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ABSTRACT
In pursuit of real-time data analysis, approximate summarization
structures, i.e., synopses, have gained importance over the years.
However, existing stream processing systems, such as Flink, Spark,
and Storm, do not support synopses as first class citizens, i.e., as
pipeline operators. Synopses’ implementation is upon users. This is
mainly because of the diversity of synopses, which makes a unified
implementation difficult. We present Condor, a framework that
supports synopses as first class citizens. Condor facilitates the spec-
ification and processing of synopsis-based streaming jobs while
hiding all internal processing details. Condor’s key component is
its model that represents synopses as a particular case of windowed
aggregate functions. An inherent divide and conquer strategy al-
lows Condor to efficiently distribute the computation, allowing for
high-performance and linear scalability. Our evaluation shows that
Condor outperforms existing approaches by up to a factor of 75x
and that it scales linearly with the number of cores.
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1 INTRODUCTION
An increasing number of applications require low-latency data
stream analytics [6, 55]. While this has led to the popularity of
big data platforms, such as Flink [12] and Spark [59], reducing
the latency remains a relevant problem in the pursuit of real-time
data stream analytics [34]. Approximate data analytics based on
synopses trade lower latency for a loss in accuracy [25, 32, 39, 49].
These synopses summarize main characteristics from input data
while substantially reducing the memory footprint [18], which
accelerates data stream analytics with quality guarantees. Many
applications benefit from fast approximate answers, e.g, monitoring
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heavy hitters using count-min sketches [20], maintaining strati-
fied samples using reservoir sampling [57], compressing signals
based on Haar wavelets [29], or monitoring network traffic using
hyperloglog sketches [22].

However, none of the existing dataflow systems support syn-
opses as pipeline operators, i.e., as first class citizens. The problem
is that most of the algorithms maintain synopses in a centralized
fashion [39]. As a result, developers of data streaming applications
must adapt and implement these algorithms for distributed settings.
Besides a good knowledge of both the synopsis algorithm and the
data streaming application, the developer needs deep system pro-
gramming expertise due to its complex architecture. Prior work
investigated the integration of synopses into parallel data process-
ing systems [3, 26, 28, 31, 42, 46, 58], but mainly focused on batch
or mini-batch processing. It is thus unsuitable for applications with
low-latency requirements and does not cover windowed synopses,
which are essential for many applications [6, 37].

Integrating synopses into dataflow systems is challenging for
many reasons. First, a large variety of data streaming applications
exists, all using different kinds of synopses. Creating an abstraction
for building synopses has to be sufficiently general while hiding
internal processing details and still being easy to use, which is a
critical feature of big data systems [5, 12, 59]. Second, the synopsis
abstraction must allow for efficient distributed computation. While
throughput should scale linearlywith the number of nodes, it is hard
to achieve due to communication overhead. Third, implementing
distributed operations requires significant expertise from users, and
hence the synopsis abstraction should hide all these details about
distributed operations. Fourth, synopses differ in their algebraic
properties. While some of these properties allow for optimizations,
others may impose restrictions.

We present Condor, a framework that facilitates the definition
of synopsis-based streaming jobs and integrates into any dataflow
system that supports window processing. In summary, we make
the following contributions.

(1) We define a model that generalizes synopses as stateful win-
dow aggregate functions, which allows us to support any one-pass
synopsis in a dataflow system (Section 4). The proposed model also
classifies synopses based on their algebraic properties.
(2) We devise processing strategies for highly parallel summary
construction based on the synopsis’ algebraic attributes (Section 5).
(3) We propose a set of evaluation operators that enable efficient
processing of windowed synopses from a query stream (Section 6).
(4) We experimentally evaluate Condor’s efficiency in terms of
throughput and scalability in a distributed system using several
queries over four synthetic datasets and one real dataset (Section 7).
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2 BACKGROUND
We first explain the basic concepts of synopses and windowing.
Synopses are summarization structures that preserve key proper-
ties of the original dataset [18]. Synopses allow for the computation
of quantities that are expensive or even impossible to compute
precisely and, thus, are a crucial building block for approximate
data analytics [25, 39].

The four major families of synopses are samples, histograms,
wavelets, and sketches. Sampling techniques are the longest stud-
ied synopses with numerous successful applications [3, 9, 26]. His-
tograms divide datasets into multiple buckets based on values in
numerical columns [44]. These are widely studied and incorporated
into many commercial relational databases [16, 45]. Conceptually
close, wavelets hierarchically decompose numerical columns, main-
taining ordering properties of the elements [29]. Lastly, sketches
linearly transform the input dataset into a matrix that retains only
specific characteristics from the original dataset [18]. Despite their
short history, sketches have been already adapted into many dif-
ferent data management applications [1, 11, 19, 20, 43]. We focus
on streaming synopses, which can be efficiently built with a single
pass over the data while not restricting ourselves to a particular
synopses family.
Windowing is a processing strategy to organize data stream ele-
ments into finite-sized buckets, makingwindows an effective way to
compute analytics over an infinite data stream. There are three main
types of windows: tumbling, sliding, and session windows [6, 51].
A tumbling window splits a data stream into non-overlapping seg-
ments of the same size, while a sliding window, depending on the
slide step, might split a data stream into overlapping segments of
the same size. In contrast, a session window covers a period of
activity followed by a period of inactivity.

The traditional and most common strategy for window pro-
cessing is bucketing [38]. This strategy aims at assigning every
incoming element to its corresponding windows and outputting
the result once the window closes [6, 37]. Most distributed dataflow
processing systems, such as Flink, Spark, and Storm, adopt this
bucketing technique. More recently, slicing techniques were pro-
posed [13, 35, 36] to optimize window aggregation. They split the
input stream into non-overlapping slices of data, triggering a single
partial computation per processed element. General Stream Slic-
ing generalizes these techniques and adds out-of-order processing,
different window types, and further aggregate functions [52].

3 CONDOR: APPROXIMATE DATA
STREAMING ANALYTICS

Condor allows for the specification of synopsis-based streaming
jobs on top of general dataflow systems. Condor provides a collec-
tion of twelve synopses and an integration to Apache Flink 1.9 [12].
A user either utilizes Condor as a stand-alone java library or de-
fines synopsis-based streaming jobs executed on Flink. Yet, our
techniques integrate conceptually into any dataflow engine that
supports window processing. Figure 1 illustrates the general archi-
tecture of Condor, consisting of two main components: the API and
the core. The API provides an abstraction, which the user employs
to write synopsis-based streaming jobs. Once done, the user submits
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Figure 1: Condor System’s general architecture.

these to Condor, where, based on their configurations, the core cre-
ates a dataflow pipeline of efficient operators with two processing
blocks (the synopsis processor and synopsis evaluator). Condor then
submits this dataflow pipeline to the underlying dataflow system.
During the execution, the first processing block (windowing pro-
cessing) is in charge of consuming the input stream and generating
the windowed synopses. These are then evaluated by the second
processing block (windowing evaluation) with a query stream, out-
putting the approximate results.

We introduce the following example to illustrate how Condor
processes a synopsis-based streaming job.
Running Example. Suppose an IP address monitoring application
(IP-Job) constantly queries the frequency of varying IP addresses in
the input data stream. Typically, the IP addresses are ingested at a
high rate. Thus, the IP-Job needs to evaluate the IP address frequen-
cies continuously in sliding windows with a length of 20 seconds
and a slide factor of 5 seconds, using count-min sketches [20]. □

To meet these requirements, a developer first writes a synopsis-
based streaming job using the Condor API (Step 1, Figure 1). We
define a synopsis-based streaming job as a job with an approximate
result consisting of two parts: processing and evaluating. To config-
ure these, the user has to provide seven parameters, five of which
correspond to the synopses processing:
(a) data stream, which is the input (IP addresses in our example).
(b) synopsis, which is the desired synopsis class with their initial-
ization values (count-min sketch in our example).
(c) synopsis output type, which is either a synopsis per window,
global synopses, or per window partition pair, stratified synopses
(global synopses for IP-Job).
(d) partitioning function, which indicates how to partition the data
stream when outputting stratified synopses (none in our example).
(e) window type, which also indicates the windowing parameters
(Sliding window in IP-Job).
The other two parameters are for the synopses evaluation:
(f) query stream, where each element is an evaluation request (re-
quested IP addresses in IP-Job).
(g) evaluation function, which indicates how to process a request
(based on the latest window’s sketch in our example).
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These configurations enable Condor to build an efficient dataflow
pipeline that generalizes synopses as stateful window aggregate
functions (Section 4). It is worth noting that Condor’s API pro-
vides an interface to this generalization as well as to our processing
strategies, hence, users can scale out new synopses by adding user-
defined functions to Condor’s execution environment. Besides, our
generalization provide the necessary formalism to be adapted to
multiple dataflow engines and novel windowing techniques.

