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ABSTRACT
Bipartite graphs are naturally used to model relationships between

two different types of entities, such as people-location, author-

paper, and customer-product. When modeling real-world applica-

tions like disease outbreaks, edges are often enriched with temporal

information, leading to temporal bipartite graphs. While reachabil-

ity has been extensively studied on (temporal) unipartite graphs,

it remains largely unexplored on temporal bipartite graphs. To fill

this research gap, in this paper, we study the reachability problem

on temporal bipartite graphs. Specifically, a vertex 𝑢 reaches a ver-

tex 𝑤 in a temporal bipartite graph 𝐺 if 𝑢 and 𝑤 are connected

through a series of consecutive wedges with time constraints. To-

wards efficiently answering if a vertex can reach the other vertex,

we propose an index-based method by adapting the idea of 2-hop

labeling. Effective optimization strategies and parallelization tech-

niques are devised to accelerate the index construction process. To

better support real-life scenarios, we further show how the index is

leveraged to efficiently answer other types of queries, e.g., single-

source reachability query and earliest-arrival path query. Extensive

experiments on 16 real-world graphs demonstrate the effectiveness

and efficiency of our proposed techniques.
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1 INTRODUCTION
Bipartite graph serves as a useful data model when modeling re-

lationships between two different types of entities and has been

adopted in a large spectrum of applications including disease con-

trol on people-location networks [21, 38], fraud detection on user-

page networks [36, 55] and recommendation on customer-product

networks [26, 53, 56, 57, 66]. In the past decades, bipartite graphs

are enriched with node attributes, edge importance and edge times-

tamps, yielding attributed bipartite graphs [65], weighted bipartite
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Figure 1: A people-location network for modeling disease
outbreaks, which is derived from the paper [21] in Nature.
Each edge has two timestamps denoting an individual’s ar-
riving and leaving times (in 24-hour clock) at the location.

graphs [42, 58] and temporal bipartite graphs [21, 38], which are

crucial to capture complex situations and network dynamics. In

particular, the temporal bipartite graph further records two times-

tamps (i.e., the starting and ending times) for each edge, which is

an effective model in many real-world applications. For example,

as shown in Figure 1, the temporal bipartite graph can be naturally

used to model the movements of people between different locations.

Such a model is a powerful tool in modeling disease outbreaks since

it can capture the physical contact patterns (i.e., people visit a loca-

tion simultaneously), which play a key role in the spread of many

infectious diseases [21]. Motivated by this example, an interesting

question raised is: how to identify if an individual is potentially

infected by a virus carrier through a series of physical contacts

based on the temporal bipartite graph model. Reachability, which

studies if a vertex is reachable from the other vertex, is a natural fit

for answering this kind of question.

Temporal Bipartite Reachability. In this paper, we study the

reachability problem on temporal bipartite graphs. By consid-

ering the special characteristics of temporal bipartite graph

structure, the reachability on temporal bipartite graphs is actu-

ally in a 2-hop manner. Specifically, to reflect the interaction

between two same-type entities on temporal bipartite graphs

(e.g., the physical contact between two people), we define time-

overlapping wedge, denoted by W=(𝑒, 𝑒 ′), which consists of

two adjacent edges with overlapped time intervals. The start-

ing time and the ending time of W are then defined as the

starting time of 𝑒 and the ending time of 𝑒 ′, respectively. For
example, in Figure 1, W1=(𝑒=(𝑢2, 𝑣3, 15, 16), 𝑒 ′=(𝑢3, 𝑣3, 14, 17))
andW2=((𝑢3, 𝑣4, 17, 19), (𝑢4, 𝑣4, 17, 18)) are two time-overlapping

wedges.W1 starts at 15 and ends at 17.W2 starts at 17 and ends at
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18. Accordingly, the temporal bipartite reachability is defined as: a

vertex 𝑢 reaches a vertex𝑤 in a temporal bipartite graph 𝐺 if they

are connected by a series of consecutive time-overlapping wedges

(i.e., in a 2-hop manner), and the times of the passing wedges follow

a non-decreasing order. Note that if 𝑢 and𝑤 are in different vertex

layers, the last wedge should be replaced by an edge. Intuitively, the

non-decreasing time constraint reflects the time order dependency,

e.g., a person physically contacted with the source of infection can

then become a virus carrier, who has the ability to spread the dis-

ease later. In Figure 1, 𝑢2 reaches 𝑢4 through the path <W1,W2 >,

in which the starting time of𝑊2 is not smaller than the ending time

ofW1 (i.e., non-decreasing). This indicates that Eric (𝑢3) and Zoey

(𝑢4) are potentially infected by Jony (𝑢2, the source of infection).

The result given by temporal bipartite reachability is reasonable

since the contact occurs when Eric and Jony are simultaneously

located in the supermarket, and the disease can be spread when

Eric then moves to the restaurant and is co-located with Zoey.

Given two vertices 𝑢 and𝑤 in a temporal bipartite graph𝐺 , and

a time interval I = [𝐼𝑠 , 𝐼𝑒 ], in this paper, we study the following

temporal bipartite reachability and path queries: (1) single-pair

reachability query, which answers if 𝑢 can reach 𝑤 within I, i.e.,
the starting time of the first wedge and the ending time of the last

wedge (or edge) in the path fall into I; (2) single-source reachability
query, which returns a vertex set including all the reachable vertices

from𝑢 withinI; and (3) earliest-arrival path query, which retrieves a
path that connects 𝑢 and𝑤 within I and has the minimum ending

time. Note that the latter two types of queries are based on the

single-pair reachability query and are studied to better support

real-life applications.

Applications. Answering reachability and path queries on tempo-

ral bipartite graphs has extensive real-world applications, and we

present two representative scenarios as follows.

• Supporting control of disease outbreaks. In everyday life, people

move between various locations in the course of carrying out their

daily activities, e.g., study, work, and shopping [21, 70]. This can

be naturally modeled as a people-location temporal bipartite graph,

which captures the physical contact patterns among people and

serves as an effective model in disease outbreaks [21]. Note that

constructing such a graph only needs the check-in data of people at

locations. These data can be easily collected via electronic methods

such as QR code, which has been promoted in many countries (e.g.,

Australia [3], and Singapore [4]). As studied in [21], for many infec-

tious diseases such as influenza, severe acute respiratory syndrome,

and recently COVID-19, transmission occurs mainly between peo-

ple who have physical contacts, and spread is mainly due to people’s

movements [21]. Consequently, answering reachability and path

queries on temporal bipartite graphs can be applied to identify

the potentially infected population, uncover high-risk venues, and

reveal possible transmission chains, all of which are key elements

in preventing an outbreak from becoming an epidemic.

• Tracing metabolic pathways. In biochemistry, cellular metabolism,

which is a set of biochemical reactions among metabolites, is crucial

to maintain the life of organisms [37]. Specifically, the metabolites

serve as reactants and regulate the circadian rhythm in a cell at

different times [31]. If two metabolites participate in a reaction

simultaneously, they will give rise to a product, which may become

the substrate for another reaction. A metabolic pathway is a linked

series of such reactions, and its end product is crucial for anabolism

and catabolism [37]. In the cellular metabolism, metabolites and re-

actions form a temporal bipartite graph, in which an edge indicates

that a metabolite participates in a specific reaction [47]. As a result,

the proposed temporal bipartite reachability model can be used to

trace the metabolic pathways in a cell, which has significant values

in maintaining homeostasis within an organism.

Applying Existing Techniques. To answer the temporal bipartite

reachability and path queries, one may consider projecting the tem-

poral bipartite graph into a temporal unipartite graph and extending

the existing techniques on temporal unipartite graphs [59, 64, 69] to

solve the problems. Despite projection provides a possible solution,

size inflation and information loss are two of its main drawbacks

as evaluated in [38, 43]. In our experiments, extending the state-of-

the-art technique on temporal unipartite graphs [64] is inefficient

when answering both single-pair and single-source reachability

queries. Furthermore, the existing algorithms [59, 64, 69] are hard

to answer the earliest-arrival path queries since the information

of one vertex layer is lost after projection. Even though auxiliary

information can be recorded for each edge in the projected graph,

it is obviously time-prohibitive to retrieve paths by searching from

these information. Alternatively, to answer queries directly based

on temporal bipartite graphs, a straightforward BFS-based solution

can be devised. However, the algorithm has a large search scope,

making it impractical to support online queries on large graphs.

Our Approaches. In this paper, we focus on indexing-based ap-

proaches to efficiently answer temporal bipartite reachability and

path queries. We first propose an index structure, namely TBP-
Index, which is based on the well-known notion of 2-hop labeling

[8, 9, 20] and can efficiently support all possible single-pair reacha-

bility queries. To efficiently answer the single-source reachability

query and the earliest-arrival path query, we further investigate

how to extend the TBP-Index with negligible extra costs such that

the above two queries can be answered without having to iterate

over each vertex or inspecting the original graph.

To efficiently compute the TBP-Index, we propose a novel index
construction algorithm, namely TBP-build∗, which incorporates

two optimization techniques, i.e., time-priority-based traversal and

temporal-based edge partition. In brief, the time-priority-based tra-

versal technique explores the containment relationship among time

intervals. Utilizing this technique, the number of unnecessary ver-

tex visits is substantially reduced. The temporal-based edge parti-

tion technique investigates the process of forming time-overlapping

wedges and leverages the bipartite structure to accelerate the wedge

computation process. In particular, it partitions the edges of the hub

vertices (i.e., intermediate vertices of wedges) into several subsets

and guarantees that only two edges from the same subset can form

time-overlapping wedges. In this way, unnecessary comparisons

when computing time-overlapping wedges can be greatly pruned.

To leverage the advantages of multi-core computing architectures,

we further propose a lock- and atomic-free parallel index construc-

tion algorithm TBP-build∗-PL. As evaluated in the experiments,

TBP-build∗-PL achieves significant parallel speedup.
Note that even though the concept of 2-hop labeling has been

widely adapted in the literature [8, 9, 20, 59, 62], our approach is

not a straightforward extension of existing solutions. Instead, it

exploits the characteristics of temporal bipartite graphs to achieve
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significant improvements on index construction. The proposed tech-

niques leverage not only the temporal information of edges but also

the bipartite structure on forming wedges. In addition, we propose

a parallel algorithm to further speed up the index construction.

Contributions. Our principal contributions are listed as follows.

• We are the first to study the reachability problem on temporal

bipartite graphs by taking the characteristics of temporal

bipartite graphs into consideration.

• We devise a novel TBP-Index, by which we can efficiently

answer all possible single-pair reachability queries. The TBP-
Index is further extended, without changing its theoretical

time/space complexity bound, to support fast single-source

reachability and earliest-arrival path queries.

• We propose an efficient index construction algorithm TBP-
build∗ with two effective optimization techniques, i.e., time-

priority-based traversal and temporal-based edge partition.

We further propose a lock- and atomic-free parallel algorithm

to take advantage of multi-core computing architectures.

• We conduct comprehensive experiments on 16 real-world

temporal bipartite graphs to demonstrate the effectiveness

and efficiency of our proposed methods.

Related Work. To the best of our knowledge, this paper is the

first to study reachability on (temporal) bipartite graphs. Below we

review closely related work on unipartite graphs.

Reachability on general unipartite graphs. Unipartite network is

the most popular graph models [16–18, 22–25, 28, 39, 41, 54], and

various reachability queries have been studied on unipartite net-

works [8, 9, 15, 19, 20, 27, 30, 40, 45, 46, 48, 50–52, 60, 61, 67, 68].

