
PR-Sketch: Monitoring Per-key Aggregation of Streaming Data
with Nearly Full Accuracy

Siyuan Sheng
University of Chinese Academy of Sciences
SKL of Computer Architecture, ICT, CAS

shengsiyuan@ict.ac.cn

Qun Huang
Peking University

huangqun@pku.edu.cn

Sa Wang
University of Chinese Academy of Sciences
SKL of Computer Architecture, ICT, CAS

wangsa@ict.ac.cn

Yungang Bao
University of Chinese Academy of Sciences
SKL of Computer Architecture, ICT, CAS

baoyg@ict.ac.cn

ABSTRACT
Computing per-key aggregation is indispensable in streaming data
analysis formulated as two phases, an update phase and a recov-
ery phase. As the size and speed of data streams rise, accurate
per-key information is useful in many applications like anomaly de-
tection, attack prevention, and online diagnosis. Even though many
algorithms have been proposed for per-key aggregation in stream
processing, their accuracy guarantees only cover a small portion of
keys. In this paper, we aim to achieve nearly full accuracy with lim-
ited resource usage. We follow the line of sketch-based techniques.
We observe that existing methods suffer from high errors for most
keys. The reason is that they track keys by complicated mecha-
nism in the update phase and simply calculate per-key aggregation
from some specific counter in the recovery phase. Therefore, we
present PR-Sketch, a novel sketching design to address the two lim-
itations. PR-Sketch builds linear equations between counter values
and per-key aggregations to improve accuracy, and records keys in
the recovery phase to reduce resource usage in the update phase.
We also provide an extension called fast PR-Sketch to improve pro-
cessing rate further. We derive space complexity, time complexity,
and guaranteed error probability for both PR-Sketch and fast PR-
Sketch. We conduct trace-driven experiments under 100K keys and
1M items to compare our algorithms with multiple state-of-the-art
methods. Results demonstrate the resource efficiency and nearly
full accuracy of our algorithms.

PVLDB Reference Format:
Siyuan Sheng, Qun Huang, Sa Wang, and Yungang Bao. PR-Sketch:
Monitoring Per-key Aggregation of Streaming Data with Nearly Full
Accuracy. PVLDB, 14(10): 1783-1796, 2021.
doi:10.14778/3467861.3467868

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/N2-Sys/PR-Sketch/.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 10 ISSN 2150-8097.
doi:10.14778/3467861.3467868

1 INTRODUCTION
Stream processing becomes an indispensable paradigm in today’s
data analysis, given that streaming data is continuously increasing
in many areas, including click streams [59], market basket trans-
actions [13], sensor data [38], and network traffic [14]. In stream
processing, each item is typically formulated as a key-value tuple for
computing. For example, the values of items belonging to each key
are accumulated as per-key aggregations. In general, stream process-
ing uses a two-phase architecture, an update phase and a recovery
phase. The update phase maintains a lightweight data structure to
process items in real time with limited memory and computation
resources, and sends the data structure to the recovery phase with
limited bandwidth usage. The recovery phase retrieves the statistics
from the received data structure with sufficient resources.

Since data streams are continuous, one critical issue in stream
processing is to deal with the limited resources in the update phase
while retaining high processing accuracy. Existing methods include
sampling-based methods [20, 26, 36, 57], counter-based methods
[15, 48, 49], and sketch-based methods [21, 23, 28, 33, 34, 42, 46, 54,
58, 63]. Prior studies show that these methods already precisely
compute various statistics for specific keys in data streams. For
example, [33, 42, 58] can detect most keys whose aggregations are
extremely larger than others. However, existing methods fail to
cover all keys, i.e., most keys still suffer from high errors.

In this paper, we target to achieve high cover proportion in
streaming data. Cover proportion refers to the proportion of keys
(e.g., 95%) whose relative errors reach a target level (e.g., 0.1%)
over all keys. Achieving high cover proportion is critical in many
streaming analysis applications like online diagnosis [37, 41], attack
prevention [25], and failure detection [31, 43].

We observe that the poor cover proportion of existing methods is
caused by simple estimation and complicated key tracking. To this
end, we pose a novel sketching design PR-Sketch to boost the cover
proportion in two aspects. First, PR-Sketch exploits equation-based
recovery in the recovery phase. Specifically, PR-Sketch builds a
system of linear equations between counter values and per-key
aggregations, and finds the best solution. It tolerates hash collisions
and hence improves cover proportion. Also, PR-Sketch offloads the
key recording part from the update to recovery phase. In particular,
the update phase identifies new keys by a lightweight data structure.

Qun Huang is the corresponding author.

1783

https://doi.org/10.14778/3467861.3467868
https://github.com/N2-Sys/PR-Sketch/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3467861.3467868

Item Stream
𝑥, 𝑣···

Recovery Phase
Per-key

Aggregations

Update

Phase

Data

Structure

Figure 1: Processing architecture.

Then, it sends the keys to the recovery phase with little bandwidth
cost and records them for further analysis. It saves memory for
aggregation recording in the update phase to reduce hash collisions,
and can record any number of keys with abundant resources in the
recovery phase to avoid loss of critical information. Moreover, we
propose an extension called fast PR-Sketch with a significant im-
provement of processing rate. Fast PR-Sketch reduces unnecessary
hash operations without affecting the cover proportion.

In summary, we make the following contributions:
• We design PR-Sketch, which enables to achieve high cover pro-
portion with limited resource usage.
• We also propose an extension called fast PR-Sketch, which can
improve the processing rate further.
• We derive time complexity, space complexity, and guaranteed
error probability for both PR-Sketch and fast PR-Sketch.
• We conduct trace-driven experiments to show high cover propor-
tion and resource efficiency of our algorithms by comparing with
state-of-the-art methods. With 100K keys and 1M items, we reach
93% cover proportion with 4 MB memory and 96.4% with 8 MB.
In the recovery phase, the key recording part only requires less
than 750 KB memory and the equation-based recovery requires
less than 30ms. Fast PR-Sketch can even achieve 1.72X ∼ 6.9X
the throughput of baselines.

2 BACKGROUND AND MOTIVATION
2.1 Problem Formulation
Stream processing. We consider various stream processing sce-
narios in which streaming data continuously arrive. Here, streaming
data includes click streams [59], market basket transactions [13],
sensor data [38], and network traffic [14]. We abstract a stream as a
sequence of items (𝑎1, 𝑎2, ..., 𝑎𝑆) as the input during a fixed-length
time interval called epoch, where 𝑆 is the number of all items at
the epoch. We formulate each item as a tuple (𝑥, 𝑣𝑥), where 𝑥 is
the key and 𝑣𝑥 is the associated value (𝑣𝑥 ≥ 0). We aim to compute
per-key aggregations over a stream. Specifically, for each key 𝑥 , we
compute the sum of 𝑣𝑥 for all items (𝑥, 𝑣𝑥) belonging to 𝑥 . Per-key
aggregation is the most fundamental statistic in streaming data
analysis. For instance, given the user-supplied threshold, we could
report hot keys whose aggregations are larger than the threshold as
heavy hitters [23, 28, 33, 58]. We could also report the keys whose
aggregation changes in two consecutive epochs are larger than the
threshold as heavy changers [33, 54, 58].

Figure 1 shows the processing architecture with two phases, an
update phase and a recovery phase. The update phase is deployed
in distributed entities where streaming data travels. In the update
phase, we maintain some data structure to record per-key aggre-
gations in each epoch. Since the underlying entities typically have
limited resources, the data structure must be lightweight. At the

Table 1: Major notation used in the paper.

Notation Description
Defined in Section 2

𝑎𝑖 𝑖th item in the stream
𝑆 number of all items
(𝑥, 𝑣𝑥) data item with key 𝑥 and value 𝑣𝑥
𝜒 set of true existing keys
𝑟𝑥 relative error of the aggregation of key 𝑥
𝑟𝑡 target relative error

Defined in Section 3
𝑉𝑥 authentic aggregation of 𝑥
𝐴𝑓 array in the filter part
𝐴𝑐 array in the count part
𝑚𝑓 number of buckets of array 𝐴𝑓

𝑚𝑐 number of buckets of array 𝐴𝑐

𝑘𝑓 number of hash functions in the filter part
𝑘𝑐 number of hash functions in the count part
ℎ𝑓 𝑖 𝑖th hash function in the filter part
ℎ𝑐𝑖 𝑖th hash function in the count part
𝑀 coefficient matrix in the recovery phase
𝑛 number of recorded keys
𝜒 set of recorded keys
𝜙 threshold for deterministic strategy

Defined in Section 4
(𝜖𝑓 , 𝜎𝑓) coefficient and error probability in filter part
(𝜖𝑐 , 𝜎𝑐) coefficient and error probability in count part
𝑁 size of entire key space
𝐹 number of true existing keys
𝐻 number of hot keys
𝑐𝑡 target cover proportion
𝑉𝑥 estimated aggregation of 𝑥

Defined in Section 5
𝐹𝑖 authentic number of 𝑖-aggregation keys
𝐹𝑖 estimated number of 𝑖-aggregation keys

end of epoch, we send the data structure from the update to re-
covery phase. The recovery phase is logically centralized, which
analyzes the received data structure to retrieve final results. We
mainly focus on the scenarios with limited bandwidth between the
update and recovery phase such as data center. The scenarios with
infinite bandwidth are out of our scope.
Goal 1: high cover proportion. In this paper, we aim to achieve
a novel objective: high cover proportion. Cover proportion refers to
the proportion of keys (e.g., 95%) whose relative errors 1 reach a
target level (e.g., 0.1%). Formally, it equals | {𝑥 |𝑥 ∈𝜒,𝑟𝑥 ≤𝑟𝑡 } ||𝜒 | , where 𝜒
is the set of true existing keys, 𝑟𝑥 is the relative error of the aggrega-
tion of key 𝑥 , and 𝑟𝑡 is a target relative error. Prior studies advocate
that approximate monitoring of specific keys like heavy hitters is
acceptable. Nevertheless, high cover proportion is more general
and benefits more applications. For instance, in anomaly detection
like blackhole [31, 42, 47, 67] or incorrect routing [30, 42, 67], each
involved key could have small aggregation values. If the results are
nearly perfect with high cover proportion, administrators can focus
on dealing with reports with limited concerns on false alarms or
1Both absolute [33, 66] and relative error [32, 46, 63, 64] are used. We adopt the latter
one to better evaluate all keys with different aggregations under nearly full accuracy.

1784

CMH DT ES FR LC UM0

25

50

75

100

M
em

or
y

(M
B)

Figure 2: Required memory
of existing methods for high
cover proportion.

CMH DT ES FR LC UM0

25

50

75

100

Fr
ac

tio
n

(%
) Memory Usage

Processing Time

Figure 3: Fraction of resource
usage about complicated key
tracking.

undetected events. High cover proportion can also infer an accurate
distribution of per-key aggregations. It benefits distribution-based
tasks like DDoS detection [25] focusing on the keys with a single
item each. However, if we only address heavy hitters, the distribu-
tion can be biased and DDoS detection can get hard. We evaluate
the fine-grained applications in Section 5.3.
Goal 2: limited resource usage. In addition to high cover propor-
tion, maintaining limited resource usage in the update phase is also
significant for high efficiency. It includes limited computational
overhead, memory usage, and bandwidth consumption.
• Computational overhead: We must keep limited overhead
with lightweight operations for linear processing rate. For in-
stance, a high-speed stream like OC-768 with 40 Gbps rate only
tolerates 25 ns for 1000-bit item [39]. Otherwise, the update phase
could be flooded by a torrential input stream. Although sampling
the input stream can match a low processing rate, it could break
high cover proportion due to loss of critical items.
• Memory usage: On-chip memory like SRAM is limited in com-
modity entities, e.g., 8 MB in FPGA [5, 63], 10-20 MB in switch
[4, 6, 50], and ≤10 MB in NIC [9, 11, 56]. To this end, we must
keep limited memory usage under the sheer volume of a stream
over the entire lifetime. Otherwise, we have to deploy the update
phase in DRAM. Since DRAM is much slower than SRAM [39],
it could break the requirement of linear processing rate.
• Bandwidth consumption: Each commodity entity in the up-
date phase has fixed bandwidth limitation, e.g., 0.6 Tbps in FPGA
[5, 63], 1.28 Tbps in switch [4, 6, 50], and 0.2 Tbps in NIC [9,
11, 56]. Thus, we must keep limited bandwidth usage for data
transmission. Otherwise, it could degrade performance of user
applications and even cause congestion with serious item loss.