Given a developer’s job, Condor extracts the job configurations
for processing and evaluation (Step 2, Figure 1). The synopsis pro-
cessor receives the processing configurations and creates a new
pipeline using the underlying dataflow engine operators. This new
pipeline consists of three phases: (i) a divide phase evenly distributes
the input data stream workload over all working threads to fully
exploit parallelism; (ii) a compute phase maintains a partial synopsis
in every worker thread, and; (iii) a merge phase combines all partial
synopses into a single output per window. Each of these phases has
different computing strategies, and Condor selects the best of them
based on the job’s configuration (Section 5).

In turn, the synopsis evaluator receives the synopsis evaluation
configuration and selects the best strategies to run the job’s eval-
uation over such per-window synopses. Condor comes with a set
of operators, which efficiently evaluate the created synopses with
a query stream (Section 6). This feature makes Condor ideal for
applications where a synopsis is required for more than one query:
Condor creates and maintains a synopsis only once but it can query
every synopsis in parallel multiple times. Finally, Condor executes
the resulting pipeline on the underlying dataflow system, using
native operators and producing approximate results based on the
input and query stream (Step 3, Figure 1).

4 SYNOPSIS ABSTRACTION
We model synopses as stateful window aggregate functions. In con-
trast to current approaches [39], doing so enables us to maintain
any one-pass synopsis in a distributed setting as we can use the
divide and conquer strategy. We expand our model to classify syn-
opses by their algebraic properties, enabling internal optimizations,
such as parallel computation and accepting out-of-order elements.
Our model and classification are at the core of Condor’s techniques.
Without these principles, users have to keep implementing ad-hoc
solutions. We discuss our model and classification in the following.

4.1 Synopses as Window Aggregate Functions
Synopses and aggregate functions are conceptually very close to
each other. They both aim at reducing a group of values into a
single summary value. Thus, it is natural to treat synopses as ag-
gregate functions [30]. However, even as distributed aggregate
computation is standard in many systems, e.g., MapReduce [15],
the mathematical model in [30] is not enough to formalize how to
compute synopses in a distributed setting. This is because not all
synopses can be unified in a reduce step. Such aggregate functions
are usually maintained in a centralized way, limiting the system’s
scalability. We tackle this challenge by proposing a distributed win-
dow aggregating model to integrate synopses into dataflow systems
that support window processing. This computing model consists
of three phases: divide, compute and merge.

We define a window𝑊𝑡 as a set of incoming elements 𝑒𝑖 ∈ 𝐼 ,
where 𝐼 is the input domain, and 𝑡, 𝑖 ∈ N are sequential indexes
that give the order in which windows are created, and elements
arrive. Additionally, we define 𝑠𝐸 as a synopsis that has processed
all elements belonging to a multiset 𝐸, being 𝐸 = ∅ the initial state.
Suppose we define a synopsis-based streaming job in a system
with 𝑃𝑚𝑎𝑥 computing cores, where the goal is to maintain global
synopses, 𝑠𝑊𝑡 , so that each one is built based on all the elements of
their corresponding window𝑊𝑡 . To achieve this, the divide phase
distributes the input data stream among all 𝑃𝑚𝑎𝑥 cores, splitting
each window𝑊𝑡 into multiple partitioned windows𝑊𝑡,𝑝 , where
𝑝 is a partition index. Once every partitioned window is balanced,
the compute phase incrementally calculates partial aggregates with
an 𝑢𝑝𝑑𝑎𝑡𝑒 function that constructs a synopsis of type 𝑆 :

𝑢𝑝𝑑𝑎𝑡𝑒𝑆 : 𝑆 × 𝐼 → 𝑆,

(
𝑠𝐸 , 𝑒

)
↦→ 𝑠𝐸 ∪ 𝑒 (1)

This 𝑢𝑝𝑑𝑎𝑡𝑒 function is a stateful aggregate function, which main-
tains a partial synopsis that is gradually updated as every new
element arrives. The compute phase concludes when the synopsis
has been updated with all elements of the corresponding window
{𝑒𝑖 | ∀ 𝑒𝑖 ∈𝑊𝑡,𝑝 } and reaches the state 𝑠𝑊𝑡,𝑝 . Consequently, the sys-
tem outputs 𝑃𝑚𝑎𝑥 partial synopses for every window𝑊𝑡 . Therefore,
the merge phase has to combine all these partial synopses of type 𝑆
into a single result for every window, using a𝑚𝑒𝑟𝑔𝑒 function:

𝑚𝑒𝑟𝑔𝑒𝑆 : 𝑆 × 𝑆 → 𝑆,

(
𝑠𝐸1 , 𝑠𝐸2

)
↦→ 𝑠𝐸1 ∪ 𝐸2 (2)

The merge phase concludes once all partial synopses are merged,
i.e., 𝑠𝑊𝑡,0 .𝑚𝑒𝑟𝑔𝑒 (𝑠𝑊𝑡,1 ) · · · .𝑚𝑒𝑟𝑔𝑒 (𝑠𝑊𝑡,𝑃𝑚𝑎𝑥 −1 ) = 𝑠𝑊𝑡 . Thus, the sys-
tem outputs a single synopsis 𝑠𝑊𝑡 for every window𝑊𝑡 as required
by the synopsis-based streaming job.

Recall that Condor’s main goal is to provide a framework that
allows for the specification of synopsis-based streaming jobs in
general. Hence, the exact implementation of the 𝑢𝑝𝑑𝑎𝑡𝑒 and𝑚𝑒𝑟𝑔𝑒

functions for each synopsis is user-dependent and thus is out of
the scope of this paper. Yet, Condor provides a collection of twelve
synopsis algorithms based on these 𝑢𝑝𝑑𝑎𝑡𝑒 and𝑚𝑒𝑟𝑔𝑒 operations
(see the first column of Table 1). Users can use our synopses’ imple-
mentations as examples to integrate new synopses in Condor by
implementing these operations as user-defined functions. In this
way, it is possible to specialize the core of the code for every spe-
cific application. To illustrate this, consider the Running Example
in Section 3, where we maintain a count-min sketch [20] for every
window. The user selects Condor’s count-min sketch, whose imple-
mentation keeps the counting matrix as the state of the aggregate
function, where every row of the matrix corresponds to a hash
function. The 𝑢𝑝𝑑𝑎𝑡𝑒 function takes every element and increases
every cell’s count where the hash functions map to, and the𝑚𝑒𝑟𝑔𝑒

function sums up all the fields from every counting matrices.
Note that the model changes slightly when the user sets up the

streaming job to maintain stratified synopses. A stratified synopsis
streaming job aims to output a stream of synopses 𝑠𝑊𝑡,𝑝 for every
window partition pair instead of a global synopsis per window.
Here, the user can define how to partition the input data stream so
that Condor constructs the synopses for every partition separately
during the compute phase. The method of partitioning the input
data stream can be very beneficial for the estimate’s quality. For
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Figure 2: Synopses classification and system optimizations.

example, consider stratified samples [56], which divide the input
domain to reduce the sample’s variance making the estimate more
precise. This technique can also improve the estimates of some
sketches, such as the count-min or bloom filter, because in smaller
input domain hash coalitions are less probable. Additionally, this
also helps answer group-by queries, which is not easy to compute
with global synopses and in some cases is not even possible, e.g.,
counting distinct elements within grouped values using the hy-
perloglog sketch. Notice that for maintaining stratified synopses,
Condor does not have to merge the compute phase’s output because
their output is already a stream of stratified synopses 𝑠𝑠𝑊𝑊𝑡𝑡𝑡𝑡𝑡 .

