
Unconstrained Submodular Maximization with Modular Costs:
Tight Approximation and Application to Profit Maximization

Tianyuan Jin

National University of Singapore

tianyuan1044@gmail.com

Yu Yang

City University of Hong Kong

yuyang@cityu.edu.hk

Renchi Yang

National University of Singapore

renchi@nus.edu.sg

Jieming Shi
∗

Hong Kong Polytechnic University

jieming.shi@polyu.edu.hk

Keke Huang

National University of Singapore

kkhuang@nus.edu.sg

Xiaokui Xiao

National University of Singapore

xkxiao@nus.edu.sg

ABSTRACT
Given a set 𝑉 , the problem of unconstrained submodular maximiza-
tion with modular costs (USM-MC) asks for a subset 𝑆 ⊆ 𝑉 that

maximizes 𝑓 (𝑆) − 𝑐 (𝑆), where 𝑓 is a non-negative, monotone, and

submodular function that gauges the utility of 𝑆 , and 𝑐 is a non-

negative and modular function that measures the cost of 𝑆 . This

problem finds applications in numerous practical scenarios, such

as profit maximization in viral marketing on social media.

This paper presents ROI-Greedy, a polynomial time algorithm

for USM-MC that returns a solution 𝑆 satisfying 𝑓 (𝑆) − 𝑐 (𝑆) ≥
𝑓 (𝑆∗) − 𝑐 (𝑆∗) − ln

𝑓 (𝑆∗)
𝑐 (𝑆∗) · 𝑐 (𝑆

∗), where 𝑆∗ is the optimal solu-

tion to USM-MC. To our knowledge, ROI-Greedy is the first al-

gorithm that provides such a strong approximation guarantee. In

addition, we show that this worst-case guarantee is tight, in the

sense that no polynomial time algorithm can ensure 𝑓 (𝑆) − 𝑐 (𝑆) ≥
(1 + 𝜖) ·

(
𝑓 (𝑆∗) − 𝑐 (𝑆∗) − ln 𝑓 (𝑆∗)

𝑐 (𝑆∗) · 𝑐 (𝑆
∗)

)
, for any 𝜖 > 0. Further,

we devise a non-trivial extension of ROI-Greedy to solve the profit

maximization problem, where the precise value of 𝑓 (𝑆) for any set 𝑆
is unknown and can only be approximated via sampling. Extensive

experiments on benchmark datasets demonstrate that ROI-Greedy
significantly outperforms competing methods in terms of the trade-

off between efficiency and solution quality.

PVLDB Reference Format:
Tianyuan Jin, Yu Yang, Renchi Yang, Jieming Shi, Keke Huang, and Xiaokui

Xiao. Unconstrained Submodular Maximization with Modular Costs: Tight

Approximation and Application to Profit Maximization. PVLDB, 14(10):

1756-1768, 2021.

doi:10.14778/3467861.3467866

1 INTRODUCTION
Let𝑉 be a set and 2

𝑉
be the power set of𝑉 . A function 𝑓 : 2

𝑉 → R
is submodular, if for any 𝐴 ⊆ 𝐵 ⊆ 𝑉 and any 𝑢 ∈ 𝑉 ,

𝑓 (𝐴 ∪ {𝑢}) − 𝑓 (𝐴) ≥ 𝑓 (𝐵 ∪ {𝑢}) − 𝑓 (𝐵),

∗
Corresponding author

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 10

ISSN 2150-8097.

doi:10.14778/3467861.3467866

i.e., when 𝑓 ’s input is sizable, adding an element 𝑢 to the input of 𝑓

tends to have a lesser effect on the value of 𝑓 . Submodular functions

are commonly used to model problems with diminishing returns,
and have been a subject of active research for the past few decades.

In this paper, we study the optimization of submodular functions

in an intuitive cost-based setting as follows:

• 𝑓 is non-negative, monotone, and submodular, and

• each element 𝑒 in 𝑉 has a positive cost, and
• we aim to identify a set 𝑆 ⊆ 𝑉 that maximizes 𝑓 (𝑆) − 𝑐 (𝑆),
where 𝑐 (𝑆) denotes the sum of the costs of the elements in 𝑆 .

We refer to this problem as unconstrained submodular maximization
with modular cost (USM-MC), and refer to 𝑓 (𝑆) − 𝑐 (𝑆) as the profit
of 𝑆 . USM-MC finds applications in numerous practical scenarios,

such as profit maximization [25, 33], sensor placement, and text
summarization.

In particular, in profit maximization [25, 33], we are given a set

𝑉 of social network users, each of which can be incentivized at a

cost to be an initiator in a viral marketing campaign. Our objective

is to select a set 𝑆 ⊆ 𝑉 of initiators that maximizes 𝑓 (𝑆) − 𝑐 (𝑆),
where 𝑓 (𝑆) is the expected revenue resulted from the marketing

campaign, and 𝑐 (𝑆) is the total incentive paid to the users in 𝑆 . In

sensor placement, we have a set 𝑉 of locations at which sensors

can be placed, and a function 𝑓 (resp. 𝑐) that, given a set 𝑆 ⊆ 𝑉 ,

returns the financial benefit (resp. total cost) of installing sensors at

the locations in 𝑆 . In this setting, a set 𝑆 that maximizes 𝑓 (𝑆) −𝑐 (𝑆)
is an ideal option for sensor placement with balanced cost and

benefit. In text summarization, we are to select a set 𝑆 of words to

summarize a given set of documents, based on a function 𝑓 (𝑆) that
evaluates the summarization accuracy of 𝑆 and a function 𝑐 (𝑆) that
returns the total length of the words in 𝑆 . Assuming that 𝑓 (𝑆) and
𝑐 (𝑆) are properly normalized, we can select a set 𝑆 that maximizes

𝑓 (𝑆) − 𝑐 (𝑆) to strike a good trade-off between the accuracy and

length of the summarization.

Motivation. As we show in Section 3.1, USM-MC is an NP-hard

problem. Existing work [25, 37] on USM-MC has mostly relied on

heuristics without non-trivial worst-case guarantees, with only two

exceptions: Double-Greedy [13, 33, 34] and Distorted-Greedy [12,

16]. However, both of them have significant limitations. Specifically,

Double-Greedy [4] returns a set 𝑆 whose profit satisfies

𝑓 (𝑆) − 𝑐 (𝑆) ≥ 1/3(𝑓 (𝑆∗) − 𝑐 (𝑆∗)), or
E [𝑓 (𝑆) − 𝑐 (𝑆)] ≥ 1/2(𝑓 (𝑆∗) − 𝑐 (𝑆∗)),

1756

https://doi.org/10.14778/3467861.3467866
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3467861.3467866

Tianyuan Jin, Yu Yang, Renchi Yang, Jieming Shi, Keke Huang, and Xiaokui Xiao

where 𝑆∗ is the optimal solution to USM-MC, and the expectation

in the second inequality is taken over the randomness in Double-
Greedy. Nevertheless, this profit guarantee holds only when 𝑓 (𝑆 ′)−
𝑐 (𝑆 ′) ≥ 0 is satisfied for every 𝑆 ′ ⊆ 𝑉 , which is seldom the case in

practice. For example, in viral marketing, we usually have 𝑓 (𝑆 ′) −
𝑐 (𝑆 ′) < 0 when 𝑆 ′ = 𝑉 , as it is unprofitable to pay all social

network users to be initiators. In contrast, Distorted-Greedy [12]
does not rely on any unrealistic assumption on 𝑓 or 𝑐 . However, the

approximation guarantee of Distorted-Greedy is relatively weak:

it returns a set 𝑆 such that

𝑓 (𝑆) − 𝑐 (𝑆) ≥
(
1 − 1

𝑒

)
𝑓 (𝑆∗) − 𝑐 (𝑆∗)

= 𝑓 (𝑆∗) − 𝑐 (𝑆∗) − 𝑓 (𝑆∗)
𝑒 ·𝑐 (𝑆∗) · 𝑐 (𝑆

∗). (1)

In other words, compared with the optimal solution 𝑆∗, Distorted-
Greedy pays an extra cost linear to 𝑓 (𝑆∗) in the worst case, which

is rather unfavorable when 𝑓 (𝑆∗) is large. Further, when 𝑓 (𝑆∗)
𝑐 (𝑆∗) ≤

1

1−1/𝑒 ≈ 1.58, Distorted-Greedy does not even guarantee a positive

profit. As such, if we apply Distorted-Greedy to solve the profit

maximization problem, then it may not be able to identify a prof-

itable solution, even when the optimal solution 𝑆∗ has an expected

revenue 𝑓 (𝑆∗) that is 50% larger than its cost 𝑐 (𝑆∗).
Contributions. To address the deficiencies of Double-Greedy and

Distorted-Greedy, this paper presents ROI-Greedy, a polynomial-

time algorithm for USM-MC that returns a set 𝑆 such that

𝑓 (𝑆) − 𝑐 (𝑆) ≥ 𝑓 (𝑆∗) − 𝑐 (𝑆∗) − ln 𝑓 (𝑆∗)
𝑐 (𝑆∗) · 𝑐 (𝑆

∗). (2)

That is, compared with the optimal solution 𝑆∗, ROI-Greedy in-

curs an extra cost that is asymptotically much smaller than that of

Distorted-Greedy (see Eq. (1)), and is quantitatively never larger

than the latter. Further, the r.h.s. of Eq. (2) is positive whenever

𝑓 (𝑆∗) > 𝑐 (𝑆∗), i.e., ROI-Greedy yields a positive profit as long as

the optimal solution 𝑆∗ is profitable. This is a significant improve-

ment over the profit guarantee of Distorted-Greedy. In addition,

ROI-Greedy does not make any strong assumptions on 𝑓 or 𝑐 .

ROI-Greedy is based on a simple idea: we start from an empty

solution set 𝑆 , and iteratively add elements in𝑉 into 𝑆 , until none of

the remaining elements can be added without degrading the profit

of 𝑆 . In particular, in each iteration, we insert into 𝑆 the element𝑢 ∈
𝑉 \ 𝑆 that maximizes

Δ(𝑢 |𝑆)
𝑐 ({𝑢 }) , where Δ(𝑢 | 𝑆) = 𝑓 (𝑆 ∪ {𝑢}) − 𝑓 (𝑆)

denotes the marginal increase in 𝑓 (𝑆) when 𝑢 is added into 𝑆 .

In other words, we greedily choose 𝑢 to maximize the return-on-
investment (ROI) from 𝑢. This approach is similar in spirit to the

greedy approximation algorithm for the knapsack problem
1
[2, 18],

but establishing its theoretical guarantee for USM-MC is challeng-

ing due to a crucial difference between knapsack and USM-MC: the

objective function of knapsack is monotone, whereas in USM-MC,

the objective function 𝑓 (𝑆) − 𝑐 (𝑆) is non-monotone with respect to

𝑆 . We address this challenge and prove Eq. (2) with a series of careful

analysis, as shown in Section 3. In addition, we prove that the profit

guarantee in Eq. (2) is tight, in the sense that no polynomial-time

algorithm can ensure

𝑓 (𝑆) − 𝑐 (𝑆) ≥ (1 + 𝜖)
(
𝑓 (𝑆∗) − 𝑐 (𝑆∗) − ln 𝑓 (𝑆∗)

𝑐 (𝑆∗) · 𝑐 (𝑆
∗)

)
, (3)

Table 1: Frequently used notations.

Notation Description
𝑉 a set of 𝑛 elements

𝑓 (·) a monotone, non-negative, and submodular function

𝑐 (·) a non-negative, and modular function

Δ(𝑢 | 𝑆) the marginal gain of adding element 𝑢 to 𝑆

𝑆◦ the output of ROI-Greedy

𝑆∗ the optimal solution to USM-MC

𝐺 = (𝑉 , 𝐸) a graph𝐺 with nodes𝑉 and edges 𝐸

𝑛,𝑚 𝑛 = |𝑉 |,𝑚 = |𝐸 |
R a set of RR sets

CovR (𝑆) the number of RR sets covered by 𝑆

𝑓R (𝑆) 𝑓R (𝑆) = 𝑛 ·𝐶𝑜𝑣R (𝑆)/ |R |

for any 𝜖 > 0, unless P = NP.

Our technical contributions are summarized as follows.

• We present ROI-Greedy, a polynomial-time algorithm for

the USM-MC problem. ROI-Greedy returns results satisfying
a strong worst-case approximation guarantee as shown in

Eq. (2), which, to our knowledge, was never achieved before.

• We prove that the worst-case guarantee is tight, unless P=NP,
as shown in Eq. (3).

• In practice, we develop a non-trivial extension ofROI-Greedy
to solve the profit maximization problem and conduct ex-

tensive experiments, demonstrating that ROI-Greedy signif-

icantly outperforms competitors in terms of the trade-off

between efficiency and result quality.

2 UNCONSTRAINED SUBMODULAR
MAXIMIZATIONWITH MODULAR COSTS

2.1 Problem Definition and Notations
Let 𝑉 be a set of size 𝑛, and 𝑓 : 2

𝑉 → R+ ∪ {0} be a score function
that is monotone and submodular, i.e., for any two sets 𝐴 ⊆ 𝐵 ⊆ 𝑉 ,

𝑓 (𝐴) ≤ 𝑓 (𝐵), (monotonicity)

and 𝑓 ({𝑢} ∪𝐴) − 𝑓 (𝐴) ≥ 𝑓 ({𝑢} ∪ 𝐵) − 𝑓 (𝐵) . (submodularity)

For convenience, we define Δ(𝑢 | 𝑆) = 𝑓 ({𝑢} ∪ 𝑆) − 𝑓 (𝑆) for any
𝑢 ∈ 𝑉 and any 𝑆 ⊆ 𝑉 .

Assume that each𝑢 ∈ 𝑉 is associated with a positive cost 𝑐𝑢 , and

let 𝑐 (𝑆) = ∑
𝑢∈𝑆 𝑐𝑢 . Given𝑉 , 𝑓 , and 𝑐 , the problem of unconstrained

submodular maximization with modular costs (USM-MC) asks for a
set 𝑆 ⊆ 𝑉 that maximizes 𝑓 (𝑆) − 𝑐 (𝑆), referred to as the profit of 𝑆 .
Table 1 lists the notations that are frequently used in this paper.

