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ABSTRACT
Encrypted database is an innovative technology proposed to solve

the data confidentiality issue in cloud-based DB systems. It allows a

data owner to encrypt its database before uploading it to the service

provider; and it allows the service provider to execute SQL queries

over the encrypted data. Most of existing encrypted databases (e.g.,

CryptDB in SOSP ’11) do not support data interoperability: unable

to process complex queries that require piping the output of one

operation to another.

To the best of our knowledge, SDB (SIGMOD ’14) is the only en-

crypted database that achieves data interoperability. Unfortunately,

we found SDB is not secure! In this paper, we revisit the security of

SDB and propose a ciphertext-only attack named co-prime attack.
It successfully attacks the common operations supported by SDB,

including addition, comparison, sum, equi-join and group-by. We

evaluate our attack in three real-world benchmarks. For columns

that support addition and comparison, we recover 84.9% − 99.9%

plaintexts. For columns that support sum, equi-join and group-by,
we recover 100% plaintexts.

Besides, we provide potential countermeasures that can prevent

the attacks against sum, equi-join, group-by and addition. It is still
an open problem to prevent the attack against comparison.
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1 INTRODUCTION
Database-as-a-service (DBaaS) is a prevalent cloud-service para-

digm allowing a data owner (DO) to outsource its database to a

service provider (SP) that possesses high-performance machines

and sophisticated database software. DO can query the database as

if it was stored locally. SP thus provides storage, computation and

administration services to DO. Most importantly, this paradigm
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provides elasticity to DO: they can scale their service consumption

up or down according to their real requirements.

On the other hand, this service paradigm brings data confiden-

tiality issue toDO, as the database stored in SP as well as the queries

sent byDOmay contain sensitive information. A hacker can exploit

software vulnerabilities to break into the server and snoop on the

data [2] and curious administrators of SP can steal data they are

interested in [1]. One approach to prevent this potential informa-

tion leakage is to encrypt sensitive data before storing it at SP, e.g.,
Depot [18], SUNDR [17] and SPORC [9]. To process queries, the

encrypted data has to be shipped back to DO and processed locally.

Unfortunately, for some operations, this approach incurs a huge

communication overhead that is in the order of the database size,

hence it is even worse than storing the database locally.

To this end, Popa et al. [22] propose the first encrypted database
called CryptDB allowing SP to execute SQL queries directly over

encrypted data. The core idea of CryptDB is to encrypt each data

item in one or more onions: different onions enable different kinds
of operations; within each onion, an item is dressed in layers of

increasingly stronger encryption. For example, it uses homomorphic
encryption (HE) [21] for addition in one onion, and uses order-
preserving encryption (OPE) [3, 6] for comparison in another onion.

However, CryptDB is unable to process complex queries that require

piping the output of one operation (onion) to another (i.e., data
interoperability). For example, the selection clause “quantity × unit-
price > $10, 000” that requires both multiplication and comparison

at the same time cannot be processed by CryptDB.

SDB in SIGMOD ’14. To achieve data interoperability, in SIGMOD

’14, Wong et al. presented an encrypted database named SDB [26].

It uses a special kind of multiplicatively homomorphic encryption

scheme to encrypt each data item: when ciphertexts under different

keys being multiplied with each other, it generates a new key:

𝐸 (𝑘3, 𝑣1 × 𝑣2) ← 𝐸 (𝑘1, 𝑣1) × 𝐸 (𝑘2, 𝑣2)
Besides, it is additively homomorphic only for ciphertexts under

the same key:

𝐸 (𝑘, 𝑣1 + 𝑣2) ← 𝐸 (𝑘, 𝑣1) + 𝐸 (𝑘, 𝑣2)
When a database is stored, all data items are encrypted under dif-

ferent keys. When DO wants to add two columns, SDB provides a

KeyUpdate operation, which enables SP (with the assistance of DO)

to update the items in the same row of these two columns to be

under the same key, so that addition can be done. The KeyUpdate
operation also allows SP and DO to decrypt a whole column with

constant communication overhead.
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To do comparison, e.g., 𝑣1 − 𝑣2 > 0, SP (with the assistance of