4.2 Synopses Classification
Synopses have different algebraic properties that Condor exploits
to optimize streaming applications. Our synopsis formalization
(Section 4.1) enables the system to be aware of these properties by
defining five classes of synopses: mergeable, commutative, invert-
ible, order-based, and non-mergeable synopses. Note that if a user
integrates a new synopsis into the system, she has to manually
identify to which class it belongs so that Condor is aware of its
algebraic properties. The decision tree in Figure 2 illustrates how
Condor exploits the synopsis class to decide which synopses may
accept out-of-order elements, decreasing updates, or enable parallel
computation. We describe these classes below.
Mergeable Synopses: A synopsis is considered mergeable if a
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 function exists to combine 𝑠𝑠𝐸𝐸1 and 𝑠𝑠𝐸𝐸2 preserving the error
and size guarantees [2]. Formally, 𝑠𝑠𝐸𝐸1 .𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (𝑠𝑠𝐸𝐸2 ) = 𝑠𝑠𝐸𝐸1∪𝐸𝐸2 . Addi-
tionally, it is required that both synopses 𝑠𝑠𝐸𝐸1 and 𝑠𝑠𝐸𝐸2 are from the
same type and created with the same initialization parameters so
that they already have the same error and size guarantees before
the merge. Based on this property, Condor enables parallel compu-
tation as described in Section 4.1. Most sketches, histograms, and
sampling algorithms are mergeable.
Commutative Synopses: Synopses of this class have additionally
an 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑚𝑚 function that follows the commutative property, mean-
ing 𝑠𝑠 .𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑚𝑚 (𝑚𝑚𝑥𝑥 ).𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑚𝑚 (𝑚𝑚𝑦𝑦) = 𝑠𝑠 .𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑚𝑚 (𝑚𝑚𝑦𝑦).𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑚𝑚 (𝑚𝑚𝑥𝑥 ) ∀𝑥𝑥𝑥𝑥𝑥. If
this property is available, Condor can accept out-of-order elements
during the compute phase as the ordering does not have an in-
fluence on these synopses. Otherwise, Condor fallback to using
watermarks [6] to allow some disordered elements.
Invertible Synopses: Invertible synopses support the rule of in-
vertibility. Thus, they not only possess an 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑚𝑚 function to incre-
ment the partial aggregate, but also a𝑢𝑢𝑚𝑚𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑑𝑑𝑢𝑢 function. This func-
tion reverts changes to a previous state, 𝑠𝑠𝐸𝐸 .𝑢𝑢𝑚𝑚𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑑𝑑𝑢𝑢 (𝑚𝑚) = 𝑠𝑠𝐸𝐸\{𝑒𝑒 } .
Besides, they also have an 𝑖𝑖𝑑𝑑𝑖𝑖𝑚𝑚𝑚𝑚𝑢𝑢 function, which conceptually is

the inverse of the𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 function. Instead of combining two syn-
opses, this method reduces the state from one of the synopses with
the actual state of another one, i.e., 𝑠𝑠𝐸𝐸1 .𝑖𝑖𝑑𝑑𝑖𝑖𝑚𝑚𝑚𝑚𝑢𝑢 (𝑠𝑠𝐸𝐸2 ) = 𝑠𝑠𝐸𝐸1\𝐸𝐸2 . The
arrival of out-of-order elements can be problematic for session and
count-based windows as it may change multiple window bound-
aries at processing time [51]. Such cases usually force the system
to recompute the window aggregate to generate the correct result,
resulting in a performance loss. However, Condor exploits the in-
vertibility property if available, solving inconsistent results with
decreasing updates instead of recomputing the whole window.
Order-Based Synopses: A synopsis is order-based if it preserves
ordering properties for each of the processed elements. Consider
Haar wavelets [29], which are a "lower-resolution" representation
of a sequence of processed elements, consuming less space than
storing the whole sequence. One can later use this representation
to reconstruct the original sequence, as it maintains the ordering
and value properties for each processed element. This dependency
of order-based synopses on the order of processed items makes
them non-mergeable and, therefore, they do not possess a𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

function that preserves error and size guarantees. Despite this ob-
servation, we present a strategy to compute them in parallel and
still get a single summary object per window. This strategy con-
sists of computing the partial synopses in parallel as usual with the
𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑚𝑚 function, but during the merge phase Condor registers them
into a manager. We define a manager𝑚𝑚𝐶𝐶 as an object containing a
collection 𝐶𝐶 of partial synopses that we can later use to evaluate
indexed queries. To illustrate this, assume we want to answer a
sum range query using a manager with a haar wavelet’s collection.
Each wavelet preserves the indexing information of its processed
elements. So once the manager receives a query, it uses the range’s
indexes to find the wavelets in the collection, containing the infor-
mation of the elements with such indexes. Then, it forwards a local
query to each wavelet and finally sums up the partial results. In this
way, such a manager is equivalent to multiple merged synopses, e.g.,
a global synopsis, as we can use it to evaluate any query and have
the same error guarantees as to the contained synopses. However,
as the manager contains multiple synopses, the size guarantees are
not preserved. We describe the details of evaluating queries with a
manager in Section 6.2. Here, we focus on how to adapt a𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

function for this case, where the output is not a single synopsis
anymore but a manager𝑚𝑚 containing a partial synopsis collection:

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑀𝑀𝑀𝑀𝑀 : 𝑀𝑀 × 𝑆𝑆 → 𝑀𝑀𝑥

(
𝑚𝑚𝐶𝐶 𝑥 𝑠𝑠𝐸𝐸

)
↦→𝑚𝑚𝐶𝐶 ∪ 𝑠𝑠𝐸𝐸 (3)

By calling this function repeatably, Condor registers all partial
synopses 𝑠𝑠𝑊𝑊𝑡𝑡𝑡𝑡𝑡 into a manager that at the end of the computation
reaches the state𝑚𝑚 {𝑠𝑠𝑊𝑊𝑡𝑡𝑡𝑡𝑡 | ∀ 𝑝𝑝∈[0𝑀𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚−1] } . Condor now has a single
summary object per window, which is equivalent to the output of
the merge phase using Equation 3. Notice that, as a result, Condor
is the first system to provide an efficient distributed computation
and evaluation of order-based synopses.
Non-Mergeable Synopses: To provide a complete solution, we
also take synopses into account that do not satisfy any of these
properties and, therefore, only have an 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑚𝑚 function. Only in
these cases, Condor does not enable parallel computation and com-
putes the synopses centralized in a single compute phase, using the
𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑚𝑚 function, i.e., 𝑠𝑠𝐸𝐸 .𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑚𝑚 (𝑚𝑚𝑖𝑖 ) ∀𝑚𝑚𝑖𝑖 ∈𝑊𝑊𝑡𝑡 .
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Figure 3: Computing Windowed Summaries Distributed.

Condor already provides a collection of twelve synopsis algo-
rithms. We implemented these algorithms based on our distributed
window aggregating model and the above synopsis classes. Table 1
maps these synopses to our classification, where Merg. stands for
mergeable, Comm. for commutative, Inv. for invertible, and Ord.
for order-based. Note that a synopsis can belong to several classes,
as shown in Figure 2. In such cases, the system first determines if
the synopsis is mergeable to enable parallel computation. Then, it
checks if the synopsis is commutative to accept or reject out-of-
order elements. Additionally, if a synopsis is also invertible, Condor
can leverage this property to avoid the complete recomputations if
window boundaries change during processing time.

Table 1: Condor’s provided synopses - classified.

Synopsis Merg. Comm. Inv. Ord.

Res. sampling [57] X
Fifo sampling X X
Biased res. sampling [4] X
Equi-width histogram X X X
Equi-depth histogram (DDSketch-based) [27] X X X
Count-min sketch [20] X X X
Fast AGMS [17] X X X
Bloom filter [10] X X
Cuckoo filter [21] X X
HyperLogLog [22] X X
DDSketch [40] X X X
Haar wavelets [32] X

5 PROCESSING STRATEGIES
Our main goal is to scale out developers’ synopsis-based streaming
jobs, enabling them to perform their approximate data analytics
efficiently. The challenge resides in that scaling them out might not
be worth it due to communication overheads. We overcome this
problem by reducing communication among distributed nodes [39]
and maximizing the usage of the system’s resources.

The synopsis processor is the Condor’s component that gener-
ates the pipeline to maintain the synopses. Figure 3 illustrates this
pipeline for distributed synopsis maintenance over windowed data
streams. Each horizontal line represents the dataflow pipeline of a
thread in the system. Condor splits this pipeline into three phases
(divide, compute, and merge) and utilizes different processing strate-
gies in each of them. These strategies are simple by design, as we
consider such a simplicity crucial for the applicability of our sys-
tem. Figure 4 presents an overview of all the processing strategies

Mergeable?

yes

Order-based?Stratified?
no

yes

Synopsis

 (I) Divide Phase Stratification Round-Robin Order-Based Centralized

 (II) Compute Phase Bucketing 
General Slicing

Bucketing 
General Slicing

Bucketing 
General Slicing Bucketing

 (III) Merge Phase Merge Register to Manager

no

yes

instanceOf
output 
type Non-mergeable

Figure 4: Decision Tree - Processing Strategies.

