
RapidMatch: A Holistic Approach to SubgraphQuery Processing
Shixuan Sun

National University of Singapore

sunsx@comp.nus.edu.sg

Xibo Sun

Hong Kong University of Science and

Technology

xsunax@cse.ust.hk

Yulin Che

Hong Kong University of Science and

Technology

yche@cse.ust.hk

Qiong Luo

Hong Kong University of Science and

Technology

luo@cse.ust.hk

Bingsheng He

National University of Singapore

hebs@comp.nus.edu.sg

ABSTRACT
A subgraph query searches for all embeddings in a data graph that

are identical to a query graph. Two kinds of algorithms, either

graph exploration based or join based, have been developed for

processing subgraph queries. Due to algorithmic and implemen-

tational differences, join-based systems can handle query graphs

of a few vertices efficiently whereas exploration-based approaches

typically process up to several tens of vertices in the query graph.

In this paper, we first compare these two kinds of methods and

prove that the complexity of result enumeration in state-of-the-art

exploration-based methods matches that of the worst-case opti-

mal join. Furthermore, we propose RapidMatch, a holistic subgraph

query processing framework integrating the two approaches. Specif-

ically, RapidMatch not only runs relational operators such as selec-

tions and joins, but also utilizes graph structural information, as

in graph exploration, for filtering and join plan generation. Conse-

quently, it outperforms the state of the art in both approaches on a

wide range of query workloads.

PVLDB Reference Format:
Shixuan Sun, Xibo Sun, Yulin Che, Qiong Luo, and Bingsheng He.

RapidMatch: A Holistic Approach to Subgraph Query Processing. PVLDB,

14(2): 176-188, 2021.

doi:10.14778/3425879.3425888

PVLDB Availability Tag:
The source code of this research paper has been made publicly available at

https://github.com/RapidsAtHKUST/RapidMatch.

1 INTRODUCTION
A subgraph query is a basic operation on graphs [29], which finds

all embeddings in a data graph𝐺 that are identical to a query graph

𝑄 . A common type of subgraph query is on labeled graphs 𝐺 and

𝑄 , and𝐺 is much larger than𝑄 . Consider the example query graph

and data graph in Figure 1, {(𝑢1, 𝑣2), (𝑢2, 𝑣3), (𝑢3, 𝑣4), (𝑢4, 𝑣1)} is
an embedding of the query graph in the data graph, or a match.
Subgraph query processing has been studied in a variety of work

(e.g., [1, 23, 33, 37, 40, 42]). In this paper, we categorize existing

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 2 ISSN 2150-8097.

doi:10.14778/3425879.3425888

A

B

C D
u1

u2

u3

u4

(a) Query graph𝑄 .

D

C B C

v5v1 v7v3

D C

A C B A

v2 v4 v6 v8 v10

v9

(b) Data graph𝐺 .
Figure 1: Example query graph and data graph.

work into exploration-based and join-based methods based on their

modeling and implementation choices, and propose RapidMatch,

a holistic approach to the problem. Table 1 lists a summary of

characteristics of existing work as well as our RapidMatch.

The exploration-based algorithms [6, 7, 12, 14, 15, 28, 33, 40,

42] adopt the backtracking framework proposed by Ullmann [37],

which iteratively extends intermediate results by mapping query
vertices (i.e., 𝑉 (𝑄)) to data vertices (i.e., 𝑉 (𝐺)) along a matching
order (i.e., a sequence of𝑉 (𝑄)) to find all matches. In order to reduce

intermediate results, the latest algorithms such as CFLMatch [7],

CECI [6] and DP-iso[12] execute a query with the preprocessing-
enumeration paradigm. In particular, they first generate a candidate

vertex set for each query vertex with specified pruning methods.

Then, they optimize the matching order based on the statistics of

candidates with greedy methods because they typically process

up to several tens of vertices in the query graph. Finally, they

enumerate results along the matching order over candidates. We

call such query graphs of tens of vertices large queries. These large
queries are common in social network analysis [41], computer aided

design [10], and protein interaction understanding [40].

In contrast, the join-based algorithms [1, 23] model a subgraph

query as a relational query and evaluate the query with relational

operators such as selections and joins. The classical relational sys-

tems such as MonetDB and PostgreSQL implement a subgraph

query as a sequence of pair-wise join operations, which can be

viewed as extending intermediate results by an edge at each step.

Consequently, the intermediate results can be more than the max-

imum output size |𝑂𝑈𝑇 | of a query. Recently, the development

of the worst-case optimal join (WCOJ) changes the landscape be-

cause its running time matches |𝑂𝑈𝑇 | [24]. The previous research
[4, 26] shows that the latest systems utilizing WCOJ significantly

outperform the classical relational systems as well as native graph

databases such as Neo4j. Recent join-based methods such as Emp-

tyHeaded [1] and Graphflow [23] adopt the direct-enumeration
paradigm, which directly enumerate results on data graphs, to be

176

https://doi.org/10.14778/3425879.3425888
https://github.com/RapidsAtHKUST/RapidMatch
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3425879.3425888

Table 1: A comparison of representative subgraph query processing algorithms.

Model
Representative
Algorithms

Category of Techniques
Filter Candidates/Relation Generate Matching Order/Join Plan Optimize

Data Layout
Accelerate Enumeration

ProcedureMethod Time Complexity Cost Model Plan Space Time Complexity

Exploration

CFLMatch[7] Native 𝑂 (|𝐸 (𝑄) | × |𝐸 (𝐺) |) Cardinality Estimation Greedy 𝑂 (|𝑉 (𝑄) |2 × |𝐸 (𝐺) |) Tree N/A

DP-iso[12] Native 𝑂 (|𝐸 (𝑄) | × |𝐸 (𝐺) |) Cardinality Estimation Greedy 𝑂 (|𝑉 (𝑄) |2 × |𝐸 (𝐺) |) Adjacency List Failing Set Pruning

Join

EmptyHeaded[1] Selection 𝑂 (|𝐸 (𝑄) | × |𝐸 (𝐺) |) Cardinality Estimation Optimal Exponential to |𝑉 (𝑄) | Trie Set Intersection

Graphflow[23] Selection 𝑂 (|𝐸 (𝑄) | × |𝐸 (𝐺) |) Cardinality Estimation Optimal Exponential to |𝑉 (𝑄) | Adjacency List Intersection Caching

RapidMatch

Selection

Semi-join
𝑂 (|𝐸 (𝑄) | × |𝐸 (𝐺) |) Query Graph

Density
Greedy

𝑂 (𝛼 (𝑄) + |𝑉 (𝑄) |2)
𝛼 (.) is the cost of

nucleus decomposition

Encoded

Trie

Failing Set Pruning

Intersection Caching

Set Intersection

easily integrated into database systems. They generate join plans by

exhaustively searching the plan space as they target at query graphs

of a few vertices. We call such query graphs small queries. Such
small queries are commonly seen in detecting cycles in transaction

networks to alert fraudulent activities, and searching clique/clique-

like structures in social networks for recommendation [23].

Recently, the researchers on join-based methods [3, 23] find that

WCOJ essentially corresponds to extending intermediate results

by a vertex at each step in the graph exploration. We further find

that the efficiency of current algorithms suffers either on small or

large queries, due to their algorithmic design and implementation

choices. The exploration-based algorithms lack optimizations on

the enumeration methods [7, 12], so they are slow on small queries.

In contrast, the join-based methods cannot handle large queries

because (1) the number of join plans is exponential so it is prohibi-

tively expensive to enumerate all plans of large queries [1]; and (2)

the filtering methods simply based on vertex labels can result in a

large number of false candidates [1, 23].

In this paper, we propose to study the two kinds of algorithms and

design a holistic framework that takes advantage of both of them.

Specifically, we compare them with respect to the time complexity

and prove that the worst-case complexity of result enumeration

in exploration-based methods matches that of WCOJ. Moreover,

our detailed analysis shows that there is no fundamental difference

between the result enumeration of exploration-based methods and

join-based even though the latter is implemented with relational

operators and the former is not. Therefore, a promising approach

would be to adopt a join-based method and improve the join plan

generation and execution for both small and large queries.

We propose a join-based subgraph query processing framework

called RapidMatch, which utilizes graph structural information,

as in graph exploration, for filtering and join plan generation. First,

given 𝑄 and 𝐺 , the RelationFilter component builds relations based

on vertex labels, and then filters these relations with semi-joins to

remove data edges that will not appear in results. Second, JoinPlan-
Generator generates a join plan based on the statistics obtained in

RelationFilter and the nuclei forests [31] of 𝑄 . Third, we develop
RelationEncoder to optimize the relation data layout based on the

join plan to accelerate the subsequent enumeration. We further

extend a number of optimizations in query plan execution in Re-
sultEnumerator, such as advanced set intersection methods [1, 13],

the intersection caching [23] and the failing set pruning [12]. Our

experiments show that RapidMatch outperforms the state of the

art on both exploration and join based methods on a wide range of

workloads. In summary, we make the following contributions.

• We study the exploration-based and join-based methods and

bridge the gap between them.

• We propose RapidMatch, a join-based subgraph query pro-

cessing engine that can efficiently evaluate both small and

large queries.

• We design a relation filter based on semi-joins to reduce

the cardinalities of relations. This filter maps state-of-the-

art pruning techniques from exploration-based methods to

join-based methods.

• We propose a join plan generator based on the nucleus de-

composition of the query graph to reduce the search space

of the result enumeration.

• We conduct extensive experiments with various kinds of

workloads and demonstrate that RapidMatch outperforms

both the state-of-the-art exploration-based and join-based

approaches.

Paper Organization. Section 2 introduces the background. Sec-

tion 3 compares the exploration-based method with the join-based.

Section 4 gives an overview of RapidMatch. Sections 5, 6 and 7

present the relation filter, the join plan generator, and other imple-

mentation details such as relation encoder, respectively. We present

the experiment results in Section 8 and conclude in Section 9.

2 PRELIMINARY AND RELATEDWORK
2.1 Preliminary
This paper focuses on the undirected vertex-labeled graph 𝑔 =

(𝑉 , 𝐸) where 𝑉 is a set of vertices and 𝐸 is a set of edges. For

unlabeled graphs, we refer readers to recent studies [11, 20, 21, 34].

Given 𝑢 ∈ 𝑉 , 𝑁 (𝑢) denotes the neighbors of 𝑢, i.e., {𝑢 ′ |𝑒 (𝑢,𝑢 ′) ∈
𝐸}. 𝑑 (𝑢) denotes the degree of 𝑢, i.e., |𝑁 (𝑢) |. 𝐿 is a label function

associating a vertex to a label in a label set Σ. Given 𝑉 ′ ⊆ 𝑉 , 𝑔[𝑉 ′]
is the vertex-induced subgraph of 𝑔 on 𝑉 ′. 𝑄 and 𝐺 denote the

query graph and the data graph, respectively. They share the same

label function 𝐿, and 𝑄 is connected. We call vertices and edges of

𝑄 (resp. 𝐺) query vertices and query edges (resp. data vertices and

data edges), respectively. 𝑄𝐶 denotes the 2-core (Definition 2.1) of

𝑄 .𝑄𝐹 is equal to𝑄 −𝑄𝐶 , i.e., 𝐸 (𝑄𝐹) = 𝐸 (𝑄) −𝐸 (𝑄𝐶) and𝑉 (𝑄𝐹) is
the set of vertices incident to edges in 𝐸 (𝑄𝐹). Based on Definition

2.1, 𝑄𝐶 is connected, and 𝑄𝐹 is a set of trees. We call 𝑄𝐶 and 𝑄𝐹

the core structure and forest of 𝑄 , respectively. We summarize the

frequently used notations in Table 2.

Definition 2.1. [32] A 𝑘-core of 𝑔 is a maximal connected sub-

graph 𝑔′ of 𝑔 each vertex of which has at least degree 𝑘 .

In the following, we briefly review the nucleus decomposition,

the relational operators and the full reducer, which are building

bricks in our proposed techniques.

177

Table 2: Notations.
Notations Descriptions

𝑔,𝑄,𝐺 and Q graph, query graph, data graph and hypergraph

𝑉 , 𝐸, E and Σ vertex set, edge set, hyperedge set and label set

𝑑 (𝑢) , 𝐿 (𝑢) and 𝑁 (𝑢) degree, label and neighbors of𝑢

𝑒 edge or hyperedge

𝑅𝑒 or 𝑅 (𝑢,𝑢′) relations corresponding to 𝑒 (𝑢,𝑢′)
𝑅 (𝑢 : 𝑣,𝑢′) the neighbors of 𝑣 in 𝜋{𝑢′}𝑅 (𝑢,𝑢′)
𝐶 (𝑢) and A candidate vertex set of𝑢 and auxiliary structure

A𝑢
𝑢′ (𝑣) neighbors of 𝑣 in𝐶 (𝑢′) where 𝑣 ∈ 𝐶 (𝑢)

𝛿 and 𝜑 filtering order and matching order

𝑁
𝜑
+ (𝑢) (𝑁

𝜑
− (𝑢)) backward (forward) neighbors of𝑢 given 𝜑

Z,⋉ and 𝜋 join, semi-join, and project

𝑄𝐶 and𝑄𝐹 core structure and forest of𝑄

T𝑟,𝑠 𝑟, 𝑠 nuclei forest of𝑄

Nucleus Decomposition. Nucleus decomposition generalizes

the 𝑘-core [32] and 𝑘-truss [8] decomposition and finds dense sub-

graphs at different levels of hierarchy [30]. We use 𝐾𝑟 to denote an

𝑟 -clique, and define the nucleus and the nuclei forest of a graph 𝑔
in Definition 2.2. Intuitively, a 𝑘-(𝑟, 𝑠) nucleus is a connected sub-

graph of 𝑔 that satisfies the density and connectivity constraints

and the nuclei forest T𝑟,𝑠 describes the hierarchies based on the

(𝑟, 𝑠) nucleus containment relationship. A 𝑘-(1, 2) nucleus is ex-
actly a 𝑘-core, and a 𝑘-(2, 3) nucleus is a 𝑘-truss community [16],

which requires the triangle connectivity in addition to the defini-

tion of 𝑘-truss. Efficient algorithms have been proposed to compute

𝑘-core and 𝑘-truss in𝑂 (|𝐸 (𝑔) |) and𝑂 (|𝐾3 (𝑔) |) = 𝑂 (|𝐸 (𝑔) |1.5) time,

respectively [30].

