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ABSTRACT

Large organizations that collect data about populations (like the
US Census Bureau) release summary statistics that are used by
multiple stakeholders for resource allocation and policy making
problems. These organizations are also legally required to protect
the privacy of individuals from whom they collect data. Differential
Privacy (DP) provides a solution to release useful summary data
while preserving privacy. Most DP mechanisms are designed to
answer a single set of queries. In reality, there are often multiple
stakeholders that use a given data release and have overlapping but
not-identical queries. This introduces a novel joint optimization
problem in DP where the privacy budget must be shared among
different analysts.

We initiate study into the problem of DP query answering across
multiple analysts. To capture the competing goals and priorities of
multiple analysts, we formulate three desiderata that any mecha-
nism should satisfy in this setting ś The Sharing Incentive, Non-
Interference, and Adaptivity ś while still optimizing for overall
error. We demonstrate how existing DP query answering mecha-
nisms in the multi-analyst settings fail to satisfy at least one of the
desiderata. We present novel DP algorithms that provably satisfy
all our desiderata and empirically show that they incur low error
on realistic tasks.
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1 INTRODUCTION

Large data collecting organizations like Facebook, Google, The
U.S. Census Bureau, and Medicare often release summary statistics
about individuals and populations. Access to such data is incredibly
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useful for multiple resource allocation, policy-making and scientific
endeavors. Decisions like congressional seat apportionment, school
funding and emergency response plans all depend on census data
[18]. Facebook’s trove of user interaction data was found to be
valuable in studying the impact of social media on elections and
democracy [28].

While these data releases are very useful, they may reveal sensi-
tive information about individuals [14, 26, 34]. Differential Privacy
(DP) [10, 11] is the gold standard of privacy protection through the
addition of randomized noise. However, due to the fundamental
law of information recovery [9], making an unbounded number of
releases from a dataset (even if each satisfies DP) will eventually
allow an attacker to accurately reconstruct the underlying dataset.
Because of this, data curators must bound the amount of informa-
tion released using a parameter known as the privacy loss budget
𝜖 . Traditional privacy mechanisms focus on minimizing the error
introduced by differential privacy, where error trades off with 𝜖 .

1.1 Multi-analyst DP data release problem

We study the common real-world situation where multiple stake-
holders or analysts are interested in a particular data release and
the data curator must decide how the stakeholders should share the
limited privacy budget. Consider the role of Facebook in its partner-
ship with Social Science One [1]. Facebook wanted to aid research
on the effect of social media on democracy and elections by sharing
some social network data. In order to participate and receive the
privacy protected data each analyst had to submit their specific
tasks and queries ahead of time. With the given set of queries from
each analyst and a fixed privacy budget, Facebook created a single
data release to be used by all analysts. Using existing DP techniques,
Facebook had three options: (a) split the privacy budget and answer
each analyst’s queries individually, (b) join all analysts’ queries
together and answer them all at once using a workload answering
mechanism [4, 7, 8, 16, 23, 24, 27, 29, 32, 33, 35, 37], or (c) generate
a single set of synthetic data [36] for all analysts to use.

Option (a) is inefficient as the same query can be answered mul-
tiple times, each time using some of the privacy budget. Option (b)
may be efficient with respect to overall error but does not differen-
tiate between the queries of different analysts. Some analysts may
receive drastically more error than others, perhaps much more than
they would have under (a). Option (b) therefore lacks much in the
way of guarantees to an individual analyst. Option (c) is agnostic
to any analyst’s particular queries and may incur inefficiencies due
to its inability to adapt to the specific queries being asked.
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Though all of these techniques have their uses, they all have
some undesirable properties in the multi-analyst setting. This is
because almost all of the work in differential privacy up until now
has focused (often implicitly) on the single analyst case. We are
interested in designing effective shared systems for multi-analyst
differentially private data release that simultaneously provide guar-
antees to individual analysts and ensure good overall performance.
We call this the multi-analyst differentially private data release
problem.

1.2 Contributions

Our work introduces the multi-analyst differentially private data
release problem. In this context we ask: łHow should one design a

privacy mechanism when multiple analysts may be in competition

over the limited privacy budgetž. Our main contributions in this
work are as follows.

• We study (for the first time) differentially private query an-
swering across multiple analysts. We consider a realistic
setting where multiple analysts pose query workloads and
the data owner makes a single private release to answer all
analyst queries.
• We define three minimum desiderata that that we will ar-
gue any differentially private mechanism should satisfy in a
multi-agent setting ś The Sharing Incentive, Non-Interference
and Adaptivity.
• We show empirically that existing mechanisms for answer-
ing large sets of queries either violate at least one of the
desiderata described or are inefficient.
• We introduce mechanisms which provably satisfy all of the
desiderata while maintaining efficiency.

2 BACKGROUND

Data Representation We consider databases where each individ-
ual corresponds to exactly one tuple. The algorithms considered use
a vector representation of the database denoted 𝒙 . More specifically,
given a set of predicates B = {𝜙1 . . . 𝜙𝑛}, the original database 𝐷 is

transformed into a vector of counts 𝒙𝐷 where 𝒙𝐷
𝑖

is the number of
records in 𝐷 which satisfy 𝜙𝑖 . For simplicity, we denote the length
of the data vector as 𝑛 and we will use the notation 𝒙 in order to
refer to the vector form of database 𝐷
Predicate counting queries are a versatile class of queries that
count the number of tuples satisfying a logical predicate. A predi-
cate corresponds to a condition in theWHERE clause of an SQL
query. So a predicate counting query is one of the form SELECT

Count (*) FROM R WHERE 𝜙 . Workloads of counting queries
can express queries such as histograms, high dimensional range
queries, marginals, and datacubes among others.