To support fast point-to-point queries, researches in the literature

mainly focus on indexing-based approaches, which include the fol-

lowing two main groups: (1) Label-Only, where the researches aim

at computing a complete index to support all possible reachability

queries. The algorithms are based on compressed transitive closure

[19, 27, 46, 51, 52], 2-hop labeling [8, 9, 20] or 3-hop labeling [30],

to just name a few; and (2) Label+Search, where the algorithms

[15, 45, 48, 60, 61, 67] focus on computing a small partial index to

reduce the construction cost. As the index is incomplete, graph

traversal will be invoked for the queries that cannot be covered by

the index. Interested readers may refer to the survey [68] for more

details. Note that these algorithms cannot be directly applied to

compute the temporal bipartite reachability as they do not consider

the temporal information and the bipartite structure.

Reachability on temporal unipartite graphs. Algorithms in this cat-

egory take the temporal information of edges into account when

computing reachability between two vertices. There are mainly

four kinds of reachability models on temporal unipartite graphs,

including the temporal reachability model, the restless reachability

model, the historical reachability model, and the span-reachability

model. Among all the four models, the temporal reachability model

[13, 32, 63] is the most widely used one, where a vertex reaches the

other if they are connected through a temporal path, i.e., a series

of consecutive edges with non-decreasing times. Representative

algorithms to compute the temporal reachability include TTL [59]
that aims at efficient route planning on transportation networks,

TopChain [64] that builds a partial index, and TVL [69] that focuses
on distributed environments and computes a partial index as well.

The restless reachability model [14] is based on the temporal reach-

ability model, while it requires that in a temporal path, the time

spent at each vertex cannot exceed a given threshold and there

are no duplicate vertices. The historical reachability model [44] is

proposed for evolving graphs, where a vertex reaches the other if

there exist paths between them in all or some graph snapshots. The

span-reachability model [62] relaxes the time order dependency

of the temporal reachability model, and 𝑢 span-reaches 𝑣 if they

are connected by a path where the times of the edges fall into a

given time interval. Among the above works, the algorithms in

[59, 64, 69] can be adapted to the projected graph to support the

reachability queries on temporal bipartite graphs as discussed be-

fore. The experimental result shows that our proposed algorithm

significantly outperforms this method.

2 PRELIMINARIES
Our problem is defined over an undirected temporal bipartite graph

𝐺 (𝑉=(𝑈 , 𝐿), 𝐸), where 𝑈 (𝐺) denotes the set of vertices in the

upper layer, 𝐿(𝐺) denotes the set of vertices in the lower layer,

𝑈 (𝐺)⋂𝐿(𝐺) = ∅,𝑉 (𝐺) = 𝑈 (𝐺)⋃𝐿(𝐺) denotes the vertex set and
𝐸 (𝐺) ⊆ 𝑈 (𝐺) ×𝐿(𝐺) denotes the set of temporal edges. A temporal

edge between two vertices 𝑢 and 𝑣 in𝐺 is denoted as (𝑢, 𝑣, 𝑡𝑠 , 𝑡𝑒 ) or
(𝑣,𝑢, 𝑡𝑠 , 𝑡𝑒 ), where 𝑡𝑠 (resp. 𝑡𝑒 ) records the starting time (resp. end-

ing time) of the relationship between 𝑢 and 𝑣 . 𝐸 (𝑆)⊆𝐸 (𝐺) denotes
a set of edges adjacent to the vertices in 𝑆 , where 𝑆 is a vertex set.

𝑁𝐺 (𝑥)={(𝑦, 𝑡𝑠 , 𝑡𝑒 ) | (𝑥,𝑦, 𝑡𝑠 , 𝑡𝑒 ) ∈ 𝐸 (𝐺)} denotes the neighbor set of
a vertex 𝑥 in 𝐺 . Accordingly, 𝑑𝐺 (𝑥)=|𝑁𝐺 (𝑥) | denotes the degree
of 𝑥 in 𝐺 , andV(𝑁𝐺 (𝑥)) denotes the set of all distinct vertices in
𝑁𝐺 (𝑥), i.e., V(𝑁𝐺 (𝑥))={𝑦 | (𝑦, 𝑡𝑠 , 𝑡𝑒 ) ∈ 𝑁𝐺 (𝑥)}. I denotes a time

interval [𝐼𝑠 , 𝐼𝑒 ], and 𝑆𝑇 (I) and 𝐸𝑇 (I) denote the starting time and

ending time of I.

Definition 1. (Wedge) Given a temporal bipartite graph 𝐺 and

three vertices𝑢, 𝑣 ,𝑤 ∈ 𝑉 (𝐺), a wedge is a path starting from𝑢, going

through 𝑣 and ending at𝑤 .

Definition 2. (Time-overlapping Wedge) Given a temporal

bipartite graph 𝐺 , a time-overlapping wedge, denoted byW = (𝑒1 =
(𝑢, 𝑣, 𝑡𝑠 , 𝑡𝑒 ), 𝑒2 = (𝑣,𝑤, 𝑡 ′𝑠 , 𝑡

′
𝑒 )), is a wedge where the two edges have

overlapped time intervals, i.e.,min(𝑡𝑒 , 𝑡 ′𝑒 ) > max(𝑡𝑠 , 𝑡 ′𝑠 ). Accordingly,
W is a wedge from 𝑢 (the starting vertex) to𝑤 (the ending vertex),

and the starting time and the ending time ofW is defined as 𝑡𝑠 (i.e.,

the starting time of 𝑒1) and 𝑡
′
𝑒 (i.e., the ending time of 𝑒2), respectively.

Definition 3. (Time-respecting Path) Given a temporal bipar-

tite graph 𝐺 , a time-respecting path connecting two same-layer ver-

tices is a sequence of consecutive time-overlapping wedges, denoted by

P = ⟨W1,W2 · · · ,W𝑘 ⟩, such that for any 𝑖 ∈ [1, 𝑘 − 1], the ending
vertex ofW𝑖 equals the starting vertex ofW𝑖+1, and the ending time

ofW𝑖 is not larger than the starting time ofW𝑖+1. Accordingly, we
define the starting time (or the starting vertex) of P as that ofW1,

and the ending time (or the ending vertex) of P as that ofW𝑘 .

Remark 1. Definition 3 can be easily adapted to connect two ver-

tices from different layers. To achieve this, the last wedgeW𝑘 should

be replaced by an edge (𝑢, 𝑣, 𝑡𝑠 , 𝑡𝑒 ), where 𝑢 equals the ending vertex

ofW𝑘−1 and 𝑡𝑠 is not smaller than the ending time ofW𝑘−1. The
ending vertex (resp. the ending time) of P then changes to 𝑣 (resp. 𝑡𝑒 ).

1847



6-8

1-2 3-4
8-9 1-3

4-6

5-76-7
1-2 3-5

6-8 7-9 4-6

𝑢! 𝑢" 𝑢# 𝑢$ 𝑢%

𝑣! 𝑣" 𝑣# 𝑣$
Figure 2: A temporal bipartite graph 𝐺

Example 1. In Figure 2, W1=((𝑢1, 𝑣1, 1, 2), (𝑣1, 𝑢2, 1, 3)) and

W2=((𝑢2, 𝑣4, 5, 7), (𝑣4, 𝑢5, 4, 6)) are two time-overlapping wedges.

P = ⟨W1,W2⟩ is a time-respecting path from 𝑢1 to 𝑢5 (marked

in red), which starts at 1 and ends at 6.

Definition 4. (Single-pair Reachability) Given two vertices

𝑢 and 𝑤 in a temporal bipartite graph 𝐺 , and a time interval I, 𝑢
reaches 𝑤 within I, denoted by 𝑢 {I 𝑤 , if there exists a time-

respecting path P from 𝑢 to 𝑤 such that the starting time and the

ending time of P fall into I.

Definition 5. (Single-source Reachability) Given a vertex𝑢 in

a temporal bipartite graph 𝐺 and a time interval I, the single-source
reachability aims to identify a vertex set including all the same-layer

vertices that 𝑢 can reach within I.
Definition 6. (Earliest-arrival Path) Given two vertices 𝑢 and

𝑤 in a temporal bipartite graph 𝐺 , and a time interval I, a time-

respecting path P is an earliest-arrival path from 𝑢 to 𝑤 if it has

the minimum ending time among all the paths in P, where P is a set

including all the time-respecting paths from 𝑢 to𝑤 within I.

Example 2. In Figure 2, we have 𝑢1 {[1,9] 𝑢5. The set of vertices
that 𝑢1 can reach within [1, 9] is {𝑢2, 𝑢3, 𝑢4, 𝑢5}. P1 (marked in red)

is an earliest-arrival path from 𝑢1 to 𝑢5 within [1, 9].

Problem Statement. Given a temporal bipartite graph 𝐺 , two

vertices𝑢,𝑤 , and a time interval I, we aim to efficiently answer the

following queries: (1) single-pair reachability query, which answers

if 𝑢 can reach𝑤 within I following Definition 4; (2) single-source

reachability query, which returns a set of vertices that 𝑢 can reach

within I; and (3) earliest-arrival path query, which retrieves an

earliest-arrival path from 𝑢 to𝑤 within I.
In the following, we first present solutions for answering single-

pair reachability queries. The solutions for single-source reacha-

bility and earliest-arrival path queries are introduced in Section 5.

Note that we omit the proofs of the lemmas and theorems in this

paper due to short of space.

3 SOLUTION OVERVIEW
In this section, we first present two baseline solutions and then in-

troduce a 2-hop labeling index-based solution for answering single-

pair reachability queries. Hereafter, we will omit single-pair in

single-pair reachability when the context is clear. Note that we

mainly focus on answering queries between two vertices in the

same vertex layer, e.g., the upper layer, which is the basis of tem-

poral bipartite reachability. Our solutions can be easily adapted

to support queries between two vertices in different layers since

the time-respecting path between two different-layer vertices only

differs in the last edge according to Remark 1.

3.1 Baseline Solutions
Applying Existing Algorithm. TopChain [64], the state-of-the-

art algorithm on unipartite graphs, can be applied to the projected

graph of the temporal bipartite graph to answer single-pair reacha-

bility queries. In the following, we briefly introduce the projection

process and the key idea of TopChain.
Projection: Given a temporal bipartite graph 𝐺 , its projected graph

𝐺∗ is a graph defined over a chosen vertex layer of 𝐺 (e.g., upper

layer) such that for ∀𝑢,𝑤 ∈ 𝑉 (𝐺∗), (𝑢,𝑤, 𝑡𝑠 , 𝑡𝑒 ) ∈ 𝐸 (𝐺∗) if and only
if there exists a time-overlapping wedge from 𝑢 to𝑤 in 𝐺 starting

at 𝑡𝑠 and ending at 𝑡𝑒 .

TopChain: Based on the above projected graph 𝐺∗, TopChain
[64] can compute the single-pair reachability queries. In brief,

TopChain contains two phases: (1) graph transformation. In this

phase, TopChain transforms the input graph 𝐺∗ into a DAG 𝐺+, of
which the vertices encode the temporal information of edges in𝐺∗;
(2) index construction. TopChain then constructs a partial index

based on a chain cover of𝐺+, which records top-𝑘 labels for each

vertex. The index construction process needs to follow a (reverse)

topological order of vertices.

BFS-based Online Approaches.Given a temporal bipartite graph

𝐺 , two query vertices 𝑢,𝑤 ∈ 𝑈 (𝐺) and a time interval I, Algo-
rithm 1 presents an online approach OReach (omit all the blue

parts) to answer whether 𝑢 can reach 𝑤 within I regarding the

single-pair reachability. OReach performs a BFS starting at 𝑢 and

applies a queue𝑄 to store all the reached upper-layer vertices along

with the reached timestamps. In Lines 11-19, OReach explores the
2-hop neighbors of each vertex 𝑢 ′ ∈ 𝑄 and finds those that are

connected to 𝑢 ′ via valid time-overlapping wedges (Definition 2).

