s data and therefore is considered “private”.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 10 ISSN 2150-8097.
doi:10.14778/3467861.3467876

Differential privacy is often achieved via randomization, such
as injecting controlled noise into the input data [54] based on the
required privacy level, and hence there is a trade-off between pri-
vacy and the utility of this data to downstream applications. One
approach often followed in prior work focuses on the optimiza-
tion of this trade-off for a given application (e.g., releasing sta-
tistics [9, 18], building prediction models [8, 63], answering SQL
queries [40, 49, 53, 58]). For example, APEx [40] is designed for data
exploration; for each query, APEx searches the best differentially
private algorithm that can answer the query accurately with the
minimum privacy cost. This line of work allows the fine-tuning of
an algorithm for the optimal trade-off between the privacy cost and
the accuracy of the given application, but the released output may
not be useful for other applications. Running a new application on
the same dataset usually requires additional privacy cost.

An attractive alternative approach is to publish a differentially
private synthetic database instance with a set of desired properties
such as similar value distributions or dependency structure, with
the hope that it has the same utility or is as useful as the original
dataset to a large class of downstream applications that require
those properties. For example, the US Census Bureau released dif-
ferentially private census data, and it has been shown useful to keep
similar home-workplace distribution as the true data to populate the
mapping application [18]. Privately releasing synthetic data avoids
designing separate mechanism for each target application, and the
privacy cost is incurred only once for all supported applications
due to the post-processing property of differential privacy [32].

1.1 Problems with Current DP Data Synthesis

For applications that consume structured data with predefined
schema in a SQL database, it is important for the synthetic data
to keep the structure of the data — the underlying correlations and
dependencies among tuples and attributes. This structure is often
expressed as integrity and schema constraints, such as functional
dependencies between attributes or key constraints between tables.
Otherwise, the synthesized data is not useful for any downstream
tasks that require this structure to be preserved.

In general, generating differentially private synthetic data based
on true data faces fundamental challenges. Take answering statis-
tical queries as an example application. Prior work [16, 31, 39, 75]
have shown that the running time for sampling a synthetic dataset
that is accurate for answering a large family of statistics (e.g., all
𝛼-way marginals) grows exponentially in the dimension of the data.
On the other hand, an efficient private data generation algorithm
fails to offer the same level of accuracy guarantees to all the queries.
Existing practical methods (e.g., [12, 20, 21, 50, 83]) therefore choose
to privately learn only a subset of queries or correlations to model
the true data and then sample database instances based on the
learned information. However, the structure of the data is not ex-
plicitly captured by these methods and thus are poorly preserved in

1886

https://doi.org/10.14778/3467861.3467876
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3467861.3467876

●

●

●

● ●

●

●

0.00

0.25

0.50

0.75

1.00

PrivBayes PATE−GAN DP−VAE
Method

A
cc

ur
ac

y

Standard Cleaned

(a) Accuracy

●

●
●
●

●

●

●

●
●

●

0.00

0.25

0.50

0.75

1.00

PrivBayes PATE−GAN DP−VAE
Method

V
ar

ia
tio

n
D

is
ta

nc
e

Standard Cleaned

(b) 2-way marginal

Figure 1: A syntheticAdult data using PrivBayes, PATE-GAN

and DP-VAE satisfying (𝜖 = 1, 𝛿 = 10−6
)-DP, with and without

fixing the integrity violations (labeled as ‘cleaned’ and ‘stan-

dard’, respectively). Each point in Figure 1a represents the

testing accuracy for one target attribute. Each point in Fig-

ure 1b represents the total variation distance between the

true and synthetic Adult. More details are in § 7.

the synthetic data. In particular, all these methods assume tuples in
the database instance are independent and identically distributed
(i.i.d.), and sample each tuple independently. The output database
instance has a significant number of violations to the structure
constraints in the truth.
Example 1: Consider the Adult dataset [27] consisting of 15 at-
tributes with denial constraints [48], such as ‘two tuples with the
same education category cannot have different education numbers’,
and ‘tuples with higher capital gain cannot have lower capital loss’.
There is no single violation of these constraints in the true data,
but the synthetic data generated by the state-of-the-arts including
PrivBayes [83], PATE-GAN [50], and DP-VAE [20] have up to 32%
of the tuple pairs failing these constraints (Table 2).

However, naïvly repairing the incorrect structure constraints
in the synthetic data can compromise the usefulness. We applied
state-of-the-art data cleaning method [67] to fix the violations in
the synthetic data generated by the aforementioned three methods.
Then we evaluated their usefulness in training classification models
and building 2-way marginals. Figure 1 shows that the repaired
synthetic data (labeled as ‘cleaned’) have lower classification qual-
ity (i.e., smaller accuracy score) and poorer marginals (i.e., larger
distance) compared to the synthetic data with violations (labeled as
‘standard’). Though the repaired synthetic data managed to comply
with structure constraints, they become less useful for training
models and releasing marginal statistics. □

1.2 Constraint-Aware DP Data Synthesis

To solve the aforementioned problems, we are motivated to design
an end-to-end synthetic data generator that preserves both the
structure of the data and the privacy of individual data records. In
this work, we consider an important class of structure constraints,
the denial constraints (DCs) [48], and we present Kamino1, a system
for constraint-aware differentially private data synthesis.

Our solution is built on top of the probabilistic database frame-
work [69, 72], which models a probability distribution over ordinary
databases and incorporates the denial constrains as parametric fac-
tors. Database instances that share similar structural and statistical

1Kamino was the planet in Star Wars, renowned for the technology of clone armies.

correlations with the true data are modeled to have similar probabil-
ities. We first privately learn a parametric model of the probabilistic
database, and then sample a database instance from the model as a
post-processing step. To make it more efficient, we decompose the
joint probability of a database instance into a chain of conditional
probabilities, and privately estimate tuple distribution using tuple
embedding [79] and the attention mechanism [11] for mixed data
types (categorical and numerical). As we explicitly consider addi-
tional correlation structures compared to prior work, Kamino can
incur more performance cost and utility cost for other applications
given the same level of privacy constraint. Our empirical evalu-
ation shows that the performance overhead and accuracy payoff
are negligible. We also show that while preserving DCs, Kamino
produces synthetic data that have comparable and even better qual-
ity for classification applications and marginal queries than the
state-of-the-art methods on differentially private data synthesis.

We highlight the main contributions of this work as follows:
• We believe this is the first work to consider denial constraints
in differentially private data synthesis, which are important
properties for structured data. We use probabilistic database
framework to incorporate DCs and attribute correlations.
• We develop an efficient learning and sampling algorithm for

Kamino by decomposing the probabilistic database model into
a chain of submodels, based on the given constraints (§ 3 & § 4).
• We design a private learning algorithm in Kamino to learn the
weights of given DCs to allow interpreting them in the model
as soft constraints (§ 5).
• We build the prototype for Kamino, the first end-to-end system
for differentially private data generation with DCs, and apply
advanced privacy composition techniques to obtain a tight end-
to-end privacy bound (§ 6).

We evaluate Kamino over real-world datasets and show that the
synthetic data have similar violations to the given DCs as in the true
data, and they also achieve the best or close to best data usefulness
in the marginal queries (variation distance) and the learning tasks
(accuracy and F1), compared to the state-of-the-art methods (§ 7).

2 PRELIMINARIES

We consider a relational database schema of a single relation 𝑅 =

{𝐴1, · · · , 𝐴𝑘 } with 𝑘 attributes. Let 𝐷 be a database instance of this
schema 𝑅 and consist of 𝑛 tuples {𝑡1, · · · , 𝑡𝑛}. Each tuple 𝑡𝑖 ∈ 𝐷 has
an implicit identifier 𝑖 , and 𝑡𝑖 [𝐴 𝑗] denotes the value taken by the
tuple 𝑡𝑖 for attribute 𝐴 𝑗 from its domain D(𝐴 𝑗). Index 1 refers to
the first element in a list/array.

2.1 Denial Constraints

Denial constraints (DCs) [48] are used in practice by domain experts
to specify the structure of the data, such as functional dependency
(FD) [46] and conditional FD [37]. In case of missing DCs, recent
work have designed algorithms to automatically discover DCs from
the database instance [15, 24].

We express a DC as a first-order formula in the form of 𝜙 :
∀𝑡𝑖 , 𝑡 𝑗 , · · · ∈ 𝐷,¬(𝑃1 ∧ · · · ∧ 𝑃𝑚). Each predict 𝑃𝑖 is of the form
(𝑣1 𝑜 𝑣2) or (𝑣1 𝑜 𝑐), where 𝑣1, 𝑣2 ∈ 𝑡𝑥 [𝐴], 𝑥 ∈ {𝑖, 𝑗, · · · }, 𝐴 ∈ 𝑅,

1887

𝑜 ∈ {=,≠, >, ≥, <, ≤}, and 𝑐 is a constant. We will omit universal
quantifiers ∀𝑡𝑖 , 𝑡 𝑗 , . . . hereafter for simplicity.
Example 2: Consider a database instance 𝐷 with schema 𝑅 =

{𝑎𝑔𝑒, 𝑒𝑑𝑢_𝑛𝑢𝑚, 𝑒𝑑𝑢, 𝑐𝑎𝑝_𝑔𝑎𝑖𝑛, 𝑐𝑎𝑝_𝑙𝑜𝑠𝑠}, and three DCs:
𝜙1: ¬(𝑡𝑖 [𝑒𝑑𝑢] = 𝑡 𝑗 [𝑒𝑑𝑢] ∧ 𝑡𝑖 [𝑒𝑑𝑢_𝑛𝑢𝑚] ≠ 𝑡 𝑗 [𝑒𝑑𝑢_𝑛𝑢𝑚])
𝜙2: ¬(𝑡𝑖 [𝑐𝑎𝑝_𝑔𝑎𝑖𝑛] > 𝑡 𝑗 [𝑐𝑎𝑝_𝑔𝑎𝑖𝑛] ∧ 𝑡𝑖 [𝑐𝑎𝑝_𝑙𝑜𝑠𝑠] < 𝑡 𝑗 [𝑐𝑎𝑝_𝑙𝑜𝑠𝑠])
𝜙3: ¬(𝑡𝑖 [𝑎𝑔𝑒] < 10 ∧ 𝑡𝑖 [𝑐𝑎𝑝_𝑔𝑎𝑖𝑛] > 1𝑀)

The first DC 𝜙1 expresses an FD 𝑒𝑑𝑢 → 𝑒𝑑𝑢_𝑛𝑢𝑚. It states
that for any two tuples with same 𝑒𝑑𝑢, their 𝑒𝑑𝑢_𝑛𝑢𝑚 must be the
same too. The second DC 𝜙2 states that for any two tuples, if one’s
𝑐𝑎𝑝_𝑔𝑎𝑖𝑛 is greater than the other’s, its 𝑐𝑎𝑝_𝑙𝑜𝑠𝑠 cannot be smaller.
The third DC 𝜙3 is a unary DC that enforces every tuple with 𝑎𝑔𝑒

less than 10 cannot have 𝑐𝑎𝑝_𝑔𝑎𝑖𝑛 more than 1 million. □
A DC states that all the predicts cannot be true at the same

time, otherwise, a violation occurs. We use 𝑉 (𝜙, 𝐷) to represent
the set of tuples (for unary DCs) or tuple groups (for non-unary
DCs) that violates DC 𝜙 in a database instance 𝐷 . we refer to DC
𝜙 as a hard DC if no violations are allowed (i.e., 𝑉 (𝜙, 𝐷) = ∅),
or a soft DC if a database instance can have violations. Note that
the set of DC violations expands monotonicity with respect to
the size of a database instance, that is for a subset instance �̂� ⊂ 𝐷 ,
𝑉 (𝜙, �̂�) ⊂ 𝑉 (𝜙, 𝐷).We also useA𝜙 to represent the set of attributes
that participate in the DC 𝜙 . For example, A𝜙1 = {𝑒𝑑𝑢, 𝑒𝑑𝑢_𝑛𝑢𝑚}.

2.2 Probabilistic Database

The probabilistic database framework [69] has been used in prac-
tice [67, 79] to model observed data that do not fully comply with a
given set of DCs. Intuitively, a database instance with few violations
is more likely. Given a set of DCs Φ and their weights {𝑤𝜙 | 𝜙 ∈ Φ},
the probability of an instance 𝐷 is defined as follows:

Pr(𝐷) ∝
∏
𝑡 ∈𝐷

Pr(𝑡) × exp(−
∑
𝜙 ∈Φ

𝑤𝜙 × |𝑉 (𝜙, 𝐷) |) (1)

where
∏

𝑡 ∈𝐷 Pr(𝑡) models a tuple-independent probabilistic data-
base [69, 72], wherein each tuple independently comes from a proba-
bility distribution over tuples, and |𝑉 (𝜙, 𝐷) | is the size of violations
of DC 𝜙 on 𝐷 . Each DC 𝜙 is associated with a weight𝑤𝜙 and each
violation of 𝜙 contributes a factor of exp(−𝑤𝜙) to the probability
of a random database instance 𝐷 . This model captures both hard
and soft DCs. For hard DCs, we set weights to be infinitely large,
then a database instance with any violations has a small probability.
For soft DCs, having more violations decreases its probability.