Definition 2.2. [31] Let 𝑘, 𝑟, 𝑠 be positive integers where 𝑟 < 𝑠 ,

and S be a set of 𝐾𝑠s in 𝑔.

• 𝐾𝑟 (S) is the set of 𝐾𝑟 s contained in some 𝑆 ∈ S.
• The number of 𝑆 ∈ S containing 𝐻 ∈ 𝐾𝑟 (S) is the S-degree
of 𝐻 .

• Two 𝐾𝑟 s 𝐻,𝐻
′
are S-connected if there exists a sequence

𝐻 = 𝐻1, 𝐻2, ..., 𝐻𝑖 , ..., 𝐻𝑥 = 𝐻 ′ in 𝐾𝑟 (S) such that for each 𝑖 ,

some 𝑆 ∈ S contains 𝐻𝑖 ∪ 𝐻𝑖+1.

• A 𝑘-(𝑟, 𝑠) nucleus is the maximal union S of 𝐾𝑠s such that

(1) S-degree of any 𝐻 ∈ 𝐾𝑟 (S) is at least 𝑘 ; and (2) Any

𝐻,𝐻 ′ ∈ 𝐾𝑟 (S) are S-connected.
• The nuclei forest T𝑟,𝑠 is a set of trees in which nodes are

(𝑟, 𝑠) nucleus and the parent of a nucleus is the smallest (by

cardinality) other nucleus containing it.

Relational Operators. The projection 𝜋𝐼𝑅 selects the columns

in 𝐼 from 𝑅. A natural join 𝑅 Z 𝑅′ is the set of all combinations of

tuples in 𝑅 and 𝑅′ that are equal on their common attributes. A left

semi-join 𝑅 ⋉ 𝑅′ is the set of all tuples in 𝑅 each of which is equal

to a tuple in 𝑅′ on their common attributes.

A multi-way natural join can be represented by a hypergraph
Q = (V, E) whereV is a set of vertices and E is a set of hyperedges

that are subsets ofV . Attributes and relations in the join correspond

to vertices and hyperedges, respectively. In this paper, the join is

interchangeably denoted by Q = (V, E) and Q =Z𝑒∈E 𝑅𝑒 where
𝑅𝑒 is the relation corresponding to the hyperedge 𝑒 .

Full Reducer. Given Q, dangling tuples are the tuples in rela-

tions that do not appear in any join results. A full reducer is a finite
sequence of semi-joins that can remove all dangling tuples in rela-

tions of Q. Q is an acyclic query if and only if it has a full reducer

[2]. When Q coincides with a simple graph 𝑄 , Q is acyclic if 𝑄 has

Algorithm 1: FullReducer(an acyclic join Z𝑒∈E 𝑅𝑒)
Input: an acyclic query Q =Z𝑒∈E 𝑅𝑒 ;

Output: Q =Z𝑒∈E 𝑅𝑒 where 𝑅𝑒 has no dangling tuples;

1 if |E | = 1 then return;
2 𝑒 ← an edge in E whose one end vertex is a leaf vertex of Q;
3 𝑒′ ← an edge in E sharing one end vertex with 𝑒 (𝑒 ≠ 𝑒′);
4 𝑅𝑒′ ← 𝑅𝑒′ ⋉ 𝑅𝑒 ;
5 FullReducer(Z𝑒′′∈E−{𝑒} 𝑅𝑒′′);
6 𝑅𝑒 ← 𝑅𝑒 ⋉ 𝑅𝑒′ ;

no cycles. Algorithm 1 describes the full reducer, which takes an

acyclic Q as the input and removes all dangling tuples. It utilizes

2 × (|E(Q)| − 1) semi-joins in total to eliminate dangling tuples.

2.2 Subgraph Query
Subgraph queries can be defined based on either: subgraph iso-

morphisms denoted by ISO or subgraph homomorphisms denoted

by HOM. Their definitions are given in Definition 2.3. The only

difference between the two is that ISO uses a injective function and

HOM uses a mapping.

Definition 2.3. Subgraph Homomorphism (resp. Isomorphism):

Given 𝑔 = (𝑉 , 𝐸) and 𝑔′ = (𝑉 ′, 𝐸 ′), a subgraph homomorphism

(resp. isomorphism) is a mapping (resp. injective function) 𝑓 :

𝑉 → 𝑉 ′ such that (1) ∀𝑢 ∈ 𝑉 , 𝐿(𝑢) = 𝐿(𝑓 (𝑢)); and (2) ∀𝑒 (𝑢,𝑢 ′) ∈
𝐸, 𝑒 (𝑓 (𝑢), 𝑓 (𝑢 ′)) ∈ 𝐸 ′.

Exploration-based algorithms find all ISOs from𝑄 to𝐺 , whereas

join-based methods enumerate all HOMs. The HOM allows that a

result contains duplicate data vertices, whereas the ISO does not.

Therefore, an ISOmust be anHOM, but not vice versa. A special case

is when each query vertex has a distinct label, an HOM is an ISO

because of the constraint on labels in the definition. Nevertheless,

deciding whether there exists an ISO or an HOM is NP-complete

[9]. We find that these two kinds of algorithms can enumerate the

same results with simple modifications (see Sections 2.3 and 2.4).

2.3 Exploration-Based Algorithms
According to the execution paradigm, the exploration-based meth-

ods can be classified into three categories. The first category of

algorithms such as QuickSI [33] follow the direct-enumeration par-

adigm, which directly explores 𝐺 to enumerate matches. The sec-

ond kind of algorithms such as GADDI [40], SPath [42] and SG-

Match [28] utilize the indexing-enumeration framework, which con-

structs indexes on 𝐺 and evaluates all queries with the assistance

of the indexes. The third group of algorithms such as TurboIso [14],

CFLMatch [7], CECI [6] and DP-iso [12] adopt the preprocessing-
enumeration framework. Previous performance studies show that

(1) the indexing-enumeration methods have severe scalability issues

due to the index construction [18, 22, 35]; and (2) the preprocessing-

enumeration methods generally perform the best among them [36].

Therefore, this paper uses the preprocessing-enumeration.

Algorithm 2 presents a sketch of most exploration-based algo-

rithms [6, 7, 12, 14, 15, 28, 33, 37, 40, 42]. Line 1 first constructs

a candidate vertex set 𝐶 (𝑢) = {𝑣 |𝑣 ∈ 𝑉 (𝐺) ∧ 𝐿(𝑣) = 𝐿(𝑢)} for
each 𝑢 ∈ 𝑉 (𝑄), and then prunes 𝐶 (𝑢) based on Proposition 2.4

[7, 12]. After that, it builds an auxiliary structure A maintaining

data edges between candidate vertex sets. Given 𝑒 (𝑢,𝑢 ′) ∈ 𝐸 (𝑄),
A𝑢

𝑢′ (𝑣) = 𝑁 (𝑣) ∩𝐶 (𝑢
′), i.e., the neighbors of 𝑣 ∈ 𝐶 (𝑢) in 𝐶 (𝑢 ′).

178

Algorithm 2: Exploration-Based Method

Input: a query graph𝑄 and a data graph𝐺 ;

Output: all subgraph isomorphisms from𝑄 to𝐺 ;

1 𝐶,A ← build candidate vertex sets and auxiliary structures;

2 𝜑 ← generate a matching order;

3 Enumerate(𝐶,A, 𝜑, {}, 1);
4 Procedure Enumerate(𝐶,A, 𝜑,𝑀, 𝑖)
5 if 𝑖 = |𝜑 | + 1 then Output𝑀 , return;
6 𝑢 ← 𝜑 [𝑖],𝐶𝑀 (𝑢) ←

⋂
𝑢′∈𝑁𝜑

+ (𝑢)
A𝑢′

𝑢 (𝑀 [𝑢′]) ;
7 foreach 𝑣 ∈ 𝐶𝑀 (𝑢) do

/* Remove if to find subgraph homomorphisms. */

8 if 𝑣 ∉ 𝑀 then
9 Add (𝑢, 𝑣) to𝑀 ;

10 Enumerate(𝐶,A, 𝜑,𝑀, 𝑖 + 1);
11 Remove (𝑢, 𝑣) from𝑀 ;

Proposition 2.4. Given 𝑣 ∈ 𝐶 (𝑢), if there exists 𝑢 ′ ∈ 𝑁 (𝑢) such
that 𝑁 (𝑣) ∩𝐶 (𝑢 ′) = ∅, then 𝑣 can be removed from 𝐶 (𝑢).

Next, Line 2 generates a matching order𝜑 , which is a sequence of

query vertices. The exploration-based methods generally adopt the

greedy strategy, which first selects a start vertex and then iteratively

adds query vertices 𝑢 to 𝜑 based on the cardinality estimation on

the number of embeddings in A identical to 𝑄 [𝜑 ∪ {𝑢}]. Finally,
the Enumerate procedure recursively finds all results along 𝜑 . 𝑀

records the mappings between query vertices and data vertices.

Line 6 computes the local candidate vertex set𝐶𝑀 (𝑢) where 𝑁
𝜑
+ (𝑢)

denotes the backward neighbors of 𝑢 given 𝜑 (Definition 2.5). If

𝑖 = 1, then𝐶𝑀 (𝑢) = 𝐶 (𝑢). During the enumeration,𝑀 containing 𝑖

mappings (1 ⩽ 𝑖 ⩽ |𝜑 |) is a subgraph isomorphism from𝑄 [𝜑 [1 : 𝑖]]
to 𝐺 where 𝜑 [1 : 𝑖] denotes the vertices indexed from 1 to 𝑖 in

𝜑 . By removing Line 8, Algorithm 2 can enumerate all subgraph
homomorphisms from 𝑄 to 𝐺 .

Definition 2.5. Backward (Forward) Neighbors: Given amatching

order𝜑 , the backward neighbors𝑁
𝜑
+ (𝑢) (forward neighbors𝑁

𝜑
− (𝑢))

of a query vertex 𝑢 is the neighbors of 𝑢 that are positioned before

(after) 𝑢 in 𝜑 .

Despite that there are a lot of algorithms, they share the same

Enumerate procedure in Algorithm 2. Their major difference is

on designing powerful filtering methods to reduce the sizes of

candidate vertex sets and optimizing the matching orders to reduce

the size of the search space.

2.4 Join-Based Algorithms
WCOJ. WCOJ is a class of join algorithms whose running time

matches |𝑂𝑈𝑇 | of Q. Researchers developed a tight bound called

AGMon |𝑂𝑈𝑇 | in terms of the fractional edge cover ofQ (Definition

2.6) [5]. Specifically, the optimal fraction edge cover number 𝜌∗ is
the minimum number of all fractional edge covers of Q. |𝑂𝑈𝑇 | is
bounded by 𝑂 (|𝐼𝑁 |𝜌∗) where |𝐼𝑁 | is the input size [24].

Definition 2.6. Fractional Edge Cover: Given Q = (V, E), a frac-
tional edge cover 𝑥 of Q is a mapping from E → [0,∞) such that

∀𝑢 ∈ V,∑𝑒∈E,𝑢∈𝑒 𝑥 (𝑒) ⩾ 1. The fractional edge cover number 𝜌 is

equal to

∑
𝑒∈E 𝑥 (𝑒).