Condor utilizes depending on the input job’s configurations. We
discuss these strategies in the following.

5.1 Dividing the Streaming Workload
We distribute the input data stream among all cluster nodes to fully
exploit the available parallelism. We assign every element 𝑒𝑒𝑖𝑖 from
the input data stream that belongs to window𝑊𝑊𝑡𝑡 to a partition
𝑝𝑝 ∈ [0, 𝑃𝑃]. We then split every window𝑊𝑊𝑡𝑡 into 𝑃𝑃 new sets of ele-
ments𝑊𝑊𝑡𝑡𝑡𝑡𝑡 that represents the parallel windows belonging to each
partition 𝑝𝑝 . In Figure 3, we see that, after the work distribution,
each of the three keyed windows (𝑊𝑊0,𝑊𝑊1,𝑊𝑊2) has a bucket con-
taining a subset of elements for every pipeline corresponding to
a thread, i.e.𝑊𝑊𝑡𝑡𝑡0 ∪𝑊𝑊𝑡𝑡𝑡1 · · · ∪𝑊𝑊𝑡𝑡𝑡𝑡𝑡−1 =𝑊𝑊𝑡𝑡 . Condor achieves this
workload distribution by considering the synopsis class that the
user configured to maintain in her input job definition. As shown
in Figure 4, the system can utilize four different partition strategies:
stratification, round-robin, order-based, and centralized.
Stratification. This strategy separates the input data stream for
the independent computation of a synopsis per window partition
pair. A user must indicate how to divide the input data stream by
providing a stream partitioning function. Although this strategy
gives complete control to users, it might also lead to a performance
loss because of idle threads resulting from data skew.
Round-Robin. The system applies this strategy when maintaining
mergeable synopses. In such cases, a Round-Robin policy [47] can
evenly balance the workload among all 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 threads in the system.
Typically, dataflow systems offer this workload distribution strat-
egy as an operator [24, 48]. Given a large number of elements per
window |𝑊𝑊𝑡𝑡 |, it holds that |𝑊𝑊𝑡𝑡𝑡𝑡𝑡 | ≈ |𝑊𝑊𝑡𝑡 |/𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 ∀ 𝑝𝑝 ∈ [0, 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 − 1].
Thus, the workload is close to optimally balanced among all threads
and the system can fully utilize parallel resources.
Order-based. To achieve distributed computation for order-based
synopses, Condor first partitions the elements in a way that the
order is guaranteed: It uses the Round-Robin strategy [47] but with-
out parallelism. Thus, Condor sends all elements to the same thread
and adds them to a buffer. Here, the ordering among the elements is
corrected before sending them to the next operator, which has the
maximum parallelism again. Once the buffer reaches a predefined
threshold capacity and the elements are ordered, Condor dispatches
them to the next operator using the Round-Robin strategy. Note that
this can become a performance bottleneck if the job has multiple in-
put sources. However, this step is still necessary to ensure a proper
ordering of the input elements. If we can not ensure the ordering,
then the correctness of the created synopsis can be compromised.
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Centralized. If a synopsis is neither mergeable nor order-based,
Condor falls back to a centralized computation, which is how cur-
rent systems maintain synopses [39]. It redirects all the input el-
ements to a single thread that computes the windowed synopses
using the corresponding 𝑢𝑝𝑑𝑎𝑡𝑒 function of that synopsis.

5.2 Computing the Windowed Synopses
After distributing the input data stream, Condor computes the win-
dow synopses on each partition. Our formalization does not only
work for a single windowing strategy but can also be adapted to
new approaches. Condor shows this property by supporting two
window processing strategies for computing synopses as windowed
aggregate functions: bucketing [38], and general stream slicing [52].
Condor provides a hybrid solution that adapts the windowing strat-
egy in runtime depending on thewindow’s configuration. It uses the
general stream slicing strategy to compute the synopses if the input
job requires maintaining sliding- or session-windows. Otherwise,
it uses the bucketing strategy.
Bucketingmaintains a synopsis for every openwindow inmemory.
The system then assigns each input element to their corresponding
windows, triggering the synopses’ 𝑢𝑝𝑑𝑎𝑡𝑒 function in each of these
windows. This strategy maps perfectly to our synopsis abstraction
defined in Section 4. In the case of non-mergeable synopses that
are not order-based, the system maintains the synopses in a cen-
tralized way using this window processing strategy. Although this
strategy is simple and powerful, it triggers redundant computa-
tions for overlapping windows, which might significantly hurt the
performance.
General Stream Slicing splits the data stream into non-
overlapping slices of data in contrast to bucketing. It then assigns
each input element to a unique slice, which triggers a single partial
computation. Once the window expires, it merges all partial results
from all created slices into a final aggregate value and emits it. As
a result, the system avoids redundant computations.

We extend the mathematical model from Section 4.1 to support
this general stream slicing strategy. We first adapt the general
stream slicing strategy to our notation. This strategy splits every
window𝑊𝑡 into multiple𝑊 𝑙

𝑡 non-overlapping slices of data based
on the window type, where 𝑙 ∈ N so that𝑊 𝑙

𝑡 ⊆ 𝑊𝑡 . As Condor
partitions the data stream, we end up with a collection of𝑊 𝑙

𝑡,𝑝 ,
meaning that every element belongs to a unique slice 𝑙 from a win-
dow with an index 𝑡 , and partition 𝑝 . Once this is done, Condor
computes the synopses 𝑠𝑊

𝑙
𝑡,𝑝 for every partitioned window slice

𝑊 𝑙
𝑡,𝑝 as usual, using their corresponding 𝑢𝑝𝑑𝑎𝑡𝑒 function (Equa-

tion 1). When a window closes, Condor will use the𝑚𝑒𝑟𝑔𝑒 function
(Equation 2) to merge the slice results into partial synopses 𝑠𝑊𝑡,𝑝 ,

i.e., 𝑠𝑊
0
𝑡,𝑝 .𝑚𝑒𝑟𝑔𝑒 (𝑠𝑊

1
𝑡,𝑝 ) · · · .𝑚𝑒𝑟𝑔𝑒 (𝑠𝑊

𝐿𝑡 −1
𝑡,𝑝 ) = 𝑠𝑊𝑡,𝑝 with 𝐿𝑡 being

the number of slices in which window𝑊𝑡 is divided.
Let𝑊𝑡,𝑝 be a window containing a set of streaming elements 𝑒𝑖

and each𝑊 𝑙
𝑡,𝑝 be a subset of the window𝑊𝑡,𝑝 so that

⋃
𝑙𝑊

𝑙
𝑡,𝑝 =

𝑊𝑡,𝑝 . Then, if the synopses are mergeable, we obtain the same re-
sult by updating a synopsis with all the elements of the window
𝑊𝑡,𝑝 or by updating it separately and merging the slice results.
However, this is not the case for order-based synopses, as they

are non-mergeable. We overcome this problem by using the𝑚𝑒𝑟𝑔𝑒

function from Equation 3 to register the slice synopses into a man-
ager. The manager’s logic to evaluate queries depends on the order
in which Condor processed the elements. As the partition strategy
influences this order, we need to be more specific and differentiate
the managers’ types, depending on how the input was partitioned.

Following this observation, we define two new types ofmanagers.
First, the general managers𝑚, whose indexes follow the Round-
Robin partition from the workload distribution and; second, the
slice managers 𝑠𝑚, whose indexes are continuous as the elements
in the window were partitioned in continuous slices. Hence, in the
case of computing order-based synopses using the general stream
slicing strategy, Condor registers all slice synopses 𝑠𝑊

𝑙
𝑡,𝑝 into a slice

manager using the𝑚𝑒𝑟𝑔𝑒 function from Equation 3. The output
contains then of a slice manager 𝑠𝑚𝐶𝑡,𝑝 for every window partition
pair, with 𝐶𝑡,𝑝 = {𝑠𝑊

𝑙
𝑡,𝑝 | ∀ 𝑙 ∈ [0, 𝐿𝑡 − 1]}. In this way, the merge

phase can receive a single object per partition as the bucketing
strategy.