DO) first updates 𝐸 (𝑘1, 𝑣1) and 𝐸 (𝑘2, 𝑣2) to be under the same key

𝑘3, and computes 𝐸 (𝑘3, 𝑣1 − 𝑣2). Then, SP computes

𝐸 (𝑘5, 𝑢 (𝑣1 − 𝑣2)) ← 𝐸 (𝑘3, 𝑣1 − 𝑣2) × 𝐸 (𝑘4, 𝑢),
where 𝐸 (𝑘4, 𝑢) was previously uploaded to SP by DO, and 𝑢 is a

small random number that will not change the sign of (𝑣1 − 𝑣2). In
the end, SP and DO decrypt the whole column using KeyUpdate so
that SP can return the rows that satisfy 𝑢 (𝑣1 − 𝑣2) > 0.

To sum a column of 𝑛 items 𝐸 (𝑘1, 𝑣1), ..., 𝐸 (𝑘𝑛, 𝑣𝑛), SP (with the

assistance ofDO) updates these encrypted items to𝑚−1𝑣1, ...,𝑚−1𝑣𝑛 ,

where𝑚 is a new random number. Then, SP returns𝑚−1
𝑛∑
𝑖=1

𝑣𝑖 to

DO. The equi-join and group-by operations can be realized in the

same way as sum.

Our contribution. In this paper, we revisit SDB and make the

following observations:

(1) It cannot encrypt 0s;

(2) The ciphertexts for addition are deterministic: 𝐸 (𝑘, 𝑣1) =
𝐸 (𝑘, 𝑣2) iff 𝑣1 = 𝑣2;

(3) If the ciphertexts 𝐸 (𝑘1, 𝑣1), ..., 𝐸 (𝑘𝑡 , 𝑣𝑡 ) have been updated

to be under the same key 𝑘0, then these ciphertexts can be

converted back to be under any key within {𝑘0, 𝑘1, ..., 𝑘𝑡 }.
(4) The decryption procedure in comparison not only applies

to the difference (i.e., 𝑣1 − 𝑣2), but also applies to the items

being compared (i.e., 𝑣1 and 𝑣2).

Based on these observations, we present a ciphertext-only attack

against five operations in SDB: addition, sum, comparison, equi-join
and group-by. We name it co-prime attack, because its success rate
highly depends on the theorem [16, 20]:

given 𝛼 random positive integers in Z𝑀 , the probability for them to
be co-prime is 1

𝜁 (𝛼) +𝑂 (
1

|𝑀 | ),

where 𝜁 refers to the Riemann 𝜁 -function and 𝜁 (𝛼) =
+∞∑
𝑖=1

1

𝑖𝛼 . This

probability is close to 92.4% when 𝛼 = 4, and close to 99.9% when

𝛼 = 10.

Below, we briefly explain the co-prime attack against addition,
sum, equi-join, group-by and comparison:

• Addition.To attack addition, SP calculates𝐸 (𝑘, 𝑣1) : 𝐸 (𝑘, 𝑣2) =
𝛾1 : 𝛾2; if 𝑣1 and 𝑣2 are co-prime, then 𝑣1 = 𝛾1 and 𝑣2 = 𝛾2.

With more items being added together, the co-prime proba-

bility of these elements increases. Our experimental results

show that we can recover at least 90% plaintexts with 7

columns added together (cf. Table 6).

• Sum, equi-join and group-by. In the sum operation, SP
gets𝑚−1𝑣1, ...,𝑚−1𝑣𝑛 . Similar to addition, SP can get ratio

among all elements in this column. In our experiments, with

the number of rows being more than 100, we can recover all

plaintexts of this column with almost 100% probability. This

attack applies to equi-join and group-by operations as well.