2.2 Sketch-based Techniques
Reversible sketching. We follow the line of sketch-based tech-
niques especially for reversible ones to achieve our goals. Sketch-
based techniques are a family of approximate solutions. Their key
idea is to allow counters shared by multiple keys instead of keeping
a dedicated one for each key. Thus, they only require limited mem-
ory. Moreover, they only need to access several mapped counters
rather than enumerating all counters, which incur limited computa-
tional overhead. However, some works [21, 23, 28, 29, 61, 64, 65] are
irreversible which do not record keys. They have to try the entire
key space (e.g., 2104 for 5-tuple in network stream) to recover per-
key aggregations, which is time-consuming. Therefore, we focus
on reversible sketching which records keys in some way.
Low cover proportion in existing methods. Existing sketch-
based techniques produce highly accurate per-key aggregations

for specific keys. For example, LD-Sketch [33] and Elastic Sketch
[63] can detect around 90% heavy hitters with 2 MB memory (see
Section 5.3). However, existing methods cannot achieve high cover
proportion with limited resource usage. To illustrate it, we imple-
ment 6 state-of-the-art methods including Count-Min-Heap (CMH)
[23], Deltoid (DT) [24]), Elastic Sketch (ES) [63], FlowRadar (FR)
[42], LossyCounting (LC) [48], and UnivMon (UM) [46].

We fix the cover proportion of 95% as the target. Then, we mea-
sure the amount of memory required by each existing approach
under the target. The detailed experimental settings can be found in
Section 5. Figure 2 shows that they require at least 46 MB memory,
and some even need more than 100 MB for the target cover propor-
tion. Their memory usage significantly exceeds the capability of
common entities (e.g., 10-20 MB in commodity switches [4, 6, 50]).
Root cause 1: Simple estimation.Weobserve that existing sketch-
based techniques estimate per-key aggregationswith simple counter
calculation, which is one of the root causes that lead to low cover
proportion. For instance, [23, 29, 63] use the minimum counter
value of mapped buckets as the estimation. [29, 46] compute the
median one to estimate the aggregation. Due to the simple estima-
tion, existing methods cannot tolerate hash collisions. Specifically, a
key 𝑥 can be hashed into the same bucket with multiple co-located
keys. It means that the estimation of 𝑥 can be biased by its co-
located keys. This hash collision could incur a large relative error.
Within limited memory, existing methods could suffer from serious
hash collisions. Note that all of them cannot be tolerated by simple
estimation, which could incur serious large relative errors. Thus,
the final cover proportion can be undermined.
Root cause 2: Complicated key tracking. The second root cause
is that existing methods exploit complicated key tracking entirely
performed in the update phase. The key tracking mechanism can
be classified into two categories: coding-based and bucket-based.
For example, FlowRadar [42] exploits XOR operation to encode
keys into FlowXOR field of counting table. Elastic Sketch [63] uses
dedicated buckets to accommodate keys in a heavy part. It degrades
the cover proportion in two aspects. On one hand, it incurs insuffi-
cient memory and computational resources for aggregation record-
ing. To illustrate it, we implement 6 state-of-the-art methods (i.e.,
CMH, DT, ES, FR, LC, and UM) with the same setting in Section 5.
We count the fraction of resource usage about their key tracking
mechanisms in the update phase. We present the result with 8 MB
memory. Figure 3 shows that for complicated key tracking, DT,
FR, and LC require more than 50% memory, while other methods
require more than 40% processing time. The limited resources for
aggregation recording can aggravate hash collisions and undermine
the cover proportion. On the other hand, the limited memory in
the update phase only accommodates a limited number of keys. For
unrecorded keys, their per-key aggregations are treated as 0 which
must be smaller than their authentic aggregations. Therefore, it
could significantly undermine the cover proportion.

3 PR-SKETCH OVERVIEW
3.1 Key Ideas
Observation.Weobserve that per-key aggregations follow a heavy-
tailed distribution in common practical streams. Under the heavy-
tailed distribution, the majority of stream volume is contributed by

1785

100 101 102 103 104

Per-key Aggregation
0

0.25
0.5

0.75
1

Pr
ob

ab
ilit

y
(C

DF
)

CAIDA
UNIV1
UNIV2
Kosarak
Retail

Figure 4: Heavy-tailed distribution of per-key aggregations.

a few hot keyswith aggregations larger than a threshold. The minor-
ity is contributed by a large number of cold keys, whose aggregations
are smaller than a threshold. [12, 16, 39, 52, 53, 59] have confirmed
the heavy-tailed distribution on streams such as data center traffic,
Internet traffic, and click data. We count per-key aggregations of
all workloads used in Section 5, including network traffic (CAIDA,
UNIV1, and UNIV2), click stream (Kosarak), and market basket data
(Retail). Figure 4 shows the cumulative distribution function (CDF).
More details like skewness are given in Table 3 (see Section 5).
Note that we do not need to know the exact skewness in advance.
Although PR-Sketch is motivated by the observation, it just means
that we can perform better under the distribution than worst case.
However, even if without the stream characteristics, PR-Sketch still
theoretically outperforms other sketching (see Section 4).
Equation-based recovery. PR-Sketch leverages an equation-based
approach to restore per-key aggregations in the recovery phase.
First, PR-Sketch forms linear equations from the given keys, hash
functions, and sketch. Specifically, for each bucket in the sketch, it
tries all given keys by hash functions to find those hashed there.
Then, the counter value of the bucket equals the sum of aggrega-
tions of those keys. After processing all buckets, PR-Sketch forms a
system of linear constraints. Second, by solving the linear system,
PR-Sketch can tolerate hash collisions, which differentiates it with
prior works. Specifically, suppose that key 𝑥 is co-located with oth-
ers in its mapped buckets. Simple estimation of existing sketching
only considers the limited mapped buckets of 𝑥 . It cannot tolerate
hash collisions and biases the aggregation of 𝑥 . However, PR-Sketch
considers the extra mapped buckets of each co-located key to obtain
new constraints. Note that the extra buckets may provide more
co-located keys. Thus, the above process can iterate until getting
enough constraints to find a closed form of the aggregations.

However, a challenge is that the linear system could be an under-
constrained problem, where we cannot get sufficient constraints to
unambiguously determine per-key aggregations. To tolerate hash
collisions in this case, PR-Sketch finds the "best" estimate with
minimum ℓ2-norm (i.e.,

∑
𝑥 𝑉

2
𝑥 , where 𝑉𝑥 is the aggregation of key

𝑥). Since cold keys dominate the total number of keys under heavy-
tailed distribution, they incur most hash collisions. Note that they
share almost the same small aggregation [34] just like noises in
signals. It is well suited by ℓ2-norm minimization, which penalizes
the existence of large aggregations. Thus, PR-Sketch eliminates
feasible but irrelevant solutions and finds a nearly optimal one.
Key recording offloading. PR-Sketch splits the key trackingmech-
anism into two parts, key identification and key recording. It offloads
the latter one to the recovery phase. Specifically, key identification
part maintains a lightweight data structure to identify keys in the
update phase. Then, it transfers each identified key from the update

Key

Recording

Key

Identification

Aggregation

Recording

Update Phase

Keys Sketch

Equation-based

Recovery

Recovery Phase

Per-key

Aggregations

Keys

… Item Stream𝑥, 𝑣

Figure 5: PR-Sketch architecture.

1 0 0 ··· 1

+𝑣 ···+𝑣 +𝑣0 0

𝐴

𝐴

Forwarder

Update Phase

𝑥
Item 𝑥, 𝑣

Recovery

Phase𝐴

Figure 6: Data structure of PR-Sketch.
phase towards recovery phase. In the recovery phase, key recording
part records those keys for further analysis. Such offloading reduces
the resource usage of key tracking mechanism in the update phase,
thereby we can assign more memory and computational resources
for aggregation recording. We can also utilize sufficient memory in
the recovery phase to record any number of keys.

A challenge is that sending keys from the update to recovery
phase incurs extra bandwidth overhead. To reduce it, PR-Sketch
only identifies and sends each unique key at most once. Since a few
hot keys contribute the majority of stream volume under heavy-
tailed distribution, many items share a same hot key. Thus, the
bandwidth requirement of sending keys can be limited relative to
the item arrival rate. Even if many keys emerge within a short
time interval (e.g., microburst [55]) which temporarily exceeds the
bandwidth limitation between the update and recovery phase, PR-
Sketch can cache them in off-chip memory and sends them when
bandwidth is available in each epoch rather than immediately.
Architecture. Figure 5 depicts the architecture of PR-Sketch. In
the update phase, PR-Sketch deploys key identification and ag-
gregation recording to process the item stream. The former part
identifies the keys and transfers them to the recovery phase. The
latter one records aggregations in some lightweight sketch. In the
recovery phase, PR-Sketch deploys key recording and equation-
based recovery. Key recording stores the keys transferred from key
identification with abundant memory. In equation-based recovery,
PR-Sketch restores per-key aggregations based on the keys in key
recording and the sketch data sent from aggregation recording.

3.2 PR-Sketch
Data structure. Figure 6 shows the data structure of PR-Sketch.
The update phase comprises two parts, a filter part for key iden-
tification and a count part for aggregation recording, which are
connected by a forwarder. The forwarder forwards each item (𝑥, 𝑣𝑥)
to filter and count part simultaneously. The filter part contains a
one-dimensional array𝐴𝑓 with𝑚𝑓 buckets. Each bucket has one bit
to identify whether 𝑥 is a new key, of which we have not received
any items before. The filter part is associated with 𝑘𝑓 independent
hash functions, denoted by ℎ𝑓 𝑖 where 1 ≤ 𝑖 ≤ 𝑘𝑓 . For each item,

1786

Algorithm 1 PR-Sketch Update Algorithm
Input: Item (𝑥, 𝑣𝑥)
1: procedure Update(𝑥, 𝑣𝑥)
2: for 𝑖 = 1, 2, ..., 𝑘𝑓 do
3: if 𝐴𝑓 [ℎ𝑓 𝑖 (𝑥)] = 0 then
4: Identify 𝑥 as a new key
5: 𝐴𝑓 [ℎ𝑓 𝑖 (𝑥)] ← 1
6: end if
7: end for
8: if 𝑥 is identified as a new key then
9: Send key 𝑥 to the recovery phase
10: end if
11: for 𝑖 = 1, 2, ..., 𝑘𝑐 do
12: 𝐴𝑐 [ℎ𝑐𝑖 (𝑥)] ← 𝐴𝑐 [ℎ𝑐𝑖 (𝑥)] + 𝑣𝑥
13: end for
14: end procedure

it checks the bit statuses of 𝑘𝑓 mapped buckets before updating
them. If 𝑥 is newly identified, the filter part sends it to the recovery
phase. The count part contains a one-dimensional array𝐴𝑐 with𝑚𝑐