Given 𝑄 and 𝐺 , we construct a join query Q as follows: (1)

Q = (V, E) where V = 𝑉 (𝑄) and E = 𝐸 (𝑄); and (2) for each

𝑒 (𝑢,𝑢 ′) ∈ E, 𝑅(𝑢,𝑢 ′) = {(𝑣, 𝑣 ′) |𝑒 (𝑣, 𝑣 ′) ∈ 𝐸 (𝐺) ∧ 𝐿(𝑣) = 𝐿(𝑢) ∧

Algorithm 3: Leapfrog Triejoin (LFTJ)

1 Procedure LFTJ(𝑄 = (𝑉 , 𝐸), 𝜑,𝑀, 𝑖)
2 if 𝑖 = |𝜑 | + 1 then Output𝑀 , return;
3 𝐼 ← {𝑢 ← 𝜑 [𝑖] }, 𝑋𝑀 (𝐼) ←Z𝑒∈𝐸𝐼 𝜋𝐼𝑅𝑒 , 𝐽 ← 𝑉 − 𝐼 ;
4 foreach 𝑣 ∈ 𝑋𝑀 (𝐼) do
5 Bind 𝑢 to 𝑣 in𝑀 ;

6 𝑄′ ←Z𝑒∈𝐸𝐽 𝜋 𝐽 (𝑅𝑒 ⋉ 𝑅 (𝑢)) where 𝑅 (𝑢) ← {𝑣 };
7 LFTJ (𝑄′, 𝜑,𝑀, 𝑖 + 1);
8 Unbind 𝑢 from 𝑣 in𝑀 ;

𝐿(𝑣 ′) = 𝐿(𝑢 ′)}. 𝑅(𝑢 : 𝑣,𝑢 ′) denotes the neighbor set of 𝑣 in 𝑅(𝑢,𝑢 ′),
i.e., 𝑁 (𝑣) ∩ 𝜋{𝑢′ }𝑅(𝑢,𝑢 ′). In the following, we simply use 𝑄 to

denote a join query for brevity. Correspondingly, a subgraph 𝑄 ′ of
𝑄 represents a join query Z𝑒∈𝐸 (𝑄′) 𝑅𝑒 .

Leapfrog Triejoin (LFTJ).Ngo et al. proposed GenericJoin [25],
which is an abstraction of WCOJ algorithms including NPRR [24]

and LFTJ [38]. We use LFTJ in our paper because it is an efficient

instantiation of GenericJoin [4, 26]. LFTJ (i.e., Algorithm 3) evalu-

ates 𝑄 with a matching order 𝜑 , and recursively finds all results by

binding query vertices to data vertices along 𝜑 . Initially, 𝑀 = {}
and 𝑖 = 1. 𝐸𝐼 denotes {𝑒 |𝑒 ∈ 𝐸∧𝑒∩𝐼 ≠ ∅}. 𝜋𝐼𝑅𝑒 obtains a set of data
vertices and LFTJ computes 𝑋𝑀 (𝐼) with set intersections (Line 3).

When 𝑖 = 1 and 𝑢 = 𝜑 [𝑖], 𝑋𝑀 (𝐼) =
⋂

𝑒 (𝑢,𝑢′) ∈𝐸 𝜋{𝑢 }𝑅(𝑢,𝑢 ′). Line 6
constructs a new query 𝑄 ′ by removing 𝑢 from 𝑉 . Specifically, for

each 𝑒 (𝑢,𝑢 ′) ∈ 𝐸 𝐽 , 𝜋 𝐽 (𝑅(𝑢,𝑢 ′)⋉𝑅(𝑢)) is equal to 𝑅(𝑢 : 𝑀 [𝑢], 𝑢 ′). If
𝑅𝑒 has no common attributes with 𝑅(𝑢), then 𝑅𝑒 will be unchanged.
Therefore, when 𝑖 ⩾ 2 and 𝑢 = 𝜑 [𝑖], the relation 𝑅𝑒 for 𝑒 ∈ 𝐸𝐼 at
Line 3 has two cases: (1) for 𝑢 ′ ∈ 𝑁𝜑

− (𝑢), 𝑅𝑒 = 𝑅(𝑢,𝑢 ′) (i.e., 𝑢 ′ is
still in𝑉); and (2) for 𝑢 ′ ∈ 𝑁𝜑

+ (𝑢), 𝑅𝑒 = 𝑅(𝑢 ′ : 𝑀 [𝑢 ′], 𝑢) (i.e., 𝑢 ′ has
been removed from𝑉). Then,𝑋𝑀 (𝐼) is equal to𝑋1∩𝑋2 where𝑋1 =⋂
𝑢′∈𝑁𝜑

− (𝑢) 𝜋{𝑢 }𝑅(𝑢,𝑢
′) and 𝑋2 =

⋂
𝑢′∈𝑁𝜑

+ (𝑢) 𝑅(𝑢
′
: 𝑀 [𝑢 ′], 𝑢). As

𝑀 can contain duplicate data vertices, Algorithm 3 finds all sub-

graph homomorphisms. Adding the check that is the same as Line 8
in Algorithm 2 can make LFTJ find all subgraph isomorphisms.

To guarantee the worst-case optimal running time, the set inter-

sections at Line 3 should satisfy the min property: the running time

of the intersection algorithm has an upper bound limited by the

length of the smaller input size [1].

Existing Methods. The latest systems such as LogicBlox [4],

EmptyHeaded [1] and Graphflow [17, 23] employWCOJ. Graphflow

is the latest join-based subgraph query algorithm [23]. It prunes

relations based on labels and optimizes the join plan based on a cost

model with a variety of metrics (e.g., the cost of set intersections).

Specifically, it enumerates all plans by considering the generation of

a sub-query 𝑄𝑘 of 𝑄 with two alternative methods: (1) perform the

pair-wise join on two smaller sub-queries; or (2) extend from a sub-

query by adding one vertex. It picks the one with the minimum cost

based on its cost model. When query graphs have more than ten

vertices, Graphflow adopts the greedymethod to generate join plans.

Additionally, Graphflow can support edge-labeled and directed

graphs. While focusing on vertex-labeled and undirected graphs,

RapidMatch can be easily extended to support edge-labeled and

directed graphs by using the edge label and the edge direction as

pruning conditions, i.e., the data edge must have the same label

and direction as the query edge in addition to vertex labels when

generating relations for query edges in RelationFilter.

179

3 EXPLORATION VERSUS JOIN
Exploration-based and join-based approaches have been studied

separately in most previous work. Since they solve very similar or

the same problem, an important question is whether the enumer-

ation procedure of an exploration-based algorithm is inherently

better than a join-based algorithm. In the following, we present

our analysis and algorithms (Sections 3 to 7) for subgraph homo-

morphism, since subgraph homomorphism can be achieved by

Algorithm 2 without the check at Line 8. Also, we refer to Algo-

rithm 2 for its Enumerate procedure, and we assume that retrieving

the neighbors of 𝑣 in a relation (i.e., 𝑅(𝑢 : 𝑣,𝑢 ′)) or an auxiliary

structure (i.e., A𝑢
𝑢′ (𝑣)) takes 𝑂 (1) time.

Algorithm 2 enumerates results based on candidate vertex sets,

whereas Algorithm 3 computes joins on a set of relations. For fair

comparison, we give the two algorithms equivalent input and the

same matching order. The latest exploration-based algorithms [7,

12] prune candidate vertex sets along a spanning tree of𝑄 based on

Proposition 2.4. Although these algorithms repeat the procedure a

limited number of rounds in balance of efficiency and effectiveness,

the resulting candidate vertex sets 𝐶 (𝑢) after pruning are close to
the steady state: given 𝑣 ∈ 𝐶 (𝑢), ∀𝑢 ′ ∈ 𝑁 (𝑢), 𝑁 (𝑣) ∩ 𝐶 (𝑢 ′) ≠ ∅.
Therefore, we assume the input candidate vertex sets of Algorithm 2

are at the steady state in the following analysis. Moreover, we build

the input relations of Algorithm 3 as follows: given 𝑒 (𝑢,𝑢 ′) ∈ 𝐸 (𝑄),
𝑅(𝑢,𝑢 ′) = {(𝑣, 𝑣 ′) |𝑒 (𝑣, 𝑣 ′) ∈ 𝐸 (𝐺) ∧ 𝑣 ∈ 𝐶 (𝑢) ∧ 𝑣 ′ ∈ 𝐶 (𝑢 ′)}. These
input satisfies Proposition 3.1.

Proposition 3.1. Properties (1) Given an edge 𝑒 (𝑢,𝑢 ′) ∈ 𝐸 (𝑄),
𝜋{𝑢 }𝑅(𝑢,𝑢 ′) = 𝐶 (𝑢); and (2) Given an edge 𝑒 (𝑢,𝑢 ′) ∈ 𝐸 (𝑄), 𝑅(𝑢 :

𝑣,𝑢 ′) = 𝑁 (𝑣) ∩𝐶 (𝑢 ′) where 𝑣 ∈ 𝐶 (𝑢).

Proof. Given 𝑒 (𝑢,𝑢 ′), 𝜋{𝑢 }𝑅(𝑢,𝑢 ′) ⊆ 𝐶 (𝑢) based on its con-

struction method. According to the property of 𝐶 (𝑢), for each
𝑣 ∈ 𝐶 (𝑢), 𝑁 (𝑣) ∩𝐶 (𝑢 ′) ≠ ∅, i.e., there exists 𝑒 (𝑣, 𝑣 ′) ∈ 𝐸 (𝐺) where
𝑣 ′ ∈ 𝐶 (𝑢 ′). Therefore, 𝑣 must belong to 𝜋{𝑢 }𝑅(𝑢,𝑢 ′). As such,
𝐶 (𝑢) ⊆ 𝜋{𝑢 }𝑅(𝑢,𝑢 ′), and Property (1) is proved. Given 𝑣 ∈ 𝐶 (𝑢)
and 𝑣 ′ ∈ 𝑁 (𝑣), the construction method of 𝑅(𝑢,𝑢 ′) ensures that
if 𝑣 ′ ∈ 𝐶 (𝑢 ′), then (𝑣, 𝑣 ′) belongs to 𝑅(𝑢,𝑢 ′); otherwise, (𝑣, 𝑣 ′) ∉
𝑅(𝑢,𝑢 ′). Therefore, Property (2) is proved. □

Next, we prove that Algorithm 2 satisfies Proposition 3.2.

Proposition 3.2. Given matching order 𝜑 , Algorithm 2 generates
the same intermediate results as Algorithm 3 at each step if their
input satisfies Proposition 3.1.

Proof. Without loss of generality, assume that 𝜑 = (𝑢1, 𝑢2, ...,
𝑢𝑖 , ..., 𝑢 |𝑉 (𝑄) |). To prove this proposition, we only need to prove

that 𝐶𝑀 (𝑢𝑖) in Algorithm 2 is equal to 𝑋𝑀 ({𝑢𝑖 }) in Algorithm 3 at

each step because both of them extend𝑀 by mapping 𝑣 in 𝐶𝑀 (𝑢𝑖)
or 𝑋𝑀 ({𝑢𝑖 }) to 𝑢𝑖 to generate new intermediate results. We prove

this by induction. Initially, 𝑖 = 1 and 𝑀 = {}. Based on the anal-

ysis in Sections 2.3 and 2.4, 𝐶𝑀 (𝑢1) = 𝐶 (𝑢1) and 𝑋𝑀 ({𝑢1}) =⋂
𝑒 (𝑢1,𝑢) ∈𝐸 (𝑄) 𝜋{𝑢1 }𝑅(𝑢1, 𝑢). Based on Proposition 3.1, for each

𝑒 (𝑢1, 𝑢) ∈ 𝐸 (𝑄), 𝜋{𝑢1 }𝑅(𝑢1, 𝑢) = 𝐶 (𝑢1). As a result, 𝑋𝑀 ({𝑢1}) =
𝐶 (𝑢1) and𝐶𝑀 (𝑢1) is equal to𝑋𝑀 ({𝑢1}). Therefore, the proposition
is true for the initial step.

Assume that the proposition is true when 𝑖 = 𝑘 − 1 (2 ⩽
𝑘 ⩽ |𝜑 |). We next show that it holds when 𝑖 = 𝑘 . In Algorithm

Algorithm 4: RapidMatch

Input: a query graph𝑄 and a data graph𝐺 ;

Output: all subgraph homomorphisms (or isomorphisms);

1 𝑄𝐶 ,𝑄𝐹 , T1,2, T2,3, T3,4 ← nucleus decomposition on𝑄 ;

2 RelationFilter(𝑄,𝐺,𝑄𝐶 ,𝑄𝐹);

3 𝜑 ← JoinPlanGenerator(𝑄, T1,2, T2,3, T3,4);
4 RelationEncoder(𝜑,𝑄𝐶 ,𝑄𝐹);

5 ResultEnumerator(𝜑,𝑄𝐶 ,𝑄𝐹);

2, 𝐶𝑀 (𝑢𝑘) =
⋂
𝑢∈𝑁𝜑

+ (𝑢𝑘) A
𝑢
𝑢𝑘
(𝑀 [𝑢]) = ⋂

𝑢∈𝑁𝜑
+ (𝑢𝑘) (𝑁 (𝑀 [𝑢]) ∩

𝐶 (𝑢𝑘)). On the other hand, 𝑋𝑀 ({𝑢𝑘 }) = 𝑋1 ∩ 𝑋2 where 𝑋1 =⋂
𝑢∈𝑁𝜑

− (𝑢𝑘) 𝜋{𝑢𝑘 }𝑅(𝑢𝑘 , 𝑢) and 𝑋2 =
⋂
𝑢∈𝑁𝜑

+ (𝑢𝑘) 𝑅(𝑢 : 𝑀 [𝑢], 𝑢𝑘)
(see the description of Algorithm 3 in Section 2.4). According to

Proposition 3.1, 𝑋1 = 𝐶 (𝑢𝑘) and 𝑋2 =
⋂
𝑢∈𝑁𝜑

+ (𝑢𝑘) (𝑁 (𝑀 [𝑢]) ∩
𝐶 (𝑢𝑘)). As such, 𝐶𝑀 (𝑢𝑘) is equal to 𝑋𝑀 ({𝑢𝑘 }). Thus, the induc-
tion completes. As the proposition holds for both the initial and

inductive steps, it is proved by induction. □

According to Proposition 3.2, Algorithm 2 satisfies the following

proposition.