To learn a probabilistic database, one needs to learn the probabil-
ity of tuples Pr(𝑡) as well as the weights of DCs𝑤𝜙 . The goal is to
find the set of parameters {Pr(𝑡),𝑤𝜙 } that maximizes the product
of the likelihoods of all the training database samples [69]. The
observed data will be used to learn the parameters in the model.
We assume the distribution does not change.

2.3 Tuple Embedding

In this work, we express the tuple probability as the product of a
chain of conditional probabilities:

Pr(𝑡) = Pr(𝑡 [𝐴1])
𝑘∏
𝑗=2

Pr(𝑡 [𝐴 𝑗] | 𝑡 [𝐴1, · · · , 𝐴 𝑗−1]) (2)

Each conditional probability is learned as a discriminative model
based on tuple embedding [79] and attention mechanism [11]. Simi-
lar to word embedding that models words in vectors of real num-
bers [59], tuple embedding has been applied to model tuples by
encoding tuples into the space of real numbers [33, 79].

2.4 Differential Privacy

Differential privacy (DP) [30, 32] is used as our measure of privacy.

Definition 1 (Differential Privacy (DP) [32]). A randomized
algorithmM achieves (𝜖, 𝛿)-DP if for all S ⊆ Range(M) and for any
two database instances 𝐷, 𝐷 ′ ∈ D that differ only in one tuple:

Pr[M(𝐷) ∈ S] ≤ 𝑒𝜖 Pr[M(𝐷 ′) ∈ S] + 𝛿.

The privacy cost is measured by the parameters (𝜖, 𝛿). The smaller
the privacy parameters are, the stronger the privacy offers. Complex
DP algorithms can be built from the basic algorithms following two
important properties of differential privacy: 1) Post-processing [29]
states that for any function 𝑔 defined over the output of the mech-
anismM, ifM satisfies (𝜖, 𝛿)-DP, so does 𝑔(M); 2) Composabil-
ity [28] states that ifM1,M2, · · · ,M𝑘 satisfy (𝜖1, 𝛿1)-, (𝜖1, 𝛿1)-, · · · ,
(𝜖𝑘 , 𝛿𝑘)-DP, then a mechanism sequentially applyingM1,M2 to
M𝑘 satisfies (

∑𝑘
𝑖=1 𝜖𝑖 ,

∑𝑘
𝑖=1 𝛿𝑖)-DP.

Gaussian mechanism [32] is a widely used DP algorithm. Given
a function 𝑓 : D → R𝑑 , the Gaussian mechanism adds noise
sampled from a Gaussian distribution N(0, 𝑆2

𝑓
𝜎2) to each com-

ponent of the query output, where 𝜎 is the noise scale and 𝑆𝑓
is the 𝐿2 sensitivity of function 𝑓 , which is defined as 𝑆𝑓 =

max𝐷,𝐷′differ in a row | |𝑓 (𝐷) − 𝑓 (𝐷 ′) | |2. For 𝜖 ∈ (0, 1), if 𝜎 ≥√
2 ln(1.25/𝛿)/𝜖 , then the Gaussian mechanism satisfies (𝜖, 𝛿)-DP.
Gaussian mechanism has been applied to answer counting

queries [55]. It has also been used in differentially private stochastic
gradient descent (DPSGD) [8, 13, 71, 78]. The gradients of SGD are
the random variables to which the noise is added. As there is no a
priori bound of the gradient, the sensitivity 𝑆𝑓 is set by clipping the
maximum 𝐿2 norm of the gradient to a user-defined parameter 𝐶 .

3 KAMINO OVERVIEW

To solve the shortcomings of the current differentially private data
synthesis approaches mentioned in § 1.1, we state our problem
definition and provide a high-level description of our approach.

3.1 Problem Statement

Given a private database instance 𝐷∗ with schema and domain, a
set of denial constraints Φ with information about their hardness,
and a differential privacy budget (𝜖, 𝛿), we would like to design a
process 𝑃 that generates a useful synthetic database instance 𝐷 ′
as 𝐷∗ (e.g., the same statistics and attribute correlations) while
meeting two additional requirements:

R1. (Data Consistency) We consider data consistency with respect
to the set of denial constraints Φ from the input: for each DC
𝜙 ∈ Φ, 𝐷∗ and 𝐷 ′ have a similar number of violations, i.e.,
|𝑉 (𝜙, 𝐷 ′) | ≈ |𝑉 (𝜙, 𝐷∗) |.

R2. (Privacy Guarantee) The process 𝑃 that outputs 𝐷 ′ achieves
(𝜖, 𝛿)-differential privacy: for any set of output instances D

1888

outputted by 𝑃 , Pr(𝑃 (𝐷1) ∈ D) ≤ 𝑒𝜖 Pr(𝑃 (𝐷2) ∈ D) + 𝛿 , for
any two neighboring 𝐷1 and 𝐷2 differing in one record.

DC constraints Φ are public in our problem and can be modeled as
part of the adversary’s prior. This subsumes the special case when
Φ are not public to the adversary. More discussion on the semantics
of DP can be found in our full paper [41].

3.2 Methodology Overview

Recall from § 2.2, the probabilistic database model is a paramet-
ric model to describe the probability of instances. We adopt the
probabilistic database model to represent databases with denial con-
straints. There are two main steps: (i) privately learn the unknown
parameters in the probabilistic database model with samples from
the true data; (ii) sample a database instance based on the learned
probabilistic database model. However, both steps are challenging.
First, it is well known that finding the analytical solution of the
parameters of a probabilistic database without privacy concerns is
#P-complete [68, 72], and approximate methods such as gradient
descent may not converge to a global optimum [69], due to the
large sampling space of tuples (cross product of all attributes’ do-
main sizes) and of instances (exponential to the number of possible
tuples). Second, prior work [16, 31, 39, 75] show that there is no ef-
ficient DP algorithm that can generate a database, which maintains
accurate answers for an exponential family of learning concepts
(e.g. the set of parameters in the probabilistic database model).

To tackle both the efficiency and the privacy challenge, we fac-
torize the probability distribution of a database instance into a set
of conditional probabilities given a subset of tuples and attributes,
and learn them accordingly. We sample an instance based on the
learned conditional probabilities.
Probabilistic database decomposition.We express the probabil-
ity distribution of a database instance in Eqn. (1) into a chain of
conditional probabilities based on two sequences (i) a sequence of
tuple ids; and (ii) a sequence of attributes.

First, given a sequence of tuple ids (1, 2, . . . , 𝑛) in 𝐷 , for any
DC 𝜙 , the set of its violations in 𝐷 , i.e., 𝑉 (𝜙, 𝐷), can be iteratively
computed by adding new violations introduced by tuple 𝑡𝑖 with
respect to its prefix tuples 𝐷:𝑖 = [𝑡1, 𝑡2, · · · , 𝑡𝑖−1] (with 𝐷:1 = ∅)
from 𝐷 , for 𝑖 = 1, . . . , 𝑛. Let 𝑉 (𝜙, 𝑡𝑖 | 𝐷:𝑖) denote the set of new
violations caused by tuple 𝑡𝑖 with respect to 𝐷:𝑖 . Then we have

|𝑉 (𝜙, 𝐷) | = |𝑉 (𝜙, 𝑡1) | + |𝑉 (𝜙, 𝑡2 | 𝐷:2) | + · · · + |𝑉 (𝜙, 𝑡𝑛 | 𝐷:𝑛) |

=

𝑛∑
𝑖=1
|𝑉 (𝜙, 𝑡𝑖 | 𝐷:𝑖) | (3)

This allows us to decompose Eqn. (1) as

Pr(𝐷) ∝
(

𝑛∏
𝑖=1

Pr(𝑡𝑖)
)
× exp ©­«−

∑
𝜙 ∈Φ

𝑤𝜙

𝑛∑
𝑖=1
|𝑉 (𝜙, 𝑡𝑖 | 𝐷:𝑖) |

ª®¬
=

𝑛∏
𝑖=1

Pr(𝑡𝑖) × exp ©­«−
∑
𝜙 ∈Φ

𝑤𝜙 × |𝑉 (𝜙, 𝑡𝑖 | 𝐷:𝑖) |
ª®¬
 (4)

Next, we define a schema sequence 𝑆 as an ordered list of all
attributes in the schema. Similarly, let 𝑆:𝑗 represent all prefix at-
tributes of the 𝑗th attribute in 𝑆 and 𝑆:1 = ∅ for the purpose of
uniform representation. This schema sequence allows us further

age edu_num edu cap_gain cap_loss
39 13 Bachelors

50 13 ?
38 9

42 10

;#
;$
;&
;'

Domain

value

Cond.

Pro.

#Vios Sampling

Pro.

Bachelors 0.3 0 1

HS-grad 0.3 1 0

Some-college 0.4 1 0

Figure 2: Sampling values in an instance (Example 4).

decompose the set of violations. Let Φ𝐴 𝑗
represent the set of DCs

in Φ that can be fully expressed with the first 𝑗 attributes in 𝑆 , but
cannot be expressed with only the first 𝑗 − 1 attributes.
Example 3: Continue with Example 2, given a schema sequence 𝑆 =

[𝑎𝑔𝑒, 𝑒𝑑𝑢_𝑛𝑢𝑚, 𝑒𝑑𝑢, 𝑐𝑎𝑝_𝑔𝑎𝑖𝑛, 𝑐𝑎𝑝_𝑙𝑜𝑠𝑠], we can verify that Φ𝐴3 =

{𝜙1}, as the attributes {𝑒𝑑𝑢_𝑛𝑢𝑚, 𝑒𝑑𝑢} for 𝜙1 are covered by the
first 3 attributes in 𝑆 , but not the first 2 attributes. □

Notice that for a DC 𝜙 ∈ Φ𝐴 𝑗
, given a tuple 𝑡𝑖 , its number of

violations |𝑉 (𝜙, 𝑡𝑖 | 𝐷:𝑖) | only depends on the values of the first 𝑗
attributes in 𝑆 (i.e., 𝑆:𝑗+1). As a result, we can rewrite the weighted
sum of violations from Eqn. (4) as follows:∑

𝜙 ∈Φ
𝑤𝜙 × |𝑉 (𝜙, 𝑡𝑖 | 𝐷:𝑖) | =

𝑘∑
𝑗=1

∑
𝜙 ∈Φ𝐴𝑗

𝑤𝜙 × |𝑉 (𝜙, 𝑡𝑖 | 𝐷:𝑖) |

=

𝑘∑
𝑗=1

∑
𝜙 ∈Φ𝐴𝑗

𝑤𝜙 × |𝑉 (𝜙, 𝑡𝑖 [𝑆:𝑗+1] | 𝐷:𝑖 [𝑆:𝑗+1]) | (5)

Based on the same schema sequence 𝑆 , the tuple probability
Pr[𝑡𝑖] can be written as

∏𝑘
𝑗=1 Pr

(
𝑡𝑖 [𝐴 𝑗] | 𝑡𝑖 [𝑆:𝑗]

)
by the chain rule.

Finally, we have the database probability in Eqn. (4) expressed as

Pr(𝐷) ∝
𝑘∏
𝑗=1

𝑛∏
𝑖=1

[
Pr(𝑡𝑖 [𝐴 𝑗] | 𝑡𝑖 [𝑆:𝑗+1])×

exp(−
∑

𝜙 ∈Φ𝐴𝑗

𝑤𝜙 × |𝑉 (𝜙, 𝑡𝑖 [𝑆:𝑗+1] | 𝐷:𝑖 [𝑆:𝑗+1]) |)
]

(6)

Eqn. (6) in fact presents an iterative process to sample a database
instance 𝐷 based on (i) the schema sequence (𝑗 ∈ [1, 𝑘]), and (ii)
the tuple id sequence (𝑖 ∈ [1, 𝑛]). Unlike the tuple id sequence, the
schema sequence specifies an ordering of attributes, where each
attribute solely depends on the prefix attributes to make correct
prediction. However, it is challenging to find the optimal schema
sequence [23], and hence we apply a greedy heuristic algorithm to
derive a good one. In this work, we assume Pr[𝑡𝑖] are the same for all
tuples. Therefore, we just need to learn 𝑘 (conditional) probabilities
Pr(𝑡 [𝐴 𝑗] |𝑡 [𝑆:𝑗+1]), the weight of DCs 𝑤𝜙 , and the number of DC
violationswith respect to the prefix tuples.Wewill use the following
example to illustrate the sampling process.
Example 4: Continue with Examples 2 and 3. Consider all three DCs
be hard with infinitely large weight𝑤𝜙 . Suppose we have already
privately learned the conditional distributions from the true data.
The construction of 𝐷 ′ of 4 tuples works as follows.