buckets. For each bucket, PR-Sketch uses a counter of normal size
(e.g., 32-bit) to record aggregations. The count part adopts 𝑘𝑐 inde-
pendent hash functions denoted by ℎ𝑐𝑖 where 1 ≤ 𝑖 ≤ 𝑘𝑐 . For each
item, it increases 𝑘𝑐 mapped buckets by 𝑣𝑥 . It sends 𝐴𝑐 to recovery
phase at the end of each epoch. Even if the data structure of each
part has been widely used in [17, 27, 29, 42, 51, 61], we emphasize
that PR-Sketch combines them in a different way. For the recovery
phase, PR-Sketch maintains a large array to record received keys.
Since the key recording part is straightforward, we do not show the
details for brevity. In equation-based recovery, PR-Sketch exploits
a matrix𝑀 to represent the coefficients of linear constraints.𝑀 is a
𝑚𝑐 × 𝑛 matrix, where 𝑛 is the number of recorded keys. The details
of𝑀 are given in the recovery algorithm.
Update algorithm. Algorithm 1 details how to update PR-Sketch
in the update phase. Each bucket in 𝐴𝑓 and 𝐴𝑐 is initialized as zero.
For each item (𝑥, 𝑣𝑥), we call the procedure Update. In the filter
part, PR-Sketch hashes key 𝑥 via 𝑘𝑓 hash functions one by one
(Line 2). For hash function ℎ𝑓 𝑖 where 1 ≤ 𝑖 ≤ 𝑘𝑓 , it calculates
the index ℎ𝑓 𝑖 (𝑥) and checks the bit status of bucket 𝐴𝑓 [ℎ𝑓 𝑖 (𝑥)].
If the bit is 0, PR-Sketch identifies 𝑥 as a new key and update
𝐴𝑓 [ℎ𝑓 𝑖 (𝑥)] by 1 (Lines 3-6). After checking and updating the filter
part, only if 𝑥 is identified as a new key, PR-Sketch sends 𝑥 to the
recovery phase (Lines 8-10). It guarantees that each key is only
sent at most once for its first item, which keeps limited bandwidth
overhead as discussed in Section 3.1. In the count part, PR-Sketch
hashes the key 𝑥 via 𝑘𝑐 hash functions in turn (Line 11). For hash
function ℎ𝑐𝑖 where 1 ≤ 𝑖 ≤ 𝑘𝑐 , it calculates the index ℎ𝑐𝑖 (𝑥) and
increases the counter value of the bucket 𝐴𝑐 [ℎ𝑐𝑖 (𝑥)] by 𝑣𝑥 (Line
12). Although hash collisions in 𝐴𝑓 could incur underestimation of
missing keys and overestimation of recorded keys, we provide a
theoretical guarantee in Theorem 2 of Section 4. Our evaluation in
Section 5 also confirms the limited effect in practice.
Update example. Figure 7 provides an example of updating PR-
Sketch.We set 𝑘𝑓 = 𝑘𝑐 = 1which are the numbers of hash functions
in the filter part (FP) and count part (CP) respectively, and𝑚𝑓 =

𝑚𝑐 = 4 which are the numbers of buckets in those parts. Suppose
three items are coming in order, each of which satisfies 𝑣𝑥 = 1

Algorithm 2 PR-Sketch Recovery Algorithm
Input: Set of recorded keys 𝜒 ; Array of count part 𝐴𝑐

Output: Per-key aggregations𝑉
1: procedure Recover(𝜒,𝐴𝑐)
2: Initialize the coefficient matrix𝑀 with 0
3: 𝑖𝑑𝑥 ← 0
4: for all 𝑥 ∈ 𝜒 do
5: for 𝑖 = 1, 2, ..., 𝑘𝑐 do
6: 𝑀 [ℎ𝑐𝑖 (𝑥)] [𝑖𝑑𝑥] ← 𝑀 [ℎ𝑐𝑖 (𝑥)] [𝑖𝑑𝑥] + 1
7: end for
8: 𝑖𝑑𝑥 ← 𝑖𝑑𝑥 + 1
9: end for
10: 𝑉 ← LeastSqareEqationSolver(𝑀,𝐴𝑐)
11: return𝑉

12: end procedure

𝑎!
𝑥 𝑣"
𝑓! 1

𝑎# 𝑓# 1
𝑎$ 𝑓! 1

(a) Items

𝑎!
FP 0 1 0 0 Recovery

Phase

CP 1 0 0 0Update
Sketch

𝑓!

(b) Receive 𝑎1

𝑎!
FP 0 1 1 0 Recovery

Phase

CP 1 0 1 0Update
Sketch

𝑓!

(c) Receive 𝑎2

𝑎!
FP 0 1 1 0 Recovery

Phase

CP 2 0 1 0Update
Sketch

×

(d) Receive 𝑎3

Figure 7: Update example of PR-Sketch.

(Figure 7a). When the first item 𝑎1 arrives, PR-Sketch checks the
corresponding bucket in FP. Since the initial bit of the bucket is
0, PR-Sketch can identify 𝑓1 is a new key. Then, it changes the bit
from 0 to 1 in FP and sends the key 𝑓1 to the recovery phase. It also
increases the counter value of the bucket in CP by 1 (Figure 7b).
For the second item 𝑎2, since the key 𝑓2 does not conflict with 𝑓1 in
FP, PR-Sketch can identify that 𝑓2 is a new key similarly. Then, it
changes the corresponding bit from 0 to 1 in FP and sends 𝑓2 to the
recovery phase. It also increases the counter value of the bucket in
CP by 1, where 𝑓2 still does not conflict with 𝑓1 (Figure 7c). For the
last item 𝑎3, since it belongs to the same key 𝑓1 as 𝑎1, it is hashed
in the same bucket in FP. Since the bit status has been updated as 1
by 𝑎1, 𝑓1 is not identified as a new key. Therefore, PR-Sketch does
not send anything to the recovery phase and only increases the
counter value in CP by 1 (Figure 7d).
Recovery algorithm. Algorithm 2 details how to restore per-key
aggregations by equation-based recovery. Given the set of recorded
keys 𝜒 and the array of the count part 𝐴𝑐 , we call the procedure
Recover. First, PR-Sketch initializes the coefficient matrix 𝑀 by
setting each coefficient as 0 (Line 2). It uses 𝑖𝑑𝑥 to index the column
of interest in𝑀 which starts from 0 (Line 3). Then, for each key 𝑥
in 𝜒 , PR-Sketch updates the corresponding coefficients in𝑀 (Line
4-9). Specifically, given the key 𝑥 , it calculates the hash value for
each hash function ℎ𝑐𝑖 in the count part, where 1 ≤ 𝑖 ≤ 𝑘𝑐 . With
ℎ𝑐𝑖 (𝑥), it increases𝑀 [ℎ𝑐𝑖 (𝑥)] [𝑖𝑑𝑥] by 1 to reflect the mapping of
𝑥 to 𝐴𝑐 [ℎ𝑐𝑖 (𝑥)] (Line 5-7). After updating coefficients for 𝑥 , PR-
Sketch increases 𝑖𝑑𝑥 by 1 to switch to the column corresponding to
the next key (Line 8). Finally, given𝑀 and𝐴𝑐 , we call the procedure

1787

𝑥, 𝑣

ℎ 𝑥 = 𝑥 𝑚𝑜𝑑 5

ℎ 𝑥 = (𝑥 + 1) 𝑚𝑜𝑑 5

𝐴[1]

𝐴[2]

𝐴[3]

𝐴[0]

𝐴[4]

+𝑣

+𝑣

𝐴[1]

𝐴[2]

𝐴[3]

𝐴[0]

𝐴[4]

𝑥=1

𝑥=2

𝑥=3

𝑥=0
1

1

0

0

0

1

1

0

0

0

1

1

0

0

0

1

0 0 0 1

= ×

Item

Count Part

𝐴

Matrix

M

Per-key

Frequencies

Figure 8: Recovery example of PR-Sketch.

LeastSqareEqationSolver to restore per-key aggregations 𝑉
(Line 10). PR-Sketch fixes the system of linear equations by an
equation solver. In particular, it is a conjugate gradient solver for
least-square problems by iterative method [8]. If𝑀 is full-rank (i.e.,
the rank of matrix equals the number of columns), the solver finds a
closed form of per-key aggregations. Otherwise, it chooses a unique
solution with the minimum ℓ2-norm.
Recovery example. Figure 8 gives an example of equation-based
recovery. We set 𝑚𝑐 = 5 and 𝑘𝑐 = 2 in the count part. For each
item, we follow Algorithm 1 to update 𝐴𝑓 (the left part of Figure 8).
Given four recorded keys (𝑥 = 0, 1, 2, 3), we build the coefficient
matrix𝑀 by hash functions. For example, for key 𝑥 = 0, the hash
values of ℎ𝑐1 (𝑥) and ℎ𝑐2 (𝑥) are 0 and 1. It means that only 𝐴𝑐 [0]
and𝐴𝑐 [1] are mapped. Thus, in the first column of𝑀 , only the first
two entries are 1 and the rests are 0. Given 𝐴𝑐 and𝑀 , we construct
and solve the linear problem to restore per-key aggregations (the
right part of Figure 8). Note that𝑀 is full-rank of 4, thereby we get
the closed form to tolerate hash collisions. If𝑀 is not full-rank (not
shown in Figure 8), PR-Sketch finds the solution with minimum
ℓ2-norm to tolerate hash collisions. For instance, suppose that a
bucket accommodates two cold keys, 𝑥1 and 𝑥2, both aggregations
of which are 1. PR-Sketch can restore each aggregation as 1 by
ℓ2-norm minimization with 0% relative error.

3.3 Fast PR-Sketch
To further improve the processing rate, we pose an extension called
fast PR-Sketch. We leave out the data structure and recovery algo-
rithm in the recovery phase since they are the same as PR-Sketch.
Reducing hash operations. Fast PR-Sketch reduces hash opera-
tions without affecting cover proportion. Specifically, it marks the
first item of each key with some lightweight operation. Then for the
unmarked subsequent items, it reduces their hash operations in the
filter part. Note that we use different hash functions in each part like
[63]. It reduces hash collisions under independent configurations
between the two parts. Note that PR-Sketch reports each key only
for its first item. Therefore, reducing those hash operations does
not affect the number of recorded keys and final cover proportion.
Data structure. Figure 9 shows the data structure of fast PR-Sketch.
The update phase comprises two parts connected with a forwarder
like PR-Sketch. The difference is that between the two parts, fast PR-
Sketch introduces a pruner. For each item (𝑥, 𝑣𝑥), before updating
the count part, the forwarder queries the minimum counter value
of mapped buckets in 𝐴𝑐 and forwards it to the pruner. The count
part updates mapped buckets by 𝑣𝑥 for each item and sends 𝐴𝑐 to
the recovery phase at the end of each epoch. The pruner exploits a
deterministic strategy to mark the item as the first one of 𝑥 , if the
minimum counter value is not larger than a predefined threshold.
More strategies can be considered and we leave them in future work.

Algorithm 3 Fast PR-Sketch Update Algorithm
Input: Item (𝑥, 𝑣𝑥)
1: procedure FastUpdate(𝑥, 𝑣𝑥)
2: for 𝑖 = 1, 2, ..., 𝑘𝑐 do
3: if 𝐴𝑐 [ℎ𝑐𝑖 (𝑥)] ≤ 𝜙 then
4: Mark (𝑥, 𝑣𝑥) as a first item
5: end if
6: 𝐴𝑐 [ℎ𝑐𝑖 (𝑥)] = 𝐴𝑐 [ℎ𝑐𝑖 (𝑥)] + 𝑣𝑥
7: end for
8: if (𝑥, 𝑣𝑥) is marked as a first item then
9: for 𝑖 = 1, 2, ..., 𝑘𝑓 do
10: if 𝐴𝑓 [ℎ𝑓 𝑖 (𝑥)] = 0 then
11: Identify 𝑥 as a new key
12: 𝐴𝑓 [ℎ𝑓 𝑖 (𝑥)] = 1
13: end if
14: end for
15: end if
16: if 𝑥 is identified as a new key then
17: Send key 𝑥 to the recovery phase
18: end if
19: end procedure

Update

Phase

Item 𝑥, 𝑣

Pruner
Recovery

Phase

1 0 0 ··· 1𝐴

+𝑣 ···+𝑣 +𝑣0 0𝐴

𝑥

𝐴Forwarder

Figure 9: Data structure of fast PR-Sketch.