Proposition 3.3. The time complexity of Algorithm 2 matches
the maximum output size of a query if the set intersection satisfies
the min property.

Proof. Based on the proof of Proposition 3.2, we can show that:

(1) the computation of 𝑋1 =
⋂
𝑢∈𝑁𝜑

− (𝑢𝑘) 𝜋{𝑢𝑘 }𝑅(𝑢𝑘 , 𝑢) can be re-

moved because 𝜋{𝑢𝑘 }𝑅(𝑢𝑘 , 𝑢) = 𝐶 (𝑢𝑘); and (2) the set intersections
computing 𝑋𝑀 ({𝑢𝑘 }) = 𝑋2 and𝐶𝑀 (𝑢𝑘) take the same input. Thus,

Algorithm 2 achieves the same worst-case optimality as LFTJ if the

set intersection has the min property. □

4 AN OVERVIEW OF RAPIDMATCH
Algorithm 4 outlines the processing flow of RapidMatch. Specifi-

cally, it first performs the nucleus decomposition to obtain the core

structure 𝑄𝐶 , the forest 𝑄𝐹 and the nuclei forests T1,2,T2,3,T3,4 of
𝑄 to identify dense subgraphs of 𝑄 as well as their hierarchical

relationships. We adopt the nuclei forests T1,2, T2,3 and T3,4 because
(1) T1,2 contains all query vertices; and (2) previous research on

T𝑟,𝑠 [30] showed that setting 𝑟 = 3 and 𝑠 = 4 is a sweet spot, which

obtains dense subgraphs with comparable densities and can be

computed efficiently. After nucleus decomposition, RapidMatch

proceeds to subgraph query processing. Figure 2 illustrates the

processing flow of the four components of RapidMatch.

First, given the input, RelationFilter builds a relation for each

query edge based on vertex labels. Then, it decomposes 𝑄 into a

set of tree-structured sub-queries because the full reducer cannot

handle cyclic queries, and applies the full reducer to each of the

sub-queries to eliminate data edges that will not appear in any join

results. Next, JoinPlanGenerator generates a join plan 𝜑 based on

the statistics of relations obtained in RelationFilter and the nuclei

forests of𝑄 . The join plan is to first evaluate𝑄𝐶 with LFTJ and then

perform a sequence of hash joins on subsequent queries to find final

results. Because dense subgraphs (e.g., 4-clique) generally appear

less frequently than sparse ones (e.g., 4-cycle) in 𝐺 , 𝜑 prioritizes

query vertices in dense regions of𝑄 . Additionally, all joins are to be

executed in a pipeline to avoid materializing intermediate results.

After join plan generation, RelationEncoder optimizes the data

layout of relations based on the join plan at runtime to accelerate

180

u1 u2
v2 v3
v5 v3
v6 v3
v10 v9

u1 u3
v2 v4
v5 v7
v6 v4
v6 v7

u1 u4
v2 v1
v6 v8
v10 v8

u2 u3
v3 v4
v9 v7
v10 v8

u L
v1 D
v2 C
… …
v9 A
v10 C

u u’
v1 v2
v2 v1
… …
v9 v10
v10 v9

A

B

C D
u1

u2

u3
u4

G

Q

Selection

u1 u3
v2 v4
v6 v4

u2 u3
v3 v4

u1 u2
v2 v3
v6 v3

u1 u4
v2 v1
v6 v8

Full Reducer

A B

C

D

A

BC

B

AC
u1

u1

u1u4u2

u2

u2

u3

u3 u3

S1 S2 S3

A B

C

D

u1
u2 u4u3

C
u1

QC QF

⋈

A

B

C D
u1

u2

u3
u4

Q

Optimi
ze Data
Layout

Re for e ∈E(QC)

Re for e ∈E(QF)

Intersecti
on

Caching

Failing
Set

Pruning

Set
Intersecti

on

Build
Hash
Index

u1 u2 u3 u4
v2 v3 v4 v1
v6 v3 v4 v8

Results

Input Relation Filter Join Plan Generator Relation Encoder Result Enumerator Output

Figure 2: An overview of RapidMatch (The input graphs are illustrated in Figure 1).

the subsequent enumeration. It encodes the IDs of data vertices

in relations in 𝑄𝐶 , and stores them in a trie structure to assist the

computation of LFTJ. It also builds hash indexes for relations in𝑄𝐹

to serve hash joins. Finally, ResultEnumerator executes the join plan

on the encoded relations. Additionally, RapidMatch adopts several

optimizations including advanced set intersection methods [1, 13],

the intersection caching [23] and the failing set pruning [12]. In

the following, we present the four components in detail.

5 RELATION FILTER
We present the relation filter in this section.

5.1 General Idea
Given𝑄 and𝐺 , a simple method of generating a relation 𝑅(𝑢,𝑢 ′) for
each 𝑒 (𝑢,𝑢 ′) ∈ 𝐸 (𝑄) is based on labels: 𝑅(𝑢,𝑢 ′) = {(𝑣, 𝑣 ′) |𝑒 (𝑣, 𝑣 ′) ∈
𝐸 (𝐺) ∧𝐿(𝑣) = 𝐿(𝑢) ∧𝐿(𝑣 ′) = 𝐿(𝑢 ′)} [1, 23]. However, this method

ignores the underlying graph structure, which can result in a large

number of dangling tuples in relations, i.e., data edges that will not

appear in any final result. This issue directly degrades the perfor-

mance of join operations. Additionally, dangling tuples negatively

affect the effectiveness of the join plan generation because the sta-

tistics of relations are important factors in the plan optimization

[1, 7, 12, 23]. However, removing all dangling tuples of 𝑄 is an NP-

hard problem due to the hardness of the subgraph homomorphism

(or isomorphism) problem.

Proposition 5.1. Given 𝑄 and 𝐺 , removing all dangling tuples
from the query 𝑄 =Z𝑒∈𝐸 (𝑄) 𝑅𝑒 is NP-hard.

Due to the hardness, we develop a heuristic taking advantage of

graph structural features to remove dangling tuples. Specifically,

we decompose 𝑄 into a set of tree-structured sub-queries 𝑄 ′ and
apply the full reducer on each 𝑄 ′ to remove dangling tuples. After

executing the full reducer, each data edge in relations 𝑅𝑒 where

𝑒 ∈ 𝐸 (𝑄 ′) appears in a subgraph homomorphism from 𝑄 ′ to 𝐺 .

5.2 Implementation Details
Algorithm 5 illustrates RelationFilter, which builds relations for

each query edge and prunes dangling tuples. Lines 2-3 generate

a relation for each query edge based on labels. Then, Lines 4-5

remove dangling tuples of each 𝑄𝑇 ∈ 𝑄𝐹 with the full reducer.

Next, we decompose 𝑄𝐶 into a set of trees 𝑆𝑢 with 𝑢 ∈ 𝑉 (𝑄𝐶) as
the root and 𝑁 (𝑢) as leaves and apply the full reducer to each of

Algorithm 5: RelationFilter
1 Procedure RelationFilter(𝑄,𝐺,𝑄𝐶 ,𝑄𝐹)
2 foreach 𝑒 (𝑢,𝑢′) ∈ 𝐸 (𝑄) do
3 𝑅 (𝑢,𝑢′) ← {(𝑣, 𝑣′) |𝑒 (𝑣, 𝑣′) ∈ 𝐸 (𝐺) ∧ 𝐿 (𝑣) = 𝐿 (𝑢) ∧ 𝐿 (𝑣′) =

𝐿 (𝑢′) };
4 foreach𝑄𝑇 ∈ 𝑄𝐹 do
5 FullReducer(𝑄𝑇);

6 𝛿 ← GenerateFilteringOrder(𝑄,𝑄𝐶 ,𝑄𝐹);

7 foreach 𝑢 ∈ 𝑉 (𝑄𝐶) along the order of 𝛿 do
8 𝑆𝑢 ← the tree rooted at 𝑢 with 𝑁 (𝑢) as leaves;
9 FullReducer(𝑆𝑢);

10 foreach 𝑢 ∈ 𝑉 (𝑄𝐶) along the reverse order of 𝛿 do
11 The same as Lines 8-9;

12 Function GenerateFilteringOrder(𝑄,𝑄𝐶 ,𝑄𝐹)
13 𝛿 ← () ;
14 Add 𝑢 ∈ 𝑉 (𝑄𝐹) −𝑉 (𝑄𝐶) into 𝛿 with an arbitrary order;

15 while |𝛿 | ≠ |𝑉 (𝑄) | do
16 Add 𝑎𝑟𝑔max𝑢∈𝑉 (𝑄𝐶)−𝛿 |𝑁 (𝑢) ∩ 𝛿 | into 𝛿 ;
17 return 𝛿 ;

them. Specifically, Line 6 generates an order of query vertices to

determine the processing sequence of the trees. We call this order

the filtering order (𝛿). In the full reducer on 𝑆𝑢 , we want to involve

as many as possible relations that have been processed to utilize

the pruning results from previous steps. Therefore, we first add

the vertices exclusively belonging to𝑉 (𝑄𝐹) to 𝛿 (Line 14) and then
select the vertices in 𝑉 (𝑄𝐶) with most neighbors in 𝛿 as the next

vertex (Lines 15-16). Lines 7-9 apply the full reducer to the trees

along the order of 𝛿 . This procedure utilizes the pruning results

on 𝑆𝑢 to filter relations in 𝑆𝑢′ where 𝑢 is positioned before 𝑢 ′ in 𝛿
and 𝑢 ′ is a neighbor of 𝑢. To filter relations in 𝑆𝑢 with the pruning

results on 𝑆𝑢′ , Lines 10-11 conduct the same operations along the

reverse order of 𝛿 .

Example 5.2. In Figure 2, 𝑄𝐹 contains only one edge, 𝑒 (𝑢1, 𝑢4),
and the full reducer on the forest does not update 𝑄𝐹 . Suppose

𝛿 = (𝑢4, 𝑢1, 𝑢2, 𝑢3). Algorithm 5 applies the full reducer on 𝑆1, 𝑆2
and 𝑆3, respectively along the order of 𝛿 , and then the reverse order.

The relations after filtering are listed in the figure.

5.3 Analysis of Relation Filter
Space and time. We build a relation for each query edge, which

contains data edges that can be mapped to the query edge. There-

fore, the space complexity is𝑂 (|𝐸 (𝑄) | × |𝐸 (𝐺) |). Lines 2-3 in Algo-

rithm 5 take 𝑂 (|𝐸 (𝑄) | × |𝐸 (𝐺) |) time since we scan 𝐸 (𝐺) for each

181

query edge. The full reducer on 𝑄𝑇 ∈ 𝑄𝐹 takes 2 × (|𝐸 (𝑄𝑇) | − 1)
semi-joins. Hence, Lines 4-5 takes

∑
𝑄𝑇 ∈𝑄𝐹

2 × (|𝐸 (𝑄𝑇) | − 1) ⩽
2 × |𝐸 (𝑄𝐹) | semi-joins. We omit the cost of generating 𝛿 as it is

trivial. The full reducer on a tree 𝑆𝑢 has 2 × (𝑑 (𝑢) − 1) semi-joins.

Therefore, Lines 7-11 take 4 ×∑𝑢∈𝑉 (𝑄𝐶) (𝑑 (𝑢) − 1) ⩽ 8 × |𝐸 (𝑄) |
semi-joins. A semi-join on relations 𝑅 and 𝑅′ takes |𝑅 | + |𝑅′ | time.

Then, the time complexity of Algorithm 5 is 𝑂 (|𝐸 (𝑄) | × |𝐸 (𝐺) | +
(2 × |𝐸 (𝑄𝐹) | + 8 × |𝐸 (𝑄) |) × |𝐸 (𝐺) |) = 𝑂 (|𝐸 (𝑄) | × |𝐸 (𝐺) |).

Pruning power. Next, we compare the pruning power with

CFLMatch and DP-iso, the latest exploration-based algorithms.

CFLMatch and DP-iso utilize Proposition 2.4 to filter the candi-

date vertex set 𝐶 (𝑢) for each 𝑢 ∈ 𝑉 (𝑄) based on 𝐶 (𝑢 ′) where
𝑢 ′ ∈ 𝑁 (𝑢) along a spanning tree of 𝑄 . Repeating such a procedure

till no candidate vertex sets𝐶 (𝑢) can be updated reaches the steady

state: given 𝑣 ∈ 𝐶 (𝑢), ∀𝑢 ′ ∈ 𝑁 (𝑢), 𝑁 (𝑣) ∩ 𝐶 (𝑢 ′) ≠ ∅. However,
CFLMatch and DP-iso set the number of rounds as two and three,

respectively, to balance effectiveness and efficiency.