• Comparison. Recall that after comparison between 𝑣1 and

𝑣2,𝑢 (𝑣1−𝑣2) is revealed to SP. Based on the 4-th observation

aforementioned, both 𝑢𝑣1 and 𝑢𝑣2 will be revealed to SP as

well. If 𝑣1 has been compared for twice, 𝑢𝑣1 and 𝑢
′𝑣1 will be

revealed. If 𝑢 and 𝑢 ′ are co-prime, 𝑣1 will be revealed. In our

experiments, if the comparison operation has been applied to

a column for 4 times, we can recover at least 90% plaintexts

of this column.

We summarize our contribution as follows:

(1) We revisit SDB (SIGMOD ’14) and make four observations,

which incur serious information leakage but was not men-

tioned in their paper (Section 2).

(2) We propose a ciphertext-only attack (named co-prime attack)
against the addition, sum, comparison, equi-join and group-by
operations in SDB (Section 4).

(3) We validate our attack on three public benchmarks, UCI

Credit Card Clients, TPC-C and TPC-H (Section 5). The ex-

perimental results are summarized in Table 1.

(4) We provide potential countermeasures that can prevent the

attacks against sum, equi-join, group-by and addition (Sec-

tion 6). It is still an open problem to prevent the attacks

against comparison.

Table 1: Summary of our experimental results. The recovery
rates are for the columns that are executed with the opera-
tions. More details are in Section 5.

Operation Benchmark Recovery (%) Requirements

Addition
Credit 97.3 1 addition query

TPC-C 84.9 4 update queries

Comparison

Credit 99.8

10 range queriesTPC-C 99.8

TPC-H 99.9

Sum

Credit 100

1 sum queryTPC-C 100

TPC-H 100

Equi-Join

Credit 100

1 equi-join queryTPC-C 100

TPC-H 100

Group-by

Credit 100

1 group-by queryTPC-C 100

TPC-H 100

2 SDB REVISIT
In this section, we revisit the security of SDB. We first provide

technical details of SDB and summarize them into interfaces, so that

we can use these interfaces to explain our attack. Then, we make

some observations, which result in serious information leakage but

was not mentioned in their paper.

2.1 SDB in detail
SDB was proposed in SIGMOD ’14, by Wong et al. [26], to address

the data interoperability issue in encrypted databases. It mainly

consists of the following operations:

Setup. DO generates two big random prime numbers 𝜌1 and 𝜌2;

calculates 𝑁 = 𝜌1𝜌2 and 𝜙 (𝑁 ) = (𝜌1 − 1) (𝜌2 − 1); and samples
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a generator 𝑔 ∈ Z𝑁 for 𝜙 (𝑁 ) order group. For each column, DO
generates a column key 𝑐𝑘 = ⟨𝑚, 𝑥⟩, where𝑚 ∈ Z𝑁 and 𝑥 ∈ Z𝜙 (𝑁 ) ;
and for each row, DO generates a row key 𝑟 ∈ Z𝜙 (𝑁 ) . Then, the
encryption key for each data item is 𝑘 = ⟨⟨𝑚, 𝑥⟩, 𝑟 ⟩.

(𝑁,𝑔, 𝑘1, 𝑘2, ...) ← Setup(1𝜆)
Encryption. DO takes the encryption key 𝑘 = ⟨⟨𝑚, 𝑥⟩ , 𝑟 ⟩ and a

data item 𝑣 , computes the ciphertext

𝑐 := (𝑚𝑔𝑟𝑥 )−1 · 𝑣 mod 𝑁

.

𝑐 ← 𝐸 (𝑘, 𝑣)
Multiplication. Tomultiply two columns, SP can directly multiply

the two data items in the same row:

(𝑚3𝑔
𝑟𝑥3 )−1𝑣1𝑣2 := (𝑚1𝑔

𝑟𝑥1 )−1𝑣1 · (𝑚2𝑔
𝑟𝑥2 )−1𝑣2 mod 𝑁 .

Notice that 𝑘3 = ⟨⟨𝑚3, 𝑥3⟩ , 𝑟 ⟩ is the new-generated encryption key

for the product 𝑣1𝑣2, where𝑚3 =𝑚1 ·𝑚2 mod 𝑁 and 𝑥3 = 𝑥1 +𝑥2
mod 𝜙 (𝑁 ).