2.2 State of the Art
Existing solutions [4, 12, 13, 16, 25, 33, 34, 37] for USM-MC are

based on three greedy approaches, as we explain as follows.

Simple-Greedy [25, 37]. Simple-Greedy starts from 𝑆 = ∅, and
iteratively inserts into 𝑆 the element 𝑢 in 𝑉 \ 𝑆 that maximizes

the marginal profit gain, defined as Δ(𝑢 | 𝑆) − 𝑐𝑢 . This iterative
process terminates when none of the elements in𝑉 \𝑆 has a positive
1
Given 𝑉 , 𝑓 , 𝑐 , and a threshold 𝜏 , the knapsack problem asks for a set 𝑆 ⊆ 𝑉 that

maximizes 𝑓 (𝑆) subject to the constraint that 𝑐 (𝑆) ≤ 𝜏 .

1757

Unconstrained Submodular Maximization with Modular Costs: Tight Approximation and Application to Profit Maximization

marginal profit gain. The resulting set 𝑆 is returned as the output of

Simple-Greedy. Simple-Greedy is intuitive, but it fails to provide

any non-trivial guarantee in terms of the profit of 𝑆 . To demonstrate

this, we illustrate an example where Simple-Greedy yields a profit

that is arbitrarily worse than the optimal solution, and the gap

between these two is 𝑂 (𝑛).

Example 1. Assume that 𝑉 = {𝑢1, 𝑢2, . . . , 𝑢𝑛}, such that:

• 𝑐𝑢𝑛 = 𝑛 − 1, while 𝑐𝑢𝑖 = 0.6 for any 𝑖 ∈ [1, 𝑛 − 1];
• for any 𝑆 ⊆ 𝑉 \ {𝑢𝑛}, 𝑓 (𝑆) = |𝑆 |;
• for any 𝑆 ⊆ 𝑉 that contains 𝑢𝑛 , 𝑓 (𝑆) = 𝑛.

Suppose that we apply Simple-Greedy on 𝑉 . It starts with 𝑆 = ∅,
and then inserts 𝑢𝑛 into 𝑆 in the first iteration, since 𝑢𝑛 ’s marginal

profit gain is Δ(𝑢𝑛 | ∅) − 𝑐𝑢𝑛 = 1, while the marginal profit gain of

any other element is 0.6. Once 𝑢𝑛 is inserted into 𝑆 , the marginal

profit gain of every remaining element becomes negative, and hence,

Simple-Greedy terminates and returns 𝑆 = {𝑢𝑛}, which has a profit

of 1. Meanwhile, the optimal solution is 𝑆∗ = {𝑢1, 𝑢2, . . . , 𝑢𝑛−1},
which has a profit of 0.4 · (𝑛 − 1). That is, Simple-Greedy achieves

a profit that is
1

0.4· (𝑛−1) times the optimum. □

Double-Greedy [4]. Similar to Simple-Greedy, Double-Greedy
also constructs a solution 𝑆 by starting from 𝑆 = ∅ and iteratively

inserting elements into 𝑆 . However, it does not follow the greedy

framework in Simple-Greedy; instead, it maintains an auxiliary set

𝑇 , and uses 𝑇 in deciding if an element should be added into 𝑆 .

Specifically, Double-Greedy starts with 𝑆 = ∅ and 𝑇 = 𝑉 . After

that, it linearly scans the elements in 𝑇 in an arbitrary order. For

each element 𝑢 examined, Double-Greedy evaluates its marginal

profit gain Δ(𝑢 | 𝑆) − 𝑐𝑢 with respect to 𝑆 , as well as its reverse
marginal profit gain with respect to𝑇 , defined as 𝑐𝑢 −Δ(𝑢 | 𝑇 \{𝑢}).
If it turns out that

Δ(𝑢 | 𝑆) − 𝑐𝑢 > 𝑐𝑢 − Δ(𝑢 | 𝑇 \ {𝑢}),

then Double-Greedy inserts 𝑢 into 𝑆 before proceeding to the next

element; otherwise, it removes 𝑢 from𝑇 . In other words, 𝑢 is either

(i) inserted into 𝑆 and retained in𝑇 , or (ii) removed from𝑇 without

being added into 𝑆 . Once all elements in 𝑇 are inspected, Double-
Greedy returns the set 𝑆 constructed.

When 𝑓 (𝑆 ′) − 𝑐 (𝑆 ′) ≥ 0 for every 𝑆 ′ ⊆ 𝑉 , Double-Greedy
ensures that

𝑓 (𝑆) − 𝑐 (𝑆) ≥ 1/3(𝑓 (𝑆∗) − 𝑐 (𝑆∗)) .

In addition, by linearly scanning the elements in 𝑇 in a carefully

randomized order, Double-Greedy also guarantees that

E [𝑓 (𝑆) − 𝑐 (𝑆)] ≥ 1/2(𝑓 (𝑆∗) − 𝑐 (𝑆∗)),

where the expectation is taken over the randomness in ordering

elements. However, as we mentioned in Section 1, it is unrealistic

to assume 𝑓 (𝑆 ′) − 𝑐 (𝑆 ′) ≥ 0 for all 𝑆 ′ ⊆ 𝑉 in practice.

Distorted-Greedy [12]. Distorted-Greedy is similar to Simple-
Greedy in that they both start from 𝑆 = ∅ and iteratively insert

elements into 𝑆 until a termination condition is satisfied. There

are only two differences. First, in the 𝑖-th (𝑖 = 1, 2, . . .) iteration of

Distorted-Greedy, it selects the element 𝑢𝑖 ∈ 𝑉 \ 𝑆 that maximizes

the distorted marginal profit gain, which is defined as(
1 − 1

𝑛

)𝑛−𝑖
· Δ(𝑢 | 𝑆) − 𝑐𝑢 .

Second, Distorted-Greedy terminates when none of the elements

in 𝑉 \ 𝑆 has a positive distorted marginal profit gain. It is shown

[12] that Distorted-Greedy returns a set 𝑆 such that

𝑓 (𝑆) − 𝑐 (𝑆) ≥
(
1 − 1

𝑒

)
𝑓 (𝑆∗) − 𝑐 (𝑆∗). (4)

This profit guarantee, however, is relatively weak for two reasons,

as mentioned in Section 1: (i) the profit gap between 𝑆 and 𝑆∗

increases linearly with 𝑓 (𝑆∗), and (ii) Distorted-Greedy does not

guarantee a positive profit whenever
𝑓 (𝑆∗)
𝑐 (𝑆∗) <

1

1−1/𝑒 ≈ 1.58.

3 ROI-Greedy
This section presents our ROI-Greedy algorithm for the USM-MC

problem.We first prove that USM-MC is NP-hard in Section 3.1, and

then present the details of ROI-Greedy in Section 3.2. We establish

the approximation guarantee of ROI-Greedy in Section 3.3, and

prove the tightness of the approximation in Section 3.4.

3.1 NP-Hardness of USM-MC
We prove the NP-hardness of USM-MC by a reduction from the

minimum set cover problem [10]. Let 𝑉 = {𝑢1, 𝑢2, . . . , 𝑢𝑛} be a set
such that each 𝑢𝑖 is a set of items, and let 𝑁 = | ∪𝑛

𝑖=1
𝑢𝑖 |. A set

𝑆 ⊆ 𝑉 is a set cover for𝑉 , if | ∪𝑢𝑖 ∈𝑆 𝑢𝑖 | = 𝑁 . The minimum set cover

problem asks for a set cover 𝑆 such that |𝑆 | is minimized.

Given an instance 𝑉 of the minimum set cover problem, we

construct an instance of USM-MC using 𝑉 as follows. First, for any

𝑆 ⊆ 𝑉 , we set 𝑓 (𝑆) = | ∪𝑢𝑖 ∈𝑆 𝑢𝑖 |. In addition, we set 𝑐𝑢𝑖 =
1

2
for any

𝑢𝑖 . Then, 𝑓 is non-negative, monotone, and submodular, while 𝑐 is

non-negative and modular. Then, the set 𝑆∗ ⊆ 𝑉 that maximizes

𝑓 (𝑆∗) − 𝑐 (𝑆∗) must have 𝑓 (𝑆∗) = 𝑁 ; otherwise, we could increase

𝑓 (𝑆∗) − 𝑐 (𝑆∗) by inserting into 𝑆∗ any 𝑢𝑖 ⊈ ∪𝑢∈𝑆∗𝑢. Therefore,
𝑆∗ must be a set cover for 𝑉 . In addition, among all 𝑆 ⊆ 𝑉 such

that | ∪𝑢𝑖 ∈𝑆 𝑢𝑖 | = 𝑁 , 𝑆∗ must have the smallest size; otherwise,

there exists another set 𝑆 ′ ⊆ 𝑉 such that 𝑓 (𝑆 ′) = 𝑓 (𝑆∗) = 𝑁

and 𝑐 (𝑆 ′) < 𝑐 (𝑆∗), leading to a contradiction. Therefore, 𝑆∗ is a
minimum set cover for 𝑉 . This completes the proof.

3.2 Our Algorithm
Algorithm 1 shows the pseudo-code of our ROI-Greedy algorithm.

ROI-Greedy adopts the same greedy framework used by Simple-
Greedy and Distorted-Greedy, i.e., it constructs its solution set 𝑆◦

by iteratively inserting elements into an initially empty set. Its

main difference from Simple-Greedy and Distorted-Greedy lies in

the metric that it uses to select the element to be inserted: in the

𝑖-th iteration, it chooses the element 𝑣𝑖 ∈ 𝑉 \ 𝑆𝑖−1 that maximizes

Δ(𝑣𝑖 |𝑆𝑖−1)
𝑐𝑣𝑖

, where 𝑆𝑖−1 denotes the solution set constructed in the

first 𝑖 − 1 iterations (Line 5 of Algorithm 1). The intuition for this

choice of 𝑣𝑖 is that it has the best “return on investment (ROI)” in

terms of the cost that we pay to add 𝑣𝑖 into our solution set. If

Δ(𝑣𝑖 |𝑆𝑖−1)
𝑐𝑣𝑖

> 1, then ROI-Greedy inserts 𝑣𝑖 into 𝑆𝑖−1 and proceeds

to the next iteration (Lines 6-7); otherwise, it terminates and returns

𝑆◦ = 𝑆𝑖−1 as the solution (Lines 9-10). We show that 𝑆◦ provides a
strong profit guarantee as follows:

1758

Tianyuan Jin, Yu Yang, Renchi Yang, Jieming Shi, Keke Huang, and Xiaokui Xiao

Algorithm 1: ROI-Greedy
Input: Set 𝑉 and functions 𝑓 (·) and 𝑐 (·) .
Output: 𝑆◦.

1 𝑆0 ← ∅;
2 𝑖 ← 0;

3 while 𝑖 < 𝑛 do
4 𝑖 ← 𝑖 + 1;
5 𝑣𝑖 ← argmax𝑢∈𝑉 \𝑆𝑖−1

Δ(𝑢 |𝑆𝑖−1)
𝑐𝑢

;

6 if Δ(𝑣𝑖 | 𝑆𝑖−1) − 𝑐𝑣𝑖 > 0 then
7 𝑆𝑖 ← {𝑣𝑖 } ∪ 𝑆𝑖−1;
8 else
9 𝑆◦ ← 𝑆𝑖−1;

10 return 𝑆◦;

11 𝑆◦ ← 𝑉 ;

12 return 𝑆◦;

Theorem 1. Let 𝑆◦ be the output of Algorithm 1. Then,

𝑓 (𝑆◦) − 𝑐 (𝑆◦) ≥ max

𝑆⊆𝑉

(
𝑓 (𝑆) − 𝑐 (𝑆) − ln 𝑓 (𝑆)

𝑐 (𝑆) · 𝑐 (𝑆)
)
.

We present the proof of Theorem 1 in Section 3.3. As an immediate

corollary, we have
2
:

Corollary 1. 𝑓 (𝑆◦) − 𝑐 (𝑆◦) ≥ 𝑓 (𝑆∗) − 𝑐 (𝑆∗) − ln 𝑓 (𝑆∗)
𝑐 (𝑆∗) · 𝑐 (𝑆

∗),
where 𝑆∗ is the optimal solution to USM-MC.

Comparison of Approximation Guarantees. Recall that
Distorted-Greedy [12] returns a solution 𝑆 with

𝑓 (𝑆) − 𝑐 (𝑆) ≥ 𝑓 (𝑆∗) − 𝑐 (𝑆∗) − 1

𝑒 𝑓 (𝑆
∗).

To compare this profit guarantee with that of ROI-Greedy in Corol-

lary 1, we first observe that when
𝑓 (𝑆∗)
𝑐 (𝑆∗) ≤

1

1−1/𝑒 , 𝑓 (𝑆
∗) − 𝑐 (𝑆∗) −

1

𝑒 𝑓 (𝑆
∗) < 0, in which case Distorted-Greedy does not guarantee a

positive profit. In contrast, when 𝑓 (𝑆∗) − 𝑐 (𝑆∗) > 0,

𝑓 (𝑆∗) − 𝑐 (𝑆∗) − ln 𝑓 (𝑆∗)
𝑐 (𝑆∗) · 𝑐 (𝑆

∗) =
(
𝑓 (𝑆∗)
𝑐 (𝑆∗) − 1 − ln

𝑓 (𝑆∗)
𝑐 (𝑆∗)

)
· 𝑐 (𝑆∗)

> 0,

since the function 𝑔(𝑥) = 𝑥 − 1 − ln𝑥 is positive when 𝑥 > 1. In

other words, ROI-Greedy always yields a positive profit when the

optimal solution 𝑆∗ is profitable.
In addition, observe that(
𝑓 (𝑆∗) − 𝑐 (𝑆∗) − ln 𝑓 (𝑆∗)

𝑐 (𝑆∗) · 𝑐 (𝑆
∗)

)
−

(
𝑓 (𝑆∗) − 𝑐 (𝑆∗) − 1

𝑒 𝑓 (𝑆
∗)

)
= 1

𝑒 𝑓 (𝑆
∗) − ln 𝑓 (𝑆∗)

𝑐 (𝑆∗) · 𝑐 (𝑆
∗)

=

(
1

𝑒
𝑓 (𝑆∗)
𝑐 (𝑆∗) − ln

𝑓 (𝑆∗)
𝑐 (𝑆∗)

)
· 𝑐 (𝑆∗),

it can be verified that
1

𝑒
𝑓 (𝑆∗)
𝑐 (𝑆∗) − ln

𝑓 (𝑆∗)
𝑐 (𝑆∗) is always non-negative, and

it increases monotonically with
𝑓 (𝑆∗)
𝑐 (𝑆∗) when

𝑓 (𝑆∗)
𝑐 (𝑆∗) ≥ 𝑒 . This shows

that the approximation guarantee of ROI-Greedy is no worse than

2
Note that in Corollary 1, the r.h.s. of the inequality is no larger than

𝑓 (𝑆∗) − 𝑐 (𝑆∗) . This is because (i) 𝑐 (𝑆∗) > 0 and (ii) ln
𝑓 (𝑆∗)
𝑐 (𝑆∗) ≥ 0, since

𝑓 (𝑆∗) − 𝑐 (𝑆∗) ≥ 𝑓 (∅) − 𝑐 (∅) = 𝑓 (∅) ≥ 0.

that of Distorted-Greedy, and is significantly better than the latter

when
𝑓 (𝑆∗)
𝑐 (𝑆∗) is large.