If repeating the procedure at Lines 7-9 in Algorithm 5 till no

relations can be updated, then 𝑅(𝑢,𝑢 ′) ⋉ 𝑅(𝑢,𝑢 ′′) will be equal to
𝑅(𝑢,𝑢 ′) given𝑢 ∈ 𝑉 (𝑄𝐶) and𝑢 ′, 𝑢 ′′ ∈ 𝑁 (𝑢). Therefore,𝜋{𝑢 }𝑅(𝑢,𝑢 ′)
will be equal to 𝜋{𝑢 }𝑅(𝑢,𝑢 ′′). For each 𝑢 ∈ 𝑉 (𝑄𝐶), let 𝐶 (𝑢) be
𝜋{𝑢 }𝑅(𝑢,𝑢 ′) where 𝑢 ′ is an arbitrary neighbor of 𝑢. Then, 𝐶 (𝑢)
will satisfy the steady state because given 𝑢 ′ ∈ 𝑁 (𝑢) and 𝑣 ∈ 𝐶 (𝑢),
there exists (𝑣, 𝑣 ′) ∈ 𝑅(𝑢,𝑢 ′) where 𝑣 ′ ∈ 𝐶 (𝑢 ′). Therefore, the prun-
ing power of Algorithm 5 is competitive with the native filtering

methods in exploration-based algorithms. To balance the execution

time and the pruning power, we set the times of executing the

pruning procedure to two.

6 JOIN PLAN GENERATOR
This section elaborates the join plan generator.

6.1 General Idea
The join plan in RapidMatch is a matching order 𝜑 that positions

the core vertices 𝑉 (𝑄𝐶) before the non-core vertices (i.e., 𝑉 (𝑄) −
𝑉 (𝑄𝐶)). Moreover, 𝜑 is connected, i.e., ∀1 ⩽ 𝑖 ⩽ |𝜑 |, 𝑄 [𝜑 [1 : 𝑖]]
is a connected graph. Then, a non-core vertex has exactly one

backward neighbor in 𝜑 based on Definition 2.1. RapidMatch first

executes𝑄𝐶 =Z𝑒∈𝐸 (𝑄𝐶) 𝑅𝑒 with LFTJ taking 𝜑 [1 : |𝑉 (𝑄𝐶) |] as the
matching order, and then evaluates𝑄𝐶 Z 𝑄𝐹 where𝑄𝐹 =Z𝑒∈𝐸 (𝑄𝐹)
𝑅𝑒 with a sequence of hash joins. In practice, RapidMatch executes

all joins in a pipeline manner, i.e., the results generated by one

join are immediately emitted to the subsequent joins, to avoid

materializing intermediate results.

Example 6.1. In Figure 2, suppose that 𝜑 = (𝑢1, 𝑢2, 𝑢3, 𝑢4). Rapid-
Match first evaluates 𝑄𝐶 = 𝑅(𝑢1, 𝑢2) Z 𝑅(𝑢1, 𝑢3) Z 𝑅(𝑢2, 𝑢3) with
LFTJ along (𝑢1, 𝑢2, 𝑢3), and then performs a hash join 𝑅(𝑄𝐶) Z
𝑅(𝑢1, 𝑢4) to find results of 𝑄 .

Existing methods [7, 12] optimize 𝜑 based on the cost model

𝑐𝑜𝑠𝑡 (𝜑) =
∑ |𝑉 (𝑄) |
𝑖=1

|𝑅(𝑄 [𝜑 [1 : 𝑖]]) |, which is the total number

of intermediate results generated during the enumeration. How-

ever, the cardinality estimation on the output size of sub-queries

of 𝑄 is very challenging, especially when 𝑄 is large. The bias of

the estimation can result in very ineffective join plans. Due to the

difficulty of the cardinality estimation, we optimize 𝜑 from the

Algorithm 6: JoinPlanGenerator
1 Function JoinPlanGenerator(𝑄, T1,2, T2,3, T3,4)
2 𝑇 ← ConstructDensityTree(T1,2, T2,3, T3,4);
3 Ω ← {};
4 foreach X ∈ 𝑇 .𝑙𝑒𝑎𝑣𝑒𝑠 do
5 𝑒∗ (𝑢,𝑢′) ← 𝑎𝑟𝑔min𝑒 (𝑢,𝑢′)∈𝐸 (X) (𝑑 (𝑢) + 𝑑 (𝑢′)) ;
6 𝜑 ← (𝑢,𝑢′) where we suppose that 𝑑 (𝑢) ⩾ 𝑑 (𝑢′) ;
7 Traverse(𝑄,𝑇 ,𝜑, X);
8 Add 𝜑 to Ω;

9 return 𝑎𝑟𝑔max𝜑∈Ω 𝑢𝑡𝑖𝑙𝑖𝑡𝑦 (𝜑) ;
10 Function ConstructDensityTree(T1,2, T2,3, T3,4)
11 foreach𝑇 ∈ T3,4 do
12 Set the parent of𝑇 .𝑟𝑜𝑜𝑡 as the smallest X in T2,3 containing it;
13 foreach𝑇 ∈ T2,3 do
14 Set the parent of𝑇 .𝑟𝑜𝑜𝑡 as the smallest X ∈ T1,2 containing it;
15 return the tree in T1,2 ;
16 Procedure Traverse(𝑄,𝑇 ,𝜑, X)
17 if X is visited then return;
18 Mark X as visited;

19 if 𝑉 (X) − 𝜑 = ∅ then Go to Line 29;

20 while X.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 ≠ ∅ do
21 X∗ ← 𝑎𝑟𝑔maxX′∈X.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛 (𝜑, X′) ;
22 if 𝑉 (X∗) ∩ 𝜑 = ∅ then
23 Add vertices 𝑢 in SP to 𝜑 if 𝑢 ∉ 𝜑 ;

24 Traverse(𝑄,𝑇 ,𝜑, X∗);
25 Remove X∗ from X.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛;
26 while𝑉 (X) − 𝜑 ≠ ∅ do
27 𝑢∗ ← 𝑎𝑟𝑔max𝑢∈𝑉 (X)−𝜑 |𝑁 (𝑢) ∩ 𝜑 |;
28 Add 𝑢∗ to 𝜑 ;

29 if X ≠ 𝑇 .𝑟𝑜𝑜𝑡 then Traverse(𝑄,𝑇 ,𝜑, X.𝑝𝑎𝑟𝑒𝑛𝑡);

perspective of graph structures. When 𝑋𝑀 ({𝑢}) is empty in Algo-

rithm 3, an intermediate result𝑀 cannot be further extended, i.e.,

it cannot appear in any final result. We optimize 𝜑 by terminating

such invalid search paths at an early stage.𝑋𝑀 ({𝑢}) is computed by⋂
𝑢′∈𝑁𝜑

+ (𝑢) 𝑅(𝑢
′
: 𝑀 [𝑢 ′], 𝑢) as discussed in Section 2.4. Then, the

join plan 𝜑 putting query vertices with more backward neighbors

at the beginning tends to perform better, and we define the util-

ity function as 𝑢𝑡𝑖𝑙𝑖𝑡𝑦 (𝜑) = ∑ |𝑉 (𝑄) |
𝑖=1

∑𝑖
𝑗=1 |𝑁

𝜑
+ (𝜑 [𝑗]) |. However,

maximizing the equation by listing all permutations of𝑉 (𝑄) is pro-
hibitively expensive when 𝑄 is large. We propose to optimize the

utility function by prioritizing vertices in dense regions of 𝑄 since∑𝑖
𝑗=1 |𝑁

𝜑
+ (𝜑 [𝑗]) | is equal to |𝐸 (𝑄 [𝜑 [1 : 𝑖]]) |, i.e., the number of

edges in the vertex-induced subgraph of 𝑄 on the first 𝑖 vertices. In

this paper, we generate 𝜑 with the nucleus decomposition because

it can efficiently find high quality dense regions with detailed hier-

archies [30]. For the sequence of hash joins, we prefer first joining

with the relation having a small cardinality.

6.2 Implementation Details
Algorithm 6 presents our join plan generator based on the nucleus

decomposition. Line 2 first constructs a density tree 𝑇 of 𝑄 (via

the ConstructDensityTree function), in which the nodes are nuclei.

Lines 4-8 traverse 𝑇 from the leaf node to put vertices in dense

regions of 𝑄 at the beginning of 𝜑 via the Traverse function. We

add vertices in 𝑒 (𝑢,𝑢 ′) ∈ 𝐸 (X) with the maximum degree sum, and

start the traversal (Lines 5-7). In the following, we present more

details about the two functions: ConstructDensityTree and Traverse.
In theConstructDensityTree function, for each nuclei tree𝑇 ∈ T3,4,

we set the parent of the root node of𝑇 as the smallest (by the vertex

182

u11u1

u2

u3

u4

u5

u6

u7

u8

u9

u10

(a) 𝑘-(1, 2) nucleus.

u11u1

u2

u3

u4

u5

u6

u7

u8

u9

u10

(b) 𝑘-(2, 3) nucleus.

u11u1

u2

u3

u4

u5

u6

u7

u8

u9

u10

(c) 𝑘-(3, 4) nucleus.

k=1

k=1k=2

k=1

k=3

k=2

k=1

𝒯!,# 𝒯#,$ 𝒯$,%
Density

Tree
𝒳!

𝒳"

𝒳# 𝒳$

𝒳%

𝒳& 𝒳'

(d) Nuclei forest.
Figure 3: Example of a density tree.

cardinality) nucleus X in T2,3 containing it (Lines 11-12). Lines 13-
14 conduct a similar operation for each 𝑇 ∈ T2,3. As a result, the
ConstructDensityTree function generates a single tree 𝑇 , because

(1) the 1-(1, 2) nucleus contains all query vertices; and (2) given a

𝑘-(𝑟, 𝑠) nucleus, there must be a 𝑘 ′-(𝑟 − 1, 𝑠 − 1) nucleus containing
it where 𝑘 ′ ⩾ 𝑘 .

Example 6.2. The query graph𝑄 is illustrated in Figure 3a where

we omit the vertex label for brevity. Figures 3a, 3b and 3c present the

𝑘-(1, 2), 𝑘-(2, 3) and 𝑘-(3, 4) nucleus decomposition, respectively.

The corresponding nuclei forests are illustrated in Figure 3d. Take

X6 containing {𝑢3, 𝑢4, 𝑢5, 𝑢6} as an example. The smallest nucleus

in T2,3 containing it isX5. We setX5 as the parent ofX6. The density
tree of 𝑄 is presented in Figure 3d.

In the Traverse function, if X has been visited, then return (Line

17). Otherwise, mark it as visited. If all vertices in X exist in 𝜑 ,

then jump to its parent (Line 19). As the density of X is generally

lower than its children, Lines 20-24 first consider its children. We

prioritize the child X′ having stronger connection with 𝜑 , which is

defined in Equation 1. |𝑆𝑃 (𝜑,X′) | is the length of the shortest path

from X[𝜑] to X′ through vertices in X. The child that has more

common vertices with 𝜑 or is close to 𝜑 scores a high value.

𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛(𝜑,X′) = |𝜑 ∩𝑉 (X′) | + 1

1 + |𝑆𝑃 (𝜑,X′) | . (1)

After visiting all children of X, Lines 26-28 add the remaining

vertices in X to 𝜑 . At each step, we pick the vertex 𝑢 with the

maximum |𝑁 (𝑢) ∩𝜑 | to optimize the utility function. We break ties

with (1) the high vertex degree; and (2) the small relation cardinality.

Line 29 traverses to the parent of X. Finally, Line 9 returns 𝜑 with

the maximum utility value as the join plan.

Example 6.3. Continue Example 6.2 and we traverse from X6 of
𝑇 . We first add 𝑢5, 𝑢6 to 𝜑 since 𝑒 (𝑢5, 𝑢6) has the maximum degree

sum in X6. We add all vertices in X6 to 𝜑 and traverse to its parent

X5. X7 is the child of X5 and the connection between 𝜑 and X7 is
3 because they have two common vertices 𝑢5, 𝑢6 and the shortest

path between them is 0. Then, we traverse to X7. Both 𝑢7 and 𝑢8
have two neighbors in 𝜑 . Based on rules breaking ties, we add 𝑢7
to 𝜑 since it has a higher vertex degree than 𝑢8. Next, we add 𝑢8 to

𝜑 before 𝑢10 because 𝑢8 has more neighbors in 𝜑 . After adding all

vertices in X7 to 𝜑 , the traversal procedure leaves X7 and continues
the process until all query vertices are added into 𝜑 .

6.3 Analysis of Join Plan Generator
The join plan generated by Algorithm 6 satisfies Proposition 6.4,

which meets the requirement of RapidMatch. We omit the proofs

of Propositions 6.4 and 6.5 for brevity.

Proposition 6.4. 𝜑 generated by Algorithm 6 is connected and
core vertices are before non-core vertices in it.

Time of Algorithm 6. The time complexity of constructing the

density tree𝑇 is𝑂 (|𝑉 (𝑄) | × |𝑇 |2). The cost of computing Equation

1 is at most 𝑂 (|𝐸 (𝑄) |). Then, the entire traversal procedure takes
𝑂 (|𝐸 (𝑄) | ×∑X∈𝑇 |X.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 |2) = 𝑂 (|𝐸 (𝑄) | × |𝑇 |2) time to com-

pute Equation 1. Lines 26-28 take𝑂 (|𝑉 (𝑄) |2) time during the entire

traversal procedure of 𝑇 . As we start a traversal from each leaf, the

time complexity of Algorithm 6 is𝑂 (|𝑇 | × |𝑉 (𝑄) | + |𝑇 |3 × |𝐸 (𝑄) | +
|𝑇 | × |𝑉 (𝑄) |2). Because 𝑄 only contains tens of vertices and the

nucleus in a nuclei forest have the disjointness property [31], |𝑇 | is
very small in our experiments and we regard it as a constant value.