OReach returns true if one of the 2-hop neighbors equals𝑤 (Line 17),

or otherwise push the found vertex into 𝑄 (Line 19).

Pruning rules. We further devise the following pruning rules.

Rule 1: Let an array minT record the minimum ending time of

each reached upper-layer vertex (Line 2). When computing the

time-overlapping wedges, the edges with the ending times larger

than or equal to the recorded minT values can be skipped (Line 15).

Rule 2: Let maxMinT be an array that ∀𝑣 ∈ 𝐿(𝐺), maxMinT[v]
records the maximum minT value among all adjacent vertices of 𝑣

(Line 3). If a new-coming edge’s starting time is not smaller than

the maxMinT value, its related computation can be pruned (Line 13).

Note that OReach is based on the naive breadth-first search, and

its computation can be further accelerated by using the recently

optimized BFS variant, namely direction-optimizing breadth-first

search (short as DO-BFS) [12]. We then propose OReach+ (Algo-

rithm 1 with blue content), which is an optimized online algorithm

based on DO-BFS. OReach+ applies two queues 𝑄 and 𝑃 to store

the frontiers from 𝑢 and those from 𝑤 , respectively (Lines 1 and

4). Additionally, to reduce unnecessary vertex visits in reverse BFS,

OReach+ applies two arrays, i.e., maxT and minMaxT, which record

the maximum starting time of each reached upper-layer vertex

from𝑤 and the related minimum maxT value (Lines 5-6). OReach+

performs the BFS search if the frontier size from 𝑢 is smaller than

that from𝑤 (Line 8). Otherwise, it performs the reverse BFS search

(Line 22-23). OReach+ returns true if there exists a common vertex

that can be reached from both 𝑢 and 𝑤 with the time ordering

satisfied (Line 18).
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Algorithm 1: OReach (OReach+)
Input :a temporal bipartite graph𝐺 , two vertices 𝑢 ∈ 𝑈 (𝐺) and

𝑤 ∈ 𝑈 (𝐺) , and a time interval I = [𝐼𝑠 , 𝐼𝑒 ];
Output : the single-pair reachability from 𝑢 to 𝑤

1 𝑄 ←an empty queue;𝑄.𝑝𝑢𝑠ℎ ( (𝑢, 𝐼𝑠 )) ;
2 𝑚𝑖𝑛𝑇 [𝑢 ] ← 0;𝑚𝑖𝑛𝑇 [𝑢′] ← ∞ for ∀𝑢′ ∈ 𝑈 (𝐺)\{𝑢 };
3 𝑚𝑎𝑥𝑀𝑖𝑛𝑇 [𝑣 ] ← ∞ for ∀𝑣 ∈ 𝐿 (𝐺) ;
/* for reverse breadth-first search */

4 𝑃 ←an empty queue; 𝑃.𝑝𝑢𝑠ℎ ( (𝑤, 𝐼𝑒 )) ;
5 𝑚𝑎𝑥𝑇 [𝑤 ] ← ∞;𝑚𝑎𝑥𝑇 [𝑢′] ← 0 for ∀𝑢′ ∈ 𝑈 (𝐺)\{𝑤 };
6 𝑚𝑖𝑛𝑀𝑎𝑥𝑇 [𝑣 ] ← 0 for ∀𝑣 ∈ 𝐿 (𝐺) ;
7 while𝑄 ≠ ∅ and 𝑃 ≠ ∅ do
8 if 𝑄.𝑠𝑖𝑧𝑒 ≤ 𝑃.𝑠𝑖𝑧𝑒 then
9 while𝑄 ≠ ∅ do
10 (𝑢′, 𝑡𝑒 ) ← 𝑄.𝑝𝑜𝑝 () ;
11 foreach unvisited 𝑒 = (𝑢′, 𝑣, 𝑡1, 𝑡2) of 𝑢′ : 𝑡1 ≥ 𝑡𝑒 do
12 mark 𝑒 as visited; 𝑡 ← 0;

13 if 𝑡1 ≥𝑚𝑎𝑥𝑀𝑖𝑛𝑇 [𝑣 ] then continue;
14 foreach 𝑤′ ∈ V(𝑁𝐺 (𝑣)) do
15 foreach 𝑒′=(𝑣, 𝑤′, 𝑡 ′

1
, 𝑡 ′
2
) : 𝑡 ′

2
<𝑚𝑖𝑛𝑇 [𝑤′] do

16 if 𝑒 , 𝑒′ are time-overlapping: 𝑡 ′
2
≤𝐼𝑒 then

17 if 𝑤′ = 𝑤 then return 𝑡𝑟𝑢𝑒 ;

18 (if𝑚𝑖𝑛𝑇 [𝑤′] ≤𝑚𝑎𝑥𝑇 [𝑤′] then
return 𝑡𝑟𝑢𝑒 ;)

19 𝑄.𝑝𝑢𝑠ℎ ( (𝑤′, 𝑡 ′
2
)) ;𝑚𝑖𝑛𝑇 [𝑤′] ← 𝑡 ′

2
;

20 if𝑚𝑖𝑛𝑇 [𝑤′] > 𝑡 then 𝑡 ←𝑚𝑖𝑛𝑇 [𝑤′];
21 𝑚𝑎𝑥𝑀𝑖𝑛𝑇 [𝑣 ] ← 𝑡 ;

22 else
23 The procedure of performing reverse breadth-first search

based on 𝑃 is similar to Lines 9-21;

24 return 𝑓 𝑎𝑙𝑠𝑒 ;

The time complexity of Algorithm 1 is dominated by performing

the while loop in Lines 7-21. In the worst case, all the upper-layer

vertices will be pushed into 𝑄 . For each vertex 𝑢 ′ ∈ 𝑄 , Lines 12-21

are executed at most 𝑑𝐺 (𝑢 ′) times since the adjacent edges of 𝑢 ′

can be processed at most once (Line 11). Thus, the overall time com-

plexity of OReach (and OReach+) is 𝑂 (∑𝑥 ∈𝑈 (𝐺)
∑

𝑣∈𝑁𝐺 (𝑥) 𝑑𝐺 (𝑣)).

3.2 A 2-hop Labeling Index-based Solution
The Index Structure. Inspired by the 2-hop labeling [8, 9, 20],

we design the index structure for the Temporal Bipartite graph,

denoted by TBP-Index, as follows.

Definition 7. (TBP-Index) Given a temporal bipartite graph

𝐺 , a TBP-Index L includes two label sets, namely in-label set L𝑖𝑛
and out-label set L𝑜𝑢𝑡 . For each vertex 𝑢 ∈ 𝑈 (𝐺), both L𝑖𝑛 (𝑢) and
L𝑜𝑢𝑡 (𝑢) records a series of triplets, where each triplet (𝑤, 𝑡𝑠 , 𝑡𝑒 ) ∈
L𝑖𝑛 (𝑢) indicates that 𝑤 reaches 𝑢 within [𝑡𝑠 , 𝑡𝑒 ], and each triplet

(𝑤 ′, 𝑡 ′𝑠 , 𝑡 ′𝑒 ) ∈ L𝑜𝑢𝑡 (𝑢) indicates that 𝑢 reaches𝑤 ′ within [𝑡 ′𝑠 , 𝑡 ′𝑒 ].
In this paper, we focus on the minimal TBP-Index. We say a TBP-

Index L is a minimal TBP-Index if it is complete, and each of its

index entries is necessary. By complete, it means we can correctly

answer all the single-pair reachability queries based on L by using

the following query processing strategy. By necessary, it means L

will become incomplete if we remove any index entry in it. Table 1

presents a minimal TBP-Index for the graph 𝐺 in Figure 2.

Table 1: A minimal TBP-Index L of 𝐺
Vertex L𝑜𝑢𝑡 L𝑖𝑛
𝑢1 - -

𝑢2 (𝑢1, 1, 2) , (𝑢1, 5, 9) (𝑢1, 1, 3)
𝑢3 (𝑢1, 6, 8) (𝑢1, 6, 7)
𝑢4 (𝑢1, 3, 4) , (𝑢2, 3, 6) (𝑢1, 3, 5) , (𝑢2, 5, 8) , (𝑢2, 4, 5)
𝑢5 (𝑢1, 7, 9) , (𝑢2, 4, 7) , (𝑢4, 7, 8) (𝑢1, 8, 9) , (𝑢1, 1, 6) , (𝑢2, 5, 6) , (𝑢4, 6, 9)

Query processing with the index. Given a TBP-Index, two ver-

tices𝑢 ∈ 𝑈 (𝐺) and𝑤 ∈ 𝑈 (𝐺), and a time interval [𝐼𝑠 , 𝐼𝑒 ],𝑢 reaches

𝑤 within [𝐼𝑠 , 𝐼𝑒 ] if one of the following conditions holds:
(1) ∃(𝑤, 𝑡𝑠 , 𝑡𝑒 ) ∈ L𝑜𝑢𝑡 (𝑢): [𝑡𝑠 , 𝑡𝑒 ] ⊆ [𝐼𝑠 , 𝐼𝑒 ];
(2) ∃(𝑢, 𝑡𝑠 , 𝑡𝑒 ) ∈ L𝑖𝑛 (𝑤): [𝑡𝑠 , 𝑡𝑒 ] ⊆ [𝐼𝑠 , 𝐼𝑒 ];
(3) ∃(𝑤 ′, 𝑡𝑠 , 𝑡𝑒 ) ∈ L𝑜𝑢𝑡 (𝑢), (𝑤 ′, 𝑡 ′𝑠 , 𝑡 ′𝑒 ) ∈ L𝑖𝑛 (𝑤): ([𝑡𝑠 , 𝑡𝑒 ] ⊆
[𝐼𝑠 , 𝐼𝑒 ]) ∧ ([𝑡 ′𝑠 , 𝑡 ′𝑒 ] ⊆ [𝐼𝑠 , 𝐼𝑒 ]) ∧ (𝑡𝑒 ≤ 𝑡 ′𝑠 ).

By sorting the index entries in L𝑜𝑢𝑡 (𝑢) (and L𝑖𝑛 (𝑤)) in ascend-

ing order of vertex ids and ending times (for the entries with the

same id), checking the above conditions can be implemented by lin-

ear searches of label sets. Algorithm 2 shows the details of answer-

ing a reachability query from 𝑢 to𝑤 based on a sorted TBP-Index.