Compared with the approximation guarantee of Double-Greedy,
ROI-Greedy’s approximation guarantee is much stronger in the

sense that it does not rely on any strong assumption on 𝑓 or 𝑐 ,

whereas Double-Greedy requires that 𝑓 (𝑆 ′) − 𝑐 (𝑆 ′) ≥ 0 for all

𝑆 ′ ⊆ 𝑉 . It can also be verified that ROI-Greedy’s profit guarantee is

higher than that ofDouble-Greedywhen 𝑓 (𝑆∗)
𝑐 (𝑆∗) is large; the detailed

analysis for this is omitted for brevity.

3.3 Proof of Theorem 1
Let 𝑆0 = ∅, and 𝑆𝑖−1 (𝑖 > 1) be the partial solution set constructed by

the first 𝑖−1 iterations of ROI-Greedy. Let 𝑆+ be the subset of𝑉 that

maximizes 𝑓 (𝑆) − 𝑐 (𝑆) − ln 𝑓 (𝑆)
𝑐 (𝑆) · 𝑐 (𝑆). Our proof of Theorem 1

utilizes two lemmas as follows
3
.

Lemma 1. Δ(𝑣𝑖 | 𝑆𝑖−1) ≥
𝑐𝑣𝑖

𝑐 (𝑆+)
(
𝑓 (𝑆+) − 𝑓 (𝑆𝑖−1)

)
.

Lemma 2.

𝑓 (𝑆𝑖) ≥
(
1 −

𝑖∏
𝑘=1

(
1 −

𝑐𝑣𝑘

𝑐 (𝑆+)

))
· 𝑓 (𝑆+) . (5)

We also utilize a classic inequality [2] as follows: For any

𝑥1, 𝑥2, · · · , 𝑥𝑛 , 𝑦 ∈ R+ and 𝑥𝑖 ≤ 𝑦 for 𝑖 ≤ 𝑛,

1 −
∏𝑛

𝑖=1

(
1 − 𝑥𝑖

𝑦

)
≥ 1 −

(
1 −

∑𝑛
𝑖=1 𝑥𝑖

𝑛𝑦

)𝑛
. (6)

Based on Lemmas 1, 2 and Eq. (6), we will prove Theorem 1 by

showing that

𝑓 (𝑆◦) − 𝑐 (𝑆◦) ≥
(
𝑓 (𝑆+) − 𝑐 (𝑆+) − ln 𝑓 (𝑆+)

𝑐 (𝑆+) · 𝑐 (𝑆
+)

)
. (7)

We consider two cases based on whether 𝑐 (𝑆◦) < ln
𝑓 (𝑆+)
𝑐 (𝑆+) · 𝑐 (𝑆

+).

Case 1: 𝑐 (𝑆◦) < ln
𝑓 (𝑆+)
𝑐 (𝑆+) · 𝑐 (𝑆

+). In this case, by Algorithm 1,

0 > max

𝑢∈𝑉 \𝑆◦
(Δ(𝑢 | 𝑆◦) − 𝑐𝑢) ≥ max

𝑢∈𝑆+\𝑆◦
(Δ(𝑢 | 𝑆◦) − 𝑐𝑢)

≥ Δ(𝑆+ | 𝑆◦) − 𝑐 (𝑆+) ≥ 𝑓 (𝑆+) − 𝑓 (𝑆◦) − 𝑐 (𝑆+) .
Hence, 𝑓 (𝑆◦) ≥ 𝑓 (𝑆+) − 𝑐 (𝑆+). This leads to

𝑓 (𝑆◦) − 𝑐 (𝑆◦) ≥ 𝑓 (𝑆+) − 𝑐 (𝑆+) − 𝑐 (𝑆◦)

≥ 𝑓 (𝑆+) − 𝑐 (𝑆+) − ln 𝑓 (𝑆+)
𝑐 (𝑆+) 𝑐 (𝑆

+).

Case 2: 𝑐 (𝑆◦) ≥ ln
𝑓 (𝑆+)
𝑐 (𝑆+) ·𝑐 (𝑆

+). In this case, there exists 𝑡 ∈ [1, 𝑛]

such that 𝑆𝑡−1 ⊆ 𝑆𝑡 ⊆ 𝑆◦ and 𝑐 (𝑆𝑡) ≥ ln
𝑓 (𝑆+)
𝑐 (𝑆+) · 𝑐 (𝑆

+) > 𝑐 (𝑆𝑡−1).
Observe that if 𝑓 (𝑆𝑡−1) ≥ 𝑓 (𝑆+), then Eq. (7) trivially holds. In

addition, if 𝑓 (𝑆𝑡−1) < 𝑓 (𝑆+) and

𝑓 (𝑆𝑡−1) − 𝑐 (𝑆𝑡−1) ≥ 𝑓 (𝑆+) − 𝑐 (𝑆+) − ln 𝑓 (𝑆+)
𝑐 (𝑆+) · 𝑐 (𝑆

+),

then Eq. (7) also holds. Thus, in what follows, we only consider

that

𝑓 (𝑆𝑡−1) < 𝑓 (𝑆+) and (8)

𝑓 (𝑆𝑡−1) − 𝑐 (𝑆𝑡−1) < 𝑓 (𝑆+) − 𝑐 (𝑆+) − ln 𝑓 (𝑆+)
𝑐 (𝑆+) · 𝑐 (𝑆

+). (9)

3
All the omitted proofs can be found in the appendix

1759

Unconstrained Submodular Maximization with Modular Costs: Tight Approximation and Application to Profit Maximization

Let 𝛽 = ln
𝑓 (𝑆+)
𝑐 (𝑆+) · 𝑐 (𝑆

+) − 𝑐 (𝑆𝑡−1). We have the following lemma.

Lemma 3.

𝛽 (𝑓 (𝑆+) − 𝑓 (𝑆𝑡−1))
𝑐 (𝑆+) + 𝑓 (𝑆𝑡−1) ≥ 𝑓 (𝑆+) − 𝑐 (𝑆+) . (10)

Given Lemma 3, we have the following results. First,

𝛽 (𝑓 (𝑆+) − 𝑓 (𝑆𝑡−1))
𝑐 (𝑆+) + 𝑓 (𝑆𝑡−1) − 𝑐 (𝑆𝑡−1) − 𝛽

≥ 𝑓 (𝑆+) − 𝑐 (𝑆+) − 𝑐 (𝑆𝑡−1) − 𝛽

= 𝑓 (𝑆+) − 𝑐 (𝑆+) − ln 𝑓 (𝑆+)
𝑐 (𝑆+) · 𝑐 (𝑆

+)

≥ 𝑓 (𝑆𝑡−1) − 𝑐 (𝑆𝑡−1), (11)

where the first inequality is due to Eq. (10) and the last inequality

is due to Eq. (9). By Eq. (11),

𝛽 (𝑓 (𝑆+) − 𝑓 (𝑆𝑡−1))
𝑐 (𝑆+) − 𝛽 ≥ 0.

Hence,

𝑓 (𝑆+) − 𝑓 (𝑆𝑡−1) ≥ 𝑐 (𝑆+). (12)

Finally, we have

𝑓 (𝑆◦) − 𝑐 (𝑆◦) ≥ 𝑓 (𝑆𝑡) − 𝑐 (𝑆𝑡)
= Δ(𝑣𝑡 | 𝑆𝑡−1) + 𝑓 (𝑆𝑡−1) − 𝑐 (𝑆𝑡)

≥
𝑐𝑣𝑡 (𝑓 (𝑆+) − 𝑓 (𝑆𝑡−1))

𝑐 (𝑆+) + 𝑓 (𝑆𝑡−1) − 𝑐 (𝑆𝑡−1) − 𝑐𝑣𝑡

=
(𝑐𝑣𝑡 + 𝛽 − 𝛽) (𝑓 (𝑆+) − 𝑓 (𝑆𝑡−1))

𝑐 (𝑆+) + 𝑓 (𝑆𝑡−1)

− ln 𝑓 (𝑆+)
𝑐 (𝑆+) 𝑐 (𝑆

+) − (𝑐𝑣𝑡 − 𝛽)

≥ 𝑓 (𝑆+) − 𝑐 (𝑆+) − ln 𝑓 (𝑆+)
𝑐 (𝑆+) 𝑐 (𝑆

+) + (𝑐𝑣𝑡 − 𝛽)
(
𝑓 (𝑆+) − 𝑓 (𝑆𝑡−1)

𝑐 (𝑆+) − 1
)

≥ 𝑓 (𝑆+) − 𝑐 (𝑆+) − ln 𝑓 (𝑆+)
𝑐 (𝑆+) 𝑐 (𝑆

+),

where the third inequality is from Eq. (10), and the last inequality

is due to Eq. (12) and 𝑐𝑣𝑡 = 𝑐 (𝑆𝑡) − 𝑐 (𝑆𝑡−1) ≥ 𝛽 .

3.4 Tightness of Approximation
In what follows, we show that the approximation guarantee of

ROI-Greedy in Corollary 1 is tight, in the sense that no polynomial

time algorithm can improve it by a multiplicative factor.

Theorem 2. Assume that P≠NP. Then, for any 𝜖 > 0, there does
not exist a polynomial-time algorithm whose output 𝑆 ′ guarantees

𝑓 (𝑆 ′) − 𝑐 (𝑆 ′) ≥ (1 + 𝜖)
(
𝑓 (𝑆∗) − 𝑐 (𝑆∗) − ln 𝑓 (𝑆∗)

𝑐 (𝑆∗) · 𝑐 (𝑆
∗)

)
. (13)

where 𝑆∗ is the optimal solution to USM-MC.

4 PROFIT MAXIMIZATION
In this section, we extend ROI-Greedy to address the profit maxi-
mization problem, and obtain an approximation guarantee that is

significantly better than those of all existing methods. Section 4.1

defines the profit maximization problem. Section 4.2 presents our

algorithm, while Section 4.3 provides our theoretical analysis.

4.1 Problem Definition
Let𝐺 = ⟨𝑉 , 𝐸⟩ be a social network with a set𝑉 of nodes and a set 𝐸

of edges. Let 𝑛 = |𝑉 | and𝑚 = |𝐸 |. We consider an influence diffusion
process in 𝐺 that starts from a set 𝑆 of seed nodes as follows:

(1) At timestamp 1, the nodes in 𝑆 are activated, while the remain-

ing nodes are inactive.

(2) At any subsequent timestamp 𝑡 (𝑡 > 1), each node 𝑣 that was

newly activated in timestamp 𝑡 − 1 has a chance to activate its
neighbors, based on a certain diffusion model.

(3) If no new node is activated in a timestamp, then the diffusion

process terminates.

Let 𝐼 (𝑆) be the set of nodes that are activated at the end of the influ-
ence diffusion process. We say that the nodes in 𝐼 (𝑆) are influenced
by 𝑆 , and refer to |𝐼 (𝑆) | as the spread of 𝑆 .

Let 𝑓 (𝑆) = E[|𝐼 (𝑆) |], where the expectation is taken over the

randomness of the diffusion process. For each node𝑢 ∈ 𝑉 , let 𝑐𝑢 > 0

be the incentive needed to convince 𝑢 to be a seed node, and let

𝑐 (𝑆) = ∑
𝑢∈𝑆 𝑐𝑢 . The profit maximization problem asks for a seed

set 𝑆 with the maximum profit, defined as 𝑓 (𝑆) − 𝑐 (𝑆).
We study the profit maximization problem when the diffusion

model used is independent cascade (IC) [17], as it is the most well-

adopted model in the literature. In the IC model, each edge (𝑢, 𝑣) in
𝐸 is associated with a propagation probability 𝑝 (𝑢, 𝑣) ∈ [0, 1]. If 𝑢
is activated at timestamp 𝑡 − 1, then at the next timestamp 𝑡 , 𝑢 can

activate 𝑣 with a probability 𝑝 (𝑢, 𝑣), independent of the activation
of other neighbors of 𝑢. It is shown that, under the IC model, the

function 𝑓 (𝑆) = E[|𝐼 (𝑆) |] is both monotone and submodular [17].

Therefore, under the IC model, profit maximization is an instance

of our USM-MC problem.

4.2 Our Algorithm
ROI-Greedy cannot be directly applied on profit maximization un-

der the IC model, since it requires assessing 𝑓 (𝑆) = E[|𝐼 (𝑆) |]
for some 𝑆 ⊆ 𝑉 , whereas computing the exact expected spread

E[|𝐼 (𝑆) |] of 𝑆 is #P-hard in general [6]. To address this issue, we

estimate 𝑓 (𝑆) with sampling, and revise ROI-Greedy to account

for the estimation error in 𝑓 (𝑆).
In particular, we estimate 𝑓 (𝑆) using reverse influence sampling

(RIS) [3], which is also adopted in the state of the art [13, 34] for

profit maximization. Each sample 𝑅 from RIS, referred to a reverse
reachable (RR) set, is a subset of𝑉 conceptually generated as follows:

(1) Consider a random graph𝐺 ′ generated from𝐺 by retaining all

nodes in𝐺 but removing each edge (𝑢, 𝑣) from𝐺 independently

with probability 1 − 𝑝 (𝑢, 𝑣).
(2) Choose a node 𝑣 uniformly at random from 𝐺 ′.
(3) Let 𝑅 be the set of all nodes 𝑢 such that there exists a directed

path in 𝐺 ′ that starts from 𝑢 and ends at 𝑣 .