Only if the item is marked, the pruner transfers 𝑥 to the filter part.
By doing it, fast PR-Sketch can reduce unnecessary hash functions.
The filter part checks bit statuses in 𝐴𝑓 to identify whether 𝑥 is a
new key before updating 𝐴𝑓 . Only if 𝑥 is identified as a new key, it
sends 𝑥 to the recovery phase. For the recovery phase, we keep the
same data structure as PR-Sketch.
Update algorithm. Algorithm 3 details how to update fast PR-
Sketch in the update phase. We initialize each bucket in 𝐴𝑓 and 𝐴𝑐

as zero. For each item (𝑥, 𝑣𝑥), fast PR-Sketch calls the procedure
FastUpdate. First, in the count part, it hashes the key 𝑥 via 𝑘𝑐 hash
functions one by one (Line 2). For each hash function ℎ𝑐𝑖 where
1 ≤ 𝑖 ≤ 𝑘𝑐 , it queries 𝐴𝑐 [ℎ𝑐𝑖 (𝑥)] to compare it with a predefined
threshold 𝜙 . If the counter value is not larger than 𝜙 , it marks
(𝑥, 𝑣𝑥) as the first item (Lines 3-5). Whatever the result of pruner
is, it increases 𝐴𝑐 [ℎ𝑐𝑖 (𝑥)] by 𝑣𝑥 as normal (Line 6). After processed
by the count part and the pruner, if (𝑥, 𝑣𝑥) is marked as a first item,
fast PR-Sketch processes it in the filter part (Line 8). Otherwise, it
discards the unmarked item before entering the filter part. Next, in
the filter part, fast PR-Sketch has the same process as PR-Sketch.
Specifically, for each hash function ℎ𝑓 𝑖 where 1 ≤ 𝑖 ≤ 𝑘𝑓 , it checks
the bit status of 𝐴𝑓 [ℎ𝑓 𝑖 (𝑥)]. If the bit is 0, it identifies 𝑥 as a new
key and updates the bit as 1 (Lines 9-14). Finally, if 𝑥 is identified
as a new key, it sends 𝑥 to the recovery phase (Lines 16-18).

4 THEORETICAL ANALYSIS
In this section, we follow the classical works [22, 23, 28, 58] to
present theoretical analysis for both PR-Sketch and fast PR-Sketch.

1788

Specifically, we analyze the upper bound of time complexity, space
complexity, and error probability in the worst case without consid-
ering heavy-tailed distribution. We denote the logarithm with base
of Euler number 𝑒 as ln, and that with base of 2 as log.
Parameter configuration.Given user-supplied theoretical require-
ments, we follow [22] to configure parameters. Without loss of
generality, we use (𝜖𝑓 , 𝜎𝑓) as the approximation coefficient and
required error probability of the filter part, where 0 < 𝜖𝑓 < 1
and 0 < 𝜎𝑓 < 1. Similarly, we use (𝜖𝑐 , 𝜎𝑐) as the approximation
coefficient and required error probability of the count part, where
0 < 𝜖𝑐 < 1 and 0 < 𝜎𝑐 < 1. Given above requirements, we set
𝑘𝑓 = log 1

𝜖𝑓 𝜎𝑓
, which is the number of hash functions in the filter

part. We set𝑚𝑓 = 𝐹
ln 2 log

1
𝜖𝑓 𝜎𝑓

, where𝑚𝑓 is the number of buckets
in the filter part and 𝐹 is the number of true existing keys. We set
𝑘𝑐 = log 1

𝜎𝑐
and𝑚𝑐 = 2

𝜖 log 1
𝜎𝑐

, where𝑚𝑐 and 𝑘𝑐 indicate the num-
ber of hash functions and buckets in the count part respectively.

4.1 Analysis of PR-Sketch
We first give the theoretical analysis of PR-Sketch. Theorem 1 pro-
vides the time and space complexity.

Theorem 1. The time complexity of PR-Sketch is 𝑂 (log 1
𝜖𝑓 𝜎𝑓

+
log 1

𝜎𝑐
). The space complexity of is 𝑂 (𝐹 log 1

𝜖𝑓 𝜎𝑓
+ 1

𝜖𝑐
log 1

𝜎𝑐
).

Proof. The process of each item requires 𝑘𝑓 hash operations in
the filter part and 𝑘𝑐 hash operations in the count part, thus the time
complexity is 𝑂 (𝑘𝑓 + 𝑘𝑐) = 𝑂 (log 1

𝜖𝑓 𝜎𝑓
+ log 1

𝜎𝑐
). Each bucket of

filter part occupies one bit and that of count part contains a counter
of normal size, thereby the space complexity is 𝑂 (𝑚𝑓 + 𝑚𝑐) =

𝑂 (𝐹
ln 2 log

1
𝜖𝑓 𝜎𝑓

+ 2
𝜖𝑐

log 1
𝜎𝑐
) = 𝑂 (𝐹 log 1

𝜖𝑓 𝜎𝑓
+ 1

𝜖𝑐
log 1

𝜎𝑐
). □

Theorem 2 guarantees the error probability of missing keys based
on Lemma 1 and Lemma 2.

Lemma 1. For each bucket in 𝐴𝑓 , the number of contained keys
obeys the binomial distribution with parameters 𝑘𝑓 𝐹 and 1

𝑚𝑓
.

Proof. Since each of the 𝐹 keys is processed in the filter part
for 𝑘𝑓 times, we need 𝑘𝑓 𝐹 decisions to locate buckets. For each
decision, as we use independent hash functions with uniformly
distributed outputs and allocate𝑚𝑓 buckets in the filter part, the
probability of locating any bucket equals 1

𝑚𝑓
. □

Lemma 2. Let 𝑋 be the variable that denotes the number of false
positives in the filter part, which are unreported yet treated as reported.

Then the expectation of 𝑋 satisfies 𝐸 (𝑋) = 𝐹 (1 − 𝑒
−

𝑘𝑓 𝐹

𝑚𝑓)𝑘𝑓 .

Proof. According to Lemma 1, given a bucket in the filter part,
the probability that a certain decision does not locate the bucket is
1− 1

𝑚𝑓
. Since we have 𝑘𝑓 𝐹 decisions, the probability that the bucket

is empty (i.e., with no key located here) is (1 − 1
𝑚𝑓
)𝑘𝑓 𝐹 . Thus, the

probability that the bucket is non-empty (i.e., with at least one key
located here) is 1− (1− 1

𝑚𝑓
)𝑘𝑓 𝐹 . We treat a given key as a reported

one, if it is hashed into non-empty buckets by all hash functions in
the filter part. Therefore, the possibility of being treated as reported

(i.e., false positive rate) is fp = (1 − (1 − 1
𝑚𝑓
)𝑘𝑓 𝐹)𝑘𝑓 . According to

[22], it is well approximated by (1 − 𝑒
−

𝑘𝑓 𝐹

𝑚𝑓)𝑘𝑓 .
Note that we query the filter part in the update phase while

processing the items of 𝐹 true existing keys. Each key 𝑥𝑖 suffers
from a false positive rate fp𝑖 , where 1 ≤ 𝑖 ≤ 𝐹 . Since the false
positive rate fp corresponds to the worst situation that all items
have been processed by the filter part, fp𝑖 ≤ fp holds for each key

𝑥𝑖 . Therefore, 𝐸 (𝑥) =
∑
1≤𝑖≤𝐹 fp𝑖 ≤ 𝐹 · fp ≈ 𝐹 (1 − 𝑒

−
𝑘𝑓 𝐹

𝑚𝑓)𝑘𝑓 . □

Theorem 2. PR-Sketch can miss no more than 𝜖𝑓 𝐹 keys with the
probability of at least 1 − 𝜎𝑓 .

Proof. If a key is treated as a reported one, we will never report
it to the recovery phase. Thus, the false positives in the filter part can
incur missing keys. Specifically, the probability of missing no more
than 𝜖𝑓 𝐹 keys is equal with Pr(𝑋 ≤ 𝜖𝑓 𝐹). By Markov’s inequality

along with Lemma 2, Pr(𝑋 ≥ 𝜖𝑓 𝐹) ≤ 1
𝜖𝑓
(1 − 𝑒

−
𝑘𝑓 𝐹

𝑚𝑓)𝑘𝑓 = 𝜎𝑓 . Thus,
𝑃𝑟 (𝑋 ≤ 𝜖𝑓 𝐹) ≥ 1 − 𝜎𝑓 has been proved. □

Theorem 3 gives the necessary condition of the count part to
achieve high cover proportion with equation-based recovery.

Theorem 3. Given the coefficient matrix𝑀 and the target cover
proportion 𝑐𝑡 , rank(𝑀) cannot be smaller than 𝑐𝑡 𝐹 .

Proof. As mentioned in Section 3, in the recovery phase we
construct the coefficient matrix𝑀 with the size of𝑚𝑐 × 𝐹 , where
𝑚𝑐 is the number of buckets in count part and 𝐹 is that of true
existing keys. To achieve the target cover proportion 𝑐𝑡 , we must
get the unique feasible solution for at least 𝑐𝑡 𝐹 keys. Without loss of
generality, suppose that we recover the exact aggregations for the
first 𝑐𝑡 𝐹 keys. They correspond to the first 𝑐𝑡 𝐹 columns of matrix𝑀 ,
which constitute the matrix𝑀∗ with the size of𝑚𝑐 × 𝑐𝑡 𝐹 . Since𝑀∗
is the submatrix of 𝑀 , rank(𝑀) ≥ rank(𝑀∗). To find the unique
solution, the rank of matrix𝑀∗ must equal the number of columns,
which means rank(𝑀∗) = 𝑐𝑡 𝐹 . Therefore, rank(𝑀) ≥ 𝑐𝑡 𝐹 . □

However, Theorem 3 is difficult to correlate parameter configu-
ration with cover proportion. Therefore, Theorem 4 directly guar-
antees the error probability of the count part. For each key, we use
the minimum counter value of mapped buckets in the count part as
the approximate aggregation. Note that equation-based recovery
can tolerate hash collisions as discussed in Section 3. Thus, it is
equivalent to providing an upper bound of error probability.

Theorem 4. For each recorded true existing key, the relative error
of estimated aggregation in the count part can exceed 𝜖𝑐𝑆 with a
probability at most 𝜎𝑐 , where 𝑆 is the number of all items.

Proof. We formulate relative error 𝑟𝑥 =
|𝑉𝑥−𝑉𝑥 |

𝑉𝑥
, where 𝑉𝑥 is

the authentic aggregation of key 𝑥 and 𝑉𝑥 is the corresponding
estimation. Since 𝑥 has been recorded in the recovery phase, 𝑉𝑥
cannot be smaller than𝑉𝑥 . Note that 𝑥 is true existing (i.e.,𝑉𝑥 ≥ 1),
so 𝑃𝑟 (𝑟𝑥 ≥ 𝜖𝑐𝑆) = 𝑃𝑟 (𝑉𝑥 −𝑉𝑥 ≥ 𝜖𝑐𝑆𝑉𝑥) ≤ 𝑃𝑟 (𝑉𝑥 ≥ 𝜖𝑐𝑆).

Let 𝑌 be the variable that denotes the counter value of some
mapped bucket for each key. Since we estimate aggregation with the
minimumvalue ofmapped buckets, 𝑃𝑟 (𝑉𝑥 ≥ 𝜖𝑐𝑆) ≤ 𝑃𝑟 (𝑌 ≥ 𝜖𝑐𝑆)𝑘𝑐 .

1789

Table 2: Theoretical comparison with state-of-the-art methods.