We start with the first attribute 𝑎𝑔𝑒 . From 𝑡1 to 𝑡4, we sample a
value independently based on the distribution Pr(𝑡 [𝑎𝑔𝑒]). Then, we
move on to the second attribute, 𝑒𝑑𝑢_𝑛𝑢𝑚. There is no DC between

1889

Algorithm 1Constraint-aware differentially private data synthesis

Require: Private instance 𝐷∗, schema 𝑅, domain D
Require: DCs Φ, privacy budget (𝜖, 𝛿)
1: procedure Kamino(𝐷∗, 𝑅,D,Φ, 𝜖, 𝛿)
2: 𝑆 ← Seqencing(𝑅,D,Φ) ⊲ Algorithm 4
3: Ψ← SearchDParas(𝜖, 𝛿,D, 𝑆) ⊲ Algorithm 6
4: 𝑀 ← TrainModel(𝐷∗, 𝑆,D,Ψ) ⊲ Algorithm 2
5: 𝑊 ← LearnWeight(𝐷∗,Φ, 𝑆, 𝑀,Ψ) ⊲ Algorithm 5
6: 𝐷 ′ ← Synthesize(𝑆,𝑀,Φ,D,𝑊) ⊲ Algorithm 3
7: return 𝐷 ′

8: end procedure

𝑎𝑔𝑒 and 𝑒𝑑𝑢_𝑛𝑢𝑚, each cell from 𝑡1 to 𝑡4 is filled with a sample
based on the conditional distribution Pr(𝑡 [𝑒𝑑𝑢_𝑛𝑢𝑚] | 𝑡 [𝑎𝑔𝑒]).

Next, for the third attribute 𝑒𝑑𝑢 (shown in Figure 2), DC 𝜙1
becomes active as all its relevant attributes (𝑒𝑑𝑢_𝑛𝑢𝑚, 𝑒𝑑𝑢) have
been seen in the sequence. A cell value Bachelors is directly sam-
pled for 𝑡1 [𝑒𝑑𝑢] from the the conditional distribution Pr(𝑡 [𝑒𝑑𝑢] |
𝑡 [𝑒𝑑𝑢_𝑛𝑢𝑚 = 13, 𝑎𝑔𝑒 = 39]). For 𝑡2 [𝑒𝑑𝑢], let’s say the noisy condi-
tional distributions of 𝑒𝑑𝑢 given 𝑎𝑔𝑒 = 50 and 𝑒𝑑𝑢_𝑛𝑢𝑚 = 13 are:
(Bachelors, 0.3), (HS-grad, 0.3) and (Some-college, 0.4). Consider
the infinitely large weight for 𝜙1, 𝑒𝑑𝑢 values other than Bachelors
will cause violations to 𝑡1 and hence their probabilities become very
small. Therefore, Bachelors is sampled with high probability.

After all cells are filled, we get a synthetic instance𝐷 ′. Optionally,
the Markov Chain Monte Carlo (MCMC) sampling [62] could be
applied to improve the accuracy by randomly choosing a cell 𝑡𝑖 [𝐴 𝑗]
to re-sample, conditioning on all other cells 𝐷 ′ \ {𝑡𝑖 [𝐴 𝑗]}. This step
repeats for a fixed number of times or till convergence. □

System overview. Algorithm 1 describes the overall process of
our solution Kamino. Kamino first chooses a schema sequence 𝑆
based on the schema 𝑅, domain D, and DCs Φ (Line 2). Then it
finds a suitable parameter set Ψ for the subsequent algorithms to
ensure the overall privacy loss is bounded by (𝜖, 𝛿)-DP (Line 3). The
algorithms TrainModel(·) and LearnWeight(·) privately learn
the tuple distribution and weights of the DCs from the private
true data 𝐷∗ (Lines 4-5). Last, Kamino applies a constraint-aware
sampling algorithm to generate a synthetic database instance. We
first present the key algorithms (Algorithms 4, 2 and 3) when the
weights of DCs are given in § 4, and then explain how to learn
the DC weights (Algorithm 5) in § 5. Last, privacy analysis and
parameter search (Algorithm 6) are explained in § 6.

Our system assumes the inputs are static, since we rely on
the database instance to learn the generative process (i.e., Algo-
rithms 2, 3 and 5), and on the DCs to learn the weights and attribute
sequence. However, Kamino can tolerate small input changes as
long as the data distribution and DCs are intact. For now, if DC
changes resulting in a different sequence, we re-run Kamino; if the
changes significantly shift the distribution, we re-run the genera-
tive process. Future work can apply general DP techniques [26] for
dynamically growing databases for better utility.

4 KAMINOWITH KNOWN DCWEIGHTS

For simplicity of presentation, in this section, we consider the
weights of the constraints are given (e.g., the weights for hard

DCs are set infinitely large). We first present our private learning
algorithm for the tuple probability and then the database sampling
algorithm. Last, we show our choice of schema sequence in Kamino.

4.1 Private Learning of Tuple Probability

Recall Equ. (2) that, given a schema sequence 𝑆 = [𝐴1, 𝐴2, . . . , 𝐴𝑘],
the tuple probability becomes Pr[𝑡] = Pr(𝑡 [𝐴1]) ·∏𝑘

𝑗=2 Pr
(
𝑡 [𝐴 𝑗] | 𝑡 [𝐴1, . . . , 𝐴 𝑗−1]

)
. Instead of learning a sin-

gle distribution over the full domain of a tuple, we learn the
probability distribution of the first attribute in the sequence and
(𝑘 − 1) number of conditional probabilities. For the first attribute,
we apply Gaussian mechanism (§ 2.4) to learn its distribution. For
each of remaining (𝑘 − 1) condition probabilities, we learn it as a
discriminative model. In particular, for each conditional probability
Pr

(
𝑡 [𝐴 𝑗] | 𝑡 [𝐴1, . . . , 𝐴 𝑗−1]

)
, we train a discriminative sub-model

that uses context attributes (𝐴1, . . . , 𝐴 𝑗−1) to predict the target
attribute 𝐴 𝑗 . We denote this sub-model by 𝑀𝑋,𝑦 , where 𝑋 = 𝑆:𝑗
and 𝑦 = 𝑆 [𝑗]. We also apply the tuple embedding to privately
learn a unified representation with a fixed dimensionality for each
attribute in the tuple (§ 2.3). The training of each discriminative
sub-model on the samples from the true data is optimized and
privatized using DPSGD (§ 2.4).

Algorithm 2 describes how Kamino privately learns the proba-
bility distribution of the first attribute in the sequence 𝑆 , denoted
by 𝑀∅,𝑆 [1] , and the parameters in the (𝑘 − 1) discriminative sub-
models𝑀𝑆:𝑗 ,𝑆 [𝑗] for 𝑗 ∈ [2, 𝑘]. It takes as input of the true database
instance𝐷∗ with domainD, the schema sequence 𝑆 (to be discussed
in § 4.3), as well as learning parameters (number of iterations 𝑇 ,
batch size 𝑏, learning rate 𝜂, and quantizing 𝑞 bins for numerical
attributes) and noise parameters (𝜎𝑔 and 𝜎𝑑 for Gaussian noise, 𝐿2
norm clip threshold for gradients 𝐶). The configuration of these
parameters is presented in § 6 to ensure the overall privacy loss of
Kamino is bounded by the given budget (𝜖, 𝛿).

Following the attribute order in 𝑆 , we start with the first attribute
𝑆 [1] and apply Gaussian mechanism to the true distribution of 𝑆 [1]
(Line 2-4). If the first attribute has a continuous domain, we partition
its domain into 𝑞 bins. Starting from the second attribute in 𝑆 , we
train the discriminative model. We first load the initial values of
the parameters of each sub-model from previous training if they
exist (Line 7). Depending on the data type of the target attribute, a
cross entropy (for categorical target attribute) or mean squared (for
numerical target attribute) loss function on predicting the target
attribute value is also set before model training (Line 10).

Each discriminative model𝑀𝑆:𝑗 ,𝑆 [𝑗] is learned via backpropaga-
tion for 𝑇 iterations (Line 11-17). At each iteration, we randomly
sample a set of training tuples 𝐷𝑒 , with sampling probability 𝑏/𝑛
(i.e., E(|𝐷𝑒 |) = 𝑏), and on each of the training tuple, the gradient
w.r.t model parameters is computed (Line 13). We clip the 𝐿2 norm
of the gradient by the threshold𝐶 (Line 14), and add noise to clipped
gradient (Line 15) with sensitivity equal to clipping threshold 𝐶 ,
before updating the parameters via gradient descent (Line 16). After
one discriminative model is trained, we add it to our probabilistic
data model 𝑀 (Line 18). Since we iteratively expand the context
attributes as more sub-models are trained, we save the currently
trained embeddings of attributes [𝑋,𝑦] (Line 19), and reuse in the
initialization of context attributes of the next sub-model (Line 7).

1890

Algorithm 2 Probabilistic data model training

Require: 𝐷∗,D, 𝑆 ⊲ True instance, domain, schema sequence
Require: 𝑛, 𝑘, 𝜂, 𝑞 ⊲ cardinality, dimensions, lr, quantization
Require: 𝜎𝑔, 𝜎𝑑 ⊲ Noise scales in Ψ
Require: 𝐶,𝑇 , 𝑏 ⊲ 𝐿2 norm clip/#iterations/batch size in Ψ
1: procedure TrainModel(𝐷∗, 𝑆,D,Ψ)
2: 𝐻 ← counts of (quantized) values in 𝐷∗ for 1st attr. 𝑆 [1]
3: Add noise drawn from N(0, 2𝜎2

𝑔) to each count in 𝐻

4: 𝑀∅,𝑆 [1] ← distribution of 𝑆 [1] based on 𝐻 , and add it to𝑀
5: Initialize embedding for attribute 𝑆 [1]
6: for 𝑗 ∈ [2, 𝑘] do
7: 𝑋 = 𝑆:𝑗 , load embedding ⊲ Context attributes
8: 𝑦 = 𝑆 [𝑗], initialize embedding ⊲ Target attribute
9: Initialize discriminative model𝑀𝑋,𝑦 ⊲ [79]
10: L(𝜃𝑦, 𝑡) ← loss function on imputing target 𝑦
11: for 𝑒 ∈ [𝑇] do ⊲ For each of iteration
12: 𝐷𝑒 ← random sample on 𝐷∗ [𝑋,𝑦] with prob 𝑏/𝑛
13: For each 𝑡 ∈ 𝐷𝑒 , compute 𝑔𝑒 (𝑡) ← ∇𝜃𝑦L(𝜃𝑦, 𝑡)
14: 𝑔𝑒 (𝑡) ← max(1, ∥𝑔𝑒 (𝑡) ∥2

𝐶
) ⊲ Clip gradient

15: 𝑔𝑒 ← (
∑
𝑡 ∈𝐷𝑒

𝑔𝑒 (𝑡) + N (0, 𝜎2
𝑑
𝐶2I))/𝑏 ⊲ Add noise

16: 𝜃𝑦 ← 𝜃𝑦 − 𝜂 × 𝑔𝑒 ⊲ Gradient descent
17: end for

18: Add𝑀𝑋,𝑦 to𝑀
19: Save embedding and attention weights for 𝑆:𝑗+1
20: end for

21: return𝑀

22: end procedure

The final output from Algorithm 2 is the probabilistic data model
𝑀 , which will be used to sample tuple values in § 4.2.

Algorithm 2 consists of 1+ (𝑘−1) ×𝑇 rounds of access to the true
database instance 𝐷∗. Each access is privatized using the Gaussian
mechanism or the DPSGD. By the composibility of differential
privacy (§ 2.4), Algorithm 2 satisfies differential privacy. We will
analyze the privacy cost in § 6. The time complexity is linear to
𝑛 + 𝑏 (𝑘 − 1)𝑇 , which is the expected number of tuples that are
sampled for training. An optimization for efficiency is to train each
𝑀𝑋,𝑦 in parallel without reusing previously trained embeddings
(Line 7), and we evaluate this trade-off in our full paper [41].

4.2 Constraint-Aware Database Sampling

After we have privately learned the tuple probability, the next step is
to sample a database instance 𝐷 ′ of size 𝑛 based on the learned data
model𝑀 and the given DC weights as summarized in Algorithm 3.

Given a schema sequence 𝑆 , we first independently sample a
value for the first attribute in 𝑆 of all the 𝑛 tuples based on its noisy
probability distribution represented by𝑀∅,𝑆 [1] (Line 2). Depending
on 𝑆 [1]’s data type, categorical values are sampled directly; while
for numerical values, we first sample a bin, and randomly take a
value from the domain represented by the bin.