We say that an RR set 𝑅 is covered by a seed set 𝑆 if 𝑅 ∩ 𝑆 ≠ ∅.
Borgs et al. [3] prove that

𝑓 (𝑆) = 𝑛 · P[𝑅 ∩ 𝑆 ≠ ∅] .

Given a set R = {𝑅1, 𝑅2, . . .} of RR sets, we use 𝐶𝑜𝑣R (𝑆) to denote

the number of RR sets in R that are covered by 𝑆 . Let

𝑓R (𝑆) = 𝑛 · 𝐶𝑜𝑣R (𝑆)|R | .

1760

Tianyuan Jin, Yu Yang, Renchi Yang, Jieming Shi, Keke Huang, and Xiaokui Xiao

Then, when R is fixed, 𝑓R (𝑆) is an unbiased estimation of 𝑓 (𝑆).
In other words, R can be used as a noisy oracle that returns an

estimated 𝑓 (𝑆) for any given 𝑆 ⊆ 𝑉 .

Based on ROI-Greedy and RIS, we propose ROI-PM, an efficient

algorithm for profit maximization that, with at least 1−𝛿 probability,
returns a solution 𝑆◦ satisfying

𝑓 (𝑆◦) − 𝑐 (𝑆◦) ≥ (1 − 𝜖) 𝑓 (𝑆∗) − 𝑐 (𝑆∗) − ln 𝑓 (𝑆∗)
𝑐 (𝑆∗) · 𝑐 (𝑆

∗), (14)

where 𝑆∗ is the optimal solution and 𝜖, 𝛿 ∈ (0, 1) are user-defined pa-
rameters. Algorithm 2 shows the pseudo-code of ROI-PM, while Al-

gorithm 3 illustrates a sub-routine invoked in Line 4 of Algorithm 2.

The basic idea ofROI-PM is the same asROI-Greedy’s: it starts from
an empty solution set 𝑆◦ = ∅ and interatively inserts nodes into 𝑆◦,
attempting to ensure that each inserted node 𝑢 maximizes

Δ(𝑢 |𝑆◦)
𝑐𝑢

.

However, since the exact value of Δ(𝑢 | 𝑆◦) = 𝑓 ({𝑢} ∪ 𝑆◦) − 𝑓 (𝑆◦)
cannot be computed in polynomial time, ROI-PM has to resort to an

estimation of Δ(𝑢 | 𝑆◦) via RIS-based sampling. This leads to a chal-

lenging question: how large a sample set should we use to achieve

the profit guarantee in Eq. (14) without excessive computation

overheads? ROI-PM addresses this challenge using a trial-and-error
approach as follows.

First, ROI-PM generates a relatively small sample set R1 of size
𝑛 (Lines 1-3 in Algorithm 2). Then, using R1 as a noisy oracle for

estimating 𝑓 (·), it employs the greedy approach in ROI-Greedy to

generate a solution 𝑆◦ to the profit maximization problem (Line

4 in Algorithm 2). After that, it uses another sample set R2 (with
|R2 | = |R1 |) as an independent oracle to verify whether 𝑆◦ is a high-
quality solution (Lines 6-9). The intuition is that if we compute an

estimation of 𝑓 (𝑆◦) from R2 and it turns out to be much smaller

than the estimation derived from R1, and it could be the case that

R1 over-estimates 𝑆◦’s spread. In that case, 𝑆◦ might not be a good

solution; accordingly, ROI-PMwould discard 𝑆◦, double the sizes of
the sample sets R1 and R2 (Line 10), and then regenerate another 𝑆◦
from scratch using the updated R1 as a noisy oracle. This process is
repeated until (i) the independent oracle R2 agrees with the noisy

oracle R1 on the quality of 𝑆◦ (Lines 8-9), or (ii) the sizes of R1
and R2 reach a pre-defined threshold (Line 11). After that, ROI-PM
terminates by returning 𝑆◦ (Line 12).

Remark. Our solution can be extended to address profit maxi-

mization under other diffusion models, as long as (i) E[|𝐼 (𝑆) |] is
monotone and submodular, and (ii) E[|𝐼 (𝑆) |] can be computed by

reverse influence sampling (RIS). For instance, ROI-PM can be ex-

tended to the linear threshold model [17] since it is monotone and

submodular, and the influence in the linear threshold model can be

computed by RIS [35]. Similarly, ROI-PM can also be extended to

the triggering model [17].

4.3 Theoretical Analysis
In the following, we analyze the approximation guarantee and time

complexity of ROI-PM. To facilitate our analysis, we first introduce

Chernoff Inequalities [27] in Lemma 4, followed by a result in

Lemma 5 that we frequently used.

Lemma 4 (Chernoff Ineqalities [27]). Let𝑋1, . . . , 𝑋𝑀 be inde-
pendent random variables in [0, 1]. Let 𝑋 =

∑𝑀
𝑖=1 𝑋𝑖 and 𝜇 = E[𝑋𝑖].

Algorithm 2: ROI Profit Maximization (ROI-PM)

Input: Graph 𝐺 ; Costs of each node {𝑐𝑣}𝑣∈𝑉 ; Parameter 𝜖

and 𝛿 .

Output: 𝑆◦.
1 𝑆◦ ← ∅, 𝜃1 ← 𝑛, 𝑖 ← 1 ;

2 do
3 Generate two collections of RR sets R1 and R2, where

|R1 | = |R2 | = 𝜃𝑖 ;

4 𝑆◦ ← NodeSelection(R1);
5 𝑡 ← (𝑓R1 (𝑆◦) − 𝑐 (𝑆◦)/(𝑓R2 (𝑆◦) − 𝑐 (𝑆◦));
6 Let 𝜖1 be the larger root of

(𝜖1 + 1) (𝜖1 + 2)/𝜖2
1
= 𝑓R2 (𝑆◦)/ln(6 · 𝑖2/𝛿) · 𝜃𝑖/𝑛;

7 Let 𝜖2 be the larger root of (2𝜖1 + 2)/𝜖2
2
=

(𝑓R2 (𝑆◦) − (1 + 𝜖1)𝑐 (𝑆◦))/ln(6 · 𝑖2/𝛿) · 𝜃𝑖/𝑛;
8 if (𝑡 − 1)/𝑡 + 𝜖2 + 𝜖1 ≤ 𝜖 , 𝜖1 + 𝜖2 ≤ 𝜖 , and 𝑡, 𝜖1, 𝜖2 > 0

then
9 Break;

10 𝑖 ← 𝑖 + 1, 𝜃𝑖 ← 2𝜃𝑖 ;

11 while 𝜃𝑖 ≤ (8 + 2𝜖) (1 + 𝜖1)𝑛 ln(6/𝛿)+𝑛 ln 2

𝜖2 max{1,𝑓R
2
(𝑆◦)−(1+𝜖1)𝑐 (𝑆◦) } ;

12 return 𝑆◦

Then, for any 𝜆 > 0,

P[𝑋 −𝑀𝜇 ≥ 𝜆 ·𝑀𝜇] ≤ exp

(
− 𝜆2

2+𝜆𝑀𝜇

)
, and

P[𝑋 −𝑀𝜇 ≤ −𝜆 ·𝑀𝜇] ≤ exp

(
−𝜆2

2
𝑀𝜇

)
.

Lemma 5. Suppose that 𝑐 (𝑆1) = 𝑐 (𝑆2), 𝑓 (𝑆1) ≥ 𝑓 (𝑆2)−𝑥 for some
𝑥 ∈ (0, 1), and 𝑓 (𝑆2) − 𝑐 (𝑆2) ≥ 0. Then,

𝑓 (𝑆1) − 𝑐 (𝑆1) − ln 𝑓 (𝑆1)
𝑐 (𝑆1) · 𝑐 (𝑆1) ≥ 𝑓 (𝑆2) − 𝑥 − 𝑐 (𝑆2) − ln 𝑓 (𝑆2)

𝑐 (𝑆2) · 𝑐 (𝑆2)

Proof. 𝑓 (𝑆1) − 𝑐 (𝑆1) − ln 𝑓 (𝑆1)
𝑐 (𝑆1) · 𝑐 (𝑆1)

≥ 𝑓 (𝑆1) −
𝑐 (𝑆2)
𝑓 (𝑆2)

· 𝑓 (𝑆1) − ln
𝑓 (𝑆2)
𝑐 (𝑆2)

· 𝑐 (𝑆1) (15)

≥ (1 − 𝑐 (𝑆2)
𝑓 (𝑆2)) (𝑓 (𝑆2) − 𝑥) − ln

𝑓 (𝑆2)
𝑐 (𝑆2) · 𝑐 (𝑆2)

≥ 𝑓 (𝑆2) − 𝑥 − 𝑐 (𝑆2) − ln 𝑓 (𝑆2)
𝑐 (𝑆2) · 𝑐 (𝑆2),

where the first inequality holds because (i) the function 𝑔(𝑦) =
(1− 𝑒−𝑦) 𝑓 (𝑆1) −𝑦 · 𝑐 (𝑆1) achieves its minimum at 𝑦 = ln

𝑓 (𝑆1)
𝑐 (𝑆1) ; (ii)

𝑔

(
ln

𝑓 (𝑆1)
𝑐 (𝑆1)

)
equals the l.h.s. of Eq. (15); (iii) 𝑔

(
ln

𝑓 (𝑆2)
𝑐 (𝑆2)

)
equals the

r.h.s. of Eq. (15). □

Based on Lemma 4, we prove that with a high probability, in

each round of Algorithm 2 (Lines 3-10), 𝑓R2 (𝑆◦) is not a signif-

icant overestimation of 𝑓 (𝑆◦), while 𝑓R1 (𝑆∗) is not a significant

underestimation of 𝑓 (𝑆∗).

Lemma 6. With probability at least 1 − 5𝛿
9
, we have

𝑓R2 (𝑆
◦) ≤ (1 + 𝜖1) 𝑓 (𝑆◦), and (16)

𝑓R1 (𝑆
∗) ≥ (1 − 𝜖2) 𝑓 (𝑆∗) (17)

for every iteration (Line 3∼Line 10) of Algorithm 2 when 𝜖1, 𝜖2, 𝑡 > 0.

1761

Unconstrained Submodular Maximization with Modular Costs: Tight Approximation and Application to Profit Maximization

Algorithm 3: NodeSelection
Input: RR sets R.
Output: 𝑆◦.

1 𝑆◦ ← ∅;
2 Let CovR (𝑆) be the number of RR sets covered by 𝑆 in R;
3 Let 𝑟 ← |R|;
4 while true do
5 𝑣 ← argmax𝑢∈𝑉 (𝑛 · CovR (𝑢)/(𝑟 · 𝑐𝑢)) ;
6 if 𝑛 · CovR (𝑣)/𝑟 − 𝑐𝑣 ≤ 0 then
7 Break;

8 Add 𝑣 to 𝑆◦;
9 Remove RR sets covered by 𝑣 ;

10 return 𝑆◦;

Table 2: Dataset statistics (K = 10
3, M = 10

6).

Name 𝑛 𝑚 Type Average degree
NetHEPT 15.2K 31.4K undirected 4.18

Epinions 132K 841K directed 13.4

DBLP 655K 1.99M undirected 6.08

LiveJournal 4.85M 69.0M directed 28.5

Based on Lemma 6, we prove the approximation guarantee of

ROI-PM as follows.

Theorem 3 (Approximation Guarantee of ROI-PM). With
probability at least 1 − 𝛿 , the solution 𝑆◦ returned by Algorithm 2
satisfies

𝑓 (𝑆◦) − 𝑐 (𝑆◦) ≥ (1 − 𝜖) 𝑓 (𝑆∗) − 𝑐 (𝑆∗) − ln 𝑓 (𝑆∗)
𝑐 (𝑆∗) · 𝑐 (𝑆

∗), (18)

where 𝑆∗ is the optimal solution.

The following theorem shows the time complexity of ROI-PM.

Theorem 4. The expected time complexity of Algorithm 2 is

𝑂

(
𝑚 ·𝑓 ({𝑣∗ }) ·max{ln𝛿−1,𝑛}

𝜖2

)
, where 𝑣∗ is the node in𝐺 with the largest

expected spread.

Proof. The computation overhead of Algorithm 2 is dominated

by the cost of RR set generation. By Line 11 of Algorithm 2, the total

number of RR sets generated is at most 𝑂 (𝑛 · max{ln𝛿−1, 𝑛}/𝜖2).
As shown in [35], the expected cost of generating a random RR set

is bounded by
𝑚
𝑛 · 𝑓 ({𝑣

∗}). Therefore, the expected time complexity

of Algorithm 2 is 𝑂

(
𝑚 ·𝑓 ({𝑣∗ }) ·max{ln𝛿−1,𝑛}

𝜖2

)
. □

5 EXPERIMENTS
In this section, we experimentally evaluate the proposed algorithms

against existing state-of-the-art solutions in terms of both effec-

tiveness and efficiency on real-world graphs
4
. All experiments are

conducted on a Linux server with an Intel Xeon 2.60GHz CPU and

376GB RAM. All algorithms are implemented in C++ and compiled

by g++ 7.4 with -O3 optimization.

4
The experiments on sensor placement and text summarization could be found in

https://sites.google.com/view/roi-greedy-tr.

5.1 Experimental Settings
We use 4 real-world graphs, i.e., NetHEPT, Epinions, DBLP and Live-
Journal, which are used in previous work [13, 14, 31]. The statistics

of the graphs are summarized in Table 2. NetHEPT [7] is an aca-

demic collaboration network and the rest three graphs are social

networks, which are available in [22].