The general stream slicing strategy also supports out-of-order
processing by exploiting invertibility or commutativity if available.
Our classification from Section 4.2 indicates to the system, which
algebraic properties are available for the current synopsis type.

5.3 Merging the Partial Summaries
Once Condor computes the partial synopses for each partition,
it performs a union of these synopses if it is possible and global
synopses are required. Condor performs the merge phase without
parallelism by either merging the partial synopses into a global
synopsis or registering these at a manager.
Merge. If the system is maintaining mergeable synopses, Condor
simply merges the partial synopses 𝑠𝑊𝑡,𝑝 the compute phase gen-
erates, using a𝑚𝑒𝑟𝑔𝑒 function (Equation 2). The final output is a
single synopsis 𝑠𝑊𝑡 per window as illustrated in Figure 3.
Register at Manager. A synopsis manager’s role is to store all
partial synopses as an indexed collection to redirect queries into
their corresponding partition. This mechanism makes it is possible
to compute order-based synopses separately, which enables parallel
processing. Thus, in the case of using the bucketing strategy in
the compute phase, Condor uses the𝑚𝑒𝑟𝑔𝑒 function (Equation 3)
to register all partial synopses into a general manager. Hence, the
output are multiple managers𝑚 {𝑠𝑊𝑡,𝑝 | 𝑝∈[0,𝑃𝑚𝑎𝑥−1] } one per win-
dow. However, if general stream slicing is used, Condor cannot
use the𝑚𝑒𝑟𝑔𝑒 function as the compute phase’s output consists of
slice managers instead of synopses. Still, as a manager evaluates
any query preserving error guarantees, Condor can register them
into a general manager. When a query arrives, the general manager
forwards the query to the corresponding slice manager, which, in
turn, forwards the query to the corresponding partial synopsis for
their evaluation. Therefore, we define a new function to register
slice managers of type 𝑆𝑀 into a general manager of type𝑀 :

𝑚𝑒𝑟𝑔𝑒𝑀,𝑆𝑀 : 𝑀 × 𝑆𝑀 → 𝑀,

(
𝑚𝐶 , 𝑠𝑚𝐶′ )

↦→𝑚𝐶 ∪ 𝑠𝑚𝐶′
(4)

Thus, the output in this case are then general managers
𝑚 {𝑠𝑚𝐶𝑡,𝑝 | 𝑝∈[0,𝑃𝑚𝑎𝑥−1] } . Hence, the merge phase’s output using
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Figure 5: Evaluating Windowed Synopses.

general stream slicing is equivalent to the corresponding output
when using bucketing: both preserve the same error guarantees.

6 EVALUATION STRATEGIES
When the user sets the job to maintain global synopses, Condor
performs the merge phase without parallelism. We thus need to
find a way to make these global synopses available to all threads
to evaluate them efficiently. Furthermore, querying synopses is a
challenge because we need means to represent queries to allow
the system to evaluate the synopses accordingly. We overcome
these challenges by introducing two evaluation operators. However,
users can alternatively create their operators based on the API of
the underlying dataflow engine. For example, they may use a map
operator that extracts the top-k elements from each windowed
count-min sketch constructed by the streaming job.

6.1 Evaluating Windowed Synopses
We leverage that the most recent streaming data suffices to evalu-
ate a query over sliding windows [9]. Thus, we define two differ-
ent two-input stream operators with broadcast state [23], namely
QueryLatest and QueryTimestamped. Figure 5 illustrates how these
operators work. The broadcast state strategy is used for streaming
applications where a low-throughput event stream, in our case,
the synopsis stream, is broadcasted to all parallel instances of an
operator. The system then evaluates the event stream against all
the elements coming from the query stream. This way, the system
can query the same synopsis simultaneously on every thread, even
as each synopsis was constructed only once.
QueryLatest. Let 𝐵𝐵𝐵𝐵𝑞𝑞𝑞𝑞 be the broadcast state of the 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄
operator. When a window with index𝑇𝑇 is closed, the system broad-
casts synopsis 𝑄𝑄𝑊𝑊𝑇𝑇 to all computing cores in the system, which
run an instance of the 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 operator, i.e., 𝐵𝐵𝐵𝐵𝑞𝑞𝑞𝑞 = {𝑄𝑄𝑊𝑊𝑇𝑇 }.
The system can then evaluate the queries on the same synopsis
with maximum parallelism. Consider our running example (Sec-
tion 3), where each query of the query stream contains a requested
IP address. All𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 operator instances simultaneously eval-
uate these queries with the count-min sketch of the latest window,
outputting the requested IP addresses’ approximate frequencies.
QueryTimestamped. In contrast to𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 , the system now
broadcasts a collection of synopses of the last user-defined 𝑁𝑁

synopses, i.e., 𝐵𝐵𝐵𝐵𝑞𝑞𝑞𝑞 = {𝑄𝑄𝑊𝑊𝑡𝑡 | ∀ 𝑄𝑄 ∈ [𝑇𝑇 − 𝑁𝑁𝑁𝑇𝑇 ]}, where 𝐵𝐵𝐵𝐵𝑞𝑞𝑞𝑞 is

Figure 6: Order-Based Synopses Evaluation – Wavelets.

the broadcast state of the 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑇𝑇𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 operator. When a
𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑇𝑇𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 instance receives a new synopsis, it deletes
the oldest synopsis 𝑄𝑄𝑊𝑊𝑇𝑇−𝑁𝑁 and adds the new one. This operator
also requires each query to have a timestamp, 𝑞𝑞𝑞𝑞𝑡𝑡 , which is used to
search for all the synopses in 𝐵𝐵𝐵𝐵𝑞𝑞𝑞𝑞 that contain that period of time
in their window definition. Therefore, as windows may overlap, a
single query may generate multiple results.

In the case of handling stratified synopses, each operator main-
tains 𝑃𝑃 times more synopses in their broadcast state, where 𝑃𝑃 is the
total number of partitions, i.e., 𝐵𝐵𝐵𝐵𝑞𝑞𝑞𝑞 = {𝑄𝑄𝑊𝑊𝑇𝑇 𝑇𝑇𝑇 | ∀ 𝑄𝑄 ∈ [0𝑁 𝑃𝑃 − 1]} for
𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 , and 𝐵𝐵𝐵𝐵𝑞𝑞𝑞𝑞 = {𝑄𝑄𝑊𝑊𝑡𝑡𝑇𝑇𝑇 | ∀ 𝑄𝑄 ∈ [𝑇𝑇 − 𝑁𝑁𝑁𝑇𝑇 ]𝑁 𝑄𝑄 ∈ [0𝑁 𝑃𝑃 − 1]}
for 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑇𝑇𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 . Therefore, each query also requires a par-
tition value 𝑄𝑄 , so that Condor can evaluate it only with the synopses
corresponding to the same partition 𝑄𝑄 .

6.2 Evaluating Order-Based Synopses
Here, the evaluation operators receive a stream of managers as
input instead of a stream of synopses. Therefore, the user must
indicate how the manager forwards the evaluation requests to
the corresponding synopses, depending on the partition strategy.
Condor provides users with a basic manager implementation so
that they do not have to provide the logic of how partial synopses
are stored. This way users can implement their own manager by
extending this basic manager. Condor provides all functions to get
the corresponding synopsis based on the indexed query.