Like databases, a predicate counting query can be represented

as a 𝑛-length vector 𝒘 such that the answer to the query is 𝒘𝑇 𝒙 .
A workload is a set of𝑚 predicate counting queries arranged in
a𝑚 × 𝑛 matrix𝑾 , where each row is the vector form of a single
query. Many common queries can be represented as workloads in
this form. For example, a histogram query is simply represented by
an 𝑛 × 𝑛 identity matrix.
Differential Privacy [10, 11] is a formal model of privacy that
grantees each individual that any query computed from sensitive
data would have been almost as likely as if the individual had

opted out. More formally, Differential Privacy is a property of a ran-
domized algorithm which bounds the ratio of output probabilities
induced by changes in a single record.

Definition 1 (Differential Privacy). A randomized mecha-

nismM is (𝜖 ,𝛿 )-differentially private if for two neighboring databases
𝐷 , and 𝐷 ′ which differ in at most one row, and any outputs 𝑂 ⊆
𝑅𝑎𝑛𝑔𝑒 (M):

Pr[M(𝐷) ∈ 𝑂] ≤ exp(𝜖) × Pr[M(𝐷 ′) ∈ 𝑂] + 𝛿

The parameter 𝜖 often called the privacy budget quantifies the
privacy loss. Here we focus exclusively on 𝜖-Differential Privacy,
i.e when 𝛿 = 0.

The LaplaceMechanism is a differentially private primitivewhich
underlines the algorithms used here. We describe the vector version
of the Laplace Mechanism below.

Definition 2 (Laplace Mechanism, Vector Form). Given an

𝑚 × 𝑁 workload matrix𝑾 , the randomized algorithm which outputs

the following vector is 𝜖-differentially private [11].

𝑾𝒙 + Lap
(
∥𝑾 ∥1
𝜖

)𝑚
Where ∥𝑾 ∥1 is themaximumL1 column norm of𝑾 and Lap(𝜎)𝑚

denotes the 𝑚-length vector of 𝑚 independent samples from a
Laplace distribution with mean 0 and scale 𝜎 .

Differentially private releases compose with each-other in that
if there are two private releases of the same data with two different
privacy budgets the amount of privacy lost is equivalent to the sum
of their privacy budgets. More formally we have the following.

Theorem 1 (DP composition [11]). LetM1 be an 𝜖1-differentially

private algorithm andM2 be an 𝜖2-differentially private algorithm.

Then their combination defined to beM1,2 (𝑥) = (M1 (𝑥),M2 (𝑥)) is
𝜖1 + 𝜖2-differentially private

Of the many algorithms proposed in the literature, we will con-
sider a class of measures that invoke the Select, Measure, Recon-

struct paradigm, where instead of directly answering the queries,
they first select a new set of strategy queries. They then measure

the strategy queries using a privacy protecting mechanism (in this
case the Laplace Mechanism [11]) and finally reconstruct the an-
swers to the original input queries from the noisy measurements.
Examples of mechanisms that follow this paradigm are the Matrix
Mechanism [25] and it’s derivatives such as HDMM[27]. TheMatrix
Mechanism answers a workload of queries𝑾 by first selecting a
strategy workload 𝑨 to answer. It then measures the queries in 𝑨

using the Laplace Mechanism and then reconstructs the answers to
𝑾 from the noisy answers of 𝑨. Given a workload matrix𝑾 and
a strategy matrix 𝑨, the expected total square error of the Matrix
mechanism is as follows.

Error(𝑾 ,𝑨, 𝜖) = 2

𝜖2
∥𝑨∥21∥𝑾𝑨+∥2𝐹 (1)

Where ∥𝑨∥1 is the L1 column norm of 𝑨 and the norm considered
here is the frobenius norm. For concreteness in this work we con-
sider only mechanisms which answer workloads of linear queries.
These mechanisms can be extended to answer non-linear queries by
adding post-processing steps which reconstruct non-linear queries
from answers to several linear queries.
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3 PROBLEM FORMULATION

3.1 Setting

We consider the setting where there are 𝑘 analysts with associated
positive weights 𝑠1, 𝑠2 . . . 𝑠𝑘 ∈ (0, 1) such that 𝑠1 + 𝑠2 . . . 𝑠𝑘 = 1.
These weights represent the share of the total privacy budget to
which each analyst is entitled and can be interpreted as the relative
importance of each analysts’ queries; the natural default is to use
proportional weights of 1/𝑘 for every analyst.

Each analyst submits a workload of queries𝑊1,𝑊2 . . .𝑊𝑘 ∈ W
The data curator then answers all of the queries using a multi-
analyst differentially private mechanism. We define a multi analyst
differentially private mechanism M as a function that takes as
input each analysts’ set of queries, their respective shares of the
privacy budget and the overall privacy budget and outputs a single
data release containing the answers to all of the queries.

We can describe the mean squared error experienced by a par-
ticular analyst in a multi-analyst Matrix Mechanism as follows.

Err𝑖 (M,W, 𝜖) = 2

𝜖2
∥𝑨∥21∥𝑾𝑖A

+∥2𝐹 , (2)

where𝑾𝑖 is the matrix form of the workload𝑊𝑖 given by the 𝑖th
analyst, 𝑨 is the strategy matrix produced by mechanismM with
inputW. This formula is only for linear queries. For non-linear
queries, wemust use real datasets to get query answers and estimate
expected errors.

3.2 Desiderata

For ease of exposition, imagine that each analyst is given the choice
to either have their queries answered independently with their
share of the privacy budget or to join the collective, a group of
analysts whose queries are answered with a multi-analyst DP mech-
anism using the sum of all of the collective analysts’ privacy budget.
We argue that any multi-analyst differentially private mechanism
should satisfy three desiderata. First, the mechanism should incen-
tivize a rational agent to participate in the collective by guarantee-
ing no worse expected error than if their queries were answered
independently. Second, the mechanism should never cause any an-
alyst to regret that another analyst is participating in the collective
and increasing the former’s expected error. Third, the mechanism
should be able to adapt to and optimize for the particular queries
being asked by all analysts. In this section we formalize these crite-
ria through three separate desiderata: the Sharing Incentive, Non-
Interference, and Adaptivity. We introduce each of the desiderata as
well as current common practice through a rolling example which
demonstrates the importance of these desiderata even in a simple
case.