From the second attribute in 𝑆 onward, for each attribute𝐴 𝑗 and
each tuple 𝑡𝑖 , we sample a value for 𝑡𝑖 [𝐴 𝑗] conditioned on (1) the
attributes of 𝑡𝑖 that have been assigned a value, i.e., 𝑡𝑖 [𝑆:𝑗] = 𝑐 , and
(2) the tuples that have been sampled before 𝑡𝑖 , i.e. 𝐷 ′:𝑖 [𝑆:𝑗+1]. For
each 𝑣 from the domain of 𝐴 𝑗 (or a selected set of values of size

Algorithm 3 Constraint-aware database instance sampling
Require: 𝑆,𝑀,Φ,D⊲ Schema sequence, data model, DCs, domain
Require: 𝑊, 𝐿, 𝑁 ⊲ Weight vector (Alg. 5), sample size, #round
1: procedure Synthesize(𝑆,𝑀,Φ,D)
2: 𝐷 ′[𝑆 [1]] ← sample from distribution𝑀∅,𝑆 [1]
3: for 𝑗 ∈ [2, 𝑘] do ⊲ Schema sequence 𝑆
4: for 𝑖 ∈ [1, 𝑛] do ⊲ Tuple id sequence
5: 𝑐 ← 𝑡𝑖 [𝑆:𝑗] ⊲ Values for context attributes of 𝑡𝑖
6: {𝑝𝑣 |𝑐 | 𝑣 ∈ D(𝑆 [𝑗])} ← 𝑀𝑆:𝑗=𝑐,𝑆 [𝑗]
7: for 𝑣 ∈ D(𝑆 [𝑗]) and 𝜙 ∈ Φ𝑆 [𝑗] do

8: 𝑣𝑖𝑜𝜙,𝑣 |𝐷′ ← num. of vio. of 𝜙 if 𝑡𝑖 [𝑆 [𝑗]] = 𝑣

9: end for

10: Update 𝑡𝑖 [𝑆 [𝑗]] = 𝑣 where 𝑣 is sampled with 𝑃 [𝑣] ∝
𝑝𝑣 |𝑐 · exp(−∑

𝜙 ∈Φ𝑆 [𝑗] 𝑤𝜙 × 𝑣𝑖𝑜𝜙,𝑣 |𝐷′)
11: end for

12: Resample𝑚 random cells 𝑡𝑟 [𝑆 [𝑗]] or till convergence
13: end for

14: return 𝐷 ′

15: end procedure

𝑑 if 𝐴 𝑗 has a continuous or extremely large domain size), we first
extract the conditional probability

Pr(𝑡 [𝐴 𝑗] = 𝑣 | 𝑡 [𝑆:𝑗] = 𝑐)
from the learned discriminative sub-model𝑀𝑆:𝑗 ,𝑆 [𝑗] , and denote it
by 𝑝𝑣 |𝑐 (Line 6). If the target attribute 𝐴 𝑗 has a discrete domain, the
conditional probability 𝑝𝑣 |𝑐 takes the probability that𝑀𝑆:𝑗 ,𝑆 [𝑗] pre-
dicts the target attribute 𝐴 𝑗 = 𝑣 given the context attributes 𝑆:𝑗 = 𝑐 .
If the target attribute 𝐴 𝑗 has a continuous domain, the discrimina-
tive model is based on regression model and outputs a Gaussian
distribution mean 𝜇 and std 𝜎 given the context attributes 𝑆:𝑗 = 𝑐 .
We sample 𝑑 number of candidates from this distribution and assign
each candidate 𝑣 with a probability 𝑝𝑣 |𝑐 ∝ { 1

𝜎
√

2𝜋
exp(− 1

2 (
𝑣−𝜇
𝜎)

2)}.
The other values in the domain are assigned with probability 0. We
denote the candidate set by D(𝑆 [𝑗]).

Next, we compute the number of DC violations 𝑣𝑖𝑜𝜙,𝑣 |𝐷′ if we
assign 𝑡𝑖 [𝐴 𝑗] = 𝑣 :

|𝑉 (𝜙, 𝑡𝑖 [𝑆:𝑗] = 𝑐 ∧ 𝑡𝑖 [𝐴 𝑗] = 𝑣 | 𝐷 ′:𝑖 [𝑆:𝑗+1]) |
for each DC violation 𝜙 ∈ Φ𝐴 𝑗

(Line 8). Last, we sample a value 𝑣
based on the combined probability

𝑃 [𝑣] ∝ 𝑝𝑣 |𝑐 · exp(−
∑

𝜙 ∈Φ𝐴𝑗

𝑤𝜙 × 𝑣𝑖𝑜𝜙,𝑣 |𝐷′))

and update the 𝑗th attribute of 𝑡𝑖 (Line 10). The final output is a
synthetic database instance 𝐷 ′ of size 𝑛 with the same schema as
the true database instance 𝐷∗.

Without the constraint-aware sampling (Line 7-9), the sampling
process results in a set of i.i.d. tuple samples. This resulted instance
can fail to preserve even simple constraints such as FDs (e.g., 𝜙1)
or single-tuple DCs (e.g., 𝜙3), because not all the domain values
appear in the true data 𝐷∗. Such values can be sampled due to
noisy distribution and hence lead to DC violations. By adjusting
the sampling probability based on the violations caused by the new
cell value of a tuple (Line 10), we can control the additional number
of violations due to the noisy distribution learned.

1891

Algorithm 4 Constraint-aware attribute sequencing
Require: 𝑅,D,Φ ⊲ Input schema, domain, and DCs
1: procedure Seqencing(𝑅,D,Φ)
2: Σ← FDs from Φ sorted by increasing domain size of LHS
3: Initialize 𝑆 ← []
4: for all 𝑋 → 𝑌 ∈ Σ do

5: Sort attributes 𝑋 by domain size
6: For all 𝐴 ∈ [𝑋,𝑌], append 𝐴 to 𝑆 if 𝐴 ∉ 𝑆

7: end for

8: Append attributes in (𝑅 − 𝑆) to 𝑆 in an order of increasing
domain size, and return 𝑆

9: end procedure

General MCMC sampling requires re-sampling of the entire full
𝐷 ′ with all attributes, and hence at least 𝑘 − 1 more conditional dis-
tributions need to be learned. However, in the private setting with a
fixed privacy budget, learning more distributions will compromise
the accuracy of each learned distribution. Therefore, Kamino uses
a constrained MCMC based on the same set of conditional distri-
butions. As we loop over each attribute (Line 3-13), it re-samples
random cell values for this attribute, conditioned on all other sam-
pled values (Line 12).

The time complexity of checking one DC’s violations for all 𝑛
values is O(𝑑𝑛) (for an unary DC) or O(𝑑𝑛2) (for a binary DC). This
can be optimized by exploiting the property of hard functional de-
pendencies, and we evaluate this optimization in our full paper [41].
In addition, when𝑚 > 0 for MCMC, the sampling algorithm has
an additional cost of O(𝑚𝑘𝑑 + |Φ|𝑑𝑛𝑚). The overall complexity of
constraint-aware sampling is O(𝑛𝑘𝑑 + |Φ|𝑑𝑛2 +𝑚𝑘𝑑 + |Φ|𝑑𝑛𝑚).

4.3 Constraint-Aware Sequencing

Given a fixed privacy budget, the goal is to identify a good schema
sequence, where the set of attributes that can well discriminate
attribute 𝐴 𝑗 should appear before 𝐴 𝑗 in the sequence. Unlike prior
work [25, 82] that spend part of the privacy budget in learning a
good sequence, we make use of the input DCs Φ and the domain
D. This heuristic approach incurs no privacy cost since the true
database instance 𝐷∗ is not queried.

Specifically, we propose a rule-based, instance-independent
method to ensure that for an FD 𝑋 → 𝑌 in Φ, we have 𝑋 ahead
of 𝑌 in 𝑆 (unless 𝑌 → 𝑋 too). Algorithm 4 describes the process
of finding a schema sequence 𝑆 . For the list of FDs Σ = [𝑋1 →
𝑌1, . . . , 𝑋𝑚 → 𝑌𝑚], we sort the list Σ by the minimal domain size of
an attribute from 𝑋 (i.e., ∃𝐴1 ∈ 𝑋1,∀𝐴2 ∈ 𝑋2, |D(𝐴1) | ≤ |D(𝐴2) |)
(Line 2). For each FD, we greedily add its left hand side and right
hand side attributes into the final schema sequence 𝑆 (Line 4-7). For
the rest of attributes that do not participate in FDs, we order them
by ascending domain size and append to 𝑆 (Line 8). The complexity
is O(𝑘 |Σ| + log𝑘), consisting costs of sorting FDs and attributes.

Our sequencing algorithm relies on the given FDs as a subset of
DCs. In cases that Φ does not include any FDs (i.e., Σ = ∅), Algo-
rithm 4 returns a sequence based on the domain size. Following this
sequence, each discriminative sub-model (§ 4.1) will have the small-
est possible domain size for its context attributes (cross-product
of all context attributes’ domain sizes), and hence each sub-model

Algorithm 5 Learning DC weights

Require: 𝐷∗,Φ, 𝑆 ⊲ True instance, DCs, schema sequence
Require: 𝜎𝑤 ,𝑇𝑤 , 𝐿𝑤 ⊲ Noise scale/#iteration/sample size in Ψ
Require: 𝑏𝑤 , 𝑆𝑤 ⊲ Batch size in Ψ, sensitivity
1: procedure LearnWeight(𝐷∗,Φ, 𝑆, 𝑀,Ψ)
2: Initialize weight vector𝑊 of length |Φ| if unknown
3: Take a random sample �̂� from 𝐷∗ with a probability 𝐿𝑤/𝑛
4: Drop tuples from the sample if |�̂� | > 𝐿𝑤

5: Compute violation matrix 𝑉 of size (|�̂� | × |Φ|) from �̂�

6: Add noise drawn from N(0, 𝑆2
𝑤𝜎

2
𝑤) to each value in 𝑉

7: Set negative values in 𝑉 to zero
8: for 𝐴 𝑗 ∈ 𝑆 and 𝑒 ∈ [𝑇𝑤] do
9: 𝑖𝑑𝑠 ← sample 𝑏 ids from [1, 𝐿𝑤] with prob 𝑏𝑤/𝐿𝑤
10: for each 𝑖 ∈ 𝑖𝑑𝑠 do
11: 𝑂 ← exp(−∑

𝜙𝑙 ∈Φ𝐴𝑗
𝑊 [𝑙] ·𝑉 [𝑖] [𝑙])

12: Update𝑊 via back propagation by max 𝑂
13: end for

14: end for

15: return𝑊

16: end procedure

can be more accurately learned. For example, consider [𝐴1, 𝐴2, 𝐴3]
with domain sizes 2, 3, 5, respectively. The overall context attribute
domain size is 8 (=2+6), instead of 20 on the reversed sequence.
Optimizations for extreme domain sizes. For attributes with
small domain size, we can group adjacent attributes in the schema
sequence into one hyper attribute, and learn one discriminative
sub-model instead of multiple sub-models. As a result, less privacy
budget will be consumed. For example, applying Algorithm 4 on the
BR2000 dataset [83] with 38k tuples resulted in a schema sequence
starting with 7 binary attributes. In this case, we can create a hy-
per attribute of domain size 27 to replace the group of the binary
attributes. After the synthetic hyper attribute value is generated,
we can un-group it to individual attributes and check violations if
any. On the other end, the distribution of attributes with very large
domain size may not be learned well, due to insufficient amount of
training data. For example, the Tax dataset [24] with 30k tuples has
one 𝑧𝑖𝑝 attribute with domain size of 18k. The training sample of
size𝑏×𝑇 in Algorithm 2may not cover all values in the domain, and
hence learned distribution can have large variance. In this case, we
can apply Gaussian mechanism to its true distribution, and sample
independently without relying on the context attributes.

5 LEARNING DCWEIGHTS

Kamino so far assumes the weights of DCs 𝑊 are known. For
example, the weights for hard DCs (no violations in the true data)
are set to be infinitely large. However, for soft DCs, the weights are
usually unknown and need to be estimated. We follow the intuition
that if a DC is observed with many violations in the training data,
then its weight will be set small. Otherwise, if there is no violation,
then its weight will be set large. Based on this intuition, we design
Algorithm 5 to first privately learn the number of violations to each
DC and then estimate the weights as a post-processing step.

We transform the given data instance 𝐷 into a violation matrix
𝑉 of size |𝐷 | × |Φ|, where each value𝑉 [𝑖] [𝑙] represents the number

1892

Algorithm 6 Searching DP parameters
Require: 𝜖, 𝛿,D, 𝑆 ⊲ Privacy budget, domain, schema sequence
1: procedure SearchDParas(𝜖, 𝛿,D, 𝑆)
2: Initialize parameter configuration Ψ with a default setting
(𝜎𝑔 .𝑚𝑖𝑛, 𝜎𝑑 .𝑚𝑖𝑛, 𝜎𝑤 .𝑚𝑖𝑛, 𝑏.𝑚𝑎𝑥,𝑇 .𝑚𝑎𝑥, |𝑆 |, 𝐿𝑤 .𝑚𝑎𝑥, . . .)