Method Space Complexity Time Complexity Cover Proportion # of False Existing Keys

Count-Min Sketch [23] 𝑂 (1𝜖𝑐 log 1
𝜎𝑐
) 𝑂 (log 1

𝜎𝑐
) 1 − 𝜎𝑐 𝑂 (𝑁 (1 − 𝑒−𝜖𝑐𝐹)log

1
𝜎𝑐)

Count-Min-Heap [23] 𝑂 (1𝜖𝑐 log 1
𝜎𝑐
+ 𝐻 log𝑁) 𝑂 (log 𝐻

𝜎𝑐
) 𝐻

𝐹
(1 − 𝜎𝑐) 0

Deltoid [24] 𝑂 (1𝜖𝑐 log 1
𝜎𝑐

log𝑁) 𝑂 (log 1
𝜎𝑐

log𝑁) 𝐻
𝐹
(1 − 𝛿)(1 − 𝜎𝑐) 𝑂 (𝐻𝛿 log𝜎𝑐

1
2)

Elastic Sketch [63] 𝑂 (−𝐻 log𝑁
ln(1−𝜖𝑓 𝜎𝑓) +

1
𝜖𝑐

log 1
𝜎𝑐
) 𝑂 (log 1

𝜎𝑐
) 𝐻

𝐹
(1 − 𝜖𝑓 𝜎𝑓)(1 − 𝜎𝑐) 0

FlowRadar [42] 𝑂 (𝐹 log 1
𝜖𝑓 𝜎𝑓

+ 1
𝜖𝑐

log 1
𝜎𝑐

log𝑁) 𝑂 (log 1
𝜖𝑓 𝜎𝑓

+ log 1
𝜎𝑐
) (1 − 𝜖𝑓 𝜎𝑓)(1 − 𝜎𝑐) 0

LossyCounting [48] 𝑂 (log(𝜖𝑐𝑆)𝜖𝑐
log𝑁) 𝑂 (log log(𝜖𝑐𝑆)

𝜖𝑐
+ 𝜖𝑐𝑆 log(𝜖𝑐𝑆)

𝜖𝑐
) log(𝜖𝑐𝑆)

𝜖𝑐𝐹
0

UnivMon [46] 𝑂 (log𝑁 (1𝜖𝑐 log 1
𝜎𝑐
+ 𝐻 log𝑁)) 𝑂 (log 𝐻

𝜎𝑐
log𝑁) 𝐻

𝐹
(1 − 𝜎𝑐 log𝑁) 0

PR-Sketch 𝑂 (𝐹 log 1
𝜖𝑓 𝜎𝑓

+ 1
𝜖𝑐

log 1
𝜎𝑐
) 𝑂 (log 1

𝜖𝑓 𝜎𝑓
+ log 1

𝜎𝑐
) (1 − 𝜖𝑓 𝜎𝑓)(1 − 𝜎𝑐) 0

fast PR-Sketch 𝑂 (𝐹 log 1
𝜖𝑓 𝜎𝑓

+ 1
𝜖𝑐

log 1
𝜎𝑐
) 𝑂 (𝐹𝜙 (1−𝑃𝑑)

𝑆
log 1

𝜖𝑓 𝜎𝑓
+ log 1

𝜎𝑐
) (1 − 𝑃𝑑)(1 − 𝜖𝑓 𝜎𝑓) (1 − 𝜎𝑐) 0

Note that we use independent hash functions with uniformly dis-
tributed outputs, each key could enter any bucket with the prob-
ability 1

𝑚𝑐
. The expectation of 𝑌 satisfies 𝐸 (𝑌) = 𝑘𝑐𝑆

𝑚𝑐
. Therefore,

𝑃𝑟 (𝑟𝑥 ≥ 𝜖𝑐𝑆) ≤ 𝑃𝑟 (𝑉𝑥 ≥ 𝜖𝑐𝑆) ≤ (𝑘𝑐
𝜖𝑐𝑚𝑐
)𝑘𝑐 = 𝜎𝑐 . □

Finally, we provide the expected cover proportion in Theorem 5.

Theorem 5. The expected cover proportion cp is at least (1 −
𝜖𝑓 𝜎𝑓) (1 − 𝜎𝑐).

Proof. The cover proportion is defined as | {𝑥 |𝑥 ∈𝜒,𝑟𝑥 ≤𝑟𝑡 } ||𝜒 | , where
𝜒 is the set of true existing keys and 𝑟𝑡 is the target relative error.
Note that |𝜒 | = 𝐹 and 𝑟𝑡 = 𝜖𝑐𝑆 . On the one hand, according to Theo-

rem 2, the false positive rate in the filter part equals (1−𝑒
−

𝑘𝑓 𝐹

𝑚𝑓)𝑘𝑓 =

𝜖𝑓 𝜎𝑓 . It means that 𝜖𝑓 𝜎𝑓 𝐹 keys are not recorded in the recovery
phase. Since we estimate aggregations of unrecorded keys as zero,
their relative errors are 100%which cannot be covered by PR-Sketch.
Thus, we only need to consider (1 − 𝜖𝑓 𝜎𝑓)𝐹 recorded keys. On the
other hand, according to Theorem 4, the possibility that the relative
error of each recorded key does not exceed the target 𝜖𝑐𝑆 is at least
1 − 𝜎𝑐 . Therefore, cp ≥

(1−𝜖𝑓 𝜎𝑓) (1−𝜎𝑐)𝐹
𝐹

= (1 − 𝜖𝑓 𝜎𝑓) (1 − 𝜎𝑐). □

4.2 Analysis of Fast PR-Sketch
Here we give the theoretical analysis of fast PR-Sketch. We only
consider the error probability of missing keys, the time complex-
ity, and expected cover proportion. We do not consider the space
complexity and the error probability of the count part. For space
complexity, it still equals 𝑂 (𝑚𝑓 +𝑚𝑐) in fast PR-Sketch. Thus, the
result in Theorem 1 still holds. Since the items processed by the
count part do not change, Theorem 4 still holds.

Theorem 6 gives the guaranteed error probability of missing
keys based on Lemma 3.

Lemma 3. Let𝜙 be the threshold of the pruner. Given a new key, the

probability of being discarded by pruner is 𝑃𝑑 is at most (𝜖𝑐𝑆2𝜙)
log 1

𝜎𝑐 .

Proof. According to the deterministic strategy of the pruner, a
new key must be discarded only if it is estimated larger than 𝜙 . Let
𝑌 be the variable that denotes the counter value of some mapped
bucket for each key. Then, combined with Markov’s inequality,
𝑃𝑑 = 𝑃𝑟 (𝑌 ≥ 𝜙)𝑘𝑐 ≤ (𝑘𝑐𝑆

𝑚𝑐𝜙
)𝑘𝑐 = (𝜖𝑐𝑆2𝜙)

log 1
𝜎𝑐 . □

Theorem 6. The fast PR-Sketch can miss no more than 𝜖𝑓 𝐹 keys
with the probability of at least 1 − 𝜎𝑓 + 𝑃𝑑 (𝜎𝑓 − 1

𝜖𝑓
).

Proof. The missing keys are composed of two parts. The first
one is 𝑃𝑑𝐹 keys whose first items are discarded by the pruner.
Another part is caused by the filter part, which treats some of
(1 − 𝑃𝑑)𝐹 keys as reported ones. Let 𝑋 be the variable that denotes
the number of missing keys. Then the expectation 𝐸 (𝑋) = 𝑃𝑑𝐹 +

(1−𝑃𝑑)𝐹 (1−𝑒
−

𝑘𝑓 𝐹

𝑚𝑓)𝑘𝑓 . According to Markov’s inequality, 𝑃𝑟 (𝑋 ≤
𝜖𝑓 𝐹) ≥ 1 − 𝐸 (𝑋)

𝜖𝑓 𝐹
= 1 − 𝜎𝑓 + 𝑃𝑑 (𝜎𝑓 − 1

𝜖𝑓
). □

Theorem 7 provides the time complexity of fast PR-Sketch based
on Lemma 4.

Lemma 4. In fast PR-Sketch, the number of items entering the filter
part of any key cannot be larger than 𝜙 .

Proof. Given the key 𝑥 , if the aggregation of 𝑥 is not larger
than 𝜙 , the lemma holds naturally. Therefore, we consider the key
𝑥 whose aggregation is larger than 𝜙 . For each received item be-
longing to 𝑥 , it must be processed by the count part. Therefore, the
minimum counter value of its mapped buckets in the count part
cannot be smaller than the number of received items belonging to
𝑥 . For each subsequent item after the 𝜙th item of 𝑥 , the minimum
counter value must be larger than 𝜙 since the number of received
items belonging to 𝑥 exceeds 𝜙 . It means that all subsequent items
after the 𝜙th item of 𝑥 must be discarded by the pruner. Therefore,
the lemma holds. □

Theorem 7. The time complexity of fast PR-Sketch is 𝑂 (𝑘𝑐 +
𝑘𝑓

𝐹𝜙 (1−𝑃𝑑)
𝑆

).

Proof. The time complexity is composed of two parts. In the
count part, since all items must be processed here, each item re-
quires 𝑘𝑐 hash operations. In the filter part, fast PR-Sketch processes∑
𝑥 𝑉
′
𝑥 items, where 𝑉 ′𝑥 is the number of items of 𝑥 entering the

filter part. Therefore, the time complexity of fast PR-Sketch equals
𝑂 (𝑘𝑐 + 𝑘𝑓

∑
𝑥 𝑉
′
𝑥

𝑆
) ≤ 𝑂 (𝑘𝑐 + 𝑘𝑓

𝐹𝜙 (1−𝑃𝑑)
𝑆

). □

Theorem 8. The expected cover proportion of fast PR-Sketch is at
least (1 − 𝑃𝑑) (1 − 𝜖𝑓 𝜎𝑓) (1 − 𝜎𝑐).

Proof. According to Lemma 3, the expected number of dis-
carded keys is 𝑃𝑑𝐹 . For each remaining key, the expected cover

1790

Table 3: Workloads used in our evaluation.

Trace # of Keys # of Items Skewness
CAIDA 10,743,292 239,686,200 29.73
UNIV1 557,445 18,351,743 14.82
UNIV2 191,791 98,863,335 46.92
Kosarak 41,270 8,019,015 104.08
Retail 16,470 908,576 77.22

proportion is basically the same as Theorem 5. Therefore, the final
cover proportion is at least (1 − 𝑃𝑑) (1 − 𝜖𝑓 𝜎𝑓) (1 − 𝜎𝑐). □

4.3 Theoretical Comparison
We theoretically compare PR-Sketch and fast PR-Sketch with

7 state-of-the-art methods in Table 2. It provides the space com-
plexity, time complexity, cover proportion, and the number of false
existing keys (i.e., the non-existent keys which are reported as ex-
isting). Although existing methods have similar or slightly better
cover proportion than ours, they cost significantly more resources.
Specifically, most of them require log𝑁 (i.e., the bit number of each
key) times the space in the update phase. Some also require log𝐻 or
log𝑁 times the time to update sketch. Though Count-Min Sketch is
space and time efficient in the update phase, it is not reversible and
incurs many false existing keys. As mentioned in Section 2.2, we do
not consider such irreversible sketching. Note that equation-based
recovery can tolerate hash collisions. Thus, the practical cover pro-
portion of our algorithms can be higher than the theoretical result,
which has been confirmed in Section 5.

5 EVALUATION
5.1 Setup
Platform. Our experiments run in a server with two 2.60GHz
CPUs and 125GB DRAM. Each CPU contains 18 physical cores and
24MB SRAM. Like prior works [33, 58, 63], we implement both PR-
Sketch (PR) and fast PR-Sketch (FPR) in software. Specifically, for
each algorithm, we implement the update phase in C++ and compile
using GCC 5.4.0 with -O3 optimization. We use MurmurHash [1]
as the hash functions. For the recovery phase, we implement the
equation-based recovery with Eigen [3].
Practical workloads. We use five real-world streaming data as
the datasets: CAIDA [2], UNIV1 [16], UNIV2 [16], Kosarak [7], and
Retail [10]. Both UNIV1 and UNIV2 are collected from a campus net-
work, while CAIDA is collected from a backbone network. Kosarak
contains click-stream data of a Hungarian online news portal. Retail
contains market basket data collected from an anonymous Belgian
retail store. Table 3 summarizes the statistics of the five datasets
including the number of keys, number of items, and skewness. Our
experiments define different keys for the workloads, i.e., source
and destination IP addresses for packet streams, news ID for click
stream, and retail product ID for market basket data. For network
traffic, we tune the epoch length such that the number of keys
varies in our evaluation. Due to the interest of space, we present
the results under 2.5s epoch length (around 100K keys) of CAIDA
in most experiments. To reduce the effect of I/O overhead, we load
all datasets into DRAM in advance.