Model settings. As introduced in Section 2.1, given a graph 𝐺 =

⟨𝑉 , 𝐸⟩, we adopt the most popular influence diffusion model, In-

dependent Cascade (IC), for profit maximization. Following prior

work [14, 35], the propagation probability 𝑝 (𝑢, 𝑣) of each edge

(𝑢, 𝑣) in 𝐺 is set to be the inverse of 𝑣 ’s in-degree (i.e., its number

of in-neighbors). Function 𝑓 (𝑆) is the expected number of users

activated by 𝑆 during the IC diffusion process. We adopt the degree-
proportional cost model for cost function 𝑐 [13, 34]. Specifically, the
cost 𝑐𝑣 of node 𝑣 in 𝐺 is proportional to its out-degree 𝑑𝑜𝑢𝑡 (𝑣) (i.e.,
its number of out-neighbors) as follows: 𝑐𝑣 = 𝜆 · 𝑑𝑜𝑢𝑡 (𝑣)𝛾 , where
𝜆 and 𝛾 are two free parameters controlling the cost model. The

default settings of 𝜆 and 𝛾 are that: 𝜆 = 0.2 and 𝛾 = 1. When

𝑑𝑜𝑢𝑡 (𝑣) = 0, 𝑐𝑣 is 1. The total cost of a set 𝑆 ⊆ 𝑉 is 𝑐 (𝑆) = ∑
𝑣∈𝑆 𝑐𝑣 .

Competitors and settings. First, to evaluate the profitability, i.e.,
𝑓 (𝑆) − 𝑐 (𝑆), we compare ROI-Greedy against three competitors in-

cluding Simple-Greedy [25, 37], Double-Greedy[4] and Distorted-
Greedy [12]. Specifically, we vary the number of RR sets and com-

pare the profit of each method. 𝑓 (𝑆) is obtained by 10,000 Monte

Carlo simulations. We also vary 𝛾 and 𝜆, the parameters in the

degree-proportional cost model, to evaluate the robustness and

profitability of all methods. We vary the number of RR sets in

{1, 21, . . . , 28, 29}×105, 𝜆 in {0.1, 0.2, . . . , 0.5, 0.6}, and𝛾 in {0, 0.2, . . .
, 1, 1.2}. The default value of the number of RR sets is 2

8 × 105. The
experimental results are presented in Section 5.2.

Second, to evaluate the efficiency and effectiveness of ROI-PM
for the profit maximization problem, we compare ROI-PM against

an algorithm obtained by directly replacing Algorithm 3 in Algo-

rithm 2 with Distorted-Greedy, dubbed as DGP. It is easy to prove

that DGP can return results with (1− 1/𝑒 −𝜖) 𝑓 (𝑆∗) −𝑐 (𝑆∗) guaran-
tee with high probability, by using similar proofs as Theorem 3. We

set 𝜖 = 0.2, the failure probability 𝛿 = 1/𝑛, where 𝑛 is the number of

nodes in the input graph, and vary 𝜆 in {0.1, 0.2, 0.3, 0.4, 0.5, 0.6} to
evaluate the running time and the profit of each method. The experi-

mental results are presented in Section 5.3. Note that Simple-Greedy,
Double-Greedy, and existing solutions for profit maximization do

not provide guarantees under the general problem settings studied

in this paper. Therefore, they are not compared.

5.2 Evaluation of ROI-Greedy
In this section, we evaluate the profitability (i.e., 𝑓 (𝑆) − 𝑐 (𝑆)) of
ROI-Greedy against three competitors including Simple-Greedy
[25, 37],Double-Greedy [4] andDistorted-Greedy [12], by varying
the number of RR sets, 𝜆, and 𝛾 .

Varying the number of RR sets. Figure 1 reports the profits of all
methods on the four graphs, when increasing the number of RR sets

from 10
5
to 2

9 × 105. 𝑥-axis is the number of RR sets. 𝑦-axis is the

profit (the higher the better). ROI-Greedy gains the highest profit

under all settings over all the four graphs consistently and main-

tains a significant performance gap compared to all competitors for

1762

https://sites.google.com/view/roi-greedy-tr

Tianyuan Jin, Yu Yang, Renchi Yang, Jieming Shi, Keke Huang, and Xiaokui Xiao

ROI-Greedy Simple-Greedy Double-Greedy Distorted-Greedy

2
0
2
1
2
2
2
3
2
4
2
5
2
6
2
7
2
8
2
9

0.5

0.6

0.7

0.8

0.9

1

number of RR sets (×105)

profit (×104)

(a) NetHEPT

2
0
2
1
2
2
2
3
2
4
2
5
2
6
2
7
2
8
2
9

4

5

6

7

8

9

number of RR sets (×105)

profit (×104)

(b) Epinions

2
0
2
1
2
2
2
3
2
4
2
5
2
6
2
7
2
8
2
9

0.8

1.3

1.8

2.3

2.8

3.3

3.8

number of RR sets (×105)

profit (×105)

(c) DBLP

2
0
2
1
2
2
2
3
2
4
2
5
2
6
2
7
2
8
2
9

0.7

1.2

1.7

2.2

2.7

3.2

number of RR sets (×105)

profit (×106)

(d) LiveJournal

Figure 1: Profit with varying number of RR sets.

0.1 0.2 0.3 0.4 0.5 0.6

0.2

0.4

0.6

0.8

1.0

1.2

𝜆

profit (×104)

(a) NetHEPT

0.1 0.2 0.3 0.4 0.5 0.6

3.5

4.5

5.5

6.5

7.5

8.5

9.5

10.5

𝜆

profit (×104)

(b) Epinions

0.1 0.2 0.3 0.4 0.5 0.6

0.9

1.9

2.9

3.9

4.9

𝜆

profit (×105)

(c) DBLP

0.1 0.2 0.3 0.4 0.5 0.6

1.5

2.0

2.5

3.0

3.5

4.0

𝜆

profit (×106)

(d) LiveJournal

Figure 2: Profit with varying 𝜆.

0 0.2 0.4 0.6 0.8 1.0 1.2

2

3

4

5

6

7

𝛾

profit (×103)

(a) NetHEPT

0 0.2 0.4 0.6 0.8 1.0 1.2

3.0

3.5

4.0

4.5

5.0

5.5

𝛾

profit (×104)

(b) Epinions

0 0.2 0.4 0.6 0.8 1.0 1.2

0.9

1.4

1.9

2.4

2.9

3.4

𝛾

profit (×105)

(c) DBLP

0 0.2 0.4 0.6 0.8 1.0 1.2

1.2

1.4

1.6

1.8

2.0

2.2

2.4

𝛾

profit (×106)

(d) LiveJournal

Figure 3: Profit with varying 𝛾 .

different numbers of RR sets. For instance, in Figure 1(a), compared

to the best competitor Distorted-Greedy, ROI-Greedy improves

the profit by up to 21% on NetHEPT. The profit of ROI-Greedy is

also higher by up to 8.8%, 16%, and 12% than Distorted-Greedy on

Epinions, DBLP, and LiveJournal respectively in Figures 1 (b)-(d). In

Figure 1, we observe that Double-Greedy tends to underperform

Simple-Greedy. The reason is that we have a small 𝜆 = 0.2 in Figure

1, indicating that the costs of nodes are small and the dominant

term in 𝑓 −𝑐 is 𝑓 . In such a case, since Simple-Greedy is good at op-
timizing 𝑓 , Simple-Greedy is more effective than Double-Greedy.
Moreover, observe that the profits of all methods increase as the

number of RR sets increases, and the superiority of ROI-Greedy
maintains. The experimental results are consistent with our theoreti-

cal analysis ofROI-Greedy in Section 3. In particular, instead of only
focusing on return as in existing solutions, ROI-Greedy is based

on a new selection criterion by considering return-on-investment

(ROI), and, thus, ROI-Greedy has tighter approximation guarantee

(i.e., 𝑓 (𝑆∗) − 𝑐 (𝑆∗) − ln 𝑓 (𝑆∗)
𝑐 (𝑆∗) 𝑐 (𝑆

∗)) than existing solutions, which

is validated on by the experimental results on real-world graphs.

Varying 𝜆.We vary 𝜆 while 𝛾 and the number of RR sets are set to

their default values, i.e., 1 and 2
8×105 respectively. Figure 2 presents

the profits (𝑦-axis) of all methods on the four graphs when varying

𝜆 from 0.1 to 0.6. The overall observation is that ROI-Greedy al-

ways produces the highest profit over all graphs under all settings,

compared to the competitors. When 𝜆 increases, the profits of all

methods decrease since the costs of all nodes increase. The signifi-

cant performance gap between ROI-Greedy and the competitors

maintains. For instance, onNetHEPT in Figure 2(a), the profit of ROI-
Greedy is higher than that of Distorted-Greedy, Simple-Greedy,
and Double-Greedy by up to 25%, 130% and 93%, respectively. The

experimental results demonstrate the advantage of ROI-Greedy
over existing solutions in finding highly profitable solutions, by

utilizing the novel return-on-investment selection metric.

Varying 𝛾 . Figure 3 reports the experimental results when varying

𝛾 in {0, 0.2, 0.4, 0.6, 0.8, 1, 1.2}, while 𝜆 = 0.2 and the number of RR

sets is 2
8 × 105 as default. From Figure 3(a) to 3(d), the profit of ROI-

Greedy is consistently higher than those of all competitors over all

graphs under all settings. The profit of ROI-Greedy is up to 11%,

32%, 12% and 16% higher thanDistorted-Greedy onNetHEPT,DBLP,

1763

Unconstrained Submodular Maximization with Modular Costs: Tight Approximation and Application to Profit Maximization

ROI-PM DGP

0.1 0.2 0.3 0.4 0.5 0.6

3.5

4.5

5.5

6.5

7.5

𝜆

profit (×104)

(a) Epinions

0.1 0.2 0.3 0.4 0.5 0.6

1.5

2.0

2.5

3.0

3.5

𝜆

profit (×105)

(b) DBLP

0.1 0.2 0.3 0.4 0.5 0.6

1.8

2.1

2.4

2.7

3.0

𝜆

profit (×106)

(c) LiveJournal

Figure 4: Profit with varying 𝜆.

0.1 0.2 0.3 0.4 0.5 0.6
10

1

10
2

10
3

𝜆

running time (s)

(a) Epinions

0.1 0.2 0.3 0.4 0.5 0.6
10

2

10
3

10
4

𝜆

running time (s)

(b) DBLP

0.1 0.2 0.3 0.4 0.5 0.6
10

4

10
5

10
6

𝜆

running time (s)

(c) LiveJournal

Figure 5: Running time with varying 𝜆.

Epinions, and LiveJournal, respectively. For instance, on Epinions
in Figure 3(b), when 𝛾 is 0.6, the profit of ROI-Greedy is 4.2 × 104,
while the profit of Distorted-Greedy is just 3.5 × 104. All the above
experiments not only demonstrate the superiority of ROI-Greedy,
but also show that ROI-Greedy is stable and robust to generate the

highest profit, in terms of various parameter settings.

5.3 Evaluation of ROI-PM
We evaluate the proposed ROI-PM against DGP for profit maxi-

mization on real-world graphs. In particular, we study the profit (i.e.,
effectiveness) and running time (i.e., efficiency) of these methods

when varying 𝜆 in {0.1, 0.2, 0.3, 0.4, 0.5, 0.6} while setting 𝜖 = 0.2

and 𝛿 = 1/𝑛 as default. The results when varying 𝛾 are similar and

thus omitted here. We only report the results on Epinions, DBLP
and LiveJournal due to the interest of space.

Note that most existing profit maximization solutions (e.g., [1,

13, 25, 32, 33, 36]) are based on either Simple-Greedy or Double-
Greedy. However, Simple-Greedy and Double-Greedy cannot pro-

vide guarantees under the problem settings studied in this paper.

Hence, these existing solutions, inheriting the drawbacks of Simple-
Greedy or Double-Greedy, are not compared under the profit max-

imization application here. In particular, as discussed in Section

2.2, the results returned by Simple-Greedy can be arbitrarily worse

than the optimal result, and the approximation guarantee ofDouble-
Greedy relies on a strong assumption that requires for any 𝑆 ′ ⊆ 𝑉 ,

𝑓 (𝑆 ′) − 𝐶 (𝑆 ′) ≥ 0. Further, in practice, as shown in Section 5.2,

Simple-Greedy and Double-Greedy have already shown inferior

performance compared against the proposed ROI-Greedy. On the

other hand, the ROI-Greedy-based ROI-PM does not rely on such

strong assumptions and can provide worst-case approximation

guarantees for profit maximization. Therefore, for the profit maxi-

mization application, we only compare ROI-PM with DGP that is

based on Distorted-Greedy, which can also provide approximation

guarantee under the same problem settings studied in this paper.

Profit when varying 𝜆. Figure 4 reports the profits achieved by

ROI-PM and DGP when varying 𝜆 from 0.1 to 0.6. We observe that

ROI-PM consistently and significantly outperforms DGP under all

settings on all datasets. The profit of ROI-PM is up to 22%, 24% and

11% higher than that of DGP on Epinions, DBLP, and LiveJournal,
respectively, as shown in Figures 4(a,b,c). For instance, on Epinions
in Figure 4(a), when 𝜆 = 0.2, the profit of ROI-PM is 6.4×104, while
that of DGP is just 5.6 × 10

4
. ROI-PM always achieves a higher

profit in practice since it provides a tighter theoretical guarantee

as proved in Section 4.3. When 𝜆 increases, the performance gap

between ROI-PM and DGP slightly narrows. The reason is that

when 𝜆 increases, the cost 𝑐𝑣 of each node 𝑣 increases, making it

harder to gain profits.

Running time when varying 𝜆. Figure 5 shows the running time

of ROI-PM and DGP on Epinions and DBLP when we vary 𝜆 from

0.1 to 0.6.𝑦-axis is the running time in seconds (s) and is in log-scale.

Observe that ROI-PM is significantly faster than DGP under all

settings. In particular, ROI-PM is up to 9 times faster than DGP on

Epinions, as well as up to 14.5 and 7 times faster than DGP on DBLP
and LiveJournal, respectively. For instance, when 𝜆 is 0.2, on DBLP,
ROI-PM only needs 501 seconds (i.e., 8.3 minutes) to finish, while

DGP takes around 6,169 seconds (i.e., 1.7 hours). Recall that the

number of RR sets generated is inversely proportional to the quality

of the solution constructed, for both ROI-PM and DGP. However,
the efficiency gap (Figure 5) between ROI-PM and DGP is much

greater than the effectiveness gap (Figure 4) between these two

algorithms. This is because the early termination (Lines 5 to 8 of

Algorithm 2) is more effective for ROI-PM than for DGP.