Example 1. Alice, Bob, and Carol are analysts working on a private

dataset of US COVID-19 deaths by age provided by the Center for

Disease Control [3]. The populations are split into 11 buckets by age.

The data curator decides to use a privacy budget of 𝜖 = 1. Each of the

analysts are entitled to an equal share of the privacy budget (that is,

each has weight 1/3). Alice and Bob both want to ask the a histogram

of the counts by age ( we call this the identity workload on age). Carol

wants to ask for the total of all counts in the database.

The first desideratum, the Sharing Incentive requires that each
analyst, in expectation, receives at most as much error as if they

had computed their query answers independently using the same
mechanism and their fraction of the privacy budget. This captures
the idea that each analyst should always benefit from joining the
collective.

Definition 3 (Sharing incentive). A mechanismM satisfies

the Sharing Incentive if for every analyst 𝑖 the following holds.

Err𝑖 (M,W, 𝜖) ≤ Err𝑖 (M, {𝑊𝑖 }, 𝑠𝑖𝜖)

Example 2. The data curator decides to split each analyst off and

give them each 𝜖/3 of the privacy budget in order to answer their

queries independently using HDMM. In this case Alice and Bob both

receive a total expected error of ±198 people while Carol receives an
expected error of ±18 people.

Suppose the data curator decides to pool the queries and jointly

answer them using HDMM. Alice and Bob receive±22 as expected their
error which is less than their error using the independent mechanism.

Carol received ±22 as her expected error which is more error than in

the independent case where her expected error was ±18 thus violating
the Sharing Incentive.

In this case Carol would prefer her workload to be answered
independently while Alice and Bob would join together. If the
mechanism were to satisfy the Sharing Incentive, Carol would be
guaranteed no worse error by joining Alice and Bob and as such
should always make that choice.

The second desiderata is Non-Interference, which states that
adding an additional analyst to the collective group, with their
associated share of the privacy budget, should not increase the
error experienced by any of the analysts already in the collective.
This desiderata ensures that no analyst in the collective can ask
(intentionally or unintentionally) a malicious set of queries which
would increase the error of any of the other analysts more than if
they had never joined the collective. Likewise, Non-interference
ensures that adding more analysts to the collective (and with them
more privacy budget) can only improve the accuracy of all agents.

Definition 4 (Non-interference). A mechanismM satisfies

Non-Interference if for all analysts 𝑖 ≠ 𝑗 , for all workloads𝑊𝑖 ,𝑊𝑗

Err𝑖 (M,W, 𝜖) ≤ Err𝑖 (M,W \𝑊𝑗 , (1 − 𝑠 𝑗 )𝜖)

Example 3. Alice and Bob have decided to join the collective and

answer their queries together since they have the same queries. They

run the joint mechanism on their queries using 2
3𝜖 of the budget.

Here they both receive ±22 people as expected error. Carol then joins

the collective. They then rerun the same mechanism using the entire

budget. In this case, Alice and Bob receive an expected error of ±24
people, which is more than their original ±22 people expected error
therefore violating Non-Interference.

In this case, Carol joining the collective makes both Alice and
Bob worse off. If the mechanism were to satisfy Non-Interference,
Alice and Bob would be guaranteed that no matter what workload
Carol asks they can be to be no worse off for allowing Carol into
the collective.

Our third desideratum is Adaptivity, which states that a mech-
anism should be able to adapt to the inputs given. We say that a
mechanism is adaptive if it changes its query answering strategy
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based off all the inputs given. This ensures that a mechanism can
adapt to the specific queries being asked by analysts in order to
avoid high error for particular sets of queries.

Example 4. The data curator chooses to use a non-adaptive mech-

anism which always releases data by answering the Identity workload.

Alice and Bob are happy since this is their exact workload. Carol is

punished since her query workload cannot be efficiently reconstructed

using the identity workload and receives an expected error of ±24
people, which is worse than her independent expected error of ±18
people.

An adaptive mechanism would be able to adapt it’s query an-
swering strategy in order to account for Carol’s queries therefore
reducing her error. The concept of Adaptivity highlights the flaws
of various trivial mechanisms which satisfy the Sharing Incentive
and Non-Interference by intentionally ignoring the inputs or inter-
actions between analysts inputs.
Tradeoffs Between Desiderata and Accuracy. Both the Shar-
ing Incentive and Non-interference add additional constraints to
mechanisms in the multi-analyst setting. As such, we expect that
mechanisms which satisfy these desiderata will suffer some accu-
racy loss. In contrast, adaptivity is not in conflict with accuracy.
Rather adaptivity is a requirement that a mechanism should opti-
mize it’s query strategy to be more efficient for a given workload.
Overall, we expect a mechanism that is adaptive to perform bet-
ter over a wide range of queries as opposed to its non-adaptive
counterpart.

3.3 Problem Statement

Our goal is to design multi-agent differentially private mechanisms
that answer the workloads submitted by the analysts with low
error while satisfying the three desiderata ś sharing incentive, non-
interference and workload adaptivity. More formally:

Problem 1. Given any 𝑘 workloads𝑊1, . . . ,𝑊𝑘 of queries on a

database𝐷 with weights 𝑠1, . . . , 𝑠𝑘 ∈ (0, 1) s.t. 𝑠1+ . . .+𝑠𝑘 = 1, design

an adaptive mechanismM such that:

• M satisfies 𝜖-differential privacy, and

• M satisfies sharing incentive (Definition 3), non-interference

(Definition 4) .