Synthetic workloads. We exploit synthetic workloads only in
our experiment about generality. Specifically, the workloads follow
heavy-tailed distribution with different skewnesses and key num-
bers. We randomly generate items with distinctive keys and shuffle
them into each synthetic stream.
Baselines. Since high cover proportion cannot be achieved by exist-
ing sketching, we choose six state-of-the-art methods designed for
different issues as baselines, Count-Min-Heap (CMH) [23], Deltoid
(DT) [24]), Elastic Sketch (ES) [63], FlowRadar (FR) [42], Lossy-
Counting (LC) [60], and UnivMon (UM) [46]. They consist of 3 ad
hoc methods (CMH and LC for heavy hitters, as well as DT for
significant differences) and 3 general ones (ES, FR, and UM). They
represent different kinds of key tracking mechanisms (detailed in
Section 6). All algorithms are implemented on the same platform
as mentioned before. Since some treat the value of each item as 1,
we slightly adapt them by replacing 1 with more general 𝑣𝑥 .
Configuration. We fix the number of hash functions as 2 for all
methods including our algorithms (𝑘𝑓 = 𝑘𝑐 = 1). We tune different
amounts of memory in our evaluation. For each comparison among
different methods, we keep the same memory setting. For CMH, we
allocate 25% memory for its heap space. For FR, we allocate 12.5%
memory for its flow filter. For ES, we allocate 25% memory for its
heavy part. For LC, we conservatively set its error parameter as
0.1%, where smaller error means more supported keys and hence
higher accuracy. For our algorithms, we allocate 12.5% memory for
the filter part. We set 𝜙 = 10 for fast PR-Sketch.
Metrics.We use a very large hash table to count correct per-key
aggregations as the ground truth. Then, we evaluate the following
six metrics for each approach under different memory settings:
• Cover proportion: It equals | {𝑥 |𝑥 ∈𝜒,𝑟𝑥 ≤𝑟𝑡 } ||𝜒 | , where 𝜒 is the set
of true existing keys, 𝑟𝑥 is the relative error of the aggregation
of key 𝑥 and 𝑟𝑡 is a target relative error. We fix 𝑟𝑡 = 0.1% in this
paper. A larger cover proportion means higher recovery accuracy.
• Precision: It refers to the fraction of true existing keys recorded
over all recorded keys. A higher precision means a lower possi-
bility of misreporting.
• Recall: It refers to the fraction of true existing keys recorded over
all true existing keys. A higher recall means better effectiveness
of key tracking mechanism.
• F1-score: It equals 2×precision×recall

precision+recall . A higher F1 score means
more precise results.
• Throughput: It means the number of items processed per second
(in units of million items per second (Mips)).
• Bandwidth usage: It is the fraction of bytes transported to the
recovery phase over bytes received in the update phase.

5.2 Benchmark Experiments
Experiment 1 (Accuracy). In this experiment, we tune memory
sizes and evaluate the accuracy. Figure 10a shows that all methods
have high precision close to one, as they will not report any non-
existent key. However, existing sketch-based techniques do not
perform well in other metrics. As Figure 10b, both PR and FPR
can achieve more than 96% recall with only 1 MB memory, while
existing methods cannot achieve more than 80% even with 8 MB
memory. It is because that we record keys with abundant memory
in the recovery phase, while existing methods can only track limited

1791

1 2 4 8
Memory (MB)

0
25
50
75

100

Pr
ec

isi
on

 (%
) CMH DT ES FR LC UM PR FPR

1 2 4 8
Memory (MB)

0
25
50
75

100

Re
ca

ll
(%

)

CMH DT ES FR LC UM PR FPR

(a) Precision (b) Recall

1 2 4 8
Memory (MB)

0
25
50
75

100

F1
 S

co
re

 (%
) CMH DT ES FR LC UM PR FPR

1 2 4 8
Memory (MB)

0
25
50
75

100
Co

ve
r P

ro
po

rti
on

 (%
) CMH DT ES FR LC UM PR FPR

(c) F1 score (d) Cover proportion

Figure 10: Experiment 1 (Accuracy).

1 2 4 8
Memory (MB)

0
10
20
30
40

Th
pt

 (M
ip

s)

CMH DT ES FR LC UM PR FPR

Figure 11: Experiment 2
(Throughput).

1 2 4 8
Memory (MB)

0
0.5

1
1.5

2

Ba
nd

wi
dt

h
Us

ag
e

(%
)

FR
PR
FPR

Figure 12: Experiment 3
(Bandwidth usage).

keys in the update phase with strict memory constraint. The poor
recall also leads to low F1 score in Figure 10c. In terms of cover
proportion, Figure 10d shows that both PR and FPR can reach 93%
with 4MBmemory and 96.4%with 8MBmemory. However, existing
methods cannot achieve more than 81% cover proportion even with
8 MB memory. The main reason is that existing methods exploit
simple counter calculation, which cannot tolerate hash collisions.
They also use complicated key tracking mechanisms in the update
phase, which is memory-consuming. Instead, our algorithms use
equation-based recovery and key recording offloading.
Experiment 2 (Throughput).We measure the throughput under
different memory settings. Figure 11 shows that PR can achieve
almost 20 Mips with 1 MB memory due to the lightweight data
structure in the update phase. For existing sketch-based techniques,
only FR and ES can reach this throughput, while UM and DT cannot
achieve 5 Mips all the time. The reason is that FR and ES also keep
lightweight data structure. However, UM exploits a layering struc-
ture with sampling and DT maintains a sketch for each bit of the
key. Both of them incur heavy computational overhead. Moreover,
FPR can achieve 34.5 Mips under 1 MB memory due to reducing un-
necessary hash operations for most items. It is 1.72X the throughput
of FR and ES, and 6.9X that of UM and DT. It is beneficial to reduce
the requirement of hardware processing resources like ALUs.
Experiment 3 (Bandwidth usage). We measure the bandwidth
usage with different memory sizes. Note that existing methods only
consume bandwidth to send sketch data to the recovery phase,
which equals the amount of allocated memory. Thus, we present
the comparison with FR, and the results of other approaches are the
same. Figure 12 shows that both PR and FPR cost 1.02% bandwidth
usage with 8 MB memory. Since FR costs 0.94% under the same
memory setting, the extra bandwidth usage of our algorithms to

CAIDA UNIV1 UNIV2 Kosarak Retail0
25
50
75

100

Co
ve

r P
ro

po
rti

on
 (%

) CMH DT ES FR LC UM PR FPR

5 100 2500
Epoch Length (ms)

0
25
50
75

100

Co
ve

r P
ro

po
rti

on
 (%

) CMH DT ES FR LC UM PR FPR

(a) Different practical workloads (b) Different epoch lengths

1 10 100 1000
Skewness

0
25
50
75

100

Co
ve

r P
ro

po
rti

on
 (%

)

CMH DT ES FR LC UM PR FPR

1K 10K 100K
of Keys

0
25
50
75

100

Co
ve

r P
ro

po
rti

on
 (%

)

CMH DT ES FR LC UM PR FPR

(c) Different skewnesses (d) Different numbers of keys

Figure 13: Experiment 4 (Generality).

send keys is only 0.08%. The reason is that we only send each key
for its first item instead of subsequent ones. It significantly reduces
the bandwidth usage under heavy-tailed distribution.
Experiment 4 (Generality). This experiment first demonstrates
the generality on practical workloads (Figure 13a and Figure 13b).
We tune memory size according to the estimated number of keys
𝐹 . Specifically, we estimate the number of items 𝑆 within a fixed
epoch through item collection rate. Althoughwe cannot get an exact
skewness in advance, a rough order of magnitude is available such
as tens in data center [16]. Given 𝑆 and rough skewness, 𝐹 can be
estimated based on heavy-tailed distribution. For each comparison,
we fix the same memory setting for all methods. In Figure 13a, we
exploit different practical workloads. Both PR and FPR reach 95%
cover proportion. However, existing sketch-based techniques can
only achieve at most 82%. In Figure 13b, we fix CAIDA and tune
different epoch lengths. Our algorithms can achieve 96.4% cover
proportion, while existing methods are below 81%. The reason is
that we deploy the two design features, equation-based recovery
and key recording offloading, in PR and FPR. It is more tolerant of
hash collisions on different practical workloads and epoch lengths.

We also evaluate the generality on synthetic workloads (Fig-
ure 13c and Figure 13d). We fix 4 MB memory for all methods.
In Figure 13c, we tune the skewness of heavy-tailed distribution
with a fixed number of keys as 100K. The cover proportion of most
methods increases as skewness rises. It is because that they rely on
heavy-tailed distribution more or less. In Figure 13d, we tune the
number of keys with a fixed skewness of 1. The cover proportion
of all methods decreases as key number rises. It is because that a
larger number of keys incurs more hash collisions. Note that even
with the lowest skewness of 1 and the largest key number of 100K,
our algorithms can still achieve 90% cover proportion. However,
existing methods can only reach at most 64.1% in that case. The
reason is the same as that on practical workloads.
Experiment 5 (Sensitivity on parameters). We measure the in-
fluence of different parameter settings on cover proportion, through-
put, and bandwidth usage. For both PR and FPR, we change the
number of hash functions in one part from 1 to 4 and hold that
of another part as 1. For FPR, we also change the user-supplied
threshold 𝜙 in the pruner. We fix 4 MB memory in this experiment.
First, for cover proportion, Figure 14a shows that our algorithms

1792

1 2 3 4
of Hash Functions

0
25
50
75

100

Co
ve

r P
ro

po
rti

on
 (%

)

PR(kf = 1)
PR(kc = 1)
FPR(kf = 1)
FPR(kc = 1)

0 10 100 1000
Threshold ϕ

0
25
50
75

100

Co
ve

r P
ro

po
rti

on
 (%

)

FPR

(a) Cover proportion on different
numbers of hash functions

(b) Cover proportion on different
thresholds

1 2 3 4
of Hash Functions

0
10
20
30
40

Th
pt

 (M
ip

s) PR(kf = 1)
PR(kc = 1)

FPR(kf = 1)
FPR(kc = 1)

0 10 100 1000
Threshold ϕ

0
10
20
30
40

Th
pt

 (M
ip

s)

FPR

(c) Throughput on different num-
bers of hash functions

(d) Throughput on different
thresholds

1 2 3 4
of Hash Functions

0
0.5
1.0
1.5

2

Ba
nd

wi
dt

h
Us

ag
e

(%
)

PR(kf = 1)
PR(kc = 1)

FPR(kf = 1)
FPR(kc = 1)

0 10 100 1000
Threshold ϕ

0
0.5
1.0
1.5

2

Ba
nd

wi
dt

h
Us

ag
e

(%
)

FPR

(e) Bandwidth usage on different
numbers of hash function

(f) Bandwidth usage on different
thresholds

Figure 14: Experiment 5 (Sensitivity on parameters).

5 100 2500
Epoch Length (ms)

0
0.25

0.5
0.75

1

M
em

or
y

(M
B) PR

FPR

5 100 2500
Epoch Length (ms)

0
10
20
30
40

Re
co

ve
r T

im
e

(m
s)

PR
FPR

(a) Key recording memory (b) Equation solving time

Figure 15: Experiment 6 (Resource usage in recovery phase).

rise from 93% to 98% when 𝑘𝑐 > 1with 𝑘𝑓 = 1, and from 93% to 94%
when 𝑘𝑓 > 1with 𝑘𝑐 = 1. It is because that larger 𝑘𝑐 incurs stronger
linear constraints and larger 𝑘𝑓 entails more recorded keys due to
fewer false positives in the filter part. Figure 14b shows that FPR
rises from 90% to 93% when 𝜙 ≥ 10. The reason is that as 𝜙 rises,
we can mark the first item and record the corresponding key with
a larger possibility. Second, for throughput, Figure 14c shows that
PR goes down to 7.3 Mips when 𝑘𝑐 = 4 with 𝑘𝑓 = 1 and 8.1 Mips
when 𝑘𝑓 = 4 with 𝑘𝑐 = 1, while FPR goes down to 9.2 Mips when
𝑘𝑐 = 4 with 𝑘𝑓 = 1. It is due to the extra computational overhead
caused by more hash functions. Note that FPR can still achieve 29.2
Mips when 𝑘𝑓 = 4 with 𝑘𝑐 = 1. The reason is that we reduce unnec-
essary hash operations for most items in the filter part. Thus, the
increasing 𝑘𝑓 can only affect a limited number of items. Figure 14d
shows that FPR goes down to 22.3 Mips when 𝜙 = 1000, as more
items are processed by the filter part due to the loose condition of
the pruner. Finally, for bandwidth usage, Figure 14e and Figure 14f
show that our algorithms are not sensitive on the parameters. Both
of them consume only 0.5% under various parameter settings since
our algorithms send only once for almost all keys.
Experiment 6 (Resource usage in recovery phase). This exper-
iment presents the resource usage of our algorithms in the recovery

0.5 1.0 1.5 2.0
Memory (MB)

0
25
50
75

100

F1
 S

co
re

 (%
) ES FR LD PR FPR

Figure 16: Heavy hitter detec-
tion.