6 OTHER RELATEDWORK
In addition to the methods reviewed in Section 2.2, we review other

methods that are relevant to this work in the following.

As a pioneer work [28], Nemhauser et al. prove that the greedy
algorithm ensures a (1−1/𝑒) approximate guarantee formaximizing

a non-negative, monotone, and submodular function, subject to a

cardinality constraint. After that, a plethora of studies are conducted

to solve this problem in various settings. Specifically, given a non-

negative, monotone, and submodular function 𝑓 , a non-negative

and modular cost function 𝑐 under knapsack constraint, and a

cost budget 𝐵, the problem asks for a set 𝑆 that maximizes 𝑓 (𝑆)
subject to 𝑐 (𝑆) ≤ 𝐵. Towards this end, a simple greedy solution is

proposed in [18] and is then shown to be able to provide (1−1/𝑒)/2-
approximate guarantee. Besides, there also exists a large body of

literature [4, 5, 9, 11, 20, 29, 30] on non-monotone submodular

maximization. Among them, the two methods [11, 30] that are most

related to our work focus on maximizing 𝑔 + ℓ , where 𝑔 is a non-

negative, monotone, and submodular function and ℓ is an arbitrary

modular function. More specifically, in [30], the authors propose a

randomized polynomial time algorithm that ensures 𝑔(𝑆) + ℓ (𝑆) ≥
(1 − 1/𝑒)𝑔(𝑆∗) + ℓ (𝑆∗), whose efficiency is subsequently improved

in [11]. However, as pinpointed in [12], both algorithms [11, 30]

are practically intractable and inefficient, and thus subsumed by

Distorted-Greedy [12]. Additionally, several studies [12, 21, 26] aim
at alleviating the efficiency issue of classic greedy methods.

As mentioned in Section 4, profit maximization is an instance

of unconstrained submodular maximization. Most existing solu-

tions for profit maximization, e.g., [1, 13, 25, 32, 33, 36], adopt

1764

Tianyuan Jin, Yu Yang, Renchi Yang, Jieming Shi, Keke Huang, and Xiaokui Xiao

Simple-Greedy and Double-Greedy methods. In [33], Tang et al.
first point out that the results returned by Simple-Greedy can be ar-

bitrarily worse than the optimum. Tang et al.[33] further show that

based on the non-negativity assumption of the submodular function,

the deterministic and the randomized versions of Double-Greedy
ensure

1

3
- and

1

2
-approximation guarantees, respectively. However,

as discussed in Section 2, this assumption is unrealistic in prac-

tice. Based on the same assumption, Huang et al. [13] propose an
algorithm for solving the profit maximization problem in an adap-

tive setting, in which the set 𝑆 of seed nodes is extracted from a

pre-defined small set 𝑇 of nodes, where 𝑇 ⊂ 𝑉 and |𝑇 | ≪ |𝑉 |.
There are many studies on sensor placement and text summa-

rization e.g., [15, 19, 21, 23, 24]. However, these studies formulated

text summarization and sensor placement as constrained submod-

ular maximization problems, which are very different from the

unconstrained submodular maximization problem studied in this

paper.

7 CONCLUSIONS
In this paper, we propose ROI-Greedy, a novel polynomial time al-

gorithm for USM-MC, which returns a solution 𝑆 satisfying 𝑓 (𝑆) −
𝑐 (𝑆) ≥ 𝑓 (𝑆∗)−𝑐 (𝑆∗)−ln 𝑓 (𝑆∗)

𝑐 (𝑆∗) ·𝑐 (𝑆
∗), where 𝑆∗ denotes the optimal

solution. The worst-case guarantee of ROI-Greedy is stronger than

all existing solutions. We also prove that the guarantee is tight com-

pared with a lower bound derived in this paper. Further, we devise

a non-trivial extension of ROI-Greedy to solve the profit maxi-

mization problem. Extensive experiments on benchmark datasets

demonstrate that ROI-Greedy significantly outperforms competing

methods in terms of efficiency and solution quality.

ACKNOWLEDGMENTS
Xiaokui Xiao is supported by the National University of Singapore

under SUG grant R-252-000-686-133. Tianyuan Jin is supported

by the National Research Foundation, Singapore under its AI Sin-

gapore Programme (AISG Award No: AISG-PhD/2021-01-004[T]).

Yu Yang is supported in part by the Hong Kong Research Grants

Council (ECS 21214720) and City University of Hong Kong (Project

9610465). Jieming Shi is supported by the financial support (1-BE3T)

of research project (P0033898) from Hong Kong Polytechnic Uni-

versity. The findings herein reflect the work, and are solely the

responsibility, of the authors.

APPENDIX
Proof of Lemma 1. For convenience, we abuse the notation and

let Δ(𝑇 | 𝑆) = 𝑓 (𝑇 ∪ 𝑆) − 𝑓 (𝑆) denote the marginal increase in 𝑓

when we add all elements in a set 𝑇 ⊆ 𝑉 into another set 𝑆 ⊆ 𝑉 .

We have

Δ(𝑣𝑖 | 𝑆𝑖−1)
𝑐𝑣𝑖

= max

𝑢∈𝑉 \𝑆𝑖−1

Δ(𝑢 | 𝑆𝑖−1)
𝑐𝑢

≥ max

𝑢∈𝑆+\𝑆𝑖−1

Δ(𝑢 | 𝑆𝑖−1)
𝑐𝑢

≥
∑
𝑢∈𝑆+ Δ(𝑢 | 𝑆𝑖−1)∑

𝑢∈𝑆+ 𝑐𝑢
≥ Δ(𝑆+ | 𝑆𝑖−1)

𝑐 (𝑆+)

=
𝑓 (𝑆+ ∪ 𝑆𝑖−1) − 𝑓 (𝑆𝑖−1)

𝑐 (𝑆+) ≥ 𝑓 (𝑆+) − 𝑓 (𝑆𝑖−1)
𝑐 (𝑆+) .

□

Proof of Lemma 2. From Lemma 1, we have 𝑓 (𝑆1) = 𝑓 ({𝑣1}) ≥
𝑐𝑣𝑘 𝑓 (𝑆

+)
𝑐 (𝑆+) . Hence, Eq. (5) holds for 𝑖 = 1. Now, assume that 𝑓 (𝑆𝑖) ≥

(
1−∏𝑖

𝑘=1

(
1− 𝑐𝑣𝑘

𝑐 (𝑆+)
))
𝑓 (𝑆+) holds for any 𝑖 ≤ 𝑗 . For 𝑆 𝑗+1, we have

𝑓 (𝑆 𝑗+1) = Δ(𝑣𝑗+1 | 𝑆 𝑗) + 𝑓 (𝑆 𝑗)

≥
𝑐𝑣𝑗+1 (𝑓 (𝑆+) − 𝑓 (𝑆 𝑗))

𝑐 (𝑆+) + 𝑓 (𝑆 𝑗) =
𝑐𝑣𝑗+1

𝑐 (𝑆+) 𝑓 (𝑆
+) +

(
1 −

𝑐𝑣𝑗+1

𝑐 (𝑆+)

)
𝑓 (𝑆 𝑗)

≥
𝑐𝑣𝑗+1

𝑐 (𝑆+) 𝑓 (𝑆
+) +

(
1 −

𝑐𝑣𝑗+1

𝑐 (𝑆+)

)
·
(
1 −

𝑗∏
𝑘=1

(
1 −

𝑐𝑣𝑘

𝑐 (𝑆+)

))
𝑓 (𝑆+)

=

(
1 −

𝑗+1∏
𝑘=1

(
1 −

𝑐𝑣𝑘

𝑐 (𝑆+)

))
𝑓 (𝑆+) .

By induction, Eq. (5) holds. □

Proof of Lemma 3. We consider two cases.

First, if 𝛽 ≤ 𝑐 (𝑆+), we first prove for any 𝑘 ≤ 𝑡 − 1, 𝑐𝑣𝑘 ≤ 𝑐 (𝑆+).
Suppose for contradiction that there exists 𝑘 ≤ 𝑡 − 1 such that

𝑐𝑣𝑘 ≥ 𝑐 (𝑆+), then
𝑓 (𝑆𝑘) = Δ(𝑣𝑘 |𝑆𝑘−1) + 𝑓 (𝑆𝑘−1)

≥
𝑐𝑣𝑘

𝑐 (𝑆+) (𝑓 (𝑆
+) − 𝑓 (𝑆𝑘−1)) + 𝑓 (𝑆𝑘−1) ≥ 𝑓 (𝑆+), (19)

where the first inequality is due to Lemma 1 and the second inequal-

ity is due to Eq.(8). Therefore, 𝑓 (𝑆𝑡−1) ≥ 𝑓 (𝑆𝑘) ≥ 𝑓 (𝑆+), which
contradicts with Eq.(8). Hence, for all 𝑘 ≤ 𝑡 − 1, 𝑐𝑣𝑘 ≤ 𝑐 (𝑆+). Now,
we have

𝛽 (𝑓 (𝑆+) − 𝑓 (𝑆𝑡−1))
𝑐 (𝑆+) + 𝑓 (𝑆𝑡−1)

≥ 𝛽

𝑐 (𝑆+) 𝑓 (𝑆
+) +

(
1 − 𝛽

𝑐 (𝑆+)

) (
1 −

𝑡−1∏
𝑘=1

(
1 −

𝑐𝑣𝑘

𝑐 (𝑆+)

))
𝑓 (𝑆+)

=

(
1 −

(
1 − 𝛽

𝑐 (𝑆+)

) 𝑡−1∏
𝑘=1

(1 −
𝑐𝑣𝑘

𝑐 (𝑆+))
)
𝑓 (𝑆+)

≥
(
1 −

(
1 −

𝛽 +∑𝑡−1
𝑘=1

𝑐𝑣𝑘

𝑡 · 𝑐 (𝑆+)

)𝑡)
𝑓 (𝑆+)

=

(
1 −

(
1 − ln(𝑓 (𝑆+)/𝑐 (𝑆+))

𝑡

)𝑡)
𝑓 (𝑆+)

≥ 𝑓 (𝑆+) − 𝑐 (𝑆+), (20)

where the first inequality is by Lemma 2 and 𝛽 ≤ 𝑐 (𝑆+), and the

second inequality is due to Eq. (6), 𝑐𝑣𝑘 ≤ 𝑐 (𝑆+) and 𝛽 +∑𝑡−1
𝑘=1

𝑐𝑣𝑘 =

ln
𝑓 (𝑆+)
𝑐 (𝑆+) · 𝑐 (𝑆

+), while the third inequality holds because(
1 −

ln

(
𝑓 (𝑆+)/𝑐 (𝑆+)

)
𝑡

)𝑡
≤ 𝑒
− ln 𝑓 (𝑆+)

𝑐 (𝑆+) =
𝑐 (𝑆+)
𝑓 (𝑆+) .

Second, if 𝛽 > 𝑐 (𝑆+), then
𝛽 (𝑓 (𝑆+) − 𝑓 (𝑆𝑡−1))

𝑐 (𝑆+) + 𝑓 (𝑆𝑡−1)

= 𝑓 (𝑆+) +
(

𝛽

𝑐 (𝑆+) − 1
)
(𝑓 (𝑆+) − 𝑓 (𝑆𝑡−1))

≥ 𝑓 (𝑆+) ≥ 𝑓 (𝑆+) − 𝑐 (𝑆+), (21)

since 𝛽 > 𝑐 (𝑆+) and 𝑓 (𝑆𝑡−1) < 𝑓 (𝑆+). □

Proof of Lemma 6. Let E1𝑖 denote the event that Eq. (16) holds
for the 𝑖-th iteration, and E2𝑖 denote the event that Eq. (17) holds
for the 𝑖-th iteration. Let 𝜖 ′ be the solution to the equation

exp

(
− (𝜖

′)2
2 + 𝜖′

𝜃𝑖

𝑛
𝑓 (𝑆◦)

)
=

𝛿

6𝑖2
. (22)

1765

Unconstrained Submodular Maximization with Modular Costs: Tight Approximation and Application to Profit Maximization

LetH1 be the event

𝑓R2 (𝑆
◦) ≤ (1 + 𝜖′) 𝑓 (𝑆◦) . (23)

Then, by Lemma 4, P[H1] ≥ 1 − 𝛿/(6𝑖2). When H1 occurs, by

Eq. (22),

(𝜖′)2
(2 + 𝜖′) (1 + 𝜖′) =

𝑛 ln(6𝑖2/𝛿)
𝜃𝑖 · (1 + 𝜖′) · 𝑓 (𝑆◦)

≤ 𝑛 ln(6𝑖2/𝛿)
𝜃𝑖 · 𝑓R2 (𝑆◦)

. (24)

By the definition of 𝜖1, we have 𝜖1 ≥ 𝜖 ′ givenH1. Hence,

H1 ⇒ 𝑓R2 (𝑆
◦) ≤ (1 + 𝜖1) 𝑓 (𝑆◦) .

This leads to

P
[
𝑓R2 (𝑆

◦) ≤ (1 + 𝜖1) 𝑓 (𝑆◦)
]
≥ P[H1] ≥ 1 − 𝛿/(6𝑖2) .