4 DESIGN PARADIGMS

Here we introduce 4 design paradigms which we use to guide our
design of multi analyst differentially private mechanisms. We call
the first two classes Independent and Workload Agnostic. These
classes use existing mechanisms without explicitly considering the
group structure of the problem. We consider them as baselines for
comparison; it is easy to see in theory and we show empirically
that these mechanisms lead to poor performance with respect to
total error. We call the other two classes of mechanisms Collect
First and Select First. These mechanisms adapt the Select Measure
Reconstruct Paradigm by aggregating all analysts’ queries either
before or after the selection step respectively. Each of the paradigms
are depicted in Figure 1.
Independent Mechanisms give each analyst their share of the
overall privacy budget proportional to their weights 𝑠1, . . . 𝑠𝑘 and
answers each analyst’s queries independently of one another using

some workload answering mechanism. Mechanisms of this class by
definition satisfy both the Sharing Incentive and Non-Interference
since analysts always have the same expected error regardless of
how many analysts are in the collective or what their queries are.

Lemma 1. Any Independent Mechanism satisfies both the Sharing

Incentive and Non-Interference

These mechanisms are not efficient as they typically answer each
individual query with less privacy budget than other mechanisms
and may answer the same or similar queries multiple times. In
Section 6 we will show a mechanism that satisfies all the desiderata
and can achieve up to

√
𝑘 times better error than its independent

counterpart.
Workload Agnostic Mechanisms always answer the same set of
queries with the entire budget regardless of the analysts’ workloads.
Mechanisms of this class also trivially satisfy both the Sharing
Incentive and Non-Interference since the same workload is always
answered regardless of the preferences of the analysts. Joining
the collective only increases the overall privacy budget leading
to an overall decrease in error, satisfying the sharing incentive.
Likewise, whenever a new analyst joins the collective the workload
remains the same and the privacy budget increases causing an
overall decrease in error for all analysts, therefore satisfying Non-
Interference.

Lemma 2. Any Workload Agnostic mechanism satisfies both the

Sharing Incentive and Non-Interference

Workload Agnostic Mechanisms are not adaptive and this causes
them to be inefficient with respect to total error, even for a single
analyst. For example, if a noisy count was released for people of
ages {0, 1, 2 . . . 99} but an analyst asks for the total count of all
people then the answer to the total query, reconstructed by adding
together all of the noisy counts, has at least 10 times larger error
than if the total query was answered directly using all of the privacy
budget.
Collect First Mechanisms collect all analysts’ queries together
before the selection step. These mechanisms combine all of the
workloads of each analyst into some weighted query set, then run
the selection step to select a single strategy workload for all the
analysts’ workloads.
Select First Mechanisms collect all the analysts’ queries after
the selection step in a Select Measure Reconstruct mechanism.
Mechanisms of this class allow an individual strategy for each
analyst’s queries. After a strategy is selected for each analyst’s
queries they are all aggregated into a joint strategy workload which
is answered directly.

The fundamental problem with designing a Collect-First Mech-
anism that satisfies the sharing incentive and Non-Interference
is that it is difficult to reason about or enforce the properties on
any useful selection step (such as HDMM) optimizing on the joint
workload. Select-First Mechanisms are easier to work with because
we do not need to reason over the multi-analyst properties of the
selection step when it is applied to each analyst independently first.

5 ADAPTING EXISTING MECHANISMS

We introduce and analyze four mechanisms for multi-analyst query
answering. Each of these mechanisms directly invokes one of the
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Algorithm 2: Identity Mechanism

input :W, 𝑆, 𝒙, 𝜖,M ⊲ defined in Algorithm 1
Selection Step

1 𝑨← Identity(𝑛)
Measure step

2 𝒚 ← 𝑨𝒙 + Lap( 1𝜖 )
Reconstruct step

3 𝒙 ← 𝑨+𝒚
4 ans← {𝑊𝑖 (𝒙) |𝑊𝑖 ∈ W}
5 return ans

receive the Total workload as their strategy and experience
(
2𝑘
𝜖

)2
error. If all the analysts join the collective an optimal utilitarian
mechanism would chose the Identity workload as the workload
that optimizes on total error. In this case (now using the entire

privacy budget) each analyst would receive
(
2
𝜖

)2
𝑛 error. In this

case all the analysts asking the identity workload would benefit
while the analyst asking the Total workload will get increasingly
worse error as 𝑛 (the size of the database) increases and will violate
sharing incentive when 𝑘2 < 𝑛. □

Theorem 3. The Utilitarian Mechanism does not satisfy non-

interference

Proof. Consider the case where there are 𝑘 analysts each with
an equal 𝜖

𝑘
share of the privacy budget. 𝑘 − 1 of these analysts ask

the Total workload and the last analyst asks the identity workload.
If the 𝑘 − 1 analysts asking the Total workload are in the collective
the strategy used would directly answer the Total workload and

receive
(

2𝑘
(𝑘−1)𝜖

)2
expected error. If the last analyst were to join

an optimal utilitarian mechanism would answer the queries using
the identity strategy which optimizes on overall error. This would

result in the 𝑘 − 1 analysts each receiving
(
2
𝜖

)2
𝑛 expected error

which violates non interference when
(

𝑘
𝑘−1

)2
< 𝑛 □

The Weighted Utilitarian Mechanism is a variant of the Utili-
tarian Mechanism that attempts to directly optimize for the Sharing
Incentive. This is achieved by weighting the queries prior to the
collection step. This requires an additional set of 𝑘 parameters
which we call workload weights Ω = {𝜔1, 𝜔2, . . . , 𝜔𝑘 }, where 𝜔𝑖 is
the weight for workload𝑊𝑖 . After weighting each of the queries,
the Utilitarian Mechanism is run on the weighted query sets. The
Utilitarian Mechanism is a special case of Weighted Utilitarian
Mechanism where 𝜔1 = 𝜔2 = · · · = 𝜔𝑘 = 1.