3: Ψ.𝑏𝑤 ← 1 if DC weights are unknown
4: while 𝜖Ψ (𝛿) > 𝜖 do ⊲ Cost of Kamino [41]
5: If Ψ.𝑇 > 𝑇𝑚𝑖𝑛 , then decrease Ψ.𝑇
6: If Ψ.𝜎𝑑 < 𝜎𝑑𝑚𝑎𝑥 , then increase Ψ.𝜎𝑑
7: If Ψ.𝜎𝑔 < 𝜎𝑔𝑚𝑎𝑥

, then increase Ψ.𝜎𝑔
8: If Ψ.𝑏 > 𝑏𝑚𝑖𝑛 , then decrease Ψ.𝑏
9: ...
10: end while

11: return Ψ
12: end procedure

of violations to the 𝑙th DC in Φ caused by tuple 𝑡𝑖 with respect to all
other tuples in 𝐷 , i.e.,𝑉 (𝜙𝑙 , 𝑡𝑖 | 𝐷 −{𝑡𝑖 }) . Based on the transformed
data, the objective is to maximize the exponential part represented
in Eqn. (1). However, the violation matrix based on the full true
instance is highly sensitive to the change of one tuple. For binary
DCs that involve two tuples, changing one tuple can incur up to
O(𝑛) additional number of violations.

To bound the sensitivity of the violation matrix, we sample a
small set of tuples �̂� of size 𝐿𝑤 as the training example (Line 4).
Each tuple from the true instance 𝐷∗ is independently sampled
with probability 𝐿𝑤/𝑛 (i.e., E(|�̂� |) = 𝐿𝑤). If the resulted sample has
a size greater than 𝐿𝑤 , we randomly drop tuples to crop the size to
𝐿𝑤 . This allows us to bound the sensitivity of the violation matrix,
and also reduces the time complexity from O(|Φ|𝑛2) to O(|Φ|𝐿2

𝑤).
The sensitivity analysis on 𝑆𝑤 can be found in our full paper [41].

Hence, we apply Gaussian mechanism to perturb the violation
matrix 𝑉 over the samples and post-process all the negative noisy
counts to zeros (Lines 5-7). Then we loop over each attribute𝐴 𝑗 ∈ 𝑆
for 𝑇𝑤 iterations (Line 8). For each 𝐴 𝑗 , we sample 𝑏 rows from the
noisy 𝑉 to update weights𝑊 for the set of active DCs related to
𝐴 𝑗 (Lines 8-14). We will analyze the privacy cost in § 6. The time
complexity of this post-processing step is O(|Φ|𝑏𝑇𝑤) in terms of
the number of tuples that are used for learning.

6 PRIVACY ANALYSIS

Kamino involves at most three processes that require access to the
true database instance:
𝑀1: Learning the distribution of the first attribute in the schema

sequence (Algorithm 2 Line 2-4);
𝑀2: Training 𝑘 − 1 discriminative models (Algorithm 2 Line 6-20);
𝑀3: Learning the DC weights if unknown (Algorithm 5).

Each process has been privatized using the Gaussian mechanism
or DPSGD. The other steps (Algorithm 3 and Algorithm 4) not
accessing the true database do not incur privacy loss. Hence, we can
show Kamino achieves DP by simple sequential composition [28]
and post-processing property [29] of DP. In our full paper [41], we
give a tighter privacy bound using Rényi DP (RDP) [60] and prove
the privacy of Kamino.

Table 1: Description of the datasets.

Dataset 𝑛 𝑘 Domain size Hard DCs DC IDs2

Adult 32,561 15 ≈ 252 Yes {𝜙𝑎1−2}
BR200 38,000 14 ≈ 216 No {𝜙𝑏1−3}
Tax 30,000 12 ≈ 271 Yes {𝜙𝑡1−6}
TPC-H 20,000 9 ≈ 242 Yes {𝜙ℎ1−4}

In practice, the overall privacy budget (𝜖, 𝛿) is specified as an
input to Kamino, and one needs to judiciously set the privacy
parameters in Ψ. Setting these parameters is non-trivial as they
are volatile to input datasets. To automatically assign parameters,
Kamino provides a parameter search algorithm, summarized in
Algorithm 6. It takes the privacy budget (𝜖, 𝛿) and outputs a set
of parameters Ψ that ensures that the overall privacy cost does
not exceed (𝜖, 𝛿). It starts with a default setting based on prior
experimental heuristics [14, 76] and the domain information D.
The noise parameters including (𝜎𝑔, 𝜎𝑑 , 𝜎𝑤 , 𝑏,𝑇 , 𝐿𝑤) are boldly set
to give the best possible accuracy (Line 2). If this privacy cost of
this configuration is higher than 𝜖 (Line 4), then we use a priority
order to decide which parameter to tune (Lines 5-9). This process
is repeated till the privacy loss is capped at our total budget. The
time complexity is linear to the size of parameter space.

The parameter settings can be found in our full paper [41].

7 EVALUATION

In this section, we evaluate the synthetic data generated by Kamino
with three utility metrics: (i) consistency with DC constraints in the
true data; (ii) usefulness in training classification models; and (iii)
accuracy in answering 𝛼-way marginal queries. We show that:
• Kamino preserves data consistency, while state-of-the-art meth-
ods fail to preserve most DCs. Kamino is practically efficient.
• WhileKamino is not designed for particular tasks, it can achieve
comparable and even better quality in the learning and query
task, compared to methods that are designed for these tasks.
• The constraint-aware sampling and sequencing are effective to
keep data consistency.
• Kamino scales linearly with the number of DCs.

7.1 Evaluation Setup

Datasets. We choose 4 different datasets with mixed data types
and DCs, listed in Table 1. First, the Adult dataset [27] consists of 15
census attributes and 2 hard DCs. Second, the BR2000 dataset [83]
has a smaller domain size than the Adult dataset, but it has 3 soft
DCs with unknown weights. The third dataset, Tax [24], has a very
large domain size, e.g., 𝑧𝑖𝑝 (≈ 215) and 𝑐𝑖𝑡𝑦 (≈ 214) and 6 hard
DCs. Last, TPC-H [7], a synthethic dataset that joins three tables
(Orders, Customer and Nation) and removes unique attributes such
as 𝑜𝑟𝑑𝑒𝑟𝑘𝑒𝑦 and 𝑐𝑜𝑚𝑚𝑒𝑛𝑡 . The final table consists of 20,000 orders
with 9 numerical and categorical attributes. The set of hard DCs
are obtained by the foreign key and primary key constraints.
Baselines. Four state-of-the-arts to allow the synthesis of rela-
tional data with DP guarantees are considered: 1) PrivBayes [83], a

2The sets of DCs are listed in the full paper [41].

1893

statistical method based on Bayesian network; 2) PATE-GAN [50],
a GAN-based method that trains a data generator using the PATE’s
student-teacher model [63]; 3) DP-VAE [20], which samples from
the latent space of a privately trained auto-encoder [51]; and 4)
The winning solution of the NIST challenge [61] (labeled as NIST),
which applies probabilistic inference [57] over marginals.

PATE-GAN and DP-VAE require the input dataset to be encoded
into numeric vectors, and we apply the best encoding scheme empir-
ically [35]. Additionally, PATE-GAN requires one labeled attribute
to train a set of conditional generators, where each generator pro-
duces synthetic data conditioning on one value in the domain of
the labeled attribute. We choose the attribute with smallest domain
size from each dataset as the labeled attribute, and generate the
same number of tuples as in the true data, although it reveals the
true histogram of the labeled attribute and favors answering mar-
ginal queries. Finally, NIST requires a set of marginals as input for
inference. We use marginals over every single attribute, and over
10 randomly chosen attribute pairs.

Evaluation Metrics. We evaluate a synthetic database instance
𝐷 ′ of the same size as the true data 𝐷∗ using three metrics.
Metric I: DC Violations. Since all known DCs are binary, we mea-
sure the percentage of tuple pairs that violate DCs in an instance
𝐷 of size 𝑛, i.e., 100 · |𝑉 (𝜙, 𝐷) |/

(𝑛
2
)
.

Metric II: Model training. We consider 9 classification models (Lo-
gisticRegression, AdaBoost, GradientBoost, XGBoost, RandomFor-
est, BernoulliNB, DecisionTree, Bagging, and MLP). On every single
attribute of a dataset, we train all models to classify one binary label
(e.g., income is more than 50k or not, age is senior or not, occupa-
tion is government job or not) using all other attributes as features.
The quality of the learning task on one attribute is represented by
the average of all models. Accuracy and F1 are reported for learning
quality. Each model is trained using 70% of the synthetic database
instance, and evaluate the accuracy and F1 using the same 30% of
the true database instance. We also show the results of training and
testing on the true dataset labeled as Truth.
Metric III: 𝛼-way marginals. For each attribute combination A, we
compute the 𝛼-way marginal, ℎ : D → R |D (A) | on the synthetic
data 𝐷 ′ and true data 𝐷∗, respectively, and then report the total
variation distance [74] as max𝑎∈D(A) |ℎ(𝐷 ′) [𝑎] − ℎ(𝐷∗) [𝑎] |.

Implementation details.Kaminowas implemented in Python 3.6
and tested with𝑚 = 0 by default. For the discriminative sub-models,
we integrated the code [3] from AimNet in the HoloClean system.
For the baselines, we reused the code [2, 4, 5] from their authors
with all default parameters. All the 9 models in the learning task
were implemented using standard libraries [6, 22] and trained with
default parameters, except that we set random_state = 0 whenever
possible, for the purpose of reproducibility. We report the mean
and standard deviation of 3 runs for each test. All experiments
were conducted on a machine with 12 cores and 64GB RAM. The
code, data and evaluation metrics are open sourced on GitHub:
https://github.com/cgebest/kamino.

7.2 End-to-End Evaluation

We compare Kamino with all four baselines at a fixed privacy
budget (𝜖 = 1, 𝛿 = 10−6).

Table 2: Percentage of tuple pairs that violate DCs. Kamino

has the closet DC violations as the truth, while none of the

baselines are able to preserves most of the DCs.

DC Truth PrivBayes DP-VAE PATE-GAN NIST Kamino
𝜙𝑎1 0.0 11.3±0.3 32.0±0.2 20.3±0.0 0.0±0.0 0.0±0.0
𝜙𝑎2 0.0 1.4±0.6 13.2±0.1 24.8±0.1 0.0±0.0 0.0±0.0
𝜙𝑏1 0.4 1.6±0.0 0.0±0.0 0.4±0.0 0.0±0.0 0.6±0.0
𝜙𝑏2 0.9 2.6±0.2 15.6±0.2 0.2±0.0 28.1±6.8 0.6±0.0
𝜙𝑏3 0.5 1.4±0.1 0.0±0.0 0.1±0.0 0.0±0.0 0.3±0.2
𝜙𝑡1 0.0 0.0±0.0 0.0±0.0 0.0±0.0 7.4±1.3 0.0±0.0
𝜙𝑡2 0.0 0.8±0.0 0.0±0.0 0.8±0.0 0.4±0.0 0.0±0.0
𝜙𝑡3 0.0 0.0±0.0 0.0±0.0 0.0±0.0 8.0±1.7 0.0±0.0
𝜙𝑡4 0.0 0.4±0.0 98.9±0.0 2.1±0.0 0.0±0.0 0.0±0.0
𝜙𝑡5 0.0 0.5±0.0 99.0±0.0 4.0±0.0 0.0±0.0 0.0±0.0
𝜙𝑡6 0.0 0.4±0.0 24.5±0.1 0.9±0.0 0.0±0.0 0.0±0.0
𝜙ℎ1 0.0 0.2±0.0 16.7±0.2 5.1±0.1 64.0±45.2 0.0±0.0
𝜙ℎ2 0.0 0.2±0.0 15.7±0.1 4.4±0.1 53.4±37.7 0.0±0.0
𝜙ℎ3 0.0 0.2±0.0 15.3±0.2 5.1±0.1 64.0±45.2 0.0±0.0
𝜙ℎ4 0.0 0.6±0.0 30.1±0.1 1.2±0.0 3.2±0.0 0.0±0.0

7.2.1 Experiment 1: DC Violations. We show that synthetic data
generated by Kamino has a similar number of DC violations as the
true database instance. Table 2 lists the percentage of tuple pairs
that violate each of the given DC. On the Adult, Tax and TPC-H
datasets, Kamino incurs zero violations, which is consistent to the
observations in the true database instances. On the BR2000 dataset,
the overall numbers of DC violations on the synthetic instance
output by Kamino are the closest to those on the truth among all
approaches. The baselines fail to preserve most of the DCs. For
instance, the hard DC 𝜙𝑎1 on the Adult dataset has about 11.3%, 32%,
and 20.3% violations in the synthetic data generated by PrivBayes,
DP-AVE and PATE-GAN, respectively. Although NIST does not
have violations like Kamino, it it because NIST filled the entire
𝑒𝑑𝑢_𝑛𝑢𝑚 column with the same value. For another instance, all the
hard DCs induced by the foreign key and primary key constraints
in the TPC-H dataset, are preserved only in Kamino.