Therefore, P[E1𝑖] ≥ 1 − 𝛿/(6𝑖2).
Similarly, for 𝑓 (𝑆∗), let 𝜖 be the solution to the equation

exp

(
− 𝜖2

2

𝜃𝑖

𝑛
𝑓 (𝑆∗)

)
=

𝛿

6𝑖2
,

andH2 be the event 𝑓R1 (𝑆∗) ≤ (1 − 𝜖) 𝑓 (𝑆∗). From Lemma 4, we

have P[H2] ≥ 1 − 𝛿/(6𝑖2). Conditioned on E1𝑖 , we have
𝜖2

2(1 + 𝜖1)
=

𝑛

𝜃𝑖 · (1 + 𝜖1) · 𝑓 (𝑆∗)
ln

(
6𝑖2

𝛿

)
≤ 𝑛

𝜃𝑖 · (1 + 𝜖1) · (𝑓 (𝑆◦) − 𝑐 (𝑆◦))
ln

(
6𝑖2

𝛿

)
≤ 𝑛

𝜃𝑖 · (𝑓R2 (𝑆◦) − (1 + 𝜖1)𝑐 (𝑆◦))
ln

(
6𝑖2

𝛿

)
,

where the first inequality is due to the definition of 𝜖 , and the last

inequality is due to E1𝑖 . From the definition of 𝜖2, conditioned on

E1𝑖 , we have 𝜖2 ≥ 𝜖 . Finally, we have

P
[
𝑓R1 (𝑆

∗) ≥ (1 − 𝜖2) 𝑓 (𝑆∗) | E1𝑖
]
≥ P[𝐻2] ≥ 1 − 𝛿

6𝑖2
.

Thus, P[E2𝑖 | E1𝑖] ≥ 1 − 𝛿/(6𝑖2). As a result,

P[E2𝑖 ∩ E1𝑖] = P[E2𝑖 | E1𝑖]P[E1𝑖] ≥ 1 − 𝛿

3𝑖2
.

For all iterations, we have

P

[∞⋂
𝑖=1

E1𝑖
∞⋂
𝑖=1

E2𝑖
]
≥
∞∏
𝑖=1

P[E2𝑖 ∩ E1𝑖] ≥
∞∏
𝑖=1

(
1 − 𝛿

3𝑖2

)
≥ 1 −

∞∑
𝑖=1

𝛿

3𝑖2
≥ 1 − 𝜋2 · 𝛿

18

≥ 1 − 5𝛿

9

, (25)

where the third inequality follows from the Weierstrass product

inequality. □

Proof of Theorem 3. We consider two cases depending on

whether Line 9 in Algorithm 2 is triggered.

Case 1: Line 9 is triggered. Then, in the last iteration, we have

(𝑡 − 1)/𝑡 + 𝜖2 + 𝜖1 ≤ 𝜖, and (26)

𝜖1 + 𝜖2 ≤ 𝜖, (27)

where 𝜖1, 𝜖2 ∈ (0, 1) and 𝑡 > 0. Suppose that both Eq. (16) and (17)

hold. Then,

𝑓R1 (𝑆
◦) − 𝑐 (𝑆◦) ≥ 𝑓R1 (𝑆∗) − 𝑐 (𝑆∗) − ln

𝑓R
1
(𝑆∗)

𝑐 (𝑆∗) · 𝑐 (𝑆
∗)

≥ (1 − 𝜖2) 𝑓 (𝑆∗) − 𝑐 (𝑆∗) − ln 𝑓 (𝑆∗)
𝑐 (𝑆∗) · 𝑐 (𝑆

∗), (28)

where the first inequality is due to Theorem 1, and the second

inequality is due to Eq. (17) and Lemma 5. Moreover, by Eq.(16),

𝑓R1 (𝑆
◦) − 𝑐 (𝑆◦) = 𝑡 (𝑓R2 (𝑆

◦) − 𝑐 (𝑆◦))
≤ 𝑡 (𝑓 (𝑆◦) − 𝑐 (𝑆◦)) + 𝑡𝜖1 𝑓 (𝑆◦) . (29)

Finally, we have

𝑓 (𝑆◦) − 𝑐 (𝑆◦) ≥ 1/𝑡
(
𝑓R1 (𝑆

◦) − 𝑐 (𝑆◦)
)
− 𝜖1 𝑓 (𝑆∗) (30)

≥ 1/𝑡
(
(1 − 𝜖2) 𝑓 (𝑆∗) − 𝑐 (𝑆∗) − ln

𝑓 (𝑆∗)
𝑐 (𝑆∗) · 𝑐 (𝑆

∗)
)
− 𝜖1 𝑓 (𝑆∗) (31)

where the first inequality is from Eq. (29), and second inequality is

from Eq. (28).

If 1/𝑡 < 1, following Eq. (31), we have

𝑓 (𝑆◦) − 𝑐 (𝑆◦)

≥ 1/𝑡
(
(1 − 𝜖2) 𝑓 (𝑆∗) − 𝑐 (𝑆∗) − ln

𝑓 (𝑆∗)
𝑐 (𝑆∗) · 𝑐 (𝑆

∗)
)
− 𝜖1 𝑓 (𝑆∗)

≥ 𝑓 (𝑆∗) − 𝑐 (𝑆∗) + (1/𝑡 − 1) 𝑓 (𝑆∗) − (𝜖2 + 𝜖1) 𝑓 (𝑆∗) − ln
𝑓 (𝑆∗)
𝑐 (𝑆∗) 𝑐 (𝑆

∗)

≥ (1 − 𝜖) 𝑓 (𝑆∗) − 𝑐 (𝑆∗) − ln 𝑓 (𝑆∗)
𝑐 (𝑆∗) · 𝑐 (𝑆

∗),

where the last inequality is from Eq. (26).

Otherwise, 1/𝑡 ≥ 1, following Eq. (30), we have

𝑓 (𝑆◦) − 𝑐 (𝑆◦) ≥ 𝑓R1 (𝑆
◦) − 𝑐 (𝑆◦) − 𝜖1 𝑓 (𝑆∗)

≥ (1 − 𝜖1 − 𝜖2) 𝑓 (𝑆∗) − 𝑐 (𝑆∗) − ln
𝑓 (𝑆∗)
𝑐 (𝑆∗) · 𝑐 (𝑆

∗)

≥ (1 − 𝜖) 𝑓 (𝑆∗) − 𝑐 (𝑆∗) − ln 𝑓 (𝑆∗)
𝑐 (𝑆∗) · 𝑐 (𝑆

∗),

where the second inequality is from Eq. (28), and the last inequality

is from Eq.(27).

By Lemma 6, both Eq. (16) and (17) hold with probability at least

1 − 5𝛿
9
. Thus, when Line 9 is triggered, with probability at least

1 − 5𝛿
9
, Eq. (18) holds.

Case 2: Line 9 is not triggered. In this case, we have

𝜃𝑖 = |R1 | > (8 + 2𝜖) (1 + 𝜖1)𝑛
ln(6/𝛿) + 𝑛 ln 2

𝜖2 max{1, 𝑓R2 (𝑆◦) − (1 + 𝜖1)𝑐 (𝑆◦) }
when Algorithm 2 terminates.

Notice that when the event ∩𝑖E1𝑖 occurs. ∩𝑖E1𝑖 implies that

max{1, 𝑓R2 (𝑆
◦) − (1 + 𝜖1)𝑐 (𝑆◦) } ≤ max{1, (1 + 𝜖1) (𝑓 (𝑆◦) − 𝑐 (𝑆◦)) }

≤ (1 + 𝜖1) 𝑓 (𝑆∗) .

Then, we have

𝜃𝑖 = |R1 | ≥ (8 + 2𝜖)𝑛
ln(6/𝛿) + 𝑛 ln 2

𝜖2 𝑓 (𝑆∗)
when Algorithm 2 terminates. Let 𝑥 = 𝜖 𝑓 (𝑆∗)/(2𝑓 (𝑆)). In this case,
by Lemma 4, for any 𝑆 ⊆ 𝑉 ,

P[𝑓R1 (𝑆) − 𝑓 (𝑆) ≥ 𝜖

2

𝑓 (𝑆∗)] ≤ exp
(
− 𝑥2

2 + 𝑥
𝜃𝑖

𝑛
𝑓 (𝑆)

)
≤ exp

(
− 𝜖2

8 + 2𝜖
𝜃𝑖

𝑛
𝑓 (𝑆∗)

)
≤ 𝛿

6 · 2𝑛 ,

where the second inequality is due to the fact that the right side of

the first inequality achieves its maximum at 𝑓 (𝑆) = 𝑓 (𝑆∗). Similarly,

we also have P[𝑓R1 (𝑆) − 𝑓 (𝑆) ≤ −𝜖
2
𝑓 (𝑆∗)] ≤ 𝛿

6·2𝑛 . Since 𝑆 ∈ 2
𝑉

and |2𝑉 | = 2
𝑛
, P[|𝑓R1 (𝑆) − 𝑓 (𝑆) | ≤ 𝜖

2
𝑓 (𝑆∗),∀𝑆 ⊆ 𝑉] ≥ 1 − 𝛿

3
.

When |𝑓R1 (𝑆) − 𝑓 (𝑆) | ≤ 𝜖
2
𝑓 (𝑆∗) for all 𝑆 ⊆ 𝑉 , we have

𝑓R1 (𝑆
∗) ≥ (1 − 𝜖

2

) 𝑓 (𝑆∗), and (32)

𝑓R1 (𝑆
◦) ≤ 𝑓 (𝑆◦) + 𝜖

2

𝑓 (𝑆∗) . (33)

1766

Tianyuan Jin, Yu Yang, Renchi Yang, Jieming Shi, Keke Huang, and Xiaokui Xiao

Thus, when the event ∩𝑖E1𝑖 happens, we have
𝑓 (𝑆◦) − 𝑐 (𝑆◦) ≥ 𝑓R1 (𝑆

◦) − 𝑐 (𝑆◦) − 𝜖

2

𝑓 (𝑆∗)

≥ 𝑓R1 (𝑆
∗) − 𝑐 (𝑆∗) − ln

𝑓R1 (𝑆∗)
𝑐 (𝑆∗) · 𝑐 (𝑆

∗) − 𝜖

2

𝑓 (𝑆∗)

≥ (1 − 𝜖) 𝑓 (𝑆∗) − 𝑐 (𝑆∗) − ln 𝑓 (𝑆∗)
𝑐 (𝑆∗) · 𝑐 (𝑆

∗)

where the third inequality is due to Eq. (32) and Lemma 5.

According to Eq. (25), the event ∩𝑖E1𝑖 occurs with probability at

least 1− 5𝛿
9
. Therefore, when Line 9 is not triggered, with probability

at least 1 − 5𝛿
9
− 𝛿

3
≥ 1 − 𝛿 , we have

𝑓 (𝑆◦) − 𝑐 (𝑆◦) ≥ (1 − 𝜖) 𝑓 (𝑆∗) − 𝑐 (𝑆∗) − 𝑓 (𝑆∗)
𝑐 (𝑆∗) · 𝑐 (𝑆

∗) .

Combining Case 1 and Case 2, the theorem is proved. □

Proof of Theorem 2. We use again the reduction from mini-
mum set cover demonstrated in Section 3.1. Assume that there is

an algorithm Alg satisfying Eq. (13). We show that we can use algo-

rithm Alg to achieve an approximate ratio of 𝑐 ln𝑁 (𝑁 = | ∪𝑛
𝑖=1

𝑢𝑖 |)
for minimum set cover for some 𝑐 < 1, which contradicts the as-

sumption that P≠NP [8].

First, on an arbitraryminimum set cover instance𝑉 = {𝑢1, ..., 𝑢𝑛},
recall that 𝑆∗, the optimal solution to USM-MC, is a minimum set

cover. Thus, we have 𝑓 (𝑆∗) ≥ 2𝑐 (𝑆∗) and 𝑐 (𝑆∗) ln 𝑓 (𝑆∗)
𝑐 (𝑆∗) ≤

𝑓 (𝑆∗)
𝑒 .

Let 𝜖 =

(
1

2
− 1

𝑒

)
𝜖 . We have 𝜖 > 0 since 𝜖 > 0. Then, by Eq. (13),

𝑓 (𝑆′) − 𝑐 (𝑆′)

≥ 𝜖 ·
(
𝑓 (𝑆∗) − 𝑐 (𝑆∗) − ln 𝑓 (𝑆∗)

𝑐 (𝑆∗) · 𝑐 (𝑆
∗)

)
+

(
𝑓 (𝑆∗) − 𝑐 (𝑆∗) − ln 𝑓 (𝑆∗)

𝑐 (𝑆∗) · 𝑐 (𝑆
∗)

)
≥ (1

2
− 1

𝑒
)𝜖 · 𝑓 (𝑆∗) +

(
𝑓 (𝑆∗) − 𝑐 (𝑆∗) − ln 𝑓 (𝑆∗)

𝑐 (𝑆∗) · 𝑐 (𝑆
∗)

)
= (1 + 𝜖) 𝑓 (𝑆∗) − 𝑐 (𝑆∗) − ln 𝑓 (𝑆∗)

𝑐 (𝑆∗) · 𝑐 (𝑆
∗) . (34)

Consider the USM-MC problem on 𝑉 , with 𝑓 (𝑆) = | ∪𝑢𝑖 ∈𝑆 𝑢𝑖 | for
all 𝑆 ⊆ 𝑉 , and 𝑐𝑢𝑖 = 1

2
for all 𝑖 = 1, . . . , 𝑛. Suppose that we use Alg

to solve this USM-MC problem, and obtain a solution 𝑆1 ⊆ 𝑉 . We

consider two cases depending on whether 𝑆1 is a set cover.