In an attempt to satisfy the Sharing Incentive we set the weights
as the inverse of the expected error of the mechanism in the inde-
pendent case.

𝜔𝑖 = Err𝑖 (M,𝑊𝑖 , 𝑠𝑖𝜖)−1 (3)

These weights incentivize an optimizer to satisfy the sharing in-
centive as an analyst’s utility is above 1 only if they have less error
than required to satisfy the sharing incentive. We see in Section 7
that these weights allow for the utilitarian mechanism to satisfy
the sharing incentive in practical settings and we have not been
able to create settings where the sharing incentive is violated. It is
unclear if it satisfies the Sharing Incentive in all settings.

Conjecture 1. The weighted utilitarian mechanism satisfies the

sharing incentive

In Section 7.4 we are able to show empirically that the weighted
utilitarian mechanism does violate non interference.

Theorem 4. The weighted utilitarian mechanism does not satisfy

non-interference

Algorithm 3:Weighted Utilitarian Mechanism

input :W, 𝑆, 𝒙, 𝜖,M, ⊲ defined in Algorithm 1
Set of 𝑘 workload weights Ω ← {𝜔1, 𝜔2, . . . , 𝜔𝑘 }

Collection Step

1 W ′ ← ⊎𝑘
𝑖=1 𝜔𝑖𝑊𝑖 ⊲

⊎
is multi-set union

Selection Step

2 𝑨←M(W ′)
Measure step

3 𝒚 ← 𝑨𝒙 + Lap( 1𝜖 ∥𝑨∥1)
Reconstruct step

4 𝒙 ← 𝑨+𝒚
5 ans← {𝑊𝑖 (𝒙) |𝑊𝑖 ∈ W}
6 return ans

6 THE WATERFILLING MECHANISM

The Waterfilling Mechanism is an example of a select first mecha-
nism which satisfies all three of the desiderata. We first start with a
simplified example of the Waterfilling Mechanism seen in Figure 2
and then discuss the full Waterfilling Mechanism.

In this example there are three analysts Alice, Bob, and Carol

each given the same share of the budget, 13 . Alice asks only the blue
query and assigns all of her share to that query. Bob asks the red,
blue, and green queries and assigns each query equal amounts of his
share of the privacy budget. Carol asks the blue and green queries
and like Bob assigns his share of the budget equally across all her
queries. The Waterfilling mechanism then buckets similar queries
(in this example by bucketing red blue and green queries) and their
associated shares of privacy budget together. Once all the queries
are assigned to buckets the mechanism answers a single query for
each bucket using the entire privacy budget in each bucket. The
mechanism then uses those answered queries to reconstruct the
analysts original queries. In Figure 2, we can see that since the red
query was only asked by one analyst it receives the same amount
of privacy budget as if were asked independently. Meanwhile since
each analyst asked the blue query it is answered once using the
pooled contribution of privacy budget from each analyst, resulting
in a more accurate estimate than if each analyst had independently
answered the blue query, even if they subsequently shared their
results with one another.

The example shown in Figure 2 is a simplified version of the
Waterfilling Mechanism. The Waterfilling Mechanism as defined in
Algorithm 4 has three key differences. The first key difference is the
selection step. In the simplified Waterfilling Mechanism analyst’s
queries are bucketed directly. However in practice a selection step
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Proof. For any matrix 𝑴 , We define cnorm(𝑴) as a vector
where the 𝑖th entry is the L1 norm of the 𝑖th column of𝑴 , formally

cnorm(𝑴) =
∑
𝒗∈𝑴
|𝒗 |,

where 𝒗’s are the row vectors of𝑴 and |𝒗 | is the vector which takes
entry-wise absolute value of 𝒗.

In Alg. 4, each row of 𝑨 corresponds to a bucket 𝐵 ∈ B. Thus,
particularly for 𝑨,

cnorm(𝑨) =
∑
𝒗∈𝑨
|𝒗 | =

∑
𝐵∈B

�����
∑
𝒖∈𝐵

𝒖

����� . (6)

Consider adding a query 𝒗 ′ to buckets B and let the new buckets
be B′. Let 𝒆′ = 𝒗 ′/∥𝒗 ′∥. If 𝒆′ · 𝒆𝐵 < 1 for all buckets 𝐵 ∈ B, 𝒗 ′
will be put in a new bucket 𝐵′ and thus |∑𝒖∈𝐵′ 𝒖 | = |𝒗 ′ |. Also,
B′ = B ∪ {𝐵′}.

Otherwise, there exists a bucket 𝐵∗ ∈ B and 𝒆′ · 𝒆𝐵∗ = 1. In
this case, 𝒗 ′ will be put in the bucket 𝐵∗ and B′ = B with updated

𝐵∗
′
. Since 𝒆′ and 𝒆𝐵∗ are both unit vector, 𝒆′ · 𝒆𝐵∗ = 1 means

𝒗 ′/∥𝒗 ′∥ = 𝒆′ = 𝒆𝐵∗ =
∑
𝒖∈𝐵∗ 𝒖/∥

∑
𝒖∈𝐵∗ 𝒖∥. Thus,������

∑
𝒖∈𝐵∗′

𝒖

������ =
�����
∑
𝒖∈𝐵∗

𝒖 + 𝒗 ′
����� =

�����
∑
𝒖∈𝐵∗

𝒖

����� + |𝒗 ′ |.
In both cases, we have∑

𝐵∈B′

�����
∑
𝒖∈𝐵

𝒖

����� =
∑
𝐵∈B

�����
∑
𝒖∈𝐵

𝒖

����� + |𝒗 ′ |. (7)