Figure 6 gives an example illustrating how Condor evaluates
order-based synopses using a manager and query forwarding. Con-
sider we want to construct Haar wavelets using parallelism of
two. First, Condor divides and balances the incoming stream us-
ing the Round-Robin partition [47] (Phase I). After the workload
distribution, the compute phase (Phase II) redirects all elements
with 𝑄𝑄 𝑄𝑄𝑖𝑖𝑄𝑄 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑄𝑄 to thread 𝑄𝑄 to construct the partial syn-
opses. Then, the merge phase (Phase III) unifies all the partial syn-
opses by registering them into a manager 𝑄𝑄. During the evaluation
phase (Phase IV), we then calculate the range-sum for all values
between indexes 𝑙𝑙𝑄𝑄 𝑙𝑙 𝑄𝑄 and 𝑄𝑄𝑄𝑄𝑟𝑟𝑟𝑄𝑄 in window𝑊𝑊𝑇𝑇 , with 𝑙𝑙𝑄𝑄 𝑙𝑙 𝑄𝑄 = 2 and
𝑄𝑄𝑄𝑄𝑟𝑟𝑟𝑄𝑄 = 6. In this case, the manager 𝑄𝑄 asks every partial result
𝑄𝑄𝑊𝑊𝑇𝑇 𝑇𝑇𝑇 to calculate a range-sum using local indexes instead. As we
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assumed a Round-Robin partition,𝑚 calculates the local indexes
in a partition as ⌊𝑖𝑛𝑑𝑒𝑥/𝑃𝑚𝑎𝑥 ⌋. However, it is necessary to check
if the local index plus the partition value 𝑝 maps to an index in-
side the original range between [𝑙𝑒 𝑓 𝑡, 𝑟𝑖𝑔ℎ𝑡]. If the mapping does
not fall inside the given range, manager𝑚 corrects the local index
by adding one for a left index or subtracting one for a right in-
dex. The result for this example is𝑚 {𝑠𝑊𝑇,0 ,𝑠𝑊𝑇,1 } .𝑟𝑎𝑛𝑔𝑒𝑆𝑢𝑚(2, 6) =
𝑠𝑊𝑇 ,0 .𝑟𝑎𝑛𝑔𝑒𝑆𝑢𝑚(1, 3) + 𝑠𝑊𝑇 ,1 .𝑟𝑎𝑛𝑔𝑒𝑆𝑢𝑚(1, 2). This technique also
work for any range or point query. This is possible as order-based
synopses preserve the element’s indexing properties: Users only
redirect the query to the corresponding synopsis using the indexes.

7 EVALUATION
We evaluate the most important properties of Condor and compare
it to one-off implementations and Yahoo’s DataSketches [58]. We
carried out these experiments with four main questions in mind:
(i) How efficient is Condor compared to the baselines (Section 7.2)?
(ii) Do our parallel processing strategies maintain the accuracy guar-
antees compared to centralized approaches (Section 7.3)? (iii) Do
our processing strategies scale linearly to the total number of cores
in the system (Section 7.4)? (iv) How does distributed processing
compare to single-threaded processing (COST [41]) (Section 7.5)?

7.1 Experimental Setup
Setup. We implemented Condor on top of Apache Flink 1.9 [12]
and used the Scotty [53] libraries for the general stream slicing
strategy. Condor is part of the Agora project [54]. We performed
our experiments on a cluster of 22 machines: The job-manager
had 48 GB of memory and 16 processing cores with 2,40 GHz;
The task-manager had 32 GB of memory and 16 processing cores
with 2.0 GHz. All machines have a 1Gbps Ethernet connection and
Ubuntu 18.04. We configured all JVMs with a heap memory size of
28 GB. We report the average throughput. For our measurements,
we implemented the Yahoo Streaming Benchmark for Flink [14].
Baselines. We compare Condor features to two one-off implemen-
tations of the count-min sketch. The goal of both implementations
is to maintain global windowed synopses. The first one is named
"Flink centralized", where we use global windows and an aggregate
function to compute the sketches in a single thread. The second
one, called "Flink distributed", uses keyed windows to partition the
windows and merges the partial sketches afterward. For maintain-
ing sketching algorithms in a distributed environment, we compare
Condor with Yahoo’s DataSketches [58]. Finally, we compare the
runtime of our distributed implementation to a basic single-core
implementation without any overhead of an underlying system.
Datasets.We employed five different data sources. The first four are
synthetic, which are UniformDataset, NormalDataset, ZipfDataset,
and IPDataset. The keys: of the first one follow a uniform distri-
bution with values between [1, 1000]; of the second one follow a
Normal distribution with 𝜇 = 1000 and 𝜎 = 300; of the third one
follow a Zipf distribution with 𝑎 = 1.1; and of the fourth one are
uniformly random 32-bit integers as one can encode an IP address
as a 32-bit integer. The fifth data stream is the NYCTaxiDataset [50].
Queries. As no precise real-world queries are yet using windowed
synopses, we defined synthetic queries to test our system. We con-
sider two classes of queries: compute- and evaluate-jobs to deal with

synopses. For the experiments, we created multiple compute jobs
only to create windowed synopses using different configurations
to vary the system’s maximum parallelism, synopsis’ output type,
stratification degree, and window type. Besides, we extend these
jobs to be evaluate-jobs running real-world queries based on the
NYCTaxiDataset. Additionally, we implemented our running ex-
ample in Section 3 (IP-job) as an evaluate-job to query count-min
sketches constructed with the IPDataset. Table 3 gives an overview
of the initialization parameters for each synopsis type.

7.2 Efficiency
We evaluate the efficiency of Condor from three perspectives. First,
we measure the efficiency of Condor’s features compared to the one-
off custom implementations of the count-min sketch in Flink (Sec-
tion 7.2.1). Second, we compare Condor’s sketch libraries with the
ones in Yahoo! DataSketches [58] (Section 7.2.2). Last, we evaluate if
Condor can indeed boost the performance of Yahoo! DataSketches
by integrating their implementation as a user-defined function
based on our API and synopsis abstraction (Section 7.2.3).

7.2.1 System Features. We start by evaluating the different fea-
tures of our system by comparing it with our one-off count-
min sketch Flink implementations. These features are serializa-
tion/deserialization of the input data stream, computation with
overlapping windows, and the synopses classification.

Results. Figure 7a illustrates the results of the serialization eval-
uation. Note that for this evaluation, we maintained the system
parallelism at 256 and gradually increased the number of sources
that simultaneously ingest data into our pipeline. We observe that
in cases where we have a single source, the serialization cost is so
high for the distributed approaches that there is no significant im-
provement over the centralized approach. However, as soon as we
increase the number of sources, the cost per tuple decreases, which
makes the serialization pay off: We observe that the distributed ap-
proaches achieve a throughput twice higher than Flink centralized
from four sources; Especially, we observe they outperform Flink
centralized by 75× for 256 sources.

Figure 7b shows the results of our second set of experiments,
where we tested the performance for an increasing number of con-
current windows. For these experiments, we set the parallelism to
256 as well as the number of sources. The results show the benefits
of combining different windowing strategies. We observe that the
only case where a Flink Distributed has a similar performance as
Condor is when there are no overlapping windows. However, the
performance of Flink Distributed drastically drops as soon as the
streaming job has more overlapping windows. On the other side,
Condor switches to general stream slicing when windows start to
overlap, making it much more stable even with an increasing num-
ber of concurrent windows. In contrast to the bucketing strategy,
the general stream slicing strategy assigns every element to one
single slice of non-overlapping data instead of multiple windows.
In more detail, the bucketing strategy computes an update for every
element in the synopsis of each concurrent window, while general
stream slicing triggers a single update per element.

We also evaluated the importance of our synopsis classification
from Section 4.2. For these experiments, we varied the number
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(a) Serialization. (b) Concurrent windows. (c) Classification.

Figure 7: Comparison to custom one-off implementations.

(a) A global sketch. (b) A sketch per partition.

Figure 8: Hyperloglog sketches performance.

of cores and considered three different streaming jobs for Con-
dor: in the first one, we used the count-min implementation as an
invertible synopsis; in the second one, we made our count-min
sketches only commutative; and in the last one, we set count-min
sketches as only mergeable synopses. Figure 7c shows the results.
We observe that the performance of all three variations and the
distributed Flink implementation are very similar. However, the
difference comes when comparing the estimation results with an
input source where its elements are not always in order. To show
this, we ran the experiment using a data stream where ten percent
of the elements has a much smaller timestamp than expected. This
forces the system to deal with out-of-order elements. We observed
that the Flink implementation uses watermarks to deal with this
problem. Nevertheless, as the out-of-order elements have a much
smaller timestamp than expected, Flink and Condor’s mergeable
synopsis implementation ignores those elements causing the sketch
to be incomplete and hence their estimations inaccurate. In contrast,
Condor’s invertible and commutative implementations can update
the corresponding sketch even if elements arrive late, ensuring
better estimates. However, this holds only for time-based windows
because, as soon as we switch to session or count-based windows,
only the invertible implementation provides a correct result. This
is because an element’s late arrival can change the window bound-
aries forcing the system to recompute those windows. Thus, Condor
uses decreasing updates to change the windows’ state without any
need or re-computation.

Summary. Condor outperforms one-off custom implementa-
tions: In the worst case, it performs equally good as a one-off dis-
tributed implementation; It preserves its high performance even in
scenarios with a high number of concurrent windows; Additionally,
it leverages our synopsis classification to deal with out-of-order
elements improving the estimation results.