Case 1: 𝑆1 is already a set cover of 𝑉 . Recall that in Section 3.1, we

prove that the minimum set cover 𝑆∗ of 𝑉 is an optimal solution to

USM-MC. By Eq. (34),

𝑓 (𝑆1) − 𝑐 (𝑆1) ≥ 𝑓 (𝑆∗) − 𝑐 (𝑆∗) − ln 𝑓 (𝑆∗)
𝑐 (𝑆∗) · 𝑐 (𝑆

∗) + 𝜖 · 𝑓 (𝑆∗)

≥ 𝑓 (𝑆∗) − 𝑐 (𝑆∗) − (1 − 𝑒𝜖) · ln 𝑓 (𝑆∗)
𝑐 (𝑆∗) · 𝑐 (𝑆

∗),

where the last inequality is due to 𝑓 (𝑆∗)/𝑐 (𝑆∗) ≥ 2 and ln
𝑓 (𝑆∗)
𝑐 (𝑆∗) ·

𝑐 (𝑆∗) ≤ 𝑓 (𝑆∗)
𝑒 . Since both 𝑆1 and 𝑆∗ are set covers, we have 𝑓 (𝑆1) =

𝑓 (𝑆∗) = | ∪𝑛
𝑖=1

𝑢𝑖 | = 𝑁 . Moreover, we have 𝑐 (𝑆1) = 1

2
|𝑆1 | and

𝑐 (𝑆∗) = 1

2
|𝑆∗ |. Therefore, |𝑆1 | ≤ |𝑆∗ |

(
(1 − 𝑒𝜖) (ln𝑁 − ln |𝑆∗ | + ln 2)

+1
)
≤ |𝑆∗ | ((1 − 𝑒𝜖) ln𝑁 +𝑂 (1)) . This indicates that there exists

some constant 𝜖 ′ > 0 such that

|𝑆1 | ≤ |𝑆∗ | (1 − 𝜖′) ln𝑁 . (35)

Case 2: 𝑆1 is not a set cover of 𝑉 . Let 𝑏1 = ∪𝑢𝑖 ∈𝑆1𝑢𝑖 . For conve-
nience, we rename𝑉 = {𝑢1, 𝑢2, . . . , 𝑢𝑛} to𝑉 1 = {𝑢1

1
, 𝑢1

2
, . . . , 𝑢1𝑛}. We

construct another set cover instance 𝑉 2 = {𝑢2
1
, 𝑢2

2
, . . . , 𝑢2𝑛} where

𝑢2
𝑖
= 𝑢1

𝑖
\ 𝑏1. Let 𝑓 2 (𝑆) = | ∪𝑢2

𝑖
∈𝑆 𝑢

2

𝑖
|. Suppose that we apply Alg

on 𝑉 2
with 𝑓 2 (·), and obtain a solution 𝑆2. If 𝑆2 is still not a set

cover of 𝑉 2
, we can repeat the same process to construct new set

cover instances 𝑉 3, . . . ,𝑉 𝑙
with 𝑓 3 (·), . . . , 𝑓 𝑙 (·), and to apply Alg

to derive 𝑆3, . . . , 𝑆𝑙 until 𝑆𝑙 is a set cover of 𝑉 𝑙
.

Let 𝑆⋄ = {𝑢𝑖 | ∃ 𝑗, 𝑢 𝑗
𝑖
∈ 𝑆 𝑗 } ⊆ 𝑉 . It can be verified that 𝑆⋄ is a set

cover of 𝑉 , the original set cover instance. Moreover, constructing

𝑆⋄ takes polynomial time, since Alg is a polynomial time algorithm

and 𝑙 ≤ 𝑁 .

Let 𝑆∗
𝑗
be the minimum set cover of 𝑉 𝑗

, and 𝑧 𝑗 = |𝑆 𝑗 |/|𝑆∗
𝑗
|. De-

note 𝑦 𝑗 = | ∪
𝑢
𝑗

𝑖
∈𝑆 𝑗 𝑢

𝑗
𝑖
|/| ∪𝑛

𝑖=1
𝑢
𝑗
𝑖
| = 𝑓 𝑗 (𝑆 𝑗)/𝑓 𝑗 (𝑆∗

𝑗
) as the fraction

of items covered by 𝑆 𝑗 in 𝑉 𝑗
. We prove that for 𝑗 = 1, 2, . . . , 𝑙 − 1

𝑦 𝑗 ≥ 1 − 𝑒−𝑧 𝑗 + 𝜖. (36)

Assume to the contrary that 𝑦 𝑗 < 1− 𝑒−𝑧 𝑗 + 𝜖 . Note that 𝑐 (𝑆 𝑗) =
𝑧 𝑗𝑐 (𝑆∗

𝑗
). We have

𝑓 𝑗 (𝑆 𝑗) − 𝑐 (𝑆 𝑗) < (1 − 𝑒−𝑧 𝑗 + 𝜖) 𝑓 𝑗 (𝑆∗𝑗) − 𝑧 𝑗𝑐 (𝑆∗𝑗)

≤ max

𝑥∈R+

(
(1 − 𝑒−𝑥 + 𝜖) 𝑓 𝑗 (𝑆∗𝑗) − 𝑥𝑐 (𝑆∗𝑗)

)
= (1 + 𝜖) 𝑓 𝑗 (𝑆∗

𝑗
) − 𝑐 (𝑆∗

𝑗
) − ln

𝑓 (𝑆∗
𝑗
)

𝑐 (𝑆∗
𝑗
) · 𝑐 (𝑆

∗
𝑗
),

which contradicts Eq. (34). Therefore, Eq. (36) holds for all 𝑗 =

1, 2, . . . , 𝑙 − 1 and

𝑧 𝑗 ≤ ln

1

1 − 𝑦 𝑗 + 𝜖 < (1 − 𝜖) ln 1

1 − 𝑦 𝑗
, (37)

where the last inequality holds because ln
1

𝑎+𝜖 < (1 − 𝜖) ln 1

𝑎 for

any 0 < 𝑎 < 1 and 0 < 𝜖 < 1.

Let𝑤 be the total number of items in the sets in the last set cover

instance 𝑉 𝑙
. Note that 𝑆𝑙 is a set cover of 𝑉 𝑙

. By the same analysis

as in Case 1, we have
|𝑆𝑙 | ≤ |𝑆∗

𝑙
| (1 − 𝜖′) ln𝑤, (38)

for some 𝜖 ′ > 0. At the beginning, we have 𝑁 items in the sets of

𝑉 1
. In each round 𝑗 = 2, 3, . . . , 𝑙 , we remove a fraction 𝑦 𝑗−1 of items

from the set cover instance of the (𝑗 − 1)-th round. Thus, we have

𝑁

𝑙−1∏
𝑗=1

(1 − 𝑦 𝑗) = 𝑤. (39)

Observe that 𝑆∗
𝑗
is still a set cover of 𝑉 𝑗+1

, but its size may not

be minimum. Thus, we have |𝑆∗
𝑗
| ≤ |𝑆∗

1
| = |𝑆∗ | for all 𝑗 = 1, 2, . . . , 𝑙 .

Combining Eq. (37), (38), and (39), we have

𝑙∑
𝑗=1

|𝑆 𝑗 | ≤
𝑙−1∑
𝑗=1

𝑧 𝑗 |𝑆∗𝑗 | + (1 − 𝜖′) |𝑆∗𝑙 | ln𝑤

≤ (1 − 𝜖)
𝑙−1∑
𝑗=1

ln

1

1 − 𝑦 𝑗
|𝑆∗𝑗 | + (1 − 𝜖′) |𝑆∗𝑙 | ln𝑤

≤ (1 −min{𝜖, 𝜖′ }) |𝑆∗ |
(
𝑙−1∑
𝑗=1

ln

1

1 − 𝑦 𝑗
+ ln𝑤

)
= |𝑆∗ | (1 −min{𝜖, 𝜖′ }) ln𝑁 .

(40)

Therefore, for the set cover 𝑆⋄ constructed from 𝑆1, . . . , 𝑆 𝑗 , we have

|𝑆⋄ | ≤ ∑𝑙
𝑗=1 |𝑆 𝑗 | ≤ |𝑆∗ | (1−min{𝜖, 𝜖 ′}) ln𝑁 . Combining the results

fromCase 1 andCase 2, we prove that Alg can be used to provide a
𝑐 ln𝑁 approximation for minimum set cover for some 𝑐 < 1, which

leads to a contradiction. □

1767

Unconstrained Submodular Maximization with Modular Costs: Tight Approximation and Application to Profit Maximization

REFERENCES
[1] David Arthur, Rajeev Motwani, Aneesh Sharma, and Ying Xu. 2009. Pricing

strategies for viral marketing on social networks. InWINE. 101–112.
[2] Song Bian, Qintian Guo, Sibo Wang, and Jeffrey Xu Yu. 2020. Efficient algorithms

for budgeted influence maximization on massive social networks. PVLDB 13, 9

(2020), 1498–1510.

[3] Christian Borgs, Michael Brautbar, Jennifer Chayes, and Brendan Lucier. 2014.

Maximizing social influence in nearly optimal time. In SODA. 946–957.
[4] Niv Buchbinder, Moran Feldman, Joseph Naor, and Roy Schwartz. 2012. A Tight

Linear Time (1/2)-Approximation for Unconstrained Submodular Maximization.

In FOCS. 649–658.
[5] Chandra Chekuri, Jan Vondrák, and Rico Zenklusen. 2014. Submodular function

maximization via the multilinear relaxation and contention resolution schemes.

SIAM J. Comput. 43, 6 (2014), 1831–1879.
[6] Wei Chen, Chi Wang, and Yajun Wang. 2010. Scalable influence maximization for

prevalent viral marketing in large-scale social networks. In SIGKDD. 1029–1038.
[7] Wei Chen, Yajun Wang, and Siyu Yang. 2009. Efficient influence maximization in

social networks. In SIGKDD. 199–208.
[8] Irit Dinur and David Steurer. 2014. Analytical approach to parallel repetition. In

STOC. 624–633.
[9] Alina Ene and Huy L Nguyen. 2016. Constrained submodular maximization:

Beyond 1/e. In FOCS. 248–257.
[10] Uriel Feige. 1998. A threshold of ln n for approximating set cover. JACM 45, 4

(1998), 634–652.

[11] Moran Feldman. 2020. Guess free maximization of submodular and linear sums.

Algorithmica (2020), 1–26.
[12] Chris Harshaw, Moran Feldman, Justin Ward, and Amin Karbasi. 2019. Submod-

ular Maximization beyond Non-negativity: Guarantees, Fast Algorithms, and

Applications. In ICML. 2634–2643.
[13] Keke Huang, Jing Tang, Xiaokui Xiao, Aixin Sun, and Andrew Lim. 2020. Efficient

approximation algorithms for adaptive target profit maximization. In ICDE. 649–
660.

[14] Keke Huang, Sibo Wang, Glenn Bevilacqua, Xiaokui Xiao, and Laks VS Laksh-

manan. 2017. Revisiting the stop-and-stare algorithms for influencemaximization.

PVLDB 10, 9 (2017), 913–924.

[15] Rishabh Iyer and Jeff Bilmes. 2013. Submodular optimization with submodular

cover and submodular Knapsack constraints. In Proceedings of the 26th Interna-
tional Conference on Neural Information Processing Systems-Volume 2. 2436–2444.

[16] Ehsan Kazemi, Shervin Minaee, Moran Feldman, and Amin Karbasi. 2020. Reg-

ularized Submodular Maximization at Scale. arXiv preprint arXiv:2002.03503
(2020).

[17] David Kempe, Jon Kleinberg, and Éva Tardos. 2003. Maximizing the spread of

influence through a social network. In SIGKDD. 137–146.
[18] Samir Khuller, Anna Moss, and Joseph Seffi Naor. 1999. The budgeted maximum

coverage problem. Information processing letters 70, 1 (1999), 39–45.

[19] Andreas Krause and Carlos Guestrin. 2007. Near-optimal observation selection

using submodular functions. In AAAI. 1650–1654.
[20] Jon Lee, Maxim Sviridenko, and Jan Vondrák. 2009. Submodular maximiza-

tion over multiple matroids via generalized exchange properties. In APPROX-
RANDOM. 244–257.

[21] Jure Leskovec, Andreas Krause, Carlos Guestrin, Christos Faloutsos, Jeanne Van-

Briesen, and Natalie Glance. 2007. Cost-effective outbreak detection in networks.

In SIGKDD. 420–429.
[22] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network

Dataset Collection. http://snap.stanford.edu/data.

[23] Hui Lin and Jeff Bilmes. 2010. Multi-document summarization via budgeted

maximization of submodular functions. In ACL. 912–920.
[24] Hui Lin and Jeff Bilmes. 2011. A class of submodular functions for document

summarization. In ACL. 510–520.
[25] Wei Lu and Laks VS Lakshmanan. 2012. Profit maximization over social networks.

In ICDM. 479–488.

[26] Baharan Mirzasoleiman, Ashwinkumar Badanidiyuru, Amin Karbasi, Jan Von-

drák, and Andreas Krause. 2015. Lazier than lazy greedy. In AAAI. 1812–1818.
[27] Michael Mitzenmacher and Eli Upfal. 2017. Probability and computing: Random-

ization and probabilistic techniques in algorithms and data analysis. Cambridge

university press.

[28] George LNemhauser, Laurence AWolsey, andMarshall L Fisher. 1978. An analysis

of approximations for maximizing submodular set functions—I. Mathematical
programming 14, 1 (1978), 265–294.

[29] Maxim Sviridenko. 2004. A note on maximizing a submodular set function subject

to a knapsack constraint. Operations Research Letters 32, 1 (2004), 41–43.
[30] Maxim Sviridenko, Jan Vondrák, and Justin Ward. 2017. Optimal approxima-

tion for submodular and supermodular optimization with bounded curvature.

Mathematics of Operations Research 42, 4 (2017), 1197–1218.

[31] Jing Tang, Keke Huang, Xiaokui Xiao, Laks VS Lakshmanan, Xueyan Tang, Aixin

Sun, and Andrew Lim. 2019. Efficient approximation algorithms for adaptive

seed minimization. In SIGMOD. 1096–1113.
[32] Jing Tang, Xueyan Tang, and Junsong Yuan. 2016. Profit maximization for viral

marketing in online social networks. In ICNP. IEEE, 1–10.
[33] Jing Tang, Xueyan Tang, and Junsong Yuan. 2017. Profit maximization for viral

marketing in online social networks: Algorithms and analysis. TKDE 30, 6 (2017),

1095–1108.

[34] Jing Tang, Xueyan Tang, and Junsong Yuan. 2018. Towards profit maximization

for online social network providers. In INFOCOM. 1178–1186.

[35] Youze Tang, Xiaokui Xiao, and Yanchen Shi. 2014. Influence maximization:

Near-optimal time complexity meets practical efficiency. In SIGMOD. 75–86.
[36] Yuqing Zhu, Deying Li, Ruidong Yan,WeiliWu, and Yuanjun Bi. 2017. Maximizing

the influence and profit in social networks. IEEE Transactions on Computational
Social Systems 4, 3 (2017), 54–64.

[37] Yuqing Zhu, Zaixin Lu, Yuanjun Bi, Weili Wu, Yiwei Jiang, and Deying Li. 2013.

Influence and profit: Two sides of the coin. In ICDM. 1301–1306.

1768

http://snap.stanford.edu/data