In this process, we add 𝑠𝑖𝑨𝑖 to 𝐵 resulting in 𝐵′. From Equation (6)
and Equation (7) we get,

cnorm(𝑨′) =
∑
𝐵∈B′

�����
∑
𝒖∈𝐵

𝒖

����� =
∑
𝐵∈B

�����
∑
𝒖∈𝐵

𝒖

����� +
∑

𝒗∈𝑠𝑖𝑨𝑖

|𝒗 |

= cnorm(𝑨) + cnorm(𝑠𝑖𝑨𝑖 ).
Given the L1 norm of every column of 𝑨𝑖 ∈ A is 1, we have

cnorm(𝑠𝑖𝑨𝑖 ) = 𝑠𝑖1, where 1 is a all-one vector. Since the L1 norm
of a matrix is the maximum of all L1 column norms, we have

∥𝑨′∥1 = max(cnorm(𝑨′)) = max(cnorm(𝑨) + 𝑠𝑖1)
= max(cnorm(𝑨)) + 𝑠𝑖 = ∥𝑨∥1 + 𝑠𝑖

□

Since we can consider the strategy matrix with no analysts as
the zero matrix, and adding an additional analyst adds their weight
to the sensitivity, the L1 norm for the strategy matrix for 𝑘 analysts
is

∥𝑨∥1 =
𝑘∑
𝑖=1

𝑠𝑖

Since the ith analyst is entitled to 𝑠𝑖𝜖 of the budget and the sensi-
tivity of the strategy query set is equal to the sum of each analysts’
weights, the scale of the noise term in Equation (1) is the same
regardless of the number of analysts. Let 𝑧 ≤ 𝑘 be any arbitrary
number of analysts. The scale of the noise term in Equation (1) is
as follows.

2 ∥𝑨∥21
𝜖2

=

2
(∑𝑧

𝑖=1 𝑠𝑖
)2

(∑𝑧
𝑖=1 𝑠𝑖𝜖

)2 =
2

𝜖2
(8)

Since the amount of noise being added to each query in the
final strategy is the same, the amount of error experienced by
each analyst is only dependent on the frobenius norm term of
Equation (1).

We first note that adding a new analyst to the collective results
in a change to the overall strategy matrix that can either be ex-
pressed by multiplying it by some diagonal matrix with all entries
greater than 1 (adding weight to a bucket) or by adding additional
rows (creating new buckets). We show below that either of these
operations results in a frobenius norm term that is no greater than
the term with the original strategy matrix.

Lemma 4. For any workload matrix𝑾 and any strategy 𝑨

𝑾 (𝑫𝑨)+



𝐹
≤


𝑾𝑨+




𝐹

where 𝑫 is a diagonal matrix with all diagonal entries greater than

or equal to 1 and 𝑨 is a full rank matrix.

Proof. We first note that since 𝑫 is a diagonal matrix with all
entries greater than or equal to 1 then 𝑫−1 is a diagonal matrix
with all values less than or equal to 1. Since this matrix cannot
increase the value of any entry of any matrix multiplied by it the
following holds. 

𝑾𝑨+𝑫−1




𝐹
≤


𝑾𝑨+




𝐹

We then note that𝑾𝑨+𝑫−1 is a solution to the linear system of
equations 𝑩(𝑫𝑨) = 𝑾 . Since 𝑾𝑨+𝑫+ is a solution to the linear
system of equations then it is the least squares solution to the set
of linear equations [5] and as such the following holds.

𝑾 (𝑫𝑨)+




𝐹
≤


𝑾𝑨+𝑫−1




𝐹
≤


𝑾𝑨+




𝐹

□

Lemma 5. Let �̃� be the original strategy matrix 𝑨 with additional

queries (rows) added to it. We can write this as a block matrix as

�̃� =

[
𝑨

𝑪

]
Where 𝑪 are the additional queries. For any workload𝑾

and any strategy 𝑨 

𝑾�̃�+



𝐹
≤


𝑾𝑨+




𝐹

Proof. Let �̂� be the original matrix 𝑨 padded with additional

rows of zeros in order to be the same size as �̃� written in block

matrix form as �̂� =

[
𝑨

0

]
. We note that by the formula for block

matrix pseudo-inverse, the pseudo-inverse of �̂� is as follows. �̂�+ =[
𝑨+ 0

]
We then note that𝑾�̂�+ is a solution to the linear system

of equations as follows.

𝑾�̂�+�̃� =𝑾
[
𝑨+ 0

] [𝑨
𝑪

]
=𝑾𝑨+𝑨 =𝑾

Therefore since𝑾�̂�+ is a solution to the linear system of equa-

tions and since𝑾�̃�+ is the least squares solution to the linear set
of equations [5] we get the following.

𝑾�̃�+




𝐹
≤


𝑾�̂�+




𝐹
=



𝑾𝑨+



𝐹

□
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Proof of Theorem 5. Let 𝑨 be the strategy matrix produced

by the Waterfilling Mechanism without analyst 𝑗 . Let �̃� be 𝑨 with
additional rows appended to it and let 𝑫 be a diagonal matrix with
all entries 1 or greater.

Err𝑖
©­«
M,W ∪𝑊𝑗 ,


𝑠 𝑗 +

∑
𝑙 :𝑊𝑙 ∈W

𝑠𝑙


𝜖
ª®¬

=
2

𝜖2



𝑾𝑖 (𝑫�̃�+)


2
𝐹

(from Equation (8))

≤ 2

𝜖2



𝑾𝑖 �̃�
+

2

𝐹
(from Lemma 4)

≤ 2

𝜖2



𝑾𝑖𝑨
+

2

𝐹
(from Lemma 5)

= Err𝑖
©­«
M,W,


∑

𝑙 :𝑊𝑙 ∈W
𝑠𝑙


𝜖
ª®¬

If we instead assume 𝑨 is the strategy matrix produced by the
Waterfilling Mechanism with only analyst 𝑗 then the same process
satisfies Equation (5). □

Since adding an additional analyst to the collective can only
decrease the amount of expected error experienced by any analyst,
we have the following as corollaries for Theorem 5.