7.2.2 Synopses Libraries. We now evaluate the efficiency of our
sketch libraries and compare it with the Yahoo! DataSketches li-
braries [58]. Yahoo! DataSketches provide java libraries to create
sketches in every java-based program and additionally offers con-
nectors to Apache Hive [7] and Pig [8]. Note that these systems do
not provide real-time stream processing. We decided to compare
our hyperloglog sketch (HLL) [22] implementation with Yahoo’s
HLL implementation to see which implementation makes better use
of the system’s parallelism. For this, we configured the hyperloglog

Figure 9: Performance Yahoo! DataSketches with Condor.

compute-job to maintain a single sketch for the whole dataset (i.e., a
global sketch), and then we configured the jobs to compute a sketch
per partition (i.e., stratified sketches). The number of partitions is
the same as the available number of cores in the system.

Results. In Figures 8a and 8b, we observe that our processing
strategies significantly outperform Yahoo. Yahoo’s implementation
outperforms Condor in scenarios with very low parallelism (be-
low eight cores) because of Flink’s system overhead. However, we
observe that already with two quadcore computers, our system
achieves better performance. More interestingly, we observe that
Condor’s HLL implementation scales linearly with the number of
available cores and outperforms Yahoo by more than one order of
magnitude (46× faster). It can achieve this due to its divide and
conquer design, making better use of the system’s parallelism. In
particular, we observe that Yahoo’s implementation computes the
global sketches centralized (Figure 8a). Hence, even in the log-scale
image, we cannot observe any significant change in their perfor-
mance as we increase the parallelism degree. We observe the same
behavior for Yahoo’s implementation while computing a sketch per
partition using Hive on top of Spark (Figure 8b). However, when
using Hive on top of Flink, we see some performance improvement
because Flink tries to group the partitions on different cores. After
reaching a parallelism of 16, the throughput remains constant. This
indicates that the system overhead is more significant than any
possible improvement of having more available cores.

Summary. Condor’s implementation linearly scales with the
total number of cores in the system, showing that our implementa-
tion is specifically designed for high parallelism applications. This
is not the case for Yahoo! DataSketches using Hive.
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7.2.3 Integrating User-Defined Synopses. An essential feature of
Condor is that it allows users to implement their synopses via a sim-
ple API: Users can focus on the application logic instead of intricate
internal details. We tested this feature by adapting Yahoo’s HLL
sketch implementation to our API, showing that Condor enables
any mergeable synopsis to scale linearly with the parallelism.

Results. Figure 9 illustrates the results of this experiment. We
see that the improvements in Yahoo’s HLL sketch’s scalability and
performance when using Condor are remarkable. Now Yahoo’s HLL
sketch performance is very similar to Condor’s original implemen-
tation. More importantly, Yahoo’s HLL sketch now scales linearly
with the system’s parallelism (see log scale plot). Note that achiev-
ing this was easy as Condor’s API is simple to use. This shows
both the ease-of-use of Condor and its power to provide a scalable
processing environment for any synopsis.

Summary.We have proven the flexibility of our system by inte-
grating Yahoo’s HLL sketch on Condor with our API. With this in-
tegration, performance and scalability improve significantly. Thus,
we can say that Condor is the perfect complement to Yahoo! DataS-
ketches libraries in real-world applications.

7.3 Reliablility
Mergeable synopses preserve the error and size guarantees after
being merged with other synopses of the same class [2]. Recall that
error guarantees may not be exact as synopses typically provide
a theoretical error range [18]. Nevertheless, we now demonstrate
that our parallel processing strategies also preserve the error and
size guarantees. We performed our accuracy experiments with two
different configurations: a 256 parallelism degree and a centralized
setup. We then evaluate the approximate results of both configu-
rations with the real results. For these experiments, we used the
NYCTaxiDataset as input and defined five evaluate jobs to create a
single global synopsis from the input data stream. Each of these jobs
is inspired by a real-world query for testing five different synopses:
(i) Get the number of entries in the dataset of each taxiID using
the count-min sketch; (ii) Predict the number of distinct taxiID’s
using the hyperloglog sketch; (iii) Get the number of taxi rides
with start longitude between [−73.991119,−73.965118] using an
equi-width histogram; (iv) Compute the average passenger count
using a reservoir sample, and; (v) Compute the range sum for every
10,000 entries using one-pass Haar wavelets.

Results. Table 2 shows the results. We observe that the relative
accuracy of the centralized and distributed setups is the same for
all synopses, except for the reservoir sampling (iv). The relative
accuracy is slightly better for the distributed setting. However, this
difference is not significant, as both results are within the expected
variance ranges. Concerning the size guarantees, we observe that
for all the mergeable synopses (i, ii, iii, iv), the resulting global syn-
opsis size from each distributed setup is the same as the original size.
Still, this does not hold for Haar wavelets as they are order-based
synopses, for which Condor does not merge the partial synopses
but registers them into a manager. Given a parallelism degree of
256, the manager is about 256 times bigger than a single synopsis.

Summary. Our distributed processing strategies preserve error
and size guarantees for all mergeable synopses and only the error
guarantees for order-based synopses.

Table 2: Condor’s relative accuracy and synopsis size ratio.

Synopsis Centralized Distributed Size ratio to
centralized

(i) Count-min 0.0015 0.0015 1.0
(ii) Hyperloglog 0.1169 0.1169 1.0
(iii) Equi-width hist. 0.0169 0.0169 1.0
(iv) Res. sampling 0.0071 0.0063 1.0
(v) Haar Wavelets 0.0344 0.0344 ∼256.0

(a) Bucketing. (b) General stream slicing.

Figure 10: Scalability for synopsis computation.

7.4 Scalability
One of our main motivations for Condor was to scale gracefully
with the number of available cores in the system. We now focus on
evaluating the scalability of Condor’s processing strategies when
increasing the degree of parallelism. Additionally, we studied how
different data sources can influence the performance of Condor.

7.4.1 Synopses Processing Scalability. First, we analyze Condor’s
throughput when computing windowed synopses as we increase
the degree of parallelism. We use the compute-jobs for constructing
count-min sketches [20], equi-width histograms, reservoir sam-
ples [57], and one pass Haar wavelets [32]. On all of these configu-
rations, we want to obtain a global synopsis per window.

Results. Figure 10 illustrates the results: Figure 10a shows the
results when using the bucketing strategy, and Figure 10b shows the
results when using the general stream slicing strategy. Overall, we
observe that all of Condor’s synopses scale linearly with the num-
ber of available cores in the system, even the one pass Haar wavelet,
as seen in the log scale figures. Still, we observe a different perfor-
mance between the Haar wavelet and all the other synopses. This
performance gap occurs because Haar wavelets are order-based
synopses, and hence they use a buffered round-robin partitioning
without parallelism in the divide phase. In contrast, all the other
synopses are mergeable, and hence they use the round-robin par-
tition with maximum parallelism. However, we can also observe
a slight performance difference among these mergeable synopses.
This is because every synopsis has a different implementation of
the update and merge functions (Section 4.1). Therefore, even if
the processing pipeline is the same, the code’s core can differ. For
example, the count-min sketch performs worse than the equi-width
histogram because its update function must first process each row’s
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(a) Global synopses. (b) Stratified synopses.

Figure 11: Scalability for synopsis evaluation.

hash functions and then increment the corresponding counters; the
equi-width histogram, instead, selects the correct bucket and then
increases a single counter.

Summary.All Condor’s synopses scale linearlywith the number
of available cores no matter which family they belong to.

7.4.2 Evaluation Operators Scalability. We proceed by analyzing
the throughput of Condor’s evaluation operators as we increase the
degree of parallelism. For these experiments, we used the count-
min sketch evaluate-job, which is the exact implementation of the
IP-job (Running Example in Section 3). Accordingly, we generated
a stream of queries containing random 32-bit integers, representing
frequency requests for specific IP addresses. Each job contains a
different evaluation operator presented in Section 6). We set up the
QueryTimestamped- and QueryTimestampedStratified operator to
maintain the last 120 synopses per partition in the broadcasted
state. For the stratified jobs, we configure the number of partitions
to be the same as the parallelism degree.