Then, the time complexity of Algorithm 6 is 𝑂 (𝛼 (𝑄) + |𝑉 (𝑄) |2)
where 𝛼 (𝑄) denotes the total cost of the nucleus decomposition

obtaining T1,2,T2,3,T3,4.
Time of joins. RapidMatch evaluates 𝑅(𝑄𝐶) Z (Z𝑒∈𝐸 (𝑄𝐹) 𝑅𝑒)

with a sequence of hash joins along𝜑 . Benefiting from RelationFilter,
the joins satisfy Proposition 6.5. Therefore, RapidMatch has the

worst-case optimality because it evaluates 𝑄𝐶 with LFTJ, which is

worst-case optimal. In particular, when𝑄 is a tree, RapidMatch first

applies the full reducer on 𝑄 in RelationFilter, and then evaluates

𝑄 with a sequence of pair-wise joins, which is the same as the

Yannakakis algorithm and has the instance optimality [39].

Proposition 6.5. Each join of 𝑅(𝑄𝐶) Z (Z𝑒∈𝐸 (𝑄𝐹) 𝑅𝑒) along 𝜑
increases the size of intermediate results.

Space of Joins. RapidMatch does not materialize intermediate

results, while other approaches [1, 17, 23] do if their join plans

contain pair-wise joins on two sub-queries.

Discussions. CFLMatch [7] proposes to decompose 𝑄 into 𝑄𝐶

and 𝑄𝐹 , and prioritizes core vertices to start the enumeration from

the dense part of𝑄 . However, CFLMatch cannot further take advan-

tage of the dense structures of 𝑄𝐶 , which can have more vertices

than 𝑄𝐹 , for example, 𝑄𝐶 has ten vertices (𝑢1−10) in Figure 3a,

but 𝑄𝐹 has only one vertex (𝑢11). The decomposition method of

CFLMatch can put 𝑢11 after 𝑢1−10 in 𝜑 but cannot obtain the dense

structures of the𝑄𝐶 . In contrast, we generate 𝜑 by constructing the

density tree based on the nucleus decomposition. It can efficiently

find high-quality dense subgraphs with a multi-level hierarchy as

shown in Figure 3d.

Our ordering method is a greedy approach based on the heuristic

rule that the dense sub-structures of 𝑄 generally appear less fre-

quently in𝐺 . Thematching order prioritizes the dense sub-structure

of𝑄 with the basic cardinality estimation to break ties. This heuris-

tic method is effective in practice, but it also has some limitations.

First, there is no guarantee that the optimal join plan must be within

our plan space. Second, the ordering method can generate ineffec-

tive matching orders on the workloads where the assumption in

the heuristic rule does not hold. For example, we may generate

an ineffective matching order if the dense part of 𝑄 appears much

more frequently than the sparse part in 𝐺 due to the distributions

of labels.

183

7 OTHER IMPLEMENTATION DETAILS
This section introduces the relation encoder and result enumerator.

7.1 Relation Encoder
LFTJ stores a relation 𝑅(𝑢,𝑢 ′) as a two-level trie [38]. The first level
stores the values 𝑣 of𝑢, and the second records the neighbors, which

are sorted.We optimize the relation data layout by encoding vertices

in relations, and call it encoded trie. Specifically, for each𝑢 ∈ 𝑉 (𝑄𝐶),
we first generate a relation 𝑅(𝑢) containing candidate data vertices

of 𝑢 by 𝜋{𝑢 }𝑅(𝑢,𝑢 ′) where 𝑢 ′ is an arbitrary neighbor of 𝑢. 𝑅(𝑢)
is stored as an array. Note that given 𝑢 ∈ 𝑉 (𝑄𝐶), all relations
containing the attribute 𝑢 share the same 𝑅(𝑢). 𝑝𝑜𝑠 (𝑣) denotes
the position of 𝑣 in 𝑅(𝑢). For each 𝑒 (𝑢,𝑢 ′) ∈ 𝐸 (𝑄𝐶) where 𝑢 ∈
𝑁
𝜑
+ (𝑢 ′), we generate 𝑅′(𝑢,𝑢 ′) by looping over (𝑣, 𝑣 ′) ∈ 𝑅(𝑢,𝑢 ′): if

𝑣 ∈ 𝑅(𝑢) and 𝑣 ′ ∈ 𝑅(𝑢 ′), then add (𝑝𝑜𝑠 (𝑣), 𝑝𝑜𝑠 (𝑣 ′)) into 𝑅′(𝑢,𝑢 ′);
otherwise, skip (𝑣, 𝑣 ′). Furthermore, given 𝑣 ∈ 𝑅(𝑢) − 𝜋{𝑢 }𝑅(𝑢,𝑢 ′),
add (𝑝𝑜𝑠 (𝑣), ∅) into 𝑅′(𝑢,𝑢 ′) to indicate that 𝑣 has no neighbors in

𝑅′(𝑢,𝑢 ′). After that, we store 𝑅′(𝑢,𝑢 ′) as a trie. For each 𝑒 (𝑢,𝑢 ′) ∈
𝐸 (𝑄𝐹), we build a hash index of 𝑅(𝑢,𝑢 ′) to serve the hash join.

The time complexity of optimizing the relation data layout is

𝑂 (∑𝑒∈𝐸 (𝑄𝐹) |𝑅𝑒 | +
∑
𝑒∈𝐸 (𝑄𝐶) |𝑅𝑒 | × log |𝑅𝑒 |), and stores it as a trie

takes 𝑂 (|𝑅 | × log |𝑅 |) time. Retrieving the neighbors of a vertex

in the encoded trie takes 𝑂 (1) time, while 𝑂 (log |𝑅 |) time in the

trie. Additionally, the set intersection method storing input sets in

compact layouts [13] can benefit from the encoding because the

domain of vertex IDs is reduced to [0, |𝑅(𝑢) |).

7.2 Result Enumerator
In the result enumeration, we adopt three optimizations to improve

its efficiency. Firstly, we adopt two set intersection (SI) methods in

LFTJ. We use QFilter [13], which encodes sets in a compact layout,

for small queries whose neighbor sets in relations are large. For

large queries whose neighbor sets are small after filtering, we use a

hybrid method on integer arrays. The hybrid SI method denoted

by Hybrid handles the cardinality skew of sets by integrating the

merge-based method denoted by Merge with the Galloping algo-

rithm [1]. We further accelerate Merge and Hybrid with the AVX2

instruction set (256-bit width) denoted by M+AVX2 and H+AVX2,
respectively. QFilter [13] is implemented with the SSE instruction

set (128-bit width). Secondly, we use the intersection caching [23]

for small queries [23]. Thirdly, we utilize the failing set pruning

[12] to accelerate large queries.

8 EXPERIMENTS
We conduct experiments to evaluate the effectiveness of Rapid-

Match in this section.

8.1 Experimental Setup
Algorithms Under Study.We compare the performance of Rapid-

Match (RM) with CFLMatch (CFL) [7], DP-iso (DP) [12] and Graph-

flow (GF) [23]. GF is the state-of-the-art join-based algorithm. CFL

and DP are the latest exploration-based algorithms. Because the

open-source version
1
of CECI [6] failed on a number of queries, we

do not include CECI in our experiments.

1
https://github.com/iHeartGraph/ceci-release, Last accessed on 2020/08/15.

Table 3: Properties of real-world datasets.
Graph Category Dataset Name |𝑽 | |𝑬 | |𝚺 | 𝒅

Biology Human hu 4,674 86,282 44 36.9

Lexical WordNet wn 76,853 120,399 5 3.1

Citation US Patents up 3,774,768 16,518,947 20 8.8

Social
LiveJournal lj 4,847,571 42,851,237 4 17.7

Youtube yt 1,134,890 2,987,624 25 5.3

DBLP db 317,080 1,049,866 15 6.6

Web eu2005 eu 862,664 16,138,468 4 37.4

u2

u4

u5

u3

u1

u4

u2

u3

u1

u2

u4

u5

u3

u1

u2

u4

u5

u3

u1

u1

u4

u3

u5

u2

u2

u4

u5

u3

u1

u2

u4

u5

u3

u1

Q1 Q2 Q3 Q4 Q5 Q6 Q7
Figure 4: Query graphs.

Implementation and Experiment Environment.We obtain

the source code of CFL from its original authors. The source code

of GF
2
and the binary file of DP

3
are publicly available at GitHub.

RM, CFL and DP are implemented in C++, and GF is programmed

in JAVA. The C++ code is complied by g++ 7.3.1 with the -O3 flag

enabled and the JAVA code is complied by JAVAC 1.8.0. We conduct

experiments on a Linux machine with two Intel Xeon E5-2650 v3

CPUs and 64GB RAM. As the binary of DP does not support for

finding homomorphisms, we use our homegrown implementation

of DP-iso to answer small queries. As GF considers edge-labeled and

directed graphs, we set edges of data graphs and query graphs as

the same label and store each edge of data graphs in both directions.

We use the default settings of GF to build catalogues for data graphs

other than the Youtube dataset on which we set the parameter ℎ as

two to avoid the out-of-memory issue. GF can build the catalogues

within ten minutes. We omit the detailed figures for brevity.

Datasets. The details of the data graphs are listed in Table 3. We

use two kinds of workloads that are widely used in the previous

studies[1, 7, 12, 23]. The first kind uses the small queries in Fig-

ure 4, which are mostly used in join-based approaches [1, 23]. For

consistency with those previous studies, those queries perform ho-

momorphism. We select eu2005 and LiveJournal as the data graphs,

and use the same experimental setting as previous studies [23]: (1)

as the graphs originally have no label, we choose a label from a

set Σ of distinct labels uniformly at random and assign it to the

vertex; (2) we set the number of distinct labels as four, because the

workload will be trivial to be evaluated if Σ has a large number of

distinct labels.

The second kind adopts large queries having tens of vertices

each, which perform subgraph isomorphism and are widely used

in the experiments of exploration-based algorithms [7, 12, 19]. We

select DBLP, Youtube, US Patents, Human and WordNet as the

data graphs. Human and WordNet originally have labels. For other

datasets, we choose a label from Σ uniformly at random and assign

it to the vertex. We vary the size of |Σ| from 10 to 30 at a step of 5,

and pick the size such that we can demonstrate the capabilities of

competing algorithms without breaking most of them. We generate

query graphs using the same approach as [7, 12], which randomly

extracts subgraphs from the data graphs. We generate a dense query

2
https://github.com/queryproc/optimizing-subgraph-queries-combining-binary-and-

worst-case-optimal-joins, Last accessed on 2020/08/15.

3
https://github.com/SNUCSE-CTA/DAF, Last accessed on 2020/08/15.

184

set (i.e., 𝑑 (𝑄) ⩾ 3) and a sparse query set (i.e., 𝑑 (𝑄) < 3) for each

data graph. Each set contains 200 connected query graphs with

the same number of vertices. We set |𝑉 (𝑄) | = 20 for Human and

WordNet, but |𝑉 (𝑄) | = 32 for other graphs, because Human is

dense and most of vertices in WordNet and Human have the same

label, which makes them challenging. The dense and sparse query

sets with 𝑖 vertices are denoted as 𝐻𝑖𝐷 and 𝐻𝑖𝑆 , respectively.

Metrics. To keep consistent with previous research, we find all

results for small queries [1, 23], while terminate the query after

finding 10
5
results for large queries [7, 12, 19, 22]. We measure the

query time in milliseconds (ms) to process a query on a data graph,

which consists of the filtering time (i.e., the time spent on the filter-

ing), the ordering time (i.e., the time spent on generating the join

plan), the encoding time (i.e., the time spent on the encoding) and

the enumeration time (i.e., the time spent on enumerating results).

The preprocessing time consists of the filtering time, the ordering

time and the encoding time. To compare the pruning capability of

the filtering methods, we examine the relation cardinality, which is∑
𝑒∈𝐸 (𝑄) |𝑅𝑒 |
|𝐸 (𝑄) | , and the memory consumption on storing relations. We

set the time limit for a small query as 24 hours and terminate the

large query if it cannot be completed within 5 minutes so that our

experiments can be finished within a reasonable time.

8.2 Comparison with Existing Algorithms
Figure 5 presents the experiment results on small queries. GF gener-

ally runs faster than exploration-based algorithms. RM significantly

outperforms competing algorithms. In particular, RM completes𝑄5

on eu within around 2 hours while other algorithms spend more

than ten hours, which demonstrates the advantage of RM on acyclic

queries. GF is competitive with RM on𝑄2 since its join plan consid-

ers the impact of the intersection caching on the enumeration. CFL

performs worse than other algorithms because its local candidate

vertex set computation, which depends on 𝐺 , is much slower than

the set intersection based methods.

Q1 Q2 Q3 Q4 Q5 Q6 Q7
103

104

105

106

107

108

109

Qu
er

y
Ti

m
e

(m
s)

CFL DP GF RM

(a) Vary𝑄 on eu.
Q1 Q2 Q3 Q4 Q5 Q6 Q7

103

104

105

106

107

108

109

Qu
er

y
Ti

m
e

(m
s)

CFL DP GF RM

(b) Vary𝑄 on lj.
Figure 5: Overall performance on small queries.