𝐸 (𝑘3, 𝑣1𝑣2) ← 𝐸 (𝑘1, 𝑣1) × 𝐸 (𝑘2, 𝑣2)
Key update. The KeyUpdate operation allows SP (with the assis-

tance of DO) to update the column key of a ciphertext to a new one.

Suppose DO wants to update the encryption key 𝑘1 = ⟨⟨𝑚1, 𝑥1⟩ , 𝑟 ⟩
of a ciphertext 𝐸 (𝑘1, 𝑣) to 𝑘2 = ⟨⟨𝑚2, 𝑥2⟩ , 𝑟 ⟩; and there is a previ-

ously uploaded column of ciphertexts of 1 which includes a cipher-

text encrypted under 𝑘3 = ⟨⟨𝑚3, 𝑥3⟩ , 𝑟 ⟩.
There are two phases in KeyUpdate:
(1) In the first phase, DO computes

𝑝 = 𝑥−1
3
(𝑥2 − 𝑥1) mod 𝜙 (𝑁 )

𝑞 =𝑚1𝑚
𝑝

3
𝑚−1

2
mod 𝑁,

and includes them in the query 𝑄 being sent to SP.
(2) In the second phase, SP computes

𝐸 (𝑘2, 𝑣) = 𝑞 · 𝐸 (𝑘1, 𝑣) · 𝐸 (𝑘3, 1)𝑝 mod 𝑁 .

Notice that 𝑝 and 𝑞 can be applied to the whole column of

𝐸 (𝑘1, 𝑣).
Notice that all KeyUpdate operations are issued by DO, SP can

only passively execute these operations and never ask for additional

KeyUpdate operations.

𝐸 (𝑘2, 𝑣) ← KeyUpdate(𝐸 (𝑘1, 𝑣), 𝑄)
Addition. To add two columns, SP first (with the assistance of DO)

updates the column keys to the same one using KeyUpdate. Then,
the two items in the same row would be: 𝑐1 = (𝑚3𝑔

𝑟𝑥3 )−1 · 𝑣1 and
𝑐2 = (𝑚3𝑔

𝑟𝑥3 )−1 · 𝑣2. SP can add them directly:

(𝑚3𝑔
𝑟𝑥3 )−1 (𝑣1 + 𝑣2) := (𝑚3𝑔

𝑟𝑥3 )−1𝑣1 + (𝑚3𝑔
𝑟𝑥3 )−1𝑣2 mod 𝑁 .

𝐸 (𝑘3, 𝑣1 + 𝑣2) ← 𝐸 (𝑘1, 𝑣1) + 𝐸 (𝑘2, 𝑣2)
Sum. To sum all items in one column, SP (with the assistance of

DO) updates the column key to 𝑐𝑘 = ⟨𝑚, 0⟩. Then, the ciphertexts in
this column become:𝑚−1𝑣1, ...,𝑚−1𝑣𝑛 . SP simply returns𝑚−1

𝑛∑
𝑖=1

𝑣𝑖

mod 𝑁 .

𝑚−1
𝑛∑
𝑖=1

𝑣𝑖 ← 𝑠𝑢𝑚(𝐸 (𝑘1, 𝑣1), ..., 𝐸 (𝑘𝑛, 𝑣𝑛))

Comparison. The comparison operation frequently appears in

range queries with a selection clause. Given two encrypted columns

𝑉1 and 𝑉2, the object is to compare the items (𝑣1 and 𝑣2) in each

row and return the rows that meet the condition. Notice that the

comparison results should be visible to SP so that it can decide

which rows to return.

To compare two values 𝐸 (𝑘1, 𝑣1) and 𝐸 (𝑘2, 𝑣2)) in the same row,

SP (with the assistance of DO) first updates them to be under the

same key 𝑘3 and computes 𝐸 (𝑘3, 𝑣1 − 𝑣2). Then, SP computes

𝐸 (𝑘5, 𝑢 (𝑣1 − 𝑣2)) ← 𝐸 (𝑘3, 𝑣1 − 𝑣2) × 𝐸 (𝑘4, 𝑢),
where 𝐸 (𝑘4, 𝑢) was previously uploaded to SP by DO, and 𝑢 is a

small random number that will not change the sign of (𝑣1 − 𝑣2). In
the end, SP (with the assistance of DO) updates the column key of

𝐸 (𝑘5, 𝑢 (𝑣1−𝑣2)) to ⟨1, 0⟩, which gives𝑢 (𝑣1−𝑣2) to SP. Then, SP can

decide the truth value of the comparison by comparing 𝑢 (𝑣1 − 𝑣2)
with

𝑁
2
.