Algorithm 2: TBP-query
Input :A TBP-Index L of graph𝐺 , two vertices 𝑢 ∈ 𝑈 (𝐺) and

𝑤 ∈ 𝑈 (𝐺) , and a time interval [𝐼𝑠 , 𝐼𝑒 ];
Output : the single-pair reachability from 𝑢 to 𝑤

1 𝑖, 𝑗 ← 1;

2 while 𝑖 ≤ |L𝑜𝑢𝑡 (𝑢) | ∧ 𝑗 ≤ |L𝑖𝑛 (𝑤) | do
3 (𝑥, 𝑡𝑠 , 𝑡𝑒 ) ← the 𝑖-th entry in L𝑜𝑢𝑡 (𝑢) ;
4 (𝑥′, 𝑡 ′𝑠 , 𝑡 ′𝑒 ) ← the 𝑗-th entry in L𝑖𝑛 (𝑤) ;
5 if 𝑥 = 𝑤 ∧ ( [𝑡𝑠 , 𝑡𝑒 ] ⊆ [𝐼𝑠 , 𝐼𝑒 ]) then return 𝑡𝑟𝑢𝑒 ;

6 else if 𝑥′ = 𝑢 ∧ ( [𝑡 ′𝑠 , 𝑡 ′𝑒 ] ⊆ [𝐼𝑠 , 𝐼𝑒 ]) then return 𝑡𝑟𝑢𝑒 ;

7 else if𝑥 = 𝑥′∧ ( [𝑡𝑠 , 𝑡𝑒 ] ⊆ [𝐼𝑠 , 𝐼𝑒 ]) ∧ ( [𝑡 ′𝑠 , 𝑡 ′𝑒 ] ⊆ [𝑡𝑒 , 𝐼𝑒 ]) then
8 return 𝑡𝑟𝑢𝑒 ;

9 else if 𝑥 < 𝑥′ then 𝑖 ← 𝑖 + 1;
10 else if 𝑥 > 𝑥′ then 𝑗 ← 𝑗 + 1;
11 else 𝑖 ← 𝑖 + 1; 𝑗 ← 𝑗 + 1;
12 return 𝑓 𝑎𝑙𝑠𝑒 ;

The time complexity of answering a single-pair reachability

query from 𝑢 to𝑤 based on the TBP-Index (Algorithm 2) is 𝑂 (𝛿),
where 𝛿 is the maximum labeling size of the index, i.e., 𝛿 =

max𝑢∈𝑈 (𝐺) (max( |L𝑜𝑢𝑡 (𝑢) |, |L𝑖𝑛 (𝑢) |)). While taking the indexing

cost into account, the amortized complexity for answering a query

is 𝑂 ( C𝑖𝑛𝑑𝑒𝑥
𝑀
+ 𝛿), where C𝑖𝑛𝑑𝑒𝑥 is the time cost of building index

(discussed in Section 4), and 𝑀 is the number of queries in total.

Clearly, when𝑀 is large, the amortized cost will be negligible. One

can imagine, in a disease outbreak such as COVID-19, the number

of new cases may lead to the same number of single-source queries,

and such a number can reach up to hundreds of thousands in a

single day [1, 6]. This may cause M to be very large. Note that 𝛿

denotes the maximum labeling size, while the labeling sizes of two

query vertices in practice can be much smaller than 𝛿 . We show

in Lemma 1 that under the uniform distribution, the average-case

time complexity of answering a query is 𝑂 ( ¯𝛿), where ¯𝛿 < 2

3
𝛿 + 1

2
.
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Lemma 1. Suppose that the size of the labeling set for a vertex

follows the uniform distribution in the range of [0, 𝛿] and is indepen-
dent among different vertices. The average-case time complexity of

answering a single-pair reachability query based on the TBP-Index
is 𝑂 ( ¯𝛿), where ¯𝛿 < 2

3
𝛿 + 1

2
.

4 INDEX CONSTRUCTION
4.1 Basic Index Construction
Overviewof computing 2-hop labeling.Webegin by presenting

some background knowledge on computing 2-hop labeling (a.k.a.

2-hop cover). Cohen et al. [20] propose 2-hop cover to support point-

to-point reachability queries on directed graphs. They prove that

computing a 2-hop cover with the minimum size is NP-hard. Then,

they propose an approximate algorithm that computes a 2-hop cover

with the size larger than the minimum size by at most a logarithmic

factor. However, the approximate algorithm is inefficient since

it invokes a procedure of densest subgraph computation in each

iteration. Hierarchical 2-hop labeling [8, 9] (shorted as HHL) is then
proposed as an efficient alternative. In particular, a 2-hop cover is

called “hierarchical” if it satisfies the order constraint, that is, if a

vertex𝑤 presents in the labeling set of a vertex 𝑢 (i.e., L𝑜𝑢𝑡 (𝑢) or
L𝑖𝑛 (𝑢)), then O(𝑤) < O(𝑢), where O gives a total vertex order.

With a given O, HHL can find a unique minimal 2-hop cover [59].

Since TBP-Index is based on the idea of 2-hop cover, computing a

TBP-Indexwith the minimum size is also NP-hard. In this paper, we

adopt the idea of HHL and aim to find a minimal TBP-Index. We use

the degree-based vertex order O 1
, which is a widely used ordering

scheme in the existing studies [29, 30, 34, 62]. For two vertices𝑢 and

𝑤 , we say 𝑢 ranks higher than𝑤 in the order (i.e., O(𝑢) < O(𝑤))
if 𝑢 has a higher degree than𝑤 , and the tie is broken by vertex id.

Note that we focus on the reachability between upper-layer vertices

in this paper, and thus the vertex order O only needs to be applied

to the upper-layer vertices. Below we present some basic concepts

for a minimal TBP-Index L under the vertex order O.
Definition 8. (Minimal Index Entry) Given a vertex 𝑢 ∈ 𝑈 (𝐺),

and two index entries (𝑤, 𝑡𝑠 , 𝑡𝑒 ) and (𝑤 ′, 𝑡 ′𝑠 , 𝑡 ′𝑒 ) in L𝑜𝑢𝑡 (𝑢) (or
L𝑖𝑛 (𝑢)), (𝑤 ′, 𝑡 ′𝑠 , 𝑡 ′𝑒 ) dominates (𝑤, 𝑡𝑠 , 𝑡𝑒 ) if 𝑤 = 𝑤 ′ and [𝑡 ′𝑠 , 𝑡 ′𝑒 ] ⊆
[𝑡𝑠 , 𝑡𝑒 ]. Accordingly, an index entry is a minimal index entry if it

cannot be dominated by other index entries.

Definition 9. (Canonical Index Entry) Given a vertex 𝑢 ∈
𝑈 (𝐺), an index entry (𝑤, 𝑡𝑠 , 𝑡𝑒 ) ∈ L𝑜𝑢𝑡 (𝑢) (resp. L𝑖𝑛 (𝑢)) is a canon-
ical index entry, if it satisfies: (1) it is a minimal index entry; and (2)

�𝑤 ′ ∈ 𝑈 (𝐺) s.t. (𝑤 ′, 𝑡1, 𝑡2) ∈ L𝑜𝑢𝑡 (𝑢) (resp. L𝑖𝑛 (𝑢)), (𝑤 ′, 𝑡 ′
1
, 𝑡 ′
2
) ∈

L𝑖𝑛 (𝑤) (resp. L𝑜𝑢𝑡 (𝑤)), [𝑡1, 𝑡2] ⊆ [𝑡𝑠 , 𝑡𝑒 ], [𝑡 ′
1
, 𝑡 ′
2
] ⊆ [𝑡𝑠 , 𝑡𝑒 ], 𝑡 ′

1
≥ 𝑡2

(resp. 𝑡1 ≥ 𝑡 ′
2
), O(𝑤 ′) < O(𝑢), and O(𝑤 ′) < O(𝑤).

Following HHL, a minimal TBP-Index L has the properties below.

P1. Given a vertex 𝑢 ∈ 𝑈 (𝐺), for each index entry (𝑤, 𝑡𝑠 , 𝑡𝑒 ) ∈
L𝑖𝑛 (𝑢)

⋃L𝑜𝑢𝑡 (𝑢), it satisfies O(𝑤) < O(𝑢).
P2. Each index entry in L is a canonical index entry.

P3. Given a vertex 𝑢 ∈ 𝑈 (𝐺), ∀(𝑤, 𝑡𝑠 , 𝑡𝑒 ) ∈ L𝑜𝑢𝑡 (𝑢) (or L𝑖𝑛 (𝑢)),
there does not exist another entry (𝑤, 𝑡 ′𝑠 , 𝑡

′
𝑒 ) ∈ L𝑜𝑢𝑡 (𝑢) (or

L𝑖𝑛 (𝑢)) s.t. 𝑡 ′𝑠 = 𝑡𝑠 or 𝑡
′
𝑒 = 𝑡𝑒 .

1
There are also some other vertex ordering schemes, e.g., betweenness-based scheme

and significant path-based scheme. Please see [35] for more details.

The above property P1 reflects the order constraint of hierarchi-

cal 2-hop cover. P2 holds as otherwise there exists an index entry of

which the reachability information can be derived from the other

index entries, which means this index entry is not necessary and

contradicts the definition of minimal TBP-Index. P3 can also be

verified by contradiction. If both 𝛽1 = (𝑤, 𝑡𝑠 , 𝑡𝑒 ) and 𝛽2 = (𝑤, 𝑡𝑠 , 𝑡
′
𝑒 )

present in L𝑜𝑢𝑡 (𝑢), then either 𝛽1 dominates 𝛽2 (when 𝑡𝑒 ≤ 𝑡 ′𝑒 ) or
𝛽2 dominates 𝛽1 (when 𝑡𝑒 > 𝑡 ′𝑒 ), both of which contradict P2.

Algorithm 3: TBP-build
Input :a temporal bipartite graph𝐺 , and a vertex order O;
Output :L𝑖𝑛 and L𝑜𝑢𝑡

1 L𝑖𝑛 (𝑢), L𝑜𝑢𝑡 (𝑢) ← ∅ for all 𝑢 ∈ 𝑈 (𝐺) ;
2 for 𝑘 = 1, 2, · · · , |𝑈 (𝐺) | do
3 𝑢𝑘 ← the 𝑘-th vertex in O; L′

𝑖𝑛
← ∅;

4 foreach unique starting time 𝑡𝑠 from 𝑢𝑘 do
5 MOReach(𝐺,𝑢𝑘 , 𝑡𝑠 , L′𝑖𝑛) ;
6 find the canonical index entries in L′

𝑖𝑛
, and add them to L𝑖𝑛 ;

7 the process to update L𝑜𝑢𝑡 is similar to Lines 3 - 6;

8 return L𝑖𝑛 and L𝑜𝑢𝑡 ;
9 Procedure MOReach(𝐺,𝑢, 𝐼𝑠 , L′𝑖𝑛)

10 run Algorithm 1 Lines 1-3; mark all 𝑒 ∈ 𝐸 (𝑈 (𝐺)) as unvisited;
11 mark all 𝑒 = (𝑢, 𝑣, 𝑡 ′𝑠 , 𝑡 ′𝑒 ) adjacent to 𝑢 with 𝑡 ′𝑠 ≠ 𝐼𝑠 as visited;

12 while𝑄 ≠ ∅ do
13 (𝑢′, 𝑡𝑒 ) ← 𝑄.𝑝𝑜𝑝 () ;
14 if 𝑢′ ≠ 𝑢∧ no entries in L′

𝑖𝑛
(𝑢′) can dominate (𝑢, 𝐼𝑠 , 𝑡𝑒 ) then

15 remove all entries in L′
𝑖𝑛
(𝑢′) that (𝑢, 𝐼𝑠 , 𝑡𝑒 ) can dominate;

16 insert (𝑢, 𝐼𝑠 , 𝑡𝑒 ) into L′𝑖𝑛 (𝑢′) ;
17 run Algorithm 1 Lines 11-19, replace Line 14 by foreach 𝑤′∈

V(𝑁𝐺 (𝑣)) :O(𝑤′) > 𝑂 (𝑢) , remove 𝑡 ′
2
≤ 𝐼2 and Line 17;

A Basic Index Construction Algorithm. Algorithm 3 presents a

baseline algorithm TBP-build, which computes a minimal TBP-
Index by indexing vertices sequentially in the vertex order O
(Line 2). Since the process of computingL𝑜𝑢𝑡 is quite similar to that

of computing L𝑖𝑛 , in the following, we only discuss the process

of computing L𝑖𝑛 while omitting L𝑜𝑢𝑡 hereafter. When process-

ing the vertex 𝑢𝑘 with the 𝑘-th rank, TBP-build first initializes an

empty set L′
𝑖𝑛

to store the minimal index entries (Line 3). Then, it

performs the procedure MOReach 𝑂 (𝑑𝐺 (𝑢𝑘 )) times to compute all

the minimal index entries related to 𝑢𝑘 (Lines 4-5) in L𝑖𝑛 . MOReach
(Lines 9-17) aims to compute the minimal index entries related to

the given vertex and starting time. Specifically, for a candidate entry,

MOReach checks if it can dominate or be dominated by the entries

in L′
𝑖𝑛

(Lines 14-16). Finally, for each minimal index entry in L′
𝑖𝑛
,

TBP-build performs a query procedure (Algorithm 2) to check if it

can be covered by a higher-ranked vertex. If not, this minimal index

entry is a canonical one and is added into L𝑖𝑛 (Line 6). Note that

when Algorithm 2 is applied here, 𝑥 < 𝑥 ′ and 𝑥 > 𝑥 ′ in it should

be replaced by O(𝑥) < O(𝑥 ′) and O(𝑥) > O(𝑥 ′).