We next evaluate the performance of competing algorithms on

large queries. Figure 6 presents the results on the mean of query
time on a query set, i.e.,

1

|𝐻 |
∑
𝑄 ∈𝐻 𝑡 (𝑄) where 𝑡 (𝑄) is the query

time on a query 𝑄 . RM runs more than one order of magnitude

faster than competing algorithms on wn and yt, while DP and

RM are competitive on db. To further examine the performance of

competing algorithms on individual query, we report the cumulative
distribution function of the preprocessing time (the dashed line) and

query time (the solid line) of queries in a query set in Figure 7.

The preprocessing time dominates the query time on the short

running queries (i.e., the query with a short query time). As the

preprocessing time of RM is longer than that of CFL on db, the

db hu up wn yt101

102

103

104

105

106

107

M
ea

n
of

 Q
ue

ry
 T

im
e

(m
s) CFL DP GF RM

(a) Vary𝐺 on dense query sets.
db hu up wn yt101

102

103

104

105

106

107

M
ea

n
of

 Q
ue

ry
 T

im
e

(m
s) CFL DP GF RM

(b) Vary𝐺 on sparse query sets.
Figure 6: Overall performance on large queries.

101 102 103 104 105

Elapsed Time (ms)
0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 o

f Q
ue

rie
s

CFL
DP
GF
RM

CFL-P
DP-P
GF-P
RM-P

(a) 𝐻32𝐷 on db.

102 103 104 105

Elapsed Time (ms)
0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 o

f Q
ue

rie
s

CFL
DP
GF
RM

CFL-P
DP-P
GF-P
RM-P

(b) 𝐻32𝐷 on yt.
Figure 7: Cumulative distribution on large queries.

query time of RM is more than that of CFL on a number of queries.

In contrast, RM performs much better than CFL for long running

queries on db and yt. As a result, RM spends less time on processing

a query set than CFL. Because GF is a direct-enumeration method,

its ordering time is equal to the preprocessing time. We can see

that its ordering time is much longer than the preprocessing time

of the preprocessing-enumeration algorithms although it adopts a

greedy join plan generation method for large queries. As a result,

GF is slower than other algorithms on a number of queries.

Furthermore, we evaluate competing algorithms with differ-

ent query sizes in Figure 8. RM performs well on queries with

different sizes. GF runs faster than the other algorithms on 𝐻4𝐷

against yt because the overhead of the pruning in the preprocessing-
enumeration methods can offset the benefit on the query with a

short running time. However, GF runs much slower than competing

algorithms on 𝐻8𝐷 against yt because it generates ineffective join
plans for a number of queries.

H4D H8D H16D H24D H32D
100

101

102

103

104

105

106

M
ea

n
of

 Q
ue

ry
 T

im
e

(m
s) CFL DP GF RM

(a) Vary query sizes on db.
H4D H8D H16D H24D H32D

100
101

102
103
104
105

106
107

M
ea

n
of

 Q
ue

ry
 T

im
e

(m
s) CFL DP GF RM

(b) Vary query sizes yt.
Figure 8: Overall performance with different query sizes.

Finding (1): (A) Join-based algorithms outperform exploration-

based on small queries, and RM outperforms all other counterparts

by up to one order of magnitude; (B) Although no algorithm can

dominate competing algorithms on each large query, RM performs

very well in most tested workloads; and (C) The overhead of the

pruning can offset the benefit on queries with a short running time.

8.3 Evaluation of Individual Techniques
We evaluate individual techniques listed in Table 4 within our sub-

graph query processing framework. We first compare the pruning

power of the filtering methods. Next, we evaluate the effective-

ness of join plans with and without the optimization techniques

185

Table 4: A summary of individual techniques under study.
Category Method Description

Filtering relations

or

candidate vertex sets

RM-F Filtering relations with full reducers

GF-F [23] Filtering relations with selection on labels

CFL-F [7]

Native candidate vertex sets filtering

method based on Proposition 2.4

DP-F [12]

Native candidate vertex sets filtering

method based on Proposition 2.4

Generating matching order

or

query plan

RM-O

Generating join plans with

the nucleus decomposition

GF-O [23] Generating join plans with sampling

CFL-O [7] A path-based ordering method

DP-O [12] A path-based ordering method

Optimizing enumeration

IC [23] Intersection caching method in GF

FSP [12] Failing set pruning method in DP

Optimizing data layout

Encoded

Storing relations as trie

with vertex IDs encoded

Trie [38] Storing relations as trie

Hash [38] Storing relations as hash table

Accelerating

Set Intersection(SI)

Merge Merge-based SI

M+AVX2 Merge-based SI with AVX2

Hybrid Integrate Merge-based with Galloping SI

H+AVX2 Hybrid SI with AVX2

QFilter [13] Sparse bitmap based SI with SSE

including the intersection caching and the failing set pruning. Fi-

nally, we evaluate the data layout optimizations with different set

intersection (SI) methods. By default, the filtering method, the join

plan generation method and the data layout are RM-F, RM-O and

Encoded. We adopt QFilter and the intersection caching for small

queries, while use H+AVX2 and the failing set pruning for large

queries. Due to space limit, we omit the experiment results on the

filtering time, join plan generation time and encoding time because

the absolute value is very small. RM takes at most 600MB memory

space to store relations in our experiments, and we do not report

detailed results on memory consumption as well. Additionally, we

omit the path query 𝑄5 since Section 8.2 has shown the efficiency

of RM on it.

8.3.1 Filtering Methods. As CFL-F and DP-F focus on pruning can-

didate vertex sets, we count the number of data edges between

candidate vertex sets as their relation cardinality. Figure 9 presents

the results. RM-F is competitive with CFL-F and DP-F, and outper-

forms GF-F. RM-F, DP-F and CFL-F significantly reduce relation

cardinalities over GF-F on db, up and yt. In contrast, they reduce

relation cardinalities by 5%-10% on eu compared with GF-F, and the

results of the four methods are close on hu and wn. This is because
eu only has four distinct labels, and most vertices of hu and wn
have the same label. Consequently, data vertices in these datasets

are more likely to pass the filtering, since RM-F, DP-F and CFL-F

prune the input based on the neighborhood information of vertices.

Q1 Q2 Q3 Q4 Q6 Q7
106

107

Re
la

tio
n

Ca
rd

in
al

ity

CFL-F DP-F GF-F RM-F

(a) Vary𝑄 on eu.
db hu up wn yt102

103

104

105

106

107

Re
la

tio
n

Ca
rd

in
al

ity

CFL-F DP-F GF-F RM-F

(b) Vary𝐺 on dense query sets.
Figure 9: Comparison of filtering methods.

Finding (2): (A) The pruning power of RM-F is competitive with

the native methods CFL-F and DP-F; and (B) the effectiveness of

filtering methods is limited when the data graph has only a few

distinct labels because the overhead of filtering offset the benefit.

8.3.2 Join Plans and Enumeration Optimizations. Figure 10 presents
the enumeration time of small queries on eu. The bars with grey

and white background colors represent the time without and with

the intersection caching (called IC for short), respectively. When

disabling the intersection caching, the enumeration time of the

four methods is close to each other except 𝑄4 on which RM-O

and DP-O significantly outperform CFL-O and GF-O. Enabling the

intersection caching reduces the enumeration time on some queries.

Q1 Q2 Q3 Q4 Q6 Q7
103

104

105

106

107

108

En
um

er
at

io
n

Ti
m

e
(m

s) CFL-O DP-O GF-O RM-O CFL-OIC DP-OIC GF-OIC RM-OIC

Figure 10: Vary 𝑄 on eu without/with IC.

We collect more detailed metrics in Figure 11 to further inter-

pret the experiment results. Figure 11a reports the number of in-

termediate results and final results (#RES) generated during the

enumeration. We can see that final results are much more than

intermediate results. Figure 11b presents the percentage of invalid

intermediate results, which are the intermediate results not con-

tained in any final results. The invalid intermediate results account

for a small portion of intermediate results. We count the number

of set intersections during the enumeration in Figure 11c. Its trend

is the same as the enumeration time in Figure 10. Based on the

detailed metrics, we can see that the cost of set intersections is

a key performance factor. The intersection caching improves the

performance on some queries because it reduces the number of set

intersections. However, RM-O does not consider its impact on the

enumeration. Consequently, it performs worse than GF-O on 𝑄2.

Q1 Q2 Q3 Q4 Q6 Q7
107

108

109

1010

1011

1012

Nu
m

 o
f I

nt
er

m
ed

ia
te

 R
es

ul
ts

(E
xc

lu
di

ng
 F

in
al

 R
es

ul
ts

)

CFL-O
DP-O

GF-O RM-O #RES

(a) Intermediate results.
Q1 Q2 Q3 Q4 Q6 Q7

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 o

f
In

va
lid

 In
te

rm
ed

ia
te

 R
es

ul
ts

CFL-O DP-O GF-O RM-O

(b) Invalid intermediate results.

Q1 Q2 Q3 Q4 Q6 Q7
106

107

108

109

1010

1011

Nu
m

 o
f S

et
 In

te
rs

ec
tio

ns CFL-O DP-O GF-O RM-O CFL-OIC DP-OIC GF-OIC RM-OIC

(c) Set intersections.
Figure 11: Detailed metrics of small queries on eu.

Finding (3): For small queries, (A) Final results of a query are

much more than intermediate results, and generally only a small

portion of intermediate results are invalid; (B) The cost of set in-

tersections is the key performance factor of the enumeration; and

(C) RM-O can be slower than GF-O on some queries because RM-O

has not taken the cost of set intersections and the impact of the

intersection caching into consideration.

186

Figure 12 presents the mean of enumeration time on large dense

queries without and with the failing set pruning (called FSP for

short), which are represented by bars with the grey and white

background colors, respectively. RM-O runs slightly faster than

competing algorithms on db and up, but slower than CFL-O and GF-

O on hu, which is very dense. In contrast, RM-O achieves up to one

order of magnitude speedup over the other three algorithms on wn
and yt, which are sparse. Enabling FSP improves the performance

on some datasets, e.g., yt.

db hu up wn yt101

102

103

104

105

106

107

M
ea

n
of

En
um

er
at

io
n

Ti
m

e
(m

s) CFL-O DP-O GF-O RM-O CFL-OFSP DP-OFSP GF-OFSP RM-OFSP

Figure 12: Vary 𝐺 on large dense queries without/with FSP.

Moreover, we collect the detailed metrics of RM-O in Figure

13. We relabel the IDs of query graphs based on the enumeration

time, and count the number of intermediate results and invalid

intermediate results for each query. An intermediate result is in-

valid in Algorithm 2 due to either the local candidate vertex set is

empty or the data vertex has been mapped. We count the number

of the two kinds of failures denoted by SI-Empty and ISO-Conflict,
respectively. As shown in the figure, the enumeration time grows

with the increase of intermediate results, and invalid intermediate

results dominate intermediate results for long running queries. We

observe that the failures of long running queries on db are mainly

due to the ISO-Conflict, while SI-Empty on yt. This is because (1) a
data vertex in db can be candidates of more query vertices than yt,
which results in ISO-Conflict, since db has fewer distinct labels than
yt; and (2) data vertices in yt are more likely to have no common

neighbors, which causes SI-Empty, because yt is sparser than db.
RM-O performs much better on yt than db because RM-O opti-

mizes the join plans by reducing the invalid search paths caused by

SI-Empty but does not consider ISO-Conflict.

0 50 100 150 200
Query Graph ID

10 1

100

101

102

103

104

105

106

107

El
ap

se
d

Ti
m

e
(m

s)

Enumeration Time
#Intermediate Results
#Invalid Intermediate Results
#SI-Empty
#ISO-Conflict

102

104

106

108

1010

Co
un

t

(a) 𝐻32𝐷 on db.

0 50 100 150 200
Query Graph ID

10 1

100

101

102

103

104

105

106

107

El
ap

se
d

Ti
m

e
(m

s)

Enumeration Time
#Intermediate Results
#Invalid Intermediate Results
#SI-Empty
#ISO-Conflict

102

104

106

108

1010

Co
un

t

(b) 𝐻32𝐷 on yt.
Figure 13: Detailed metrics of RM-O on large queries.

Finding (4): For large queries, (A) RM-O generally performs

better than competing algorithms, especially, for sparse graphs;

(B) CFL-O and GF-O slightly win RM-O on very dense graphs; (C)

The long running queries suffer from the large number of invalid

intermediate results; and (D) The ISO-Conflict can result in a large

number of invalid intermediate results as well, which is ignored by

all the competing join plan generation methods.

Merge Hybrid M+AVX2 H+AVX2 QFilter
Set Intersection

En
co

de
d

Ha
sh

Tr
ieRe
la

tio
n

St
ru

ct
ur

e 1.23 5.44 3.79 6.50 8.17

1.14 4.23 3.17 5.29 5.47

1.00 2.84 2.19 3.50 5.53

1

2

3

4

5

6

7

8

(a)𝑄6 on eu.