0.5 1.0 1.5 2.0
Memory (MB)

0
25
50
75

100

F1
 S

co
re

 (%
) ES FR LD PR FPR

Figure 17: Heavy changer de-
tection.

ES FR NS UM PR FPR0

5

10

15

20

Re
la

tiv
e

Er
ro

r (
%

)

Figure 18: Entropy estima-
tion.

ES FR NS UM PR FPR0

25

50

75

100

F1
 S

co
re

 (%
)

Figure 19: Blackhole detec-
tion.

ES FR NS UM PR FPR0

25

50

75

100

Re
ca

ll
(%

)

Figure 20: Incorrect routing
detection.

ES FR MRAC PR FPR0

0.5

1

1.5

2

W
M
RD

Figure 21: Distribution esti-
mation.

phase. We fix 4 MB memory and tune epoch length such that the
number of keys varies. Figure 15a shows that both PR and FPR
require less than 750 KB memory to record keys in the recovery
phase. The reason is that we can exploit the flexibility of recov-
ery phase and maintain a dynamically-increasing array for key
recording, which is memory-efficient. Figure 15b shows that our
algorithms need less than 30 ms to solve the linear system. It is due
to the strong computation capability in the recovery phase.

5.3 Use Cases
We consider six use cases including the normal applications and
fine-grained ones. Since we achieve high cover proportion on per-
key aggregations which is the most fundamental statistic, our algo-
rithms perform well on all the following use cases.
Heavy hitter detection. Heavy hitters refer to the keys with ag-
gregations larger than a predefined threshold. They can be used
for failure detection [33] and QoS scheduling [19]. We implement
three state-of-the-art methods, Elastic Sketch (ES) [63], FlowRadar
(FR) [42], and LD-Sketch (LD) [33], as the baselines. We choose the
threshold such that the number of heavy hitters is 10% over that of
all keys. Figure 16 shows that our algorithms reach around 90% F1
score with only 2 MB memory. For existing methods, only LD and
ES reach this F1 score, while FR only achieves 62% under the same
memory setting. The reason is that LD and ES exploit the buckets to
record the keys of heavy hitters only. However, in FR, the buckets
for key tracking in the update phase are shared by all keys, and
some heavy hitters cannot be decoded under hash collisions.
Heavy changer detection. Heavy changers are the keys whose
aggregation changes between two adjacent epochs are larger than

1793

the predefined threshold. They can imply the existence of DDoS
attack [25]. We compare our algorithms with ES [63], FR [42], and
LD [33]. We choose the threshold that the number of heavy chang-
ers is 10% over the total number of keys. Figure 17 shows that our
algorithms can achieve 88% F1 score with only 2 MB memory. How-
ever, existing approaches cannot reach 70% with 2 MB memory. It
is because that heavy changers might have a small aggregation in
a certain epoch. Existing approaches could estimate those small
aggregations as large ones and incur misses of heavy changers.
Entropy estimation. Let −Σ𝑉𝑥

𝑉
log2

𝑉𝑥
𝑉

be the authentic entropy,
where 𝑉𝑥 is the authentic aggregation of key 𝑥 and 𝑉 = Σ𝑉𝑥 . Simi-
larly, the estimated entropy is −Σ𝑉𝑥

�̂�
log2

𝑉𝑥

�̂�
, where 𝑉𝑥 is the esti-

mated aggregation of 𝑥 and 𝑉 = Σ𝑉𝑥 . It summarizes per-key aggre-
gations for many tasks like behavior classification [62] and anomaly
detection [40]. We demonstrate the advantage of our algorithms on
entropy estimation compared with four state-of-the-art methods,
ES [63], FR [42], NitroSketch (NS) [45], and UnivMon (UM) [46]. We
consider the relative error of entropy with 1 MB memory for each
approach. Figure 18 shows that the relative errors of our algorithms
are smaller than 1.3%. However, all existing methods reach more
than 12.72% relative error especially for FR with 16.89%. The reason
is that they cannot estimate per-key aggregations accurately.
Blackhole detection. We simulate blackhole in the update phase
with two entities, a normal entity A and a faulty entity B. Specifi-
cally, we transmit the item stream from entity A to entity B. Entity
B drops the items of a certain set of keys due to interface failure.
We randomly choose 50% true existing keys as the set of victims.
We compare our algorithms with four existing methods, ES [63],
FR [42], NS [45], and UM [46]. For each algorithm, we maintain
one instance in each entity with 4 MB memory. We restore per-
key aggregations and report the keys whose aggregation changes
between the two entities are larger than 0 as victims. Figure 19
shows that our algorithms can achieve 95% F1 score, while existing
methods cannot achieve more than 73%. It is due to the inaccurate
estimation of per-key aggregations of existing approaches, which
incurs many false positives and false negatives.
Incorrect routing detection. To simulate incorrect routing, we
build a topology with three entities, entity A, B, and C. We correctly
configure them such that entity A can transfer items to entity B and
C. However, due to corruption of routing table in entity A, a certain
number of keys which should be sent to entity B are incorrectly
routed to entity C. We randomly choose 50% keys suffering from
incorrect routing. We implement four sketch-based techniques, ES
[63], FR [42], NS [45], and UM [46]. Each entity harbors one sketch
instance with 4 MB memory. We focus on the keys with positive
aggregations in entity C. Then, based on configuration, we report
those which should be routed to entity B as victims. All algorithms
can achieve 100% precision yet with different recalls. Figure 20
shows that our algorithms can reach 99% recall, while existing
approaches cannot exceed 81%. The false negatives are incurred by
the underestimated aggregations of untracked keys in entity C.
Distribution estimation. We compare our algorithms with three
state-of-the-art methods, ES [63], FR [42], and MRAC [39]. We
fix the memory setting as 1 MB. To evaluate each approach, we
consider Weighted Mean Relative Difference (WMRD)

∑
𝑖 |𝐹𝑖−𝐹𝑖 |∑
𝑖
𝐹𝑖+𝐹𝑖

2

, where 𝐹𝑖 is the number of keys with the aggregation of 𝑖 from
authentic distribution and 𝐹𝑖 is that from estimated distribution.
Figure 21 shows that both PR and FPR have a WMRD of less than
0.27. However, the WMRD values of existing methods are larger
than 1.31 due to the inaccurate estimation of per-key aggregations.

6 RELATEDWORK
Key tracking mechanisms. Existing key tracking mechanisms
in the update phase can be classified into two categories: coding-
based and bucket-based. The coding-based mechanism allows one
bucket shared by multiple distinct keys based on an encoding rule.
It includes XOR operation [27, 42, 61], multi-level hashing [18, 54],
and group testing [24, 34, 44]. In the recovery phase, operators
extract those keys according to a corresponding decoding rule. The
bucket-based mechanism deploys a set of dedicated buckets to save
keys explicitly, where each bucket contains at most one key. It has
been used by [33, 46, 58, 63]. Operators query those keys directly
without decoding. However, both of them are complicated to cost a
large fraction of resource usage (see Section 2.2). Our algorithms
exploit key recording offloading to save resources in update phase
and track almost all keys in recovery phase.
Per-key aggregation recovery. Most existing sketch-based tech-
niques [21, 23, 24, 29, 33, 42, 46, 58, 63] use simple counter calcula-
tion to estimate per-key aggregations. For instance, Count-Min[23]
and Elastic Sketch [63] use the minimum counter value of mapped
buckets. However, they suffer from hash collisions and hence sig-
nificant false positives. [32] exploits compressive sensing on its
fast path to improve accuracy. However, the result of compressive
sensing is still a sketch instead of per-key aggregations. The final
cover proportion still depends on the specific sketching in its slow
path. [35] solves linear equations to recover per-key aggregations.
However, it is posed from the perspective of a system, which in-
troduces complexity to end-hosts. In the scenarios like backbone
network, without the collaboration of end-hosts, it cannot solve the
under-constrained problem. Our work focuses on the algorithmic
improvement by equation-based recovery. We exploit the statistical
property of streaming data to improve cover proportion.

7 CONCLUSION
PR-Sketch is a novel sketching design to achieve high cover propor-
tion with limited resources. It exploits equation-based recovery and
key recording offloading to improve cover proportion as well as
reducing resource usage. We also present an extension called fast
PR-Sketch to improve the processing rate further by reducing hash
operations. For both PR-Sketch and fast PR-Sketch, we derive the
time complexity, space complexity, and error probability through
theoretical analysis. The trace-driven experiments show that our
algorithms can achieve higher cover proportion and better resource
efficiency than existing approaches.

ACKNOWLEDGMENTS
This work was supported by the National Key R&D Program of
China (2019YFB1802600), National Natural Science Foundation of
China (U20A20179), and National Natural Science Foundation of
China (61802365).

1794

REFERENCES
[1] A. Appleby. https://github.com/aappleby/smhasher.
[2] CAIDA. https://www.caida.org/home.
[3] Eigen. https://eigen.tuxfamily.org.
[4] High Capacity StrataXGS®Trident II Ethernet Switch Series. https://www.

broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56850-
series.

[5] Intel Altera. https://www.infinite-electronic.pt/pdf/d5b3139760/5SEEBF45I2N.
pdf.

[6] Intel FlexPipe. https://goo.gl/kUqpU7.
[7] Kosarak. http://fimi.uantwerpen.be/data/kosarak.dat.gz.
[8] Least Squares Conjugate Gradient. https://eigen.tuxfamily.org/dox/classEigen_

1_1LeastSquaresConjugateGradient.html.
[9] NVIDIA BlueField SmartNIC. https://www.mellanox.com/related-docs/prod_

adapter_cards/PB_BlueField_Smart_NIC.pdf.
[10] Retail. http://fimi.uantwerpen.be/data/retail.dat.gz.
[11] Stingray SmartNIC. https://www.broadcom.com/products/ethernet-connectivity/

network-adapters/smartnic/bcm58800.
[12] Lada A Adamic and Bernardo A Huberman. 2002. Zipf’s Law and the Internet.

Trans. on Glottometric 3, 1 (2002), 143–150.
[13] Rakesh Agarwal, Ramakrishnan Srikant, et al. 1994. Fast Algorithms for Mining

Association Rules. In Proc. of VLDB.
[14] Sugam Agarwal, Murali Kodialam, and TV Lakshman. 2013. Traffic Engineering

in Software Defined Networks. In Proc. of IEEE INFOCOM.
[15] Ran Ben Basat, Gil Einziger, Roy Friedman, Marcelo C Luizelli, and ErezWaisbard.

2017. Constant Time Updates in Hierarchical Heavy Hitters. In Proc. of ACM
SIGCOMM.

[16] Theophilus Benson, Aditya Akella, and David A Maltz. 2010. Network Traffic
Characteristics of Data Centers in theWild. In Proc. of ACM SIGCOMMConference
on Internet Measurement Conference.

[17] Burton H Bloom. 1970. Space/Time Trade-offs in Hash Coding with Allowable
Errors. Trans. on Communications of the ACM 13, 7 (1970), 422–426.

[18] Tian Bu, Jin Cao, Aiyou Chen, and Patrick PC Lee. 2010. Sequential Hashing: A
Flexible Approach for Unveiling Significant Patterns in High Speed Networks.
Trans. on COMSNETS 54, 18 (2010), 3309–3326.

[19] Andrew Campbell, Geoff Coulson, and David Hutchison. 1994. A Quality of
Service Architecture. ACM Trans. on SIGCOMM 24, 2 (1994), 6–27.

[20] Marco Canini, Damien Fay, David J Miller, Andrew W Moore, and Raffaele Bolla.
2009. Per Flow Packet Sampling for High-Speed Network Monitoring. In Proc. of
IEEE COMSNETS.

[21] Moses Charikar, Kevin Chen, and Martin Farach-Colton. 2002. Finding Fre-
quent Items in Data Streams. In Proc. of International Colloquium on Automata,
Languages, and Programming.