Example 3. Given the graph 𝐺 in Figure 2 and a vertex order of

O(𝑢1) < O(𝑢2) < · · · < O(𝑢5), Table 1 shows a minimal TBP-Index
of 𝐺 computed by Algorithm 3. Figure 3 depicts the procedure when

indexing from 𝑢1, and L′𝑖𝑛 is initially set to ∅. When 𝑡𝑠=1, MOReach
inserts each of the found candidate entries intoL′

𝑖𝑛
(Lines 14-16). Note
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that although 𝑢1 can reach 𝑢5 starting at 1 and ending at 9, (𝑢5, 9)
is not a candidate entry. This is because MOReach finds (𝑢5, 6) first,
and based on the pruning rule of Algorithm 1, MinT[𝑢5] equals 6

and (𝑢5, 9) will be pruned. While inserting (𝑢4, 5) into L′𝑖𝑛 at 𝑡𝑠 = 3,

MOReach removes (𝑢1, 1, 5) in L′𝑖𝑛 (𝑢4) as this entry is dominated

by (𝑢1, 3, 5) (Line 15). For (𝑢5, 9), its related index entry (𝑢1, 3, 9)
is inserted into L′

𝑖𝑛
(𝑢5). The process under 𝑡𝑠=6 and 𝑡𝑠=8 is similar.

Since no vertex ranks higher than 𝑢1, each entry in L′𝑖𝑛 is a canonical

index entry and is inserted into the final TBP-Index (Line 6).

𝑢!, 3 , 𝑢", 5 , (𝑢#, 6)

𝑢!, 5 , (𝑢", 9)

𝑢#, 7

𝑢", 9

𝑡$ = 1

𝑡$ = 3

𝑡$ = 6

𝑡$ = 8

Candidate Entries
ℒ%&
, 𝑢! = 𝒖𝟏, 𝟏, 𝟑 ; ℒ%&

, 𝑢" = 𝒖𝟏, 𝟏, 𝟓 ;
ℒ%&
, 𝑢) = ∅; ℒ%&

, 𝑢# = 𝒖𝟏, 𝟏, 𝟔 ;

ℒ%&
, 𝑢! = 𝑢*, 1, 3 ; ℒ%&

, 𝑢" = 𝑢*, 1, 5 , 𝒖𝟏, 𝟑, 𝟓 ;
ℒ%&
, 𝑢) = ∅; ℒ%&

, 𝑢# = 𝑢*, 1, 6 , 𝒖𝟏, 𝟑, 𝟗 ;

ℒ%&
, 𝑢! = 𝑢*, 1, 3 ; ℒ%&

, 𝑢" = 𝑢*, 3, 5 ;
ℒ%&
, 𝑢) = 𝒖𝟏, 𝟔, 𝟕 ; ℒ%&

, 𝑢# = 𝑢*, 1, 6 , 𝑢*, 3, 9 ;

ℒ%&
, 𝑢! = 𝑢*, 1, 3 ; ℒ%&

, 𝑢" = 𝑢*, 3, 5 ;
ℒ%&
, 𝑢) = 𝑢*, 6, 7 ; ℒ%&

, 𝑢# = 𝑢*, 1, 6 , 𝑢*, 3, 9 , 𝒖𝟏, 𝟖, 𝟗 ;

Index Entries

Figure 3: Illustrating the indexing procedure from 𝑢1, and
and the starting time 𝑡𝑠 is processed in the order of 1, 3, 6
and 8. At time 𝑡𝑠 , the index entry in bold indicates that the
entry is inserted into the index, while the index entry with
a strikethrough means it is removed from the index.

Theorem 1. (Minimality) The TBP-Index L computed by Algo-

rithm 3 is minimal, which satisfies: (1) completeness, i.e., the reachabil-

ity of any pair of vertices can be correctly answered byL; (2) necessity,
i.e., for ∀𝑢 ∈ 𝑈 (𝐺) and an arbitrary entry (𝑤, 𝑡𝑠 , 𝑡𝑒 ) ∈ L𝑜𝑢𝑡 (𝑢) (or
L𝑖𝑛 (𝑢)), the reachability from 𝑢 to𝑤 (or from𝑤 to 𝑢) within [𝑡𝑠 , 𝑡𝑒 ]
cannot be correctly answered after removing (𝑤, 𝑡𝑠 , 𝑡𝑒 ).

Complexity analysis. For Algorithm 3, we analyze the size bound

of its computed index and give the time complexity analysis.

Theorem 2. The size of a minimal TBP-Index constructed by Al-

gorithm 3 is bounded by𝑂 (∑𝑢∈𝑈 (𝐺)
∑

𝑤∈𝑈<𝑢
min(𝑑𝐺 (𝑢), 𝑑𝐺 (𝑤))),

where𝑈<𝑢 = {𝑤 |𝑤 ∈ 𝑈 (𝐺) ∧ O(𝑤) < O(𝑢)}.

Theorem 3. The time complexity of Algorithm 3 is

𝑂 (∑𝑢∈𝑈 (𝐺)
∑
𝑢′∈𝑈>𝑢

(𝑑𝐺 (𝑢) |𝐸 (𝐺) | + 𝑑2
𝐺
(𝑢)∑𝑣∈𝑁𝐺 (𝑢′) 𝑑𝐺 (𝑣))),

where𝑈>𝑢 = {𝑢 ′ |𝑢 ′ ∈ 𝑈 (𝐺) ∧ O(𝑢 ′) > O(𝑢)}.

4.2 Advanced Index Construction
In this subsection, we propose two novel optimization techniques,

i.e., time-priority-based traversal and temporal-based edge partition,

to speed up the index construction process.

4.2.1 The Time-priority-based Traversal Strategy.

Issues in computing minimal index entries. In Algorithm 3,

for each candidate index entry in 𝑄 , TBP-build compares it with

all of the entries in L′
𝑖𝑛

to check if it can dominate or be dominated

by the entries in L′
𝑖𝑛
. Because of that, TBP-build incurs high com-

putational cost in maintaining L′
𝑖𝑛

(or computing minimal index

entries). For example, in order to compute the two minimal index

entries starting from 𝑢1 and ending at 𝑢5, TBP-build needs to per-

form ten operations (i.e., comparison, removal and insertion) for

L′
𝑖𝑛
(𝑢5), as illustrated in Figure 4. Specifically, when the candidate

index entry 𝛿1 = (𝑢1, 3, 9) comes, TBP-build will check if it can

dominate or be dominated by the existing entry in L′
𝑖𝑛
(𝑢5), i.e.,

𝛿2 = (𝑢1, 1, 6) (two comparison operations). Since both checkings

return false, 𝛿1 is inserted into L′
𝑖𝑛
(𝑢5) (one insertion operation).

1 2 3 4 5 6 7 8 9

(𝑢!, 1, 6)

(𝑢!, 1, 6)
(𝑢!, 3, 9)

(𝑢!, 1, 6) (𝑢!, 8, 9)

(𝑢!, 1, 6)
(𝑢!, 3, 9)

𝑡" = 1

𝑡" = 3

𝑡" = 6

𝑡" = 8

entries in ℒ′!"(𝑢#) after 𝑡$
(𝒖𝟏, 𝟏, 𝟔)

(𝒖𝟏, 𝟑, 𝟗)

∅

(𝒖𝟏, 𝟖, 𝟗)

𝑂# 𝑂$ 𝑂%

0 0 1

2 0 1

0 0 0

4 1 1

new coming entry

Figure 4: Illustrating the computation of the minimal index
entries starting from 𝑢1 and ending at 𝑢5, where 𝑂𝑐 , 𝑂𝑟 and
𝑂𝑖 denote the number of comparison operations, removal
operations and insertion operations, respectively.

Time-priority-based traversal strategy. Based on the above ob-

servation, to efficiently compute minimal index entries, we present

a new time-priority-based traversal strategy: processing the starting

times from 𝑢𝑘 in decreasing order when indexing from 𝑢𝑘 , and for

each starting time, exploring the index entries with the minimum

ending time first. By doing this, each found candidate index entry

cannot be dominated by the entries that are explored afterward

(see Lemma 2). Thus, the removal and comparison operations in

Algorithm 3 Line 15 can be completely pruned. Based on the new

traversal strategy, we can further apply the following pruning rules.

Rule 1:When indexing from𝑢𝑘 (with𝑂 (𝑑𝐺 (𝑢𝑘 )) starting times),

each edge in 𝐸 (𝑈 (𝐺)) only needs to be processed at most once.

Rule 2:When indexing from𝑢𝑘 (with𝑂 (𝑑𝐺 (𝑢𝑘 )) starting times),

if𝑤 has been reached at 𝑡𝑒 before,𝑤 only needs to be visited again

if it can be reached at 𝑡 ′𝑒 where 𝑡
′
𝑒 < 𝑡𝑒 .

By applying the new traversal strategy and pruning rules, when

computing the minimal index entries starting from 𝑢1 and ending

at 𝑢5, we first get the candidate entry (𝑢1, 8, 9) with starting time

8, which is a minimal index entry. Then, when processing the

starting time 3, even though there exists a path P (marked in blue

in Figure 2) from 𝑢1 to 𝑢5 starting at 3, (𝑢1, 3, 9) is not a candidate
entry. This is because the ending time of P is 9, while 𝑢5 has been

reached from 𝑢1 ending at 9 before (Rule 2). Finally, we process the

starting time 1 and find the second minimal index entry (𝑢1, 1, 6).
In the experiments, we show that the time-priority-based traversal

strategy can significantly speed up the index construction.

4.2.2 The Temporal-based Edge Partition Technique.

Issues in computing time-overlapping wedges. Consider a

lower-layer vertex 𝑣 . When an edge 𝑒 that is adjacent to 𝑣 (i.e.,

𝑒 ∈ 𝐸 (𝑣)) comes, all the others edges in 𝐸 (𝑣) are the candidates
to form time-overlapping wedges with 𝑒 . However, when 𝑣 has

a high degree, it is more likely that most computations cannot

lead to a valid time-overlapping wedge. In Figure 2, given 𝑣1 and

𝑒1 = (𝑢2, 𝑣1, 1, 3), TBP-build needs to compare 𝑒1 with all the other

edges adjacent to 𝑣1 (i.e., 𝑒2 = (𝑣1, 𝑢1, 1, 2), 𝑒3 = (𝑣1, 𝑢1, 6, 8), and
𝑒4 = (𝑣1, 𝑢3, 6, 7)). However, both the comparisons with 𝑒3 and 𝑒4
fail to form a time-overlapping wedge. Therefore, it is desirable to

design a technique to reduce such unsuccessful comparisons.