Corollary 1. Waterfilling Mechanism satisfies sharing incentive

Corollary 2. Waterfilling Mechanism satisfies non-interference

Unlike Independent Mechanisms, Waterfilling Mechanisms sat-
isfy all the desiderata while being efficient with respect to error.

Theorem 6. The Waterfilling Mechanism can achieve as much

as k times better error than the Independent Mechanism and always

achieves no more error than the Independent Mechanism.

Proof. Consider the pathological example of 𝑘 analysts each of
whom ask the same single linear counting query to be answered
with the Laplace Mechanism. In this case the overall expected error
using the Waterfilling mechanism is that of answering the single
query once using the entire privacy budget using the Laplace mech-

anism. This results in an expected error of 2
𝜖2
. If each analyst were

to independently answer their queries using 𝜖
𝑘
of the budget each

and then post process the 𝑘 results by taking the sample median

it would result in a mean squared error of 2𝑘
𝜖2
. By Corollary 1 the

Waterfilling Mechanism always achieves at most as much error as
the Independent Mechanism satisfying the second statement. □

7 EXPERIMENTS

We designed experiments to both test if the mechanisms proposed
satisfy the desiderata as well as how they perform in practice. We
show 4 different experiments using different inputs and data sets.

• Practical Settings: We show that the Waterfilling Mecha-
nism maintains high efficiency while still satisfying all three
desiderata. We also show that mechanisms that optimize for
overall error such as the Utilitarian mechanism fail to satisfy
both the Sharing Incentive and Non-Interference.

• Marginals: Here we show that non-adaptive mechanisms
such as the Identity mechanism may incur high error on
particular classes of queries such as marginal queries, while
adaptive mechanism can perform well on wide ranges of
queries.
• Data-Dependent Non-linear Queries: We show that the
Waterfilling Mechanism retains it’s properties when used to
reconstruct non-linear queries from a set of linear strategy
queries.
• Tolerance for Waterfilling: We evaluate the efficacy and
properties of the mechanism using various levels of 𝜏 and
show that 𝜏 = 10−3 performs well and does not result in any
violations of the sharing incentive.

7.1 Experimental Setup

For the following experiments we use HDMM [27] as the selection
step, but any selection step can be used in practice. In addition, we
can consider the IdentityMechanism a variant of matrix mechanism
with a fixed identity strategy matrix 𝑰 ,MM(𝑰 ).

For all experiments we used 𝜖 = 1 for our total privacy budget.
In addition, The Waterfilling Mechanism has a tolerance parameter
𝜏 . We experimented with several values of 𝜏 . Results shown in
Section 7.4 found 𝜏 = 0.001 is a value that achieves good overall
accuracy. As such we set it to be 0.001 in all our experiments.

For the figures, each workload is given an abbreviations as fol-
lows: Ind (Independent HDMM), Iden (Identity mechanism), Util
(Utilitarian HDMM), WUtil (Weighted Utilitarian HDMM), and Wa-
ter (HDMM Waterfilling Mechanism). For each experiment we run
the optimization 10 times and pick the strategy with the minimum
loss.

7.2 Empirical Measures

We design several empirical measures based on our desiderata to
provide an overall understanding of the mechanisms. All measures
are with respect to a single mechanism and a single set of workloads.
Total Error is the sum of expected errors of all analysts. This is a
common measure found in the literature to show the efficiency of
the algorithm.
Maximum Ratio Error of a mechanismM for a given analyst
is the expected error ofM divided by the expected error of the
independent version. For non-independent adaptive algorithms, it
is a measure of the Sharing Incentive as it measures to what extent
one analyst gets better or worse off compared to asking the query
on their own. We present the maximum of the ratio errors among
all analysts. The maximum ratio error amongst all analysts is

max
𝑖

(
Err𝑖 (M,W, 𝜖)
Err𝑖 (M,𝑊𝑖 , 𝑠𝑖𝜖)

)
.

If the value is larger than 1, the mechanism violates the Sharing
Incentive as the error in the joint case is greater than the error
experienced in the independent case.
Empirical Interference is a quantifiable measure to show the
extent which amechanism violates Non-Interference or the distance
from violating it. For each analyst 𝑖 , we define the interference with
respect to another analysts 𝑗 as the ratio of the expected error for
analyst 𝑗 when all analysts are included to the case when excluding
analyst 𝑖 . If this ratio is larger than 1, analyst 𝑗 can be worse off
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when analyst 𝑖 joins the workload set. We define the interference
of analyst 𝑖 on analyst 𝑗 to be

𝐼𝑖 ( 𝑗) =
Err𝑗 (M,W, 𝜖)

Err𝑗 (M,W𝑐
𝑖
, (1 − 𝑠𝑖 )𝜖)

This represents the relative change in error experienced by analyst
𝑗 when analyst 𝑖 joins the collective. We then define the interference
of mechanismM on the setW as the maximum of interference
among all analysts, as

𝐼M (W) = max
1≤𝑖, 𝑗≤𝑘,𝑖≠𝑗

𝐼𝑖 ( 𝑗).

Intuitively, it represents the maximum ratio increase of the ex-
pected error of any analyst when another analyst joins the workload
set. If 𝐼M (W) ≤ 1, mechanismM satisfies Non-Interference on
W. SinceM is usually a non-deterministic mechanism, rerunning
the mechanism withW𝑐

𝑖
may give different strategy matrices to

other analysts. Thus, we fix strategy matrices for Select First Mecha-
nisms to ensure a more reasonable comparison. Since the strategies
used by Collect First Mechanisms are dependent on each analysts
input it is not possible to fix the strategy matrix.