Merge Hybrid M+AVX2 H+AVX2 QFilter
Set Intersection

En
co

de
d

Ha
sh

Tr
ieRe
la

tio
n

St
ru

ct
ur

e 1.21 1.15 1.28 1.19 1.18

1.11 1.09 1.10 1.16 1.15

1.00 0.97 0.96 0.99 1.08
1.00

1.05

1.10

1.15

1.20

1.25

(b) 𝐻32𝐷 on yt.
Figure 14: Effectiveness of relation structures and set inter-
sections on the enumeration time.
8.3.3 Relation Structures and Set Intersections. Figure 14 presents
the speedup achieved with different combinations of relation struc-

tures and SI methods. The baseline is the Trie structure with the

Merge set intersection. Encoded outperforms Hash and Trie. QFilter
can benefit from Encoded. The speedup with advanced SI methods

is limited on yt because the neighbor sets are small after filtering.

For the same reason, the overhead of QFilter offsets its benefit

compared with the methods on uncompressed neighbor sets.

Finding (5): (A) Encoded outperforms Hash and Trie, and accel-

erates QFilter, the set intersection method on the compact layout;

and (B) Advanced set intersection methods significantly improve

the performance on small queries, while the effect is limited on

large queries compared with the merge-based method.

9 CONCLUSION & FUTUREWORK
In this paper, we study both exploration based and join based sub-

graph query processing algorithms and propose RapidMatch, a

holistic join-based approach with optimizations in filtering, match-

ing order generation, and enumeration. We show that the time

complexity of the enumeration in the exploration-based methods

can match the maximum output size of a query, which is the same

as the methods based on the worst-case optimal join. RapidMatch

is based on relational operators and utilizes graph structural infor-

mation to optimize relation filtering and join plans. We conduct

extensive experiments with various kinds of workloads, and show

that RapidMatch outperforms both the state-of-the-art join-based

and exploration-based methods.

Nevertheless, our work has several limitations, which lead to

some interesting research directions. First, our density based join

plan generation method can be enhanced by combining with ad-

vanced cardinality estimation methods [27], taking other metrics

(e.g., the cost of set intersections and the impact of ISO conflicts)

into consideration, and extending the plan space (e.g., considering

binary joins between sub-structures of 𝑄). Second, we consider

parallelizing the end-to-end execution of RapidMatch. It is more

challenging than parallelizing direct-enumeration methods [1, 23],

because synchronization barriers will be needed between parallel

pruning and parallel enumeration. Third, implementing and inte-

grating our proposed techniques in an actual system will make our

work more impactful.

ACKNOWLEDGMENTS
The work of Shixuan Sun and Bingsheng He was supported by

the grant “Asian Institute of Digital Finance” awarded by National

Research Foundation, Singapore and administered by the Infocomm

Media Development Authority under its Smart Systems Strategic

Research Programme in 2020 (R-703-001-034-279).

187

REFERENCES
[1] Christopher R Aberger, Andrew Lamb, Susan Tu, Andres Nötzli, Kunle Olukotun,

and Christopher Ré. 2017. Emptyheaded: A relational engine for graph processing.

ACM Transactions on Database Systems (TODS) 42, 4 (2017), 1–44.
[2] Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. Foundations of databases.

Vol. 8. Addison-Wesley Reading.

[3] Khaled Ammar, Frank McSherry, Semih Salihoglu, and Manas Joglekar. 2018.

Distributed Evaluation of Subgraph Queries Using Worst-case Optimal Low-

Memory Dataflows. Proceedings of the VLDB Endowment 11, 6 (2018).
[4] Molham Aref, Balder ten Cate, Todd J Green, Benny Kimelfeld, Dan Olteanu,

Emir Pasalic, Todd L Veldhuizen, and Geoffrey Washburn. 2015. Design and

implementation of the LogicBlox system. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data. 1371–1382.

[5] Albert Atserias, Martin Grohe, and Dániel Marx. 2008. Size bounds and query

plans for relational joins. In 2008 49th Annual IEEE Symposium on Foundations of
Computer Science. IEEE, 739–748.

[6] Bibek Bhattarai, Hang Liu, and H Howie Huang. 2019. Ceci: Compact embed-

ding cluster index for scalable subgraph matching. In Proceedings of the 2019
International Conference on Management of Data. 1447–1462.

[7] Fei Bi, Lijun Chang, Xuemin Lin, Lu Qin, and Wenjie Zhang. 2016. Efficient

subgraph matching by postponing cartesian products. In Proceedings of the 2016
International Conference on Management of Data. 1199–1214.

[8] Jonathan Cohen. 2008. Trusses: Cohesive subgraphs for social network analysis.

National security agency technical report 16 (2008), 3–1.
[9] Stephen A Cook. 1971. The complexity of theorem-proving procedures. In

Proceedings of the third annual ACM symposium on Theory of computing. 151–
158.

[10] Brian Gallagher. 2006. Matching Structure and Semantics: A Survey on Graph-

Based Pattern Matching.. In AAAI Fall Symposium: Capturing and Using Patterns
for Evidence Detection. 45–53.

[11] Wentian Guo, Yuchen Li, Mo Sha, Bingsheng He, Xiaokui Xiao, and Kian-Lee

Tan. 2020. GPU-Accelerated Subgraph Enumeration on Partitioned Graphs. In

Proceedings of the 2020 ACM SIGMOD International Conference on Management of
Data. 1067–1082.

[12] Myoungji Han, Hyunjoon Kim, Geonmo Gu, Kunsoo Park, and Wook-Shin Han.

2019. Efficient subgraphmatching: Harmonizing dynamic programming, adaptive

matching order, and failing set together. In Proceedings of the 2019 International
Conference on Management of Data. 1429–1446.

[13] Shuo Han, Lei Zou, and Jeffrey Xu Yu. 2018. Speeding up set intersections in

graph algorithms using simd instructions. In Proceedings of the 2018 International
Conference on Management of Data. 1587–1602.

[14] Wook-Shin Han, Jinsoo Lee, and Jeong-Hoon Lee. 2013. Turboiso: towards

ultrafast and robust subgraph isomorphism search in large graph databases. In

Proceedings of the 2013 ACM SIGMOD International Conference on Management of
Data. 337–348.

[15] Huahai He and Ambuj K Singh. 2008. Graphs-at-a-time: query language and

access methods for graph databases. In Proceedings of the 2008 ACM SIGMOD
international conference on Management of data. 405–418.

[16] Xin Huang, Hong Cheng, Lu Qin, Wentao Tian, and Jeffrey Xu Yu. 2014. Querying

k-truss community in large and dynamic graphs. In Proceedings of the 2014 ACM
SIGMOD international conference on Management of data. 1311–1322.

[17] Chathura Kankanamge, Siddhartha Sahu, Amine Mhedbhi, Jeremy Chen, and

Semih Salihoglu. 2017. Graphflow: An active graph database. In Proceedings of
the 2017 ACM International Conference on Management of Data. 1695–1698.

[18] Foteini Katsarou, Nikos Ntarmos, and Peter Triantafillou. 2015. Performance and

scalability of indexed subgraph query processing methods. Proceedings of the
VLDB Endowment 8, 12 (2015), 1566–1577.

[19] Foteini Katsarou, Nikos Ntarmos, and Peter Triantafillou. 2017. Subgraph query-

ing with parallel use of query rewritings and alternative algorithms. (2017).

[20] Hyeonji Kim, Juneyoung Lee, Sourav S Bhowmick, Wook-Shin Han, JeongHoon

Lee, Seongyun Ko, and Moath HA Jarrah. 2016. DUALSIM: Parallel subgraph

enumeration in a massive graph on a single machine. In Proceedings of the 2016
International Conference on Management of Data. 1231–1245.

[21] Longbin Lai, Zhu Qing, Zhengyi Yang, Xin Jin, Zhengmin Lai, Ran Wang,

Kongzhang Hao, Xuemin Lin, Lu Qin, Wenjie Zhang, et al. 2019. Distributed

subgraph matching on timely dataflow. Proceedings of the VLDB Endowment 12,
10 (2019), 1099–1112.

[22] Jinsoo Lee, Wook-Shin Han, Romans Kasperovics, and Jeong-Hoon Lee. 2012. An

in-depth comparison of subgraph isomorphism algorithms in graph databases.

Proceedings of the VLDB Endowment 6, 2 (2012), 133–144.
[23] Amine Mhedhbi and Semih Salihoglu. 2019. Optimizing subgraph queries by com-

bining binary and worst-case optimal joins. Proceedings of the VLDB Endowment
12, 11 (2019), 1692–1704.

[24] Hung Q Ngo. 2018. Worst-case optimal join algorithms: Techniques, results,

and open problems. In Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems. 111–124.

[25] Hung Q Ngo, Christopher Ré, and Atri Rudra. 2014. Skew strikes back: New

developments in the theory of join algorithms. ACM SIGMOD Record 42, 4 (2014),

5–16.

[26] Dung Nguyen, Molham Aref, Martin Bravenboer, George Kollias, Hung Q Ngo,

Christopher Ré, and Atri Rudra. 2015. Join processing for graph patterns: An old

dog with new tricks. In Proceedings of the GRADES’15. 1–8.
[27] Yeonsu Park, Seongyun Ko, Sourav S Bhowmick, Kyoungmin Kim, Kijae Hong,

and Wook-Shin Han. 2020. G-CARE: A Framework for Performance Benchmark-

ing of Cardinality Estimation Techniques for Subgraph Matching. In Proceedings
of the 2020 ACM SIGMOD International Conference on Management of Data. 1099–
1114.

[28] Carlos R Rivero and Hasan M Jamil. 2017. Efficient and scalable labeled subgraph

matching using SGMatch. Knowledge and Information Systems 51, 1 (2017), 61–87.
[29] Siddhartha Sahu, Amine Mhedhbi, Semih Salihoglu, Jimmy Lin, and M Tamer

Özsu. 2017. The ubiquity of large graphs and surprising challenges of graph

processing. Proceedings of the VLDB Endowment 11, 4 (2017), 420–431.
[30] Ahmet Erdem Sariyüce, C Seshadhri, and Ali Pinar. 2018. Local algorithms for

hierarchical dense subgraph discovery. Proceedings of the VLDB Endowment 12, 1
(2018), 43–56.

[31] Ahmet Erdem Sariyuce, C Seshadhri, Ali Pinar, and Umit V Catalyurek. 2015.

Finding the hierarchy of dense subgraphs using nucleus decompositions. In

Proceedings of the 24th International Conference on World Wide Web. 927–937.
[32] Stephen B Seidman. 1983. Network structure and minimum degree. Social

networks 5, 3 (1983), 269–287.
[33] Haichuan Shang, Ying Zhang, Xuemin Lin, and Jeffrey Xu Yu. 2008. Taming

verification hardness: an efficient algorithm for testing subgraph isomorphism.

Proceedings of the VLDB Endowment 1, 1 (2008), 364–375.
[34] Shixuan Sun, Yulin Che, Lipeng Wang, and Qiong Luo. 2019. Efficient parallel

subgraph enumeration on a single machine. In 2019 IEEE 35th International
Conference on Data Engineering (ICDE). IEEE, 232–243.

[35] Shixuan Sun and Qiong Luo. 2019. Scaling up subgraph query processing with

efficient subgraph matching. In 2019 IEEE 35th International Conference on Data
Engineering (ICDE). IEEE, 220–231.

[36] Shixuan Sun and Qiong Luo. 2020. In-Memory Subgraph Matching: An In-

depth Study. In Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data. 1083–1098.

[37] Julian R Ullmann. 1976. An algorithm for subgraph isomorphism. Journal of the
ACM (JACM) 23, 1 (1976), 31–42.

[38] Todd L Veldhuizen. 2012. Leapfrog triejoin: A simple, worst-case optimal join

algorithm. arXiv preprint arXiv:1210.0481 (2012).
[39] Mihalis Yannakakis. 1981. Algorithms for acyclic database schemes. In VLDB,

Vol. 81. 82–94.

[40] Shijie Zhang, Shirong Li, and Jiong Yang. 2009. GADDI: distance index based

subgraph matching in biological networks. In Proceedings of the 12th International
Conference on Extending Database Technology: Advances in Database Technology.
192–203.

[41] Shijie Zhang, Shirong Li, and Jiong Yang. 2010. SUMMA: subgraph matching

in massive graphs. In Proceedings of the 19th ACM international conference on
Information and knowledge management. 1285–1288.

[42] Peixiang Zhao and Jiawei Han. 2010. On graph query optimization in large

networks. Proceedings of the VLDB Endowment 3, 1-2 (2010), 340–351.

188

	Abstract
	1 Introduction
	2 Preliminary and Related Work
	2.1 Preliminary
	2.2 Subgraph Query
	2.3 Exploration-Based Algorithms
	2.4 Join-Based Algorithms

	3 Exploration versus Join
	4 An Overview of RapidMatch
	5 Relation Filter
	5.1 General Idea
	5.2 Implementation Details
	5.3 Analysis of Relation Filter

	6 Join Plan Generator
	6.1 General Idea
	6.2 Implementation Details
	6.3 Analysis of Join Plan Generator

	7 Other Implementation Details
	7.1 Relation Encoder
	7.2 Result Enumerator

	8 Experiments
	8.1 Experimental Setup
	8.2 Comparison with Existing Algorithms
	8.3 Evaluation of Individual Techniques

	9 Conclusion & Future Work
	Acknowledgments
	References