Temporal-based edge partition technique. Based on the above

observation, we propose the temporal-based edge partition tech-

nique (or edge partition for short). We first present the definition

of reachability-equivalent partition as follows.
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Definition 10. (Reachability-equivalent Partition) Given a

temporal bipartite graph 𝐺 , and a lower-layer vertex 𝑣 ∈ 𝐿(𝐺), the
reachability-equivalent partition of 𝑣 , denoted by S𝑣 , is a partition
{𝐸1, 𝐸2 · · · 𝐸𝑇 } of 𝐸 (𝑣) (i.e., the set of edges adjacent to 𝑣), such that

∀1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑇 : (1) 𝐸𝑖 ∩ 𝐸 𝑗 = ∅ and 𝐸 (𝑣) = 𝐸1
⋃ · · ·⋃𝐸𝑇 ; (2)

∀𝑒1 ∈ 𝐸𝑖 , 𝑒2 ∈ 𝐸 𝑗 , 𝑒1 and 𝑒2 cannot form a time-overlapping wedge;

and (3) |S𝑣 | is maximized.

Example 4. In Figure 2, the reachability-equivalent partition of

𝑣1 is S𝑣1={{(𝑢1, 𝑣1, 1, 2), (𝑢2, 𝑣1, 1, 3)}, {(𝑢1, 𝑣1, 6, 8), (𝑢3, 𝑣1, 6, 7)}}.
Similarly, we have S𝑣4={{(𝑢2, 𝑣4, 5, 7), (𝑢5, 𝑣4, 4, 6)}, {(𝑢3, 𝑣4, 1, 2)}},
S𝑣2 = {𝐸 (𝑣2)}, and S𝑣3 = {𝐸 (𝑣3)}.

By sorting the edges in 𝐸 (𝑣) according to their times-

tamps, we can compute S𝑣 for all lower-layer vertices in

𝑂 (∑𝑣∈𝐿 (𝐺) 𝑑𝐺 (𝑣) log𝑑𝐺 (𝑣)) time. According to Definition 10, only

edges in the same subset of a partition can form time-overlapping

wedges. Thus, when computing time-overlapping wedges, the com-

putations between edges from different subsets can be skipped,

which substantially shrinks the search scope. For example, when

𝑒1=(𝑢2, 𝑣1, 1, 3) comes during indexing on 𝐺 , it only needs to be

compared with (𝑢1, 𝑣1, 1, 2), which leads to a valid time-overlapping

wedge. In the experiments, we show that the edge partition tech-

nique can significantly improve the indexing time.

4.2.3 The Advanced Index Construction Algorithm.

The TBP-build∗ Algorithm. Putting the above techniques to-

gether, details of the advanced index construction algorithm,

namely TBP-build∗, are shown in Algorithm 4. Given a temporal bi-

partite graph𝐺 , TBP-build∗ first computes S𝑣 for each lower-layer

vertex 𝑣 (Line 1) and then constructs the TBP-Index by indexing ver-
tices following the vertex order O (Lines 3-24). When indexing from

𝑢𝑘 , TBP-build
∗
processes 𝑂 (𝑑𝐺 (𝑢𝑘 )) starting times in descending

order (Line 8) and applies a priority queue which pops the index

entry with the minimum ending time first (Line 4). Note that three

arrays are initialized when indexing from 𝑢𝑘 (Lines 5 - 7), based on

which we can mark a number of processed edges/vertices and do

not need to visit them repeatedly when a different starting time is

applied (Rule 1 and Rule 2). While computing time-overlapping

wedges for an unvisited edge 𝑒 = (𝑤, 𝑣, 𝑡1, 𝑡2) (Line 15-24), TBP-
build∗ only compares 𝑒 with the edges in S𝑣 (𝑒) (Line 18), where
S𝑣 (𝑒) denotes the subset in S𝑣 including the edge 𝑒 . For each entry

popped by𝑄 , TBP-build∗ performs a query procedure (Algorithm 2)

to check if it can be covered by the currently constructed index. If

the answer is true, TBP-build∗ directly skips the entry (Line 13).

Lemma 2. In Algorithm 4, for each candidate index entry popped

by 𝑄 (Line 11), it cannot be dominated by all the candidate index

entries popped by 𝑄 afterward.

Complexity analysis. Note that under the same vertex order,

the TBP-Index computed by Algorithm 4 is identical to that com-

puted by Algorithm 3. Thus, the index size is still bounded by

Theorem 2. For the time complexity, when indexing from 𝑢𝑘 , at

most 𝐶𝑢𝑘=
∑

𝑤∈𝑈>𝑢𝑘

∑
𝑣∈𝑁𝐺 (𝑤) 𝑑𝐺 (𝑣) entries will be inserted into

𝑄 (Line 15). For each entry in 𝑄 , a query procedure (bounded by

𝑂 ( |𝐸 (𝐺) |)) will be invoked to check if it can be covered by the

currently constructed index. As a whole, the time complexity of

Algorithm 4 is 𝑂 (∑𝑢∈𝑈 (𝐺) 𝐶𝑢 (log𝐶𝑢 + |𝐸 (𝐺) |)).

Algorithm 4: TBP-build∗

Input :a temporal bipartite graph𝐺 and a vertex order O;
Output :L𝑖𝑛 and L𝑜𝑢𝑡

1 compute S𝑣 (Definition 10) for ∀𝑣 ∈ 𝐿 (𝐺) ;
2 L𝑖𝑛 (𝑢), L𝑜𝑢𝑡 (𝑢) ← ∅ for each vertex 𝑢 ∈ 𝑈 (𝐺) ;
3 for 𝑘 = 1, 2, · · · , |𝑈 (𝐺) | do
4 𝑢𝑘 ← the 𝑘-th vertex in O;𝑄 ← an empty priority queue;

5 mark all 𝑒 ∈ 𝐸 (𝑈 (𝐺)) as unvisited;
6 𝑚𝑖𝑛𝑇 [𝑢 ] ← 0;𝑚𝑖𝑛𝑇 [𝑢′] ← ∞ for ∀𝑢′ ∈ 𝑈 (𝐺)\{𝑢 };
7 𝑚𝑎𝑥𝑀𝑖𝑛𝑇 [𝑣 ] ← ∞ for ∀𝑣 ∈ 𝐿 (𝐺) ;
8 foreach unique starting time 𝑡𝑠 (in desc) from 𝑢𝑘 do
9 𝑄.𝑝𝑢𝑠ℎ ( (𝑢𝑘 , 𝑡𝑠 , 𝑡𝑠 )) ;

10 while𝑄 ≠ ∅ do
11 (𝑤, 𝑡 ′𝑠 , 𝑡

′
𝑒 ) ← 𝑄.𝑝𝑜𝑝 () ;

12 if 𝑤 ≠ 𝑢𝑘 then
13 if Query(𝑢𝑘 , 𝑤, 𝑡 ′𝑠 , 𝑡

′
𝑒 , L) then continue;

14 else L𝑖𝑛 (𝑤) ← L𝑖𝑛 (𝑤)
⋃{(𝑢𝑘 , 𝑡 ′𝑠 , 𝑡 ′𝑒 ) };

15 foreach unvisited 𝑒 = (𝑤, 𝑣, 𝑡1, 𝑡2) of 𝑤 : 𝑡1 ≥ 𝑡 ′𝑒 do
16 mark 𝑒 as visited; 𝑡 ← 0;

17 if 𝑡1 ≥𝑚𝑎𝑥𝑀𝑖𝑛𝑇 [𝑣 ] then continue;
18 foreach 𝑒′ = (𝑣, 𝑥, 𝑡 ′

1
, 𝑡 ′
2
) in S𝑣 (𝑒) do

19 if O(𝑥) ≤ O(𝑢𝑘 ) then continue;
20 if 𝑡 ′

2
≥𝑚𝑖𝑛𝑇 [𝑥 ] then continue;

21 if 𝑒 and 𝑒′ are time-overlapping then
22 𝑄.𝑝𝑢𝑠ℎ ( (𝑥, 𝑡 ′𝑠 , 𝑡 ′2)) ;𝑚𝑖𝑛𝑇 [𝑥 ] ← 𝑡 ′

2
;

23 if𝑚𝑖𝑛𝑇 [𝑥 ] > 𝑡 then 𝑡 ←𝑚𝑖𝑛𝑇 [𝑥 ];
24 𝑚𝑎𝑥𝑀𝑖𝑛𝑇 [𝑣 ] ← 𝑡 ;

25 return L𝑖𝑛 and L𝑜𝑢𝑡 .

4.3 Lock- and Atomic-free Parallelization
Reviewing Algorithm 4, the most time-consuming part in it is run-

ning Lines 3-24 for each upper-layer vertex. This motivates us to

speed up the computation with parallelization. However, a simple

parallelization faces the following two issues: (1) the conflict issue,

write conflicts may occur in Algorithm 4 Line 14. Even though a

lock can be applied to provide mutual exclusion, it greatly slows

down the performance; and (2) the canonical issue, the indexing

procedure from a vertex in Algorithm 4 relies on the label sets

constructed by its predecessors in the vertex order (to check the

canonical property). Such a sequential nature is the key to ensure

the minimality of TBP-Index. Simply parallelizing the vertices will

break the order dependency and involve redundant index entries.

To tackle the above issues, we propose a two-phase parallel

algorithm TBP-build∗-PL. In Phase I, it generates local indexes L𝑖
𝑖𝑛

and L𝑖
𝑜𝑢𝑡 for each thread 𝑖 , and write conflicts can be completely

avoided. Thus, the conflict issue is solved. In Phase II, TBP-build∗-
PL cleans all the non-canonical index entries in the sub-indexes,

i.e., the canonical issue is solved. Note that no conflict appears in

both Phase I and Phase II, and TBP-build∗-PL achieves lock- and
atomic-free parallelization. Additionally, TBP-build∗-PL returns an
index L that consists of a series of sub-indexes L𝑖

(𝑖 ∈ [1, 𝑡]). Note
that TBP-build∗-PL constructs a minimal TBP-Index, which has

the same index entries as the index constructed by Algorithm 4. In

addition, to answer a query based on the above sub-indexes, we
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need to scan each sub-index independently, and the answer is true

if one of the scans returns true. Thus, the query time complexity

remains the same as Algorithm 2.

Remark 2. Note that the computation of TopChain can also be

parallelized. The parallelization of the graph transformation phase

is straightforward and is omitted due to the short of space. For the

index construction phase, the original TopChain algorithm applies a

(reverse) topological order of vertices, and the indexing procedure of a

vertex relies on the labeling of its predecessors in the order. To enable

parallelism, we change the topological order to the topological level

order. By doing this, TopChain can use multiple threads to index the

vertices within the same topological level simultaneously.

5 ANSWER SSRQ AND EAPQ
Next we briefly discuss how to extend the TBP-Index to support

fast single-source reachability and earliest-arrival path queries.

5.1 Single-source Reachability Query (SSRQ)
Intuitively, answering an SSRQ can be implemented by processing

|𝑈 (𝐺) | times of single-pair reachability queries, which is clearly

an inefficient approach. To efficiently compute SSRQ, we propose

inverted in-label set, denoted by L̂𝑖𝑛 , which records each index en-

try in L𝑖𝑛 reversely, i.e., ∀(𝑤, 𝑡𝑠 , 𝑡𝑒 ) ∈ L𝑖𝑛 (𝑢), (𝑢, 𝑡𝑠 , 𝑡𝑒 ) ∈ L̂𝑖𝑛 (𝑤).
With L̂𝑖𝑛 and TBP-Index, SSRQ can be computed by searching label

sets rather than performing |𝑈 | times of reachability queries.