7.3 Workloads and Datasets

Here we describe the methods used to generate workloads for each
analyst as well as the data-sets used. When considering only linear
queries all of our mechanisms are data independent and as such
do not require a dataset in order to be evaluated. We only use a
dataset when we extend our evaluation to non-linear queries and
data dependent queries.
Practical settings: We generate practical settings using a series
of random steps using the census example workloads provided in
[27]. We tested on the race workloads with domain size 𝑛 = 64.

(1) We first fix the domain size 𝑛. We then generate the number
of analysts by picking an integer 𝑘 uniformly random from
[2, 𝑘max]. We let the number of analysts be 𝑘 . Each analyst
is given equal weight.

(2) Each analyst then pick a workload uniformly random from
the set of 8 workloads, including 3 race workloads, Identity,
Total, Prefix Sum, H2 workload, and custom workload.

(3) If they get custom workload, we chose their matrix size by
picking an integer uniformly random from [1, 2𝑛].

(4) For each query in the matrix we chose a class of query uni-
formly sampled from the set including range queries (0-1 vec-
tor with contiguous entries), singleton queries, sum queries
(random 0-1 vector) and random queries (random vector).
The query is thus a random query within its class.

(5) The custom workload is thus a vertical stack of the queries.
(6) We repeat this procedure 𝑡 times to get 𝑡 randomly chosen

sets of workloads. We call them 𝑡 instances.

Marginals:We also experiment on another common type of work-
loads, marginals. For a dataset with 𝑑 attributes with domain size 𝑛𝑖
for the 𝑖th attribute, we can define a𝑚-way marginal as the follows.
Let 𝑆 be a size𝑚 subset of {1, 2, . . . , 𝑑}, we can express the workload
as the Kronecker product 𝑨1 ⊗ 𝑨2 ⊗ . . . ⊗ 𝑨𝑑 , where 𝑨𝑖 = 𝑰𝑛𝑖 if
𝑖 ∈ 𝑆 and 𝑨𝑖 = 𝑻𝑛𝑖 otherwise. Here 𝑰𝑛𝑖 is the identity workload
matrix and 𝑻𝑛𝑖 is the total workload matrix. Specifically, a 0-way
marginal is the Total workload and a 𝑑-way marginal is the Identity

workload. Also, since there are
(𝑑
𝑚

)
size-𝑚 subset of {1, 2, . . . , 𝑑},

there are
(𝑑
𝑚

)
different𝑚-way marginals. In our experiments for

simplicity, we use 𝑑 attributes all with domain size 2. We repeat
the process for generating analyst workloads from the practical
settings in this case each individual analyst chooses a workload

uniformly at random from the set of set of
(𝑑
𝑚

)
𝑚-way marginals.

Data-dependent Non-linear Queries: In previous experiments,
all workloads are linear and the expected error can thus be calcu-
lated without data. Our mechanisms can also be used for non-linear
queries. We experiment on some common non-linear queries in-
cluding mean, medium, and percentiles based on a histogram.

Error in this case is data-dependent and needs to be empirically
calculated using real datasets. We use the Census Population Pro-
jections [2]. The dataset is Population Changes by Race. We choose
year 2020 and Projected Migration for Two or more races. The
domain size of data is 𝑛 = 86, representing ages from 0 to 85.

As in the previous 2 experiments we use the procedure from prac-
tical settings in order to generate each analyst’s workloads except
the set of workloads to select from only contains 4 queries, mean,
medium, 25-percentile, and 75-percentile.Mean is reconstructed from
the workload containing the Total query 𝑻𝑛 and the weighted sum
query, a vector representing the attribute values (0 to 85 in our
case). Medium and percentiles are reconstructed from the Prefix
Sum workload 𝑷𝑛 .
Tolerance for Water-filling: To examine the effect of tolerance
in practice, we experimented on different values of tolerance 𝜏 for
the HDMMWater-Filling mechanism. Figure 5 shows the case when
𝜏 ∈ [0.1, 0]. We experimented with greater value of 𝜏 those values
resulted in greater error and have been omitted from the figures.The
workloads used are 1-way marginals as defined in Section 7.3.

7.4 Results

Practical settings: Figure 3a gives an overall view of the efficiency
of different mechanisms. As expected, Utilitarian HDMM, a mech-
anism optimized for overall error, performs the best. Meanwhile
Independent HDMM, a mechanismwhich does not utilize the group
structure of the problem at all performs the worst. We note that
the Weighted Utilitarian Mechanism in exchange for satisfying the
sharing incentive performs slightly worse than the Utilitarian but
performs better than the Waterfilling Mechanism which satisfies all
three desiderata. The Waterfilling Mechanism performs as well as
the Identity Mechanism while still satisfying adaptivity. This shows
as stated in Section 3.2 that while there is a small cost in order
to satisfy the sharing incentive and Non-Interference, satisfying
adaptivity comes at no accuracy cost.

We present the results for 𝑘max = 20 as a representative in Fig-
ure 3. The figure is a box plot of 𝑡 = 100 instances is generated
randomly using the procedure in Section 7.3. The green line repre-
sents the median and the green triangle represents the mean. The
box represents the interquartile range.

Figure 3b shows how other mechanisms compared with Indepen-
dent HDMM in terms of maximum ratio error. Utilitarian HDMM
violates the Sharing Incentive in a small number of instances as
there are some outliers with maximum ratio error larger than 1.
Weighted Utilitarian and The Waterfilling Mechanism satisfied the
Sharing Incentive. Although Identity also has some outliers larger
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