7.2.2 Experiment 2: Model Training. Figure 3 shows the accuracy
and F1 on classifying all attributes. Each data point in Figure 3
represents an average of 9 classification models for classifying one
target attribute, and we use the box plot to show classification
quality on all attributes for each of the dataset. As Figure 3 shows,
Kamino achieves the best overall accuracy and F1 on most datasets:
the mean of all attributes in Kamino is the closest to the truth, and
other quartiles are the best for majority of the tests comparing to
the baseline systems. For instance, on Adult, training and testing
on the true database instance gives average accuracy of 0.88. The
models on the synthetic data by Kamino is 0.82, which outperforms
PATE-GAN (0.77), PrivBayes (0.68), NIST (0.66), and DP-VAE (0.54).

7.2.3 Experiment 3: 𝛼-way Marginals. Figure 4 shows the total
variation distance for all attributes or attribute combinations on
each of the dataset. Each data point represents a total variation
distance of the distributions between the true database instance
and the synthetic database instance, for a certain attribute (1-way)
or an attribute set (2-way). As it shows, Kamino has the smallest
or close to the smallest variation distances. Taking the first 1-way
marginal on the Adult dataset as an example, Kamino has a mean

1894

https://github.com/cgebest/kamino

●

●

●

0.00

0.25

0.50

0.75

1.00

DP−VAE
NIST

PrivBayes

PATE−GAN
Kamino

Truth

Method

A
cc

ur
ac

y

Adult

0.00

0.25

0.50

0.75

1.00

DP−VAE
NIST

PrivBayes

PATE−GAN
Kamino

Truth

Method

A
cc

ur
ac

y

BR2000

●

0.00

0.25

0.50

0.75

1.00

DP−VAE
NIST

PrivBayes

PATE−GAN
Kamino

Truth

Method

A
cc

ur
ac

y

Tax

0.00

0.25

0.50

0.75

1.00

DP−VAE
NIST

PrivBayes

PATE−GAN
Kamino

Truth

Method

A
cc

ur
ac

y

TPC−H

●

●
●

0.00

0.25

0.50

0.75

1.00

DP−VAE
NIST

PrivBayes

PATE−GAN
Kamino

Truth

Method

F
1

Adult

0.00

0.25

0.50

0.75

1.00

DP−VAE
NIST

PrivBayes

PATE−GAN
Kamino

Truth

Method

F
1

BR2000

0.00

0.25

0.50

0.75

1.00

DP−VAE
NIST

PrivBayes

PATE−GAN
Kamino

Truth

Method

F
1

Tax

●
●

●

0.00

0.25

0.50

0.75

1.00

DP−VAE
NIST

PrivBayes

PATE−GAN
Kamino

Truth

Method

F
1

TPC−H

Figure 3: Accuracy and F1 of evaluating classification models, which are tested on the true dataset and trained on synthetic

data by different methods. Each point represents an averaged classification quality (accuracy or F1) over 9 models for one

target attribute using all other attributes as features. Each box represents a set of classifications, one for each attribute in the

schema. Kamino achieves the overall best accuracy and F1 scores on most datasets.

●

●

●

●

●

●

●

● ●

0.00

0.25

0.50

0.75

1.00

DP−VAE
NIST

PrivBayes

PATE−GAN
Kamino

Method

V
ar

ia
tio

n
D

is
ta

nc
e

1−way, Adult

●

●

●●●

0.00

0.25

0.50

0.75

DP−VAE
NIST

PrivBayes

PATE−GAN
Kamino

Method

V
ar

ia
tio

n
D

is
ta

nc
e

1−way, BR2000

●
●

●0.00

0.25

0.50

0.75

1.00

DP−VAE
NIST

PrivBayes

PATE−GAN
Kamino

Method

V
ar

ia
tio

n
D

is
ta

nc
e

1−way, Tax

●

●

●

0.00

0.25

0.50

0.75

1.00

DP−VAE
NIST

PrivBayes

PATE−GAN
Kamino

Method

V
ar

ia
tio

n
D

is
ta

nc
e

1−way, TPC−H

●
●
●

●

●

●

0.00

0.25

0.50

0.75

1.00

DP−VAE
NIST

PrivBayes

PATE−GAN
Kamino

Method

V
ar

ia
tio

n
D

is
ta

nc
e

2−way, Adult

●●

●

●●●●●
●
●
●●
●●●●

●

●
●

●

0.00

0.25

0.50

0.75

1.00

DP−VAE
NIST

PrivBayes

PATE−GAN
Kamino

Method

V
ar

ia
tio

n
D

is
ta

nc
e

2−way, BR2000

●●

●

●

●●●

●

●●

●

●
●

●

●

0.00

0.25

0.50

0.75

1.00

DP−VAE
NIST

PrivBayes

PATE−GAN
Kamino

Method

V
ar

ia
tio

n
D

is
ta

nc
e

2−way, Tax

●

●

●●

●●

●

●
●●
●
●●

●

●

●

●●

●

0.00

0.25

0.50

0.75

1.00

DP−VAE
NIST

PrivBayes

PATE−GAN
Kamino

Method

V
ar

ia
tio

n
D

is
ta

nc
e

2−way, TPC−H

Figure 4: Total variation distance on 𝛼-way marginals, where 𝛼 = [1, 2]. Each point represents a total variance distance for one

attribute set, and each box represents total variance distance for all attribute sets. It shows that Kamino can achieve overall

the best (Adult) or close to the best (BR2000, Tax and TPC-H) variation distance.

of 0.11, which is second to the smallest mean of PATE-GAN (0.09),
and a maximal distance of 0.34, which is the smallest comparing to
PATE-GAN (0.37), PrivBayes (0.65), NIST (0.89), and DP-VAE (1.0).

7.2.4 Experiment 4: Execution time. SinceKamino explicitly checks
DC violations during sampling, it is expected to take longer running
time than baseline methods that generate i.i.d samples. In our eval-
uation, NIST and PrivBayes were the most efficient on all datasets,
and took at most 217±13 and 1,367±561 seconds, respectively. Be-
cause of training deep models on encoded data, running time of
DP-VAE and PATE-GAN on all datasets fell into the range of 20
minutes to 13 hours. For Kamino, the running time on all datasets
were in 5-16 hours, which is still practically efficient.

Figure 7 profiles Kamino’s execution time of each process (se-
quencing, model training, computing violation matrix and learn
DC weights for soft DCs, and sampling). As Figure 7 shows, perfor-
mance of Kamino is dominated by training and sampling, which

together take more than 99% of the total time. MCMC re-sampling
further increases the sampling time, but it leads to better task qual-
ities. We show the detailed evaluation on MCMC re-sampling in
our full paper [41].

In addition, the full paper also include evaluations of optimiza-
tion techniques, which can speed up model training on Adult by
3.5×, and allowKamino to complete in 10 hours for a TPC-H dataset
that scaled up to 1 million rows.

7.3 Component Evaluation

7.3.1 Experiment 5: Effectiveness of constraint-aware components.

Recall that our approach takes DCs into account when it samples
synthetic values (§ 4.2) and generate the schema sequence (§ 4.3).
In this experiment, we compare Kamino with three sub-optimal
Kamino that do not have the constraint-aware components:

1895

0.6

0.7

0.8

0.9

1.0

Rand
Both

Rand
Sampling

Rand
Sequence

Kamino Truth

Method

A
cc

ur
ac

y

Adult

(a) Accuracy

0.00

0.25

0.50

0.75

1.00

Rand
Both

Rand
Sampling

Rand
Sequence

Kamino Truth

Method

F
1

Adult

(b) F1

●

●

●

●

0.0

0.2

0.4

0.6

Rand
Both

Rand
Sampling

Rand
Sequence

Kamino

Method

V
ar

ia
tio

n
D

is
ta

nc
e

Adult, 1−way

(c) 1-way marginal

●
●

●

●

●

●

●

0.0

0.2

0.4

0.6

Rand
Both

Rand
Sampling

Rand
Sequence

Kamino

Method

V
ar

ia
tio

n
D

is
ta

nc
e

Adult, 2−way

(d) 2-way marginal

Figure 5: Accuracy and F1 of model training on Kamino, and sub-optimal Kamino without constraint-aware sampling, se-

quencing, and neither, using the Adult dataset as the example. It shows the the Kamino with constraint-aware components

can achieve the best quality in both the learning task and in the query task.

●
●

● ● ● ●

0.00

0.25

0.50

0.75

1.00

0.1 0.2 0.4 0.8 1.6 Inf
Epsilon

A
cc

ur
ac

y

● DP−VAE
NIST

PrivBayes
PATE−GAN

Kamino

Adult

(a) Accuracy

● ●

●
● ●

●

0.00

0.25

0.50

0.75

1.00

0.1 0.2 0.4 0.8 1.6 Inf
Epsilon

F
1

● DP−VAE
NIST

PrivBayes
PATE−GAN

Kamino

Adult

(b) F1

●

● ●
●

●

●

0.00

0.25

0.50

0.75

1.00

0.1 0.2 0.4 0.8 1.6 Inf
Epsilon

V
ar

ia
tio

n
D

is
ta

nc
e

● DP−VAE
NIST

PrivBayes
PATE−GAN

Kamino

Adult, 1−way

(c) 1-way marginal

●

● ● ●
●

●

0.00

0.25

0.50

0.75

1.00

0.1 0.2 0.4 0.8 1.6 Inf
Epsilon

V
ar

ia
tio

n
D

is
ta

nc
e

● DP−VAE
NIST

PrivBayes
PATE−GAN

Kamino

Adult, 2−way

(d) 2-way marginal

Figure 6: Task quality of the Kamino and baselines by varying privacy budget (𝜖, 10−6
).

Table 3: Percentage of DC violations usingKamino, and sub-

optimal Kamino w/o constraint-aware components.

DC Truth Kamino RandSequence RandSampling RandBoth
𝜙𝑎1 0 0.0±0.0 0.0±0.0 0.4±0.0 9.1±8.5
𝜙𝑎2 0 0.0±0.0 0.0±0.0 36.8±0.3 26.1±11.0

• Replace constraint-aware sampling (Algorithm 3) in Kamino
with sampling tuples independently, labeled as “RandSampling";
• Replace constraint-aware sequencing (Algorithm 4) by a ran-
dom sequence, labeled as “RandSequence";
• Replace both components above, labeled as “RandBoth".
Table 3 compares DC violations of the synthetic data generated

by Kamino and by sub-optimal Kamino without constraint-aware
components. First, we see that without constraint-aware sampling
component (Algorithm 3), the synthetic data generated by Rand-
Sampling and RandBoth have more violations than the other two
methods. Second, the constraint-aware sequencing component (Al-
gorithm 4) is also important. Take 𝜙𝑎1 : 𝑒𝑑𝑢 → 𝑒𝑑𝑢_𝑛𝑢𝑚 as an
example, RandBoth (without the constraint-aware sequencing) re-
sults in a higher number of DC violations than RandSampling.
This is because that 𝑒𝑑𝑢 is not necessarily placed before 𝑒𝑑𝑢_𝑛𝑢𝑚
in a random schema sequence, and the noisy model cannot pre-
serve the correlation between these two attributes. Similar, without
constraint-aware components, quality downgrades in both learning
and query task shown in Figure 5.

We omit the presentation of non-private runs for similar observa-
tions. We believe that the constraint-aware components can also be
incorporated into the baseline systems, but we skip the comparison
because it requires significant re-design of the baseline systems.

7.3.2 Experiment 6: Kamino vs Accept-Reject Sampling. Kamino’s
constraint-aware sampling (Algorithm 3) explicitly constructs the
target distribution and directly samples from it for filling a cell
(Line 10). Another sampling method is the accept-reject (AR) sam-
pling [62], which samples one value at a time, and accepts this value
probabilistically based on its violations. For soft DCs, AR-sampling
can be an alternative, but it does not work well for hard DCs.