5.2 Earliest-arrival Path Query (EAPQ)
The TBP-Index cannot be directly applied to support EAPQ as it

records no information about passing vertices on paths. To support

EAPQ,we present the path-aware TBP-Index, denoted byL∗, which
is based on the TBP-Index but additionally records the information

of passing vertices. Specifically, for ∀𝑢 ∈ 𝑈 (𝐺), each index entry in

L∗𝑜𝑢𝑡 (𝑢) is a tuple (𝑤, 𝑡𝑠 , 𝑡𝑒 , ⟨𝑥,𝑦, 𝑡𝑝 ⟩) meaning that 𝑢 reaches 𝑤

within [𝑡𝑠 , 𝑡𝑒 ], and the first time-overlapping wedge in the path is

a wedge from 𝑢 to 𝑥 via 𝑦 starting at 𝑡𝑠 and ending at 𝑡𝑝 . Similarly,

∀(𝑤 ′, 𝑡 ′𝑠 , 𝑡 ′𝑒 , ⟨𝑥 ′, 𝑦′, 𝑡 ′𝑝 ⟩) ∈ L∗𝑖𝑛 (𝑢), it indicates that 𝑤 ′ reaches 𝑢
within [𝑡 ′𝑠 , 𝑡 ′𝑒 ], and the last time-overlapping wedge in the path is

from 𝑥 ′ to 𝑢 via 𝑦′ starting at 𝑡 ′𝑝 and ending at 𝑡 ′𝑒 . Using the path-
aware TBP-Index L∗, an earliest-arrival path P from 𝑢 to𝑤 can be

efficiently retrieved in a recursive manner. For instance, in the case

that 𝑤 is the highest-rank vertex in P, we can first search from

L∗𝑜𝑢𝑡 (𝑢) to identify the related index entry, and then search its

successor’s out-label sets until finding𝑤 .

6 EXPERIMENTS
This section shows the results of empirical studies. All the algo-

rithms were implemented in C++, and the experiments were con-

ducted on a platform with two Intel(R) Xeon(R) CPU E5-2698 v4 @

2.20GHz (each with 20 cores) and 512GB memory.

Algorithms. We evaluate the following algorithms.

Index Construction Algorithms: (1) TC-build: the TopChain algo-

rithm [64].The related index is called TC-Index. We apply TopChain
on the projected graph and use the same settings as [64]; (2) TC-
build-PL: the TopChain algorithm in parallel (Remark 2); (3) TBP-
build: the baseline algorithm to compute TBP-Index as shown in

Algorithm 3; (4) TBP-build∗: the advanced algorithm to compute

TBP-Index in Algorithm 4; and (5) TBP-build∗-PL: the algorithm
that constructs a minimal TBP-Index in parallel (Section 4.3).

Query Algorithms: (1) OReach: the online query algorithm in Algo-

rithm 1; (2) OReach+: an optimized online query algorithm (Algo-

rithm 1, with blue content) that bases on the direction-optimizing

breadth-first search [12]; (3) TC-query: the query algorithm (algo-

rithm 2 in [64]) using the TC-Index; (4)TBP-query: the TBP-Index-
based algorithms that answers the single-pair reachability query

(Algorithm 2), single-source reachability query (Section 5.1) and

earliest-arrival path query (Section 5.2).

Datasets.We use 16 datasets in our experiments, and Table 2 shows

their statistics. Apart from the PM dataset, all the other datasets

originally have one timestamp. Thus, we consider the original times-

tamp as the starting time and generate duration for each edge (end-

ing time is the sum of starting time and duration). According to

[11], real-life duration usually follows the power-law distribution.

Hereafter, we generate duration from 1 hour to 48 hours using the

power-law distribution [7] (𝛼 is empirically set to -2.5) by default.

We also evaluate the performance of our algorithms under different

distribution models in Section 6.4. For the PM dataset, we randomly

generate the starting timestamp from 1 Jun 2019 to 31 Dec 2020,

and generate the duration for each edge using the same settings.

All the networks can be downloaded from KONECT [2].

6.1 Case Studies
We conduct case studies on two real-world datasets, i.e., Brightkite

and Gowalla [5], to evaluate the effectiveness of temporal bipartite

reachability. Both datasets contain a collection of check-in data

shared by users, which forms people-location bipartite graphs. The

Brightkite dataset contains 50,686 users (upper layer), 772,788 loca-

tions (lower layer) and 4,491,144 check-ins. The Gowalla dataset has

107,092 users, 1,280,969 locations and 6,442,892 check-ins. Note that

the above settings are also applied here to generate duration for

each check-in data. The difference is that the generated duration for

a user’s check-in data cannot exceed the time difference between

this check-in and the next one. Intuitively, in real-life scenarios, a

user can only be at one unique place at the same time.
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Figure 5: The number of potentially infected users

Firstly, we simulate the process of disease propagation using

temporal bipartite reachability. For each dataset, we randomly select

a user as the source of infection and consider the other users as

potentially infected if they are reachable from the source. Figure 5

shows the number of potentially infected users on average within

14 days. We can see that the number of potentially infected users

continues to rise quickly day after day. For example, on Gowalla, 15

users are at risk of infection after 1 day, while this figure surges up

to 1072 after 14 days.With such a high transmission rate, it is urgent
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Table 2: Summary of Datasets
Name Dataset |𝐸 (𝐺) | |𝑈 (𝐺) | |𝐿 (𝐺) |
WQ Wikiquote 549,210 21,607 92,924

WN Wikinews 901,416 10,764 159,910

WB Wikibooks 1,164,576 32,583 133,092

SO Stackoverflow 1,301,942 545,195 96,678

LK Linux-kernel 1,565,683 42,045 337,509

CU Citeulike 2,411,820 153,277 731,769

BS Bibsonomy 2,555,080 204,673 767,447

TW Twitter 4,664,605 530,418 175,214

AM Amazon 5,838,041 2,146,057 1,230,915

WT Wiktionary 8,998,641 29,348 2,094,520

EP Epinions 13,668,320 120,492 755,760

LF Lastfm 19,150,868 992 1,084,620

IW Itwiki 26,241,217 137,693 2,225,180

EF Edit-frwiki 46,168,355 288,275 3,992,426

WP Wikipedia 129,885,939 1,025,084 5,812,980

PM PubMed 737,869,083 141,043 8,200,000

Table 3: The average query processing time
Name

SPRQ - Answering Positive Queries SPRQ - Answering Negative Queries SSRQ EAPQ

OReach
(ms)

OReach+

(ms)

TC-query
(𝜇𝑠)

TBP-query
(𝜇𝑠)

OReach
(ms)

OReach+

(ms)

TC-query
(𝜇𝑠)

TBP-query
(𝜇𝑠)

TC-query
(ms)

TBP-query
(ms)

TBP-query
(𝜇𝑠)

WQ 5.56 4.85 0.84 0.18 6.02 3.23 1.15 0.20 1.88 0.03 0.72

WN 9.60 4.05 3.41 0.41 9.34 6.52 2.53 0.72 1.07 0.06 1.08

WB 8.58 4.08 4.40 0.30 5.44 2.08 3.11 0.31 3.12 0.02 0.73

SO 11.68 0.91 9.12 0.97 8.57 1.75 1.57 0.81 45.32 0.43 2.69

LK 6.54 1.67 4.61 0.85 4.62 2.40 2.13 1.91 3.57 0.25 2.36

CU 20.24 2.92 24.62 2.10 35.40 21.20 8.77 4.64 28.78 5.38 5.76

BS 10.65 2.16 52.49 1.93 7.71 6.52 6.57 3.82 141.30 4.08 6.00

TW 79.48 9.32 83.59 1.79 53.19 32.34 3.88 2.98 118.71 4.71 5.76

AM 74.77 4.78 65.83 2.24 62.87 11.90 4.09 2.45 345.04 19.52 6.89

WT 249.00 90.84 8.49 0.58 88.63 61.43 3.71 1.68 2.44 0.12 1.73

EP 35.84 7.50 1269.41 4.96 165.42 37.66 90.74 3.19 976.89 7.56 8.19

LF 312.90 101.86 29.45 7.87 91.57 60.37 12.90 8.68 0.35 0.34 20.83

IW 510.00 119.34 51.00 2.99 234.76 152.12 6.26 3.64 12.93 2.04 10.76

EF 903.24 228.80 36.30 2.43 671.80 226.11 5.34 2.60 24.24 4.00 9.73

WP 25.60s 1.20s 19.32 4.17 65.30s 41.40s 5.96 4.09 276.62 26.02 17.40

PM 58.59s 1.48s 2827.75 16.96 172.0s 90.37s 1032.30 140.25 12360.0 180.22 207.09

for the health department to rapidly identify the infected population

to prevent disease propagation. Fortunately, our proposed TBP-
Index-based algorithm provides a helpful tool to do the job. For

example, on Gowalla, our proposed TBP-Index-based algorithm

spends merely 60s identifying the infected population for 10,000

infected sources, while the brute-force online algorithm needs more

than 1.4 hours to do the same job. Note that the number of new

cases in a single day may reach up to hundreds of thousands [1, 6]

when a disease outbreaks, and thus our proposed algorithm is a

good choice to identify the potentially infected users.
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Figure 6: The transmission chains. Users within the same
rectangle are co-located at time 𝑡𝑥 , and ∀𝑥 < 𝑦, 𝑡𝑥 < 𝑡𝑦 . A col-
ored arrow indicates usermovement. The latitude and longi-
tude values are the identifiers for the venues in the datasets.

Secondly, we exhibit the potential of our proposed method on

revealing the transmission chains. As discussed in Section 5.2, our

algorithms can be extended to compute earliest-arrival paths and

thus are able to reveal the transmission chains. Figure 6 presents

two examples of the transmission chain between the source of

infection (mark with “s”) and one of the infected users (mark with

“d”) on the Brightkite and Gowalla datasets, respectively. In addition,

our proposed method also helps uncover the high-risk venues, e.g.,

the venues as listed in Figure 6.

6.2 Query Processing
In this analysis, we evaluate the performance of OReach, OReach+,
TC-query, and TBP-query when answering single-pair reachabil-

ity queries (SPRQ), single-source reachability queries (SSRQ), and

earliest-arrival path queries (EAPQ). In the experiment, we generate

1000 random vertex pairs (or vertices for SSRQ). Note that when

generating the time interval [𝐼𝑠 , 𝐼𝑒 ] for a query, we generate 𝐼𝑠 ran-
domly and generate the duration 𝑑 (i.e., 𝑑 = 𝐼𝑒 − 𝐼𝑠 ) following the
power-law distribution. To ensure Lines 11 to 19 in Algorithm 1 can

be invoked for a vertex pair (𝑢,𝑤), the generated 𝐼𝑠 and 𝑑 should

satisfy 𝐼𝑠 ∈ [1, 𝑡𝑠 ] and 𝑑 ≥ 𝑡𝑒 − 𝐼𝑠 , where 𝑡𝑠 is the maximum starting

time from 𝑢 and 𝑡𝑒 is the minimum ending time to𝑤 .

Table 3 shows the average query processing time of different

algorithms. For SPRQ, we distinguish the results for answering

positive queries (i.e., queries that OReach returns true) from those

for answering negative queries (i.e., queries that OReach returns

false). For EAPQ, we only report the results of effective queries (i.e.,

queries that TBP-query can find a path), as otherwise, the query

time is the same as that TBP-query for answering negative SPRQ.
We use the same queries as SPRQ (the positive cases).