[22] Graham Cormode, Minos Garofalakis, Peter J Haas, and Chris Jermaine. 2012.
Synopses for Massive Data: Samples, Histograms, Wavelets, Sketches. Trans. on
Foundations and Trends in Databases 4, 1–3 (2012), 1–294.

[23] Graham Cormode and Shan Muthukrishnan. 2005. An Improved Data Stream
Summary: the Count-Min Sketch and Its Applications. Journal of Algorithms 55,
1 (2005), 58–75.

[24] Graham Cormode and ShanmugavelayuthamMuthukrishnan. 2005. What’s New:
Finding Significant Differences in Network Data Streams. IEEE/ACM Trans. on
Networking 13, 6 (2005), 1219–1232.

[25] Christos Douligeris and Aikaterini Mitrokotsa. 2004. DDoS Attacks and Defense
Mechanisms: Classification and State-of-the-art. IEEE Trans. on COMSNETS 44, 5
(2004), 643–666.

[26] Nick Duffield, Carsten Lund, and Mikkel Thorup. 2003. Estimating Flow Distri-
butions from Sampled Flow Statistics. In Proc. of ACM SIGCOMM.

[27] David Eppstein, Michael T Goodrich, Frank Uyeda, and George Varghese. 2011.
What’s the Difference? Efficient Set Reconciliation without Prior Context. ACM
SIGCOMM 41, 4 (2011), 218–229.

[28] Cristian Estan and George Varghese. 2003. New Directions in Traffic Measure-
ment and Accounting: Focusing on the Elephants, Ignoring the Mice. ACM Trans.
on Computer Systems 21, 3 (2003), 270–313.

[29] Li Fan, Pei Cao, Jussara Almeida, and Andrei Z Broder. 2000. Summary Cache: A
ScalableWide-AreaWeb Cache Sharing Protocol. IEEE/ACM Trans. on Networking
8, 3 (2000), 281–293.

[30] Chuanxiong Guo, Lihua Yuan, Dong Xiang, Yingnong Dang, Ray Huang, Dave
Maltz, Zhaoyi Liu, Vin Wang, Bin Pang, Hua Chen, et al. 2015. Pingmesh: A
Large-Scale System for Data Center Network Latency Measurement and Analysis.
In Proc. of ACM SIGCOMM.

[31] Peng Huang, Chuanxiong Guo, Lidong Zhou, Jacob R Lorch, Yingnong Dang,
Murali Chintalapati, and Randolph Yao. 2017. Gray Failure: The Achilles’ Heel of
Cloud-Scale Systems. In Proc. of ACM SIGOPS HotOS Workshop.

[32] Qun Huang, Xin Jin, Patrick PC Lee, Runhui Li, Lu Tang, Yi-Chao Chen, and
Gong Zhang. 2017. Sketchvisor: Robust Network Measurement for Software
Packet Processing. In Proc. of ACM SIGCOMM.

[33] Qun Huang and Patrick PC Lee. 2014. LD-Sketch: A Distributed Sketching Design
for Accurate and Scalable Anomaly Detection in Network Data Streams. In Proc.
of IEEE INFOCOM.

[34] Qun Huang, Patrick PC Lee, and Yungang Bao. 2018. Sketchlearn: Relieving User
Burdens in Approximate Measurement with Automated Statistical Inference. In
Proc. of ACM SIGCOMM.

[35] Qun Huang, Haifeng Sun, Patrick PC Lee, Wei Bai, Feng Zhu, and Yungang Bao.
2020. OmniMon: Re-architecting Network Telemetry with Resource Efficiency
and Full Accuracy. In Proc. of ACM SIGCOMM.

[36] Srikanth Kandula and Ratul Mahajan. 2009. Sampling Biases in Network Path
Measurements and What To Do About It. In Proc. of ACM SIGCOMM.

[37] Anurag Khandelwal, Rachit Agarwal, and Ion Stoica. 2019. Confluo: Distributed
Monitoring and Diagnosis Stack for High-Speed Networks. In Proc. of USENIX
NSDI.

[38] George Kollios, John W Byers, Jeffrey Considine, Marios Hadjieleftheriou, and
Feifei Li. 2005. Robust Aggregation in Sensor Networks. IEEE Trans. on Data Eng.
Bull. 28, 1 (2005), 26–32.

[39] Abhishek Kumar, Minho Sung, Jun Xu, and Jia Wang. 2004. Data Streaming
Algorithms for Efficient and Accurate Estimation of Flow Size Distribution. ACM
Trans. on SIGMETRICS Performance Evaluation Review 32, 1 (2004), 177–188.

[40] Anukool Lakhina, Mark Crovella, and Christophe Diot. 2005. Mining Anom-
alies Using Traffic Feature Distributions. ACM Trans. on SIGCOMM computer
communication review 35, 4 (2005), 217–228.

[41] Yuliang Li, Rui Miao, Mohammad Alizadeh, and Minlan Yu. 2019. DETER: Deter-
ministic TCP Replay for Performance Diagnosis. In Proc. of USENIX NSDI.

[42] Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu. 2016. Flowradar: A Better
Netflow for Data Centers. In Proc. of ACM SIGCOMM.

[43] Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu. 2016. LossRadar: Fast
Detection of Lost Packets in Data Center Networks. In Proc. of ACM CoNEXT.

[44] Yang Liu, Wenji Chen, and Yong Guan. 2012. A Fast Sketch for Aggregate Queries
over High-Speed Network Traffic. In Proc. of IEEE INFOCOM.

[45] Zaoxing Liu, Ran Ben-Basat, Gil Einziger, Yaron Kassner, Vladimir Braverman,
Roy Friedman, and Vyas Sekar. 2019. Nitrosketch: Robust and General Sketch-
based Monitoring in Software Switches. In Proc. of ACM SIGCOMM.

[46] Zaoxing Liu, Antonis Manousis, Gregory Vorsanger, Vyas Sekar, and Vladimir
Braverman. 2016. One Sketch to Rule Them All: Rethinking Network Flow
Monitoring with Univmon. In Proc. of ACM SIGCOMM.

[47] Haohui Mai, Ahmed Khurshid, Rachit Agarwal, Matthew Caesar, P Brighten
Godfrey, and Samuel Talmadge King. 2011. Debugging the Data Plane with
Anteater. ACM Trans. on SIGCOMM Computer Communication Review 41, 4
(2011), 290–301.

[48] Gurmeet Singh Manku and Rajeev Motwani. 2002. Approximate Frequency
Counts over Data Streams. In Proc. of VLDB.

[49] Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. 2005. Efficient Com-
putation of Frequent and Top-k Elements in Data Streams. In Proc. of Springer
ICDT.

[50] Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun Lee, and Minlan Yu. 2017.
SilkRoad: Making Stateful Layer-4 Load Balancing Fast and Cheap Using Switch-
ing ASICs. In Proc. of ACM SIGCOMM.

[51] Michael Mitzenmacher. 2002. Compressed Bloom Filters. IEEE/ACM Trans. on
Networking 10, 5 (2002), 604–612.

[52] Vern Paxson. 1994. Empirically Derived Analytic Models of Wide-Area TCP
Connections. IEEE/ACM Trans. on Networking 2, 4 (1994), 316–336.

[53] Vern Paxson and Sally Floyd. 1995. Wide Area Traffic: The Failure of Poisson
Modeling. IEEE/ACM Trans. on networking 3, 3 (1995), 226–244.

[54] Robert Schweller, Zhichun Li, Yan Chen, Yan Gao, Ashish Gupta, Yin Zhang,
Peter A Dinda, Ming-Yang Kao, and Gokhan Memik. 2007. Reversible Sketches:
Enabling Monitoring and Analysis over High-Speed Data Streams. IEEE/ACM
Trans. on Networking 15, 5 (2007), 1059–1072.

[55] Danfeng Shan and Fengyuan Ren. 2017. Improving ECN Marking Scheme with
Micro-burst Traffic in Data Center Networks. In Proc. of IEEE INFOCOM.

[56] Brent Stephens, Aditya Akella, and Michael Swift. 2019. Loom: Flexible and
Efficient NIC Packet Scheduling. In 16th {USENIX} Symposium on Networked
Systems Design and Implementation ({NSDI} 19).

[57] Daniel Stutzbach, Reza Rejaie, Nick Duffield, Subhabrata Sen, and Walter Will-
inger. 2008. On Unbiased Sampling for Unstructured Peer-To-Peer Networks.
IEEE/ACM Trans. on Networking 17, 2 (2008), 377–390.

[58] Lu Tang, Qun Huang, and Patrick PC Lee. 2019. MV-Sketch: A Fast and Compact
Invertible Sketch for Heavy Flow Detection in Network Data Streams. In Proc. of
IEEE INFOCOM.

[59] Gang Wang, Tristan Konolige, Christo Wilson, Xiao Wang, Haitao Zheng, and
Ben Y Zhao. 2013. You Are How You Click: Clickstream Analysis for Sybil
Detection. In Proc. of Usenix Security Symposium.

[60] Kyu-Young Whang, Brad T Vander-Zanden, and Howard M Taylor. 1990. A
Linear-Time Probabilistic Counting Algorithm for Database Application. ACM
Trans. on Database Systems 15, 2 (1990), 208–229.

[61] Sisi Xiong, Yanjun Yao, Qing Cao, and Tian He. 2014. kBF: A Bloom Filter for
Key-Value Storage with an Application on Approximate State Machines. In Proc.

1795

https://github.com/aappleby/smhasher
https://www.caida.org/home
https://eigen.tuxfamily.org
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56850-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56850-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56850-series
https://www.infinite-electronic.pt/pdf/d5b3139760/5SEEBF45I2N.pdf
https://www.infinite-electronic.pt/pdf/d5b3139760/5SEEBF45I2N.pdf
https://goo.gl/kUqpU7
http://fimi.uantwerpen.be/data/kosarak.dat.gz
https://eigen.tuxfamily.org/dox/classEigen_1_1LeastSquaresConjugateGradient.html
https://eigen.tuxfamily.org/dox/classEigen_1_1LeastSquaresConjugateGradient.html
https://www.mellanox.com/related-docs/prod_adapter_cards/PB_BlueField_Smart_NIC.pdf
https://www.mellanox.com/related-docs/prod_adapter_cards/PB_BlueField_Smart_NIC.pdf
http://fimi.uantwerpen.be/data/retail.dat.gz
https://www.broadcom.com/products/ethernet-connectivity/network-adapters/smartnic/bcm58800
https://www.broadcom.com/products/ethernet-connectivity/network-adapters/smartnic/bcm58800

of IEEE INFOCOM.
[62] Kuai Xu, Zhi-Li Zhang, and Supratik Bhattacharyya. 2005. Profiling Internet

Backbone Traffic: Behavior Models and Applications. ACM Trans. on SIGCOMM
Computer Communication Review 35, 4 (2005), 169–180.

[63] Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi Gong, Yang Zhou, Rui Miao,
Xiaoming Li, and Steve Uhlig. 2018. Elastic Sketch: Adaptive and Fast Network-
Wide Measurements. In Proc. of ACM SIGCOMM.

[64] Tong Yang, Lingtong Liu, Yibo Yan, Muhammad Shahzad, Yulong Shen, Xiaoming
Li, Bin Cui, and Gaogang Xie. 2017. SF-sketch: A Fast, Accurate, and Memory
Efficient Data Structure to Store Frequencies of Data Items. In Proc. of IEEE ICDE.

[65] Tong Yang, Yang Zhou, Hao Jin, Shigang Chen, and Xiaoming Li. 2017. Pyramid
Sketch: A Sketch Framework for Frequency Estimation of Data Streams. Trans.
on VLDB 10, 11 (2017), 1442–1453.

[66] Yang Zhou, Tong Yang, Jie Jiang, Bin Cui, Minlan Yu, Xiaoming Li, and Steve
Uhlig. 2018. Cold Filter: A Meta-Framework for Faster and More Accurate Stream
Processing. In Proc. of ACM SIGMOD.

[67] Yibo Zhu, Nanxi Kang, Jiaxin Cao, Albert Greenberg, Guohan Lu, Ratul Mahajan,
Dave Maltz, Lihua Yuan, Ming Zhang, Ben Y Zhao, et al. 2015. Packet-Level
Telemetry in Large Datacenter Networks. In Proc. of ACM SIGCOMM.

1796