We first evaluate Kamino using AR-sampling on the Adult
dataset with hard DCs. AR-sampling does not work well when
hard DCs are present. If a sampled value incurs any violations,
then its accept ratio (i.e., exp(−∑

𝜙 ∈Φ𝐴𝑗
𝑤𝜙 × 𝑣𝑖𝑜𝜙,𝑣 |𝐷′), where 𝑣

is the sampled value of attribute 𝐴 𝑗) diminishes to 0, since𝑤𝜙 = ∞.
As a result, AR-sampling needs re-sampling multiple times until a
value can be accepted, depending on the other cells that have been
filled with sampled values. For efficiency purpose, we allow at most
300 samples per cell: if no values can be accepted, we take the last
sampled value and as a result, violations can occur. Kamino with
AR-sampling does produce violations for the two DCs 𝜙1

𝑎 (0.4±0.0)
and𝜙2

𝑎 (37.2±0.0). The execution time of Kaminowith AR-sampling
takes 7.5 hours, which is 1.9× longer.

On the BR2000 dataset with soft DCs, Kaminowith AR-sampling
completes in 1.26 hours (0.24 hour for the AR-sampling step) on
average, which is faster than the constraint-aware sampling (3.9
hours). AR-sampling converges faster due to its relatively high
accept ratio. For DC violations and task qualities, we observe that
Kamino with AR-sampling performs similarly with Kamino.

7.3.3 Experiment 7: Varying Privacy Budget. We show the impact
of the privacy budget in the task qualities using the Adult dataset as
the example. Figure 6 compares the data usefulness by varying the
privacy budget parameter (𝜖, 𝛿) at different 𝜖 = [0.1, 0.2, 0.4, 0.8, 1.6]
with a constant 𝛿 = 10−6. 𝜖 = ∞ refers to non-private Kamino and

1896

77.97%

78.48%

78.75%
20.65%

22.03% 21.52%
21.25%

78.83%
0

20000

40000

60000

Adult BR2000 Tax TPC−H
Dataset

T
im

e
(s

ec
on

ds
)

Seq. Tra. Vio. DC.W. Sam.

Figure 7: Time profiling of end-

to-end runs on all datasets.

● ● ● ● ● ● ●

0.00

0.25

0.50

0.75

1.00

2 4 8 16 32 64 128
Number of DCs

Tr
ai

ni
ng

 Q
ua

lit
y

● Accuracy F1

Adult

(a) Model Training

● ● ● ●
● ● ●

0.0

0.2

0.4

0.6

2 4 8 16 32 64 128
Number of DCs

V
ar

ia
tio

n
D

is
ta

nc
e

● 1−way 2−way

Adult

(b) Marginal Distance

0

20000

40000

60000

80000

2 4 8 16 32 64 128
Number of DCs

T
im

e
(s

ec
on

ds
)

Seq. Tra. Vio. DC.W. Sam.

Adult

(c) Time Complexity

Figure 8: Task quality and execution time by varying the number of DCs.

baselines. First of all, increasing the privacy budget leads to overall
better quality in both the learning and the query tasks. Consistent
with the observations in Figures 3-4, Kamino always achieves the
best in training quality (Figures 6a-6b) and close to best marginal
distances (Figures 6c-6d) at different privacy budgets. The averaged
model accuracy over all attributes on Kamino is 0.8 at privacy
budget (𝜖 = 0.2, 𝛿 = 10−6), which outperforms DP-VAE (0.54),
NIST(0.66), PrivBayes (0.68) and PATE-GAN (0.77) at 5× larger
𝜖 = 1.

7.3.4 Experiment 8: Scalability of DCs. In this experiment, we vary
the number of DCs from the input to Kamino. Due to the lack
of large numbers of ground DCs, we generate the input DCs by
discovering approximate DCs [64] to simulate the knowledge from
the domain expert.

Figure 8 shows the task quality and time profiling as increasing
the number of soft DCs from 2 to 128, under the fixed privacy bud-
get (𝜖 = 1, 𝛿 = 10−6) on the Adult dataset. Since the DC weights
are noisy and approximately learned using a subset of data (Al-
gorithm 5), increasing the number of DCs implies more noisy ad-
justment for the sampling probabilities (Algorithm 3). As a result,
task quality is expected to decrease given a finite privacy budget.
Figure 8a and Figure 8b show that as the number of DCs increases
to 128, task quality only degrades by 0.04.

As the number of DCs increases, more time is required to com-
pute the violation matrix, learn DC weights, and to sample. In
particular, for Kamino’s constraint-aware sampling process (Algo-
rithm 3), introducing more DCs will linearly increases the time to
check DC violations for each of the DCs. Since the total execution
time is dominated by the sampling process, the total execution
time of Kamino scales linearly with the number of DCs. Figure 8c
shows that when the number of DC increases from 2 to 128, the
total execution time increases only by 3×.

8 RELATEDWORK

There has been extensive literature on releasing differentially pri-
vate synthetic data [17, 36, 61, 84]. These approaches can be cat-
egorized into two classes: 1) statistical approaches, which focus
on synthesizing low-dimensional projections; and 2) deep learning
approaches, which train a deep generative model to sample tuples.
Both classes assume tuples are i.i.d, and hence cannot preserve
the structure of the data. Our approach is a combination of both,
and more importantly, our method differentiates prior work in that
we explicitly consider the denial constraints [48] enforced among
tuples, rather than simply assuming tuple independence.

Statistical approaches for generating synthetic data usually esti-
mate low-dimensional marginal distributions [66, 80], due to the
hardness of privatizing high-dimensional data with differential
privacy guarantee [16, 31, 39, 75]. These low-dimensional distri-
butions can be used to estimate the high-dimensional tuple dis-
tribution, based on the assumption of conditional independence
among attributes, which can be modeled using probabilistic graph-
ical models [52], such as using the Bayesian network [56, 65, 83]
or undirected graphs [21, 57]. Under this model, only correlations
among dependent attributes are likely to be captured, but correla-
tions that widely exist among conditional independent attributes
and tuples are not captured in prior work.

Deep learning models have been shown widely used in syn-
thesizing unstructured data, such as images [70], videos [19] and
natural languages [44]. Different from unstructured data, structured
data is defined using relational schema and hence, stucture correla-
tions naturally exist. Naïvly applying deep learning models such as
GAN [42] and auto-encoder [51] on structured data faces at least
two challenges. First, those models usually take numeric vectors as
input, and popular encoding schemes such as one-hot encoding or
ordinal encoding do not work well on structured data [35], Second,
similar to statistical approaches, methods based on deep models
(e.g. [38, 50, 73, 81]) suffer from missing structure correlations.

In general, generating differentially private synthetic data is hard,
due to the tradeoff between accuracy and privacy [16, 31, 39, 75].
On the other hand, an efficient private data generation algorithm
fails to offer the same level of accuracy guarantees to all the queries.
Existing practical methods (e.g., [12, 20, 21, 50, 83]) therefore choose
to privately learn only a subset of correlations to model the true
data. However, the structure of the data is not explicitly captured
by these methods and thus are poorly preserved in the outputs.

9 CONCLUSION

In this work, we are motivated to design a synthetic data generator
that can preserve both the structure of the data, and the privacy of
individual data records. We present Kamino, an end-to-end data
synthesis system for constraint-aware differentially private data
synthesis. Kamino takes as input a database instance, along with
its schema (including denial constraints), and produces a synthetic
database instance. Experimental results show that Kamino can
preserve the structure of the data, while generating useful synthetic
data for applications of training classificationmodels and answering
marginal queries, comparing to the state-of-the-art methods.

1897

REFERENCES

[1] 2016-04-27. Regulation (EU) 2016/679 of the European Parliament and of the
Council of 27 April 2016 on the protection of natural persons with regard to the
processing of personal data and on the free movement of such data, and repealing
Directive 95/46/EC (General Data Protection Regulation). OJ (2016-04-27).

[2] Online. Code for the winning solution in Differential Privacy Synthetic
Data Challenge. https://github.com/usnistgov/PrivacyEngCollabSpace/tree/
master/tools/de-identification/Differential-Privacy-Synthetic-Data-Challenge-
Algorithms/rmckenna

[3] Online. HoloClean code. https://github.com/HoloClean/holoclean/
[4] Online. PATE-GAN code. https://bitbucket.org/mvdschaar/mlforhealthlabpub/

src/master/alg/pategan/
[5] Online. PrivBayes code. https://sourceforge.net/projects/privbayes/
[6] Version 0.23.2. scikit-learn, Machine Learning in Python. https://scikit-learn.org/
[7] Version 2.18.0. The TPC Benchmark H (TPC-H). http://www.tpc.org/tpch/
[8] Martín Abadi, Andy Chu, Ian J. Goodfellow, H. Brendan McMahan, Ilya Mironov,

Kunal Talwar, and Li Zhang. 2016. Deep Learning with Differential Privacy. In
CCS. ACM, 308–318.

[9] John M. Abowd. 2018. The U.S. Census Bureau Adopts Differential Privacy. In
KDD. 2867.

[10] Brooke Auxier, Lee Rainie, Monica Anderson, Andrew Perrin, Madhu Kumar, and
Erica Turner. 2019. Americans and Privacy - Concerned Confused and Feeling
Lack of Control Over Their Personal Information. Pew Research Center (2019).

[11] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural Machine
Translation by Jointly Learning to Align and Translate. In ICLR.

[12] Boaz Barak, Kamalika Chaudhuri, Cynthia Dwork, Satyen Kale, Frank McSherry,
and Kunal Talwar. 2007. Privacy, accuracy, and consistency too: a holistic solution
to contingency table release. In PODS. 273–282.

[13] Raef Bassily, Adam D. Smith, and Abhradeep Thakurta. 2014. Private Empirical
Risk Minimization: Efficient Algorithms and Tight Error Bounds. In FOCS. 464–
473.

[14] James Bergstra and Yoshua Bengio. 2012. Random Search for Hyper-Parameter
Optimization. J. Mach. Learn. Res. 13 (2012), 281–305.

[15] Tobias Bleifuß, Sebastian Kruse, and Felix Naumann. 2017. Efficient Denial
Constraint Discovery with Hydra. PVLDB 11, 3 (2017), 311–323.

[16] Avrim Blum, Katrina Ligett, and Aaron Roth. 2008. A learning theory approach
to non-interactive database privacy. In STOC. ACM, 609–618.

[17] Claire McKay Bowen and Fang Liu. 2020. Comparative Study of Differentially
Private Data Synthesis Methods. Statist. Sci. 35, 2 (May 2020), 280–307. https:
//doi.org/10.1214/19-sts742

[18] U.S. Census Bureau. Accessed on 2020-11-30. LEHD Origin-Destination Employ-
ment Statistics (2002-2017). https://onthemap.ces.census.gov/

[19] R. Chawla. 2019. Deepfakes : How a pervert shook the world. International
Journal for Advance Research and Development 4 (2019), 4–8.

[20] Qingrong Chen, Chong Xiang, Minhui Xue, Bo Li, Nikita Borisov, Dali Kaafar,
and Haojin Zhu. 2018. Differentially Private Data Generative Models. CoRR
abs/1812.02274 (2018).

[21] Rui Chen, Qian Xiao, Yu Zhang, and Jianliang Xu. 2015. Differentially Private
High-Dimensional Data Publication via Sampling-Based Inference. In SIGKDD.
129–138.

[22] Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A Scalable Tree Boosting
System. In SIGKDD. ACM, 785–794.

[23] David Maxwell Chickering. 1995. Learning Bayesian Networks is NP-Complete.
In AISTATS. Springer, 121–130.

[24] Xu Chu, Ihab F. Ilyas, and Paolo Papotti. 2013. Discovering Denial Constraints.
PVLDB 6, 13 (2013), 1498–1509.

[25] Diego Colombo and Marloes H. Maathuis. 2014. Order-independent constraint-
based causal structure learning. J. Mach. Learn. Res. 15, 1 (2014), 3741–3782.

[26] Rachel Cummings, Sara Krehbiel, Kevin A. Lai, and Uthaipon Tao Tantipongpipat.
2018. Differential Privacy for Growing Databases. In NeurIPS. 8878–8887.

[27] Dheeru Dua and Casey Graff. 2017. UCI Machine Learning Repository. http:
//archive.ics.uci.edu/ml

[28] Cynthia Dwork. 2006. Differential Privacy. In ICALP, Vol. 4052. Springer, 1–12.
[29] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and

Moni Naor. 2006. Our Data, Ourselves: Privacy Via Distributed Noise Generation.
In EUROCRYPT, Vol. 4004. Springer, 486–503.

[30] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. 2006. Cali-
brating Noise to Sensitivity in Private Data Analysis. In Proceedings of the 3rd
Conference on Theory of Cryptography (TCC ’06). 265–284.

[31] Cynthia Dwork, Moni Naor, Omer Reingold, Guy N. Rothblum, and Salil P.
Vadhan. 2009. On the complexity of differentially private data release: efficient
algorithms and hardness results. In STOC. ACM, 381–390.

[32] Cynthia Dwork and Aaron Roth. 2014. The Algorithmic Foundations of Differen-
tial Privacy. Foundations and Trends in Theoretical Computer Science 9, 3-4 (2014),
211–407.