According to Table 3, when answering SPRQ, OReach+ performs

better than OReach, which indicates that the direction-optimizing

BFS can substantially shrink the online searching space. However,

OReach+ is still at least an order of magnitude slower than TBP-
query and TC-query. The reason is that both TBP-query and TC-
query are index-based algorithms, while OReach+ may need to

traverse the whole graph for a query. When comparing TBP-query
with TC-query, our TBP-query is faster than TC-query with up to

two orders (on positive cases) or one order (negative cases) of mag-

nitude. The reason is that our TBP-Index is a complete index that

can correctly answer all queries, while TC-Index is a partial index,

and TC-query has to perform graph traversal for the uncovered

queries. One interesting observation is that TBP-query performs

much better than TC-query when answering positive queries. This

is reasonable as TBP-query only needs to scan the label sets of the

query vertices and returns true immediately if a common vertex

exists with time constraints satisfied, while TC-Index may have to

traverse the graph for the query. For example, on the EP dataset,

OReach and OReach+ spend tens of milliseconds on average for

answering both positive and negative queries, and TC-query needs

more than 1200 𝜇𝑠 for a positive query and 90 𝜇𝑠 for a negative

query. In comparison, TBP-query takes less than 5 𝜇𝑠 in both cases.

When answering SSRQ, TBP-query is faster than TC-query with

up to two orders of magnitude. This is because TBP-query is based

on a complete index and admits an efficient computation of single-

source reachability queries (Section 5.1). In comparison, TC-query
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has to perform |𝑈 (𝐺) | times of reachability queries, where graph

traversals and redundant checkings incur high overheads. Addition-

ally, TC-query cannot be directly applied to answer EAPQ due to

the index’s incompleteness, while our TBP-query can answer such

queries with reasonable time, as shown in Table 3.

6.3 Index Construction
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Figure 7: Index Size

Index Size. Figure 7 reports the index size for each dataset. As a

comparison, we also report the related graph size and the size of

the projected graph (denoted as “Projected Size”), both of which

are computed based on the size of the edge list. Note that with

the same vertex order, TBP-build, TBP-build∗, and TBP-build∗-PL
output identical indexes, and thus we only report one TBP-Index
size. According to Figure 7, the size of the projected graph is sub-

stantially larger than the original graph size. Specifically, on the EP

dataset, the original graph occupies only 208.6 MB space, while its

projected graph takes more than 7.9 GB. In terms of the index size,

although TBP-Index is a complete index for answering reachability

queries, the index sizes are only 0.1× - 28× of the (temporal bipar-

tite) graph sizes. Moreover, TBP-Index is smaller than TC-Index (a

partial index) on 9 out of 16 datasets. The reason is that TBP-Index
is a minimal index, and it excludes the index entries that can be

covered by the others. However, TC-Index is not minimal and in-

volves redundant index entries. For instance, on theWT dataset, the

TC-Index occupies 317.1 MB, while our TBP-Index takes only about
20.5MB. In addition, to make our index support SSRQ, we need an

additional inverted in-label set, which is 0.47× - 0.51× the size of
the TBP-Index on all the evaluated datasets. To support EAPQ, the

path-aware TBP-Index is 1.5× - 2.0× the size of the TBP-Index.
Indexing Time. Table 4 reports the running time of different index

construction algorithms, where "-" denotes the cases that cannot
finish within 10

5
s. We can observe that TBP-build and TBP-build∗

are slower than TC-build, which is expected as they both compute

a complete and minimal index, and need additional time to check if

an index entry is redundant. Fortunately, the computation of TBP-
build∗ can be further accelerated by parallelization (Section 4.3).

From Table 4, TBP-build∗-PL (𝑡 = 32) is up to 19× faster than TBP-
build∗ and TBP-build. Note that even though the computation of

TC-build can also be parallelized, it obtains limited benefits from

parallelization. In Table 4, TC-build-PL (𝑡 = 32) is only 1.1×-4.7×
faster than TC-build. In total, both our TBP-build∗-PL (𝑡 = 32) and

TC-build-PL can finish the computation on graphswith hundreds of

millions of edges within reasonable time. As discussed in Section 6.1

and Section 6.2, a complete and minimal index not only admits an

efficient query processing process but also is the key to support

path queries. Taking these performance gains into account, the

indexing overhead of TBP-build∗-PL is moderate and negligible.

Table 4: The indexing time (in sec by default)

Name Partial Index Complete and Minimal Index (TBP-)
TC-build TC-build-PL build build+ build∗ build∗-PL

WQ 1.16 1.11 5.89h 2.61 0.41 0.13

WN 6.26 4.12 26.48h 9.84 4.21 0.38

WB 3.81 2.98 20.15h 7.38 1.36 0.21

SO 2.66 1.55 25.41h 184.58 51.88 6.94

LK 6.94 2.43 - 47.33 29.66 2.39

CU 14.03 4.67 - 1158.59 710.16 70.27

BS 10.09 4.76 - 534.20 447.13 49.02

TW 46.43 15.02 - 1207.85 869.89 112.00

AM 16.75 9.17 - 3160.54 2016.39 320.63

WT 27.65 23.76 - 202.84 88.5 5.00

EP 215.17 45.88 - 7451.13 5007.3 339.92

LF 36.19 10.55 - 5463.48 1226.39 70.59

IW 78.58 28.16 - 7031.39 2453.3 131.62

EF 110.54 38.11 - 4.48h 3875 221.00

WP 568.35 292.78 - - 6.36h 1256.88

PM 1021.98 523.90 - - - 4.22h

We then compare TBP-build with TBP-build∗ to demonstrate

the effectiveness of the proposed techniques, i.e., edge partition

and time-priority-based traversal. In Table 4, we additionally report

the indexing time of TBP-build+, which only considers the time-

priority-based traversal technique. We can see that TBP-build can

only complete the index construction for 4 small datasets, while

TBP-build+ and TBP-build∗ can finish the computation on all the

datasets. Specifically, TBP-build+ is faster than TBP-build by up

to four orders of magnitude in the datasets where TBP-build can
finish, which validates the efficacy of the time-priority-based tra-

versal technique. By further applying the edge partition technique,

TBP-build∗ can speed up the computation of TBP-build+ by up

to 7 times of magnitude. Finally, TBP-build∗ is more efficient than

the baseline index construction algorithm TBP-build. For instance,
TBP-build takes about 20 hours indexing onWB, while TBP-build∗

spends less than 2 seconds. In addition, to support SSRQ and EAPQ,

computing the inverted in-label set consumes less than 100 seconds

for each dataset, and the indexing time of the path-aware TBP-Index
is 1.02×-1.36× of the TBP-Index construction time, respectively.

Speedup. This experiment studies the parallelization performance

of TBP-build∗-PL (Section 4.3) and TC-build-PL (Remark 2), and

Figure 8 shows the indexing time of them by varying the number of

threads 𝑡 . Note that the patterns are similar across all datasets. Thus,

only the results for the four representative datasets are reported.

According to Figure 8(a), the curves of TC-build-PL tends to be

flat, which indicates that TC-build-PL obtains limited benefits (less

than 4.7×) with parallelization. The reasons are mainly two-fold.

First, several parts of TC-build-PL program have to be implemented

as sequential (e.g., index construction must follow the topological

level order), and according to Amdahl’s law [10], the parallelization

performance is limited. Second, the performance of TC-build-PL
relies on the number of vertices that belong to the same topological

level, and for the level with few vertices, parallelization cannot be

fully effective. For example, on the datasets IW, on average there

are fewer than 21 vertices per topological level.

In comparison, our proposed TBP-build∗-PL performs well with

parallelization. Based on Figure 8(b), we can observe that all the

curves demonstrate reasonable decreasing trends as the number of

threads increases. The benefits from 1 to 16 threads are substantial.
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Figure 8: Parallelization performance
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Figure 9: Scalability of TBP-build∗
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Figure 10: Scalability of TBP-build∗-PL

After 16, the reward ratio flattens due to the cost of thread schedul-

ing. At 𝑡 = 32 threads, parallelization can speed up the computation

by 11× to 19× on the four representative datasets, which attributes

to the nice lock- and atomic-free property.

Scalability. We evaluate the scalability of TBP-build∗ by varying

the graph sizes. For the evaluated dataset, we randomly sample

vertices and edges from 20% to 100%. When sampling vertices, we

sample from both𝑈 (𝐺) and 𝐿(𝐺), and derive the induced subgraph
based on the sampled vertices. When sampling edges, we construct

graphs using the sampled edges. We only report the results of the

EF dataset, while the other datasets demonstrate similar trends.

Figure 9 reports the results of TBP-build∗ with respect to both

indexing time and index size. We can observe that the increasing

trend of all the curves becomes smoother as the graph size or the

graph density gets larger. Therefore, TBP-build∗ is scalable.
To challenge large-scale graphs, we evaluate the performance

of TBP-build∗-PL (𝑡 = 32) by adding edges into the two largest

datasets, i.e., WP and PM. Specifically, the size of newly added edges

ranges from 100M to 400M, by which the sizes of WP and PM will

exceed 500M and 1.1B, respectively. Figure 10 reports the results

of TBP-build∗-PL with respect to indexing time and index size on

both datasets. Accordingly, we can observe that TBP-build∗-PL can
handle graphs at billion scale.

6.4 Varying Duration Distribution
In this analysis, we evaluate the performance of our algorithms (i.e.,

TBP-build∗ and TBP-query) by varying the duration distribution

models. In addition to the power-law distributionmodel (denoted by

POW) [11], we also consider the models of bursty distribution (BUR)
[33], exponential distribution (EXP), and uniform distribution (UNI).
The generated duration ranges from 1 hour to 48 hours. We follow

the rules in [49] and set 𝜆 = 48

𝛽
for the EXPmodel, where 𝛽 = 1.7. For

the BUR model, we adopt the two-state model as illustrated in [33],

and the parameters are set to 𝛽1 = 1.2 and 𝛽2 = 2.2, respectively.

Note that only results of the datasets IW and EF are reported as the

patterns for the others are similar.
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Figure 11: Performance while varying distribution models

Figure 11 shows the indexing time and index size of TBP-build∗

under different duration distribution models. We can observe that

TBP-build∗ runs slightly faster when the duration is generated

from the POW distribution, while it performs similarly on the other

three distributions. This is because, under the POW distribution,

most of the generated durations are short, and thus two different

edges are less likely to form a time-overlapping wedge. Note that

the time difference between the POW distribution and the other

distributions is limited. The reason is that with short durations,

the ending time of the time-overlapping wedges is relatively small,

which increases the possibility to reach the other vertices, and

consequently compensate the speedup as mentioned above.

Table 5: Query time (in 𝜇𝑠) while varying duration models

Name

Positive Queries Negative Queries

POW EXP BUR UNI POW EXP BUR UNI

IW 2.99 3.31 3.42 3.47 3.64 4.49 3.97 3.94

EF 2.43 3.46 3.95 3.49 2.60 3.97 4.15 4.25

Table 5 shows the query time of TBP-querywhen the duration of
queries generated by different models. The result for each case is an

average of 1000 queries. In general, the performance of TBP-query
is negatively correlated to the index size (Figure 11). For example,

on the EF dataset, TBP-query under POW and EXP runs faster than
that under the BUR and UNI models, since the index sizes under POW
and EXP are smaller. An interesting observation is that TBP-query
with POW runs slightly faster than TBP-query with EXP even though

the used indexes are of similar size (Figure 11). The reason is that

the duration for the queries generated by POW is relatively short,

and thus the process of searching index may finish earlier.

7 CONCLUSION
In this paper, we study the temporal bipartite reachability problem.

We propose an indexing-based solution that can support all possible

single-pair reachability queries. Several techniques are devised to

compute the index efficiently. Moreover, we show how to extend the

computed index to support fast single-source reachability queries

and earliest-arrival path queries. Finally, we conduct extensive ex-

periments on 16 real-world graphs to demonstrate the effectiveness

and efficiency of our proposed techniques.
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