Results. Figure 11a shows the results when evaluating global
synopses. We observe that both operators scale linearly with the
number of cores, however, the QueryLatest operator a better per-
formance than for the QueryTimestamped operator. QueryLatest
maintains a single synopsis in the broadcasted state, while Query-
Timestamped maintains more than one synopsis (120 with these
configurations). Figure 11b shows the results when evaluating strat-
ified synopses. Here, it can be observed, that the operators do not
scale as smoothly as for the global synopses because the broadcasted
state regularly gets bigger as the number of partitions is increased.
This does not occur when evaluating global synopses as Condor
maintains the same amount of synopses (one for QueryLatest and
120 for QueryTimestamped) in the broadcasted state, no matter
the parallelism. On the other side, we configured the number of
partitions to be the same as the parallelism degree for the stratified
jobs. This means that for each new partition, we maintain 120 more
synopses in the broadcasted state. Thus, if the number of partitions
is set to a constant value, our evaluation operators would linearly
scale on stratified as on global synopses.

Summary. All the Condor’s evaluation operators scale linearly
to the number of available cores: the smaller the broadcast state,
the better their performance.

(a) Global synopses. (b) Stratified synopses.

Figure 12: Performance with different data sources.

7.4.3 Data Sources. We now test the performance of our synopsis
processing strategies using different datasets. We especially want to
test our strategies under data skew. Therefore, these tests use two
syntectic datasets: one without data skew, which is the Uniform-
Dataset, and; onewith very high data skew, which is the ZipfDataset.
However, to confirm our results, we also performed our experiments
with a real-world dataset, the NYCTaxiDataset [50]. We used the
count-min sketch compute-job with two different outputs in these
experiments: global and stratified-synopses.

Results. Figure 12 shows the results. Overall, it can be observed,
that when computing global synopses (Figure 12a), the data distri-
bution does not have any effect on the scalability of our system.
This is confirmed by the log scale figure, showing that the through-
put scales linearly for any of the datasets. This is because of the
round-robin partitioning that Condor employs in the divide phase
(Section 5.1). This strategy always balances the workload among all
cores in the system regardless of the datasets’ distribution. However,
this is not the case when computing stratified synopses (Figure 12b).
We observe that data skew does influence the performance of our
system. This is because Condor uses the stratification strategy in
the divide phase for such cases. In this strategy, the user decides
how to partition an incoming data stream depending on each tuple’s
content. In these experiments, we configured to split the datasets
based on their key attribute. Thus, in contrast to UniformDataset,
the ZipfDataset causes uneven partitioning as it has few groups
of keys that contain a larger number of elements. As a result, the
merge phase has to wait longer for these big groups, causing back-
pressure and inefficient computation. Note that solving this data
skew problem is out of the scope of this paper. Finally, we also
observe that the performance with the NYCTaxiDataset is worse
than the others. This is because each tuple of the NYCTaxiDataset
is much bigger (75 bytes/tuple) than the tuples of our synthetic
datasets (16 bytes/tuple): The quantity of bytes transferred among
operators is then almost five times bigger.

Summary. The workload distribution is critical for performance:
the more evenly the data partitioning, the better the performance.

7.5 COST
We measured the COST (Configuration that Outperforms a Single
Thread) [41] of all the synopses that Condor provides (Section 4.2).
Our goal in these experiments is to study the feasibility of using each
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Table 3: Condor’s synopses COST.

Synopsis Global Stratified Parameters

Res. sampling [57] 8 32 size=10000
FIFO sampling 32 14 size=10000
Biased res. sampling [4] 6 12 size=10000
Equi-width histogram 8 32 nBuckets=1000
Equi-depth histogram [27] 70 40 nBuckets=1000; 𝛼 = 0.1
Count-min sketch [20] 8 10 w=65536; d=5
Fast AGMS [17] 5 10 w=65536; d=5
Bloom filter [10] 6 64 k=4; m=128
Cuckoo filter [21] 12 32 f=8; b=8; m=215
HyperLogLog [22] 7 16 m=4096
DDSketch [40] 6 64 𝛼 = 0.05; m=256
Haar wavelets [32] 32 4 N=10000

synopsis in real-world applications. We used two different compute
jobs for each synopsis: one where the goal is to compute global
synopses per window and one that maintains stratified synopses.
We can find the initialization parameters for each synopsis in (the
fourth column of) Table 3. For the stratified jobs, we used 256
partitions. We also implemented a single-thread version of each of
these jobs without any system overhead to better understand how
many cores our processing strategies require to pay off.

Results. Table 3 shows the results of these experiments, where
the green cells denote a very low COST (≤ 16), the yellow cells a
middle COST (< 64), and the orange cells a high COST (≥ 64). On
the table’s second column, we find the synopsis’ COST in a global
configuration. As we can see, the COST of each synopsis depends
directly on the synopsis type (see the first column). This is caused
by the variety of the update and merge functions. If the synopsis has
an efficient merge function, the COST in the global configuration
is low. This is the case of nine of the synopses in our collection
(green background), where the COST is lower than (or equal to) 12
cores, making them ideal for almost every real-world application.
However, we have a higher COST for FIFO sampling and Equi-
Depth histograms because theirmerge functions are inefficient. This
injects a significant overhead, which makes it hard for distributed
computation to pay off. Another synopsis with a high COST is the
Haar wavelet. However, in contrast to FIFO sampling and Equi-
Depth histograms, Haar wavelet suffers from order-based synopses,
which require an order correction in the divide phase (Section 5.1).
It does so without parallelism, causing a bottleneck in the pipeline,
which, in turn, hurts the job’s performance. However, its update
function is so expensive that with a parallelism of 32, the overhead
injected in the divide phase is not significant anymore.

Regarding the COST of the stratified configuration (third col-
umn), we again observe that the results vary depending on the
synopsis used. However, in contrast to the global configuration
setting, synopses with expensive merge functions are favored. This
is because a stratified job does not have a merge phase. In partic-
ular, we observe that FIFO sampling and Equi-Depth histograms
reduced their COST by approximately half. Nevertheless, the other
synopses, which have very efficient update functions, now have
a higher COST than before. This is because the overall system’s
overhead is too high compared to the time we could gain with the
distribution. In other words, the more efficient the update function,
the higher the COST will be in a stratified configuration. Finally, we
also observe that Haar wavelets have different behavior than the
other synopses. This is caused by the expensive update function a

Haar wavelet requires, causing poor performance for maintaining
multiple synopses in a single core.

Summary. The efficiency of Condor depends on the update and
merge functions. However, Condor’s synopses reach high through-
put with only a few cores: mostly less than 12 cores on a global
setup and less than 32 in a stratified setup. We can thus conclude
that Condor’s synopses are suitable for real-world applications.

8 RELATEDWORK
Yahoo! DataSketches [58], BlinkDB [3], StreamApprox [46], Snap-
pyData [42] are good representative of employing summarization
algorithms into large scale environments that must handle big data.
Each of these systems offers approximate analysis via synopses.
Condor has clear differences to them, including important new
features that were not previously covered. Only StreamApprox sup-
ports real-time processing with synopses as our approach, while
BlinkDB, Yahoo! DataSketches, and SnappyData support only batch
or mini-batch processing. Besides, BlinkDB and SnappyData use
sampling and sketches for approximate analysis. However, both
employ synopses only as internal optimizations rather than avail-
able processing blocks for approximate data analysis applications.
Moreover, StreamApprox offers only sampling as a pipeline opera-
tor, giving the user more control over the data processing. Yahoo!
DataSketches provide java libraries to create synopses in every
java-based program. Condor, in contrast, offers a much broader
collection of synopses with representatives of every class of syn-
opses, i.e., sampling, sketches, histograms, and wavelets. Condor
is the only framework that provides an API to easily define new
synopsis algorithms and the infrastructure for their maintenance.
The Scotch [33] framework also features an aggregation-based pro-
gramming model. However, it is strictly limited to sketch synopses
and neither covers distribution nor windowing.

9 CONCLUSION
We presented Condor, a framework for the specification of synopsis-
based streaming jobs on top of general dataflow systems. Con-
dor lays down the mathematical foundations for efficient syn-
opses computation in distributed streaming applications. It is the
only framework that equips streaming applications with paral-
lel computation and evaluation for all synopsis types, including
sketches, histograms, samplers, and wavelets. Its techniques offer
high-throughput for parallel synopsis maintenance while preserv-
ing accuracy guarantees of centralized techniques. We evaluated its
effectiveness using multiple representative jobs with four synthetic
and one real dataset. We show that it significantly outperforms
existing approaches, up to a factor of 75x, due to better resource
utilization and less data transfer among nodes. The performance of
all its techniques scales linearly with the parallelism degree.
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