[33] Muhammad Ebraheem, Saravanan Thirumuruganathan, Shafiq R. Joty, Mourad
Ouzzani, and Nan Tang. 2018. Distributed Representations of Tuples for Entity

Resolution. Proc. VLDB Endow. 11, 11 (2018), 1454–1467.
[34] Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. 2014. RAPPOR: Ran-

domized Aggregatable Privacy-Preserving Ordinal Response. In CCS. ACM, 1054–
1067.

[35] Ju Fan, Tongyu Liu, Guoliang Li, Junyou Chen, Yuwei Shen, and Xiaoyong Du.
2020. Relational Data Synthesis using Generative Adversarial Networks: A Design
Space Exploration. Proc. VLDB Endow. 13, 11 (2020), 1962–1975.

[36] Liyue Fan. 2020. A Survey of Differentially Private Generative Adversarial
Networks. In The AAAI Workshop on Privacy-Preserving Artificial Intelligence.

[37] Wenfei Fan, Floris Geerts, Jianzhong Li, and Ming Xiong. 2011. Discovering
Conditional Functional Dependencies. IEEE Trans. Knowl. Data Eng. 23, 5 (2011),
683–698.

[38] Lorenzo Frigerio, Anderson Santana de Oliveira, Laurent Gomez, and Patrick
Duverger. 2019. Differentially Private Generative Adversarial Networks for Time
Series, Continuous, and Discrete Open Data. In SEC. 151–164.

[39] Marco Gaboardi, Emilio Jesús Gallego Arias, Justin Hsu, Aaron Roth, and Zhi-
wei Steven Wu. 2014. Dual Query: Practical Private Query Release for High
Dimensional Data. In ICML, Vol. 32. 1170–1178.

[40] Chang Ge, Xi He, Ihab F. Ilyas, and Ashwin Machanavajjhala. 2019. APEx:
Accuracy-Aware Differentially Private Data Exploration. In SIGMOD. 177–194.

[41] Chang Ge, Shubhankar Mohapatra, Xi He, and Ihab F. Ilyas. 2020. Kamino:
Constraint-Aware Differentially Private Data Synthesis. arXiv:2012.15713 [cs.DB]

[42] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron C. Courville, and Yoshua Bengio. 2014. Generative
Adversarial Networks. CoRR abs/1406.2661 (2014).

[43] Andy Greenberg. 2016. Apple’s ‘Differential Privacy’ Is About Collecting Your
Data—But Not Your Data. Wired (2016).

[44] Rahul Gupta. 2019. Data Augmentation for Low Resource Sentiment Analysis
Using Generative Adversarial Networks. In ICASSP. IEEE, 7380–7384.

[45] Michael B. Hawes. 2020. Implementing Differential Privacy: Seven Lessons From
the 2020 United States Census. Harvard Data Science Review (30 4 2020). https:
//doi.org/10.1162/99608f92.353c6f99 https://hdsr.mitpress.mit.edu/pub/dgg03vo6.

[46] Ykä Huhtala, Juha Kärkkäinen, Pasi Porkka, and Hannu Toivonen. 1999. TANE:
An Efficient Algorithm for Discovering Functional and Approximate Dependen-
cies. Comput. J. 42, 2 (1999), 100–111.

[47] IBM. 2020. Cost of a Data Breach Report. (2020).
[48] Ihab F. Ilyas and Xu Chu. 2019. Data Cleaning. ACM.
[49] Noah M. Johnson, Joseph P. Near, and Dawn Song. 2018. Towards Practical

Differential Privacy for SQL Queries. PVLDB 11, 5 (2018), 526–539.
[50] James Jordon, Jinsung Yoon, and Mihaela van der Schaar. 2019. PATE-GAN:

Generating Synthetic Data with Differential Privacy Guarantees. In ICLR.
[51] Diederik P. Kingma and Max Welling. 2014. Auto-Encoding Variational Bayes. In

ICLR.
[52] Daphne Koller and Nir Friedman. 2009. Probabilistic Graphical Models - Principles

and Techniques. MIT Press.
[53] Ios Kotsogiannis, Yuchao Tao, Xi He, Maryam Fanaeepour, Ashwin Machanava-

jjhala, Michael Hay, and Gerome Miklau. 2019. PrivateSQL: A Differentially
Private SQL Query Engine. PVLDB 12, 11 (2019), 1371–1384.

[54] Warner S. L. 1965. Randomized response: a survey technique for eliminating
evasive answer bias. J. Amer. Statist. Assoc. 60, 309 (1965), 63–66.

[55] Chao Li, Gerome Miklau, Michael Hay, Andrew McGregor, and Vibhor Ras-
togi. 2015. The matrix mechanism: optimizing linear counting queries under
differential privacy. VLDB J. 24, 6 (2015), 757–781.

[56] Haoran Li, Li Xiong, Lifan Zhang, and Xiaoqian Jiang. 2014. DPSynthesizer:
Differentially Private Data Synthesizer for Privacy Preserving Data Sharing. Proc.
VLDB Endow. 7, 13 (2014), 1677–1680.

[57] Ryan McKenna, Daniel Sheldon, and Gerome Miklau. 2019. Graphical-model
based estimation and inference for differential privacy. In ICML, Vol. 97. 4435–
4444.

[58] Frank McSherry. 2009. Privacy integrated queries: an extensible platform for
privacy-preserving data analysis. In SIGMOD, Ugur Çetintemel, Stanley B. Zdonik,
Donald Kossmann, and Nesime Tatbul (Eds.). ACM, 19–30.

[59] Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jeffrey Dean.
2013. Distributed Representations of Words and Phrases and their Composition-
ality. In NIPS. 3111–3119.

[60] Ilya Mironov. 2017. Rényi differential privacy. In 2017 IEEE 30th Computer Security
Foundations Symposium (CSF). IEEE, 263–275.

[61] National Institute of Standards and Technology. 2018. Differential Privacy Syn-
thetic Data Challenge. https://www.nist.gov/ctl/pscr/open-innovation-prize-
challenges/past-prize-challenges/2018-differential-privacy-synthetic

[62] Art B. Owen. 2013. Monte Carlo theory, methods and examples.
[63] Nicolas Papernot, Shuang Song, Ilya Mironov, Ananth Raghunathan, Kunal Tal-

war, and Úlfar Erlingsson. 2018. Scalable Private Learning with PATE. In ICLR.
[64] Eduardo H. M. Pena, Eduardo Cunha de Almeida, and Felix Naumann. 2019.

Discovery of Approximate (and Exact) Denial Constraints. Proc. VLDB Endow.
13, 3 (2019), 266–278.

[65] Haoyue Ping, Julia Stoyanovich, and Bill Howe. 2017. DataSynthesizer: Privacy-
Preserving Synthetic Datasets. In SSDBM. ACM, 42:1–42:5.

1898

https://github.com/usnistgov/PrivacyEngCollabSpace/tree/master/tools/de-identification/Differential-Privacy-Synthetic-Data-Challenge-Algorithms/rmckenna
https://github.com/usnistgov/PrivacyEngCollabSpace/tree/master/tools/de-identification/Differential-Privacy-Synthetic-Data-Challenge-Algorithms/rmckenna
https://github.com/usnistgov/PrivacyEngCollabSpace/tree/master/tools/de-identification/Differential-Privacy-Synthetic-Data-Challenge-Algorithms/rmckenna
https://github.com/HoloClean/holoclean/
https://bitbucket.org/mvdschaar/mlforhealthlabpub/src/master/alg/pategan/
https://bitbucket.org/mvdschaar/mlforhealthlabpub/src/master/alg/pategan/
https://sourceforge.net/projects/privbayes/
https://scikit-learn.org/
http://www.tpc.org/tpch/
https://doi.org/10.1214/19-sts742
https://doi.org/10.1214/19-sts742
https://onthemap.ces.census.gov/
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://arxiv.org/abs/2012.15713
https://doi.org/10.1162/99608f92.353c6f99
https://doi.org/10.1162/99608f92.353c6f99
https://www.nist.gov/ctl/pscr/open-innovation-prize-challenges/past-prize-challenges/2018-differential-privacy-synthetic
https://www.nist.gov/ctl/pscr/open-innovation-prize-challenges/past-prize-challenges/2018-differential-privacy-synthetic

[66] Wahbeh H. Qardaji, Weining Yang, and Ninghui Li. 2014. PriView: practical
differentially private release of marginal contingency tables. In SIGMOD. 1435–
1446.

[67] Theodoros Rekatsinas, Xu Chu, Ihab F. Ilyas, and Christopher Ré. 2017. HoloClean:
Holistic Data Repairs with Probabilistic Inference. PVLDB 10, 11 (2017), 1190–
1201.

[68] Matthew Richardson and Pedro M. Domingos. 2006. Markov logic networks.
Machine Learning 62, 1-2 (2006), 107–136.

[69] Christopher De Sa, Ihab F. Ilyas, Benny Kimelfeld, Christopher Ré, and Theodoros
Rekatsinas. 2019. A Formal Framework for Probabilistic Unclean Databases. In
ICDT. 6:1–6:18.

[70] Ashish Shrivastava, Tomas Pfister, Oncel Tuzel, Joshua Susskind, Wenda Wang,
and Russell Webb. 2017. Learning from Simulated and Unsupervised Images
through Adversarial Training. In CVPR. IEEE Computer Society, 2242–2251.

[71] Shuang Song, Kamalika Chaudhuri, and Anand D. Sarwate. 2013. Stochastic
gradient descent with differentially private updates. In GlobalSIP. 245–248.

[72] Dan Suciu, Dan Olteanu, Christopher Ré, and Christoph Koch. 2011. Probabilistic
Databases. Morgan & Claypool Publishers.

[73] Reihaneh Torkzadehmahani, Peter Kairouz, and Benedict Paten. 2020. DP-CGAN:
Differentially Private Synthetic Data and Label Generation. CoRR abs/2001.09700
(2020).

[74] Alexandre B. Tsybakov. 2009. Introduction to Nonparametric Estimation. Springer.
[75] Jonathan Ullman and Salil P. Vadhan. 2011. PCPs and the Hardness of Generating

Private Synthetic Data. In TCC. 400–416.
[76] Christopher Waites. 2019. PyVacy: Towards Practical Differential Privacy for

Deep Learning. https://github.com/ChrisWaites/pyvacy (2019).

[77] Lucy Lu Wang, Kyle Lo, Yoganand Chandrasekhar, Russell Reas, Jiangjiang Yang,
Doug Burdick, Darrin Eide, Kathryn Funk, Yannis Katsis, Rodney Michael Kin-
ney, Yunyao Li, Ziyang Liu, William Merrill, Paul Mooney, Dewey A. Murdick,
Devvret Rishi, Jerry Sheehan, Zhihong Shen, Brandon Stilson, Alex D. Wade,
KuansanWang, Nancy Xin RuWang, Christopher Wilhelm, Boya Xie, Douglas M.
Raymond, Daniel S. Weld, Oren Etzioni, and Sebastian Kohlmeier. 2020. CORD-19:
The COVID-19 Open Research Dataset. In Proceedings of the 1st Workshop on NLP
for COVID-19 at ACL 2020. Association for Computational Linguistics, Online.
https://www.aclweb.org/anthology/2020.nlpcovid19-acl.1

[78] Oliver Williams and Frank McSherry. 2010. Probabilistic Inference and Differen-
tial Privacy. In NIPS. 2451–2459.

[79] Richard Wu, Aoqian Zhang, Ihab F. Ilyas, and Theodoros Rekatsinas. 2020.
Attention-based Learning for Missing Data Imputation in HoloClean. In MLSys.

[80] Xiaokui Xiao, Guozhang Wang, and Johannes Gehrke. 2011. Differential Privacy
via Wavelet Transforms. IEEE Trans. Knowl. Data Eng. 23, 8 (2011), 1200–1214.

[81] Liyang Xie, Kaixiang Lin, Shu Wang, Fei Wang, and Jiayu Zhou. 2018. Differen-
tially Private Generative Adversarial Network. CoRR abs/1802.06739 (2018).

[82] Sandeep Yaramakala and Dimitris Margaritis. 2005. Speculative Markov Blanket
Discovery for Optimal Feature Selection. In ICDM. 809–812.

[83] Jun Zhang, Graham Cormode, Cecilia M. Procopiuc, Divesh Srivastava, and
Xiaokui Xiao. 2014. PrivBayes: private data release via bayesian networks. In
SIGMOD. 1423–1434.

[84] Tianqing Zhu, Gang Li, Wanlei Zhou, and Philip S. Yu. 2017. Differentially Private
Data Publishing and Analysis: A Survey. IEEE Trans. Knowl. Data Eng. 29, 8 (2017),
1619–1638.

1899

https://www.aclweb.org/anthology/2020.nlpcovid19-acl.1