𝑢 (𝑣1 − 𝑣2) ← 𝑐𝑚𝑝 (𝐸 (𝑘1, 𝑣1), 𝐸 (𝑘2, 𝑣2))

Equi-Join. The equi-join operation is used to combine rows from

two or more tables, through a common column between them. To

join two encrypted tables 𝑇1 and 𝑇2 in SDB, SP (with the assistance

of DO) updates the column keys of the corresponding columns

to 𝑐𝑘 = ⟨𝑚, 0⟩. Then, the ciphertexts in these two columns are

𝑚−1𝑣1,𝑚−1𝑣2, ... and𝑚−1𝑣 ′
1
,𝑚−1𝑣 ′

2
, .... It is clear that the same items

result in the same ciphertexts so that SP can join the tables.

𝑇3 ← 𝑒𝑞𝑢𝑖- 𝑗𝑜𝑖𝑛(𝑇1,𝑇2)

Group-by. The group-by operation groups rows that have the same

values into summary rows. To group-by items in one column, SP
(with the assistance of DO) updates the column key to 𝑐𝑘 = ⟨𝑚, 0⟩.
Then, the ciphertexts in this column become:𝑚−1𝑣1, ...,𝑚−1𝑣𝑛 . As
a result, the same items result in the same ciphertexts so that SP

can do group-by.

𝑔𝑟𝑜𝑢𝑝𝑠 ← 𝑔𝑟𝑜𝑢𝑝-𝑏𝑦 (𝐸 (𝑘1, 𝑣1), ..., 𝐸 (𝑘𝑛, 𝑣𝑛))

2.2 Observations
Intuitively, SDB is a special kind of multiplicatively homomorphic

encryption scheme: when ciphertexts under different keys being

multiplied with each other, it generates a new key; and it supports

key update. However, it uses some tricks to support addition and

comparison, which introduces some security flaws. We make the

following observations on their security flaws.

Observation 1. SDB cannot encrypt 0s. Specifically, in SDB, the
ciphertext c = 0 iff the plaintext v = 0.

Proof. It is obvious that if 𝑣 = 0, then

𝑐 = (𝑚𝑔𝑟𝑥 )−1 · 𝑣 mod 𝑁 = 0.

For the opposite direction, if 𝑐 = 0 but 𝑣 ≠ 0, then (𝑚𝑔𝑟𝑥 )−1 · 𝑣
must be a multiple of 𝑁 = 𝜌1𝜌2, where 𝜌1 and 𝜌2 are two big primes.

We prove this will never happen.

Notice that 𝑣 is a plaintext smaller than any of 𝜌1 and 𝜌2. Then,

if (𝑚𝑔𝑟𝑥 )−1 · 𝑣 is a multiple of 𝑁 = 𝜌1𝜌2, (𝑚𝑔𝑟𝑥 )−1 must be a mul-

tiple of 𝑁 . However, this is not true as (𝑚𝑔𝑟𝑥 )−1 ∈ Z𝑁 . Therefore,

(𝑚𝑔𝑟𝑥 )−1 · 𝑣 will never be a multiple of 𝑁 , hence 𝑣 must be 0. □
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Observation 2. The ciphertexts for addition are deterministic:
𝐸 (𝑘, 𝑣1) = 𝐸 (𝑘, 𝑣2) iff 𝑣1 = 𝑣2;

Proof. It is obvious that if 𝑣1 = 𝑣2, then

(𝑚𝑔𝑟𝑥 )−1𝑣1 mod 𝑁 = (𝑚𝑔𝑟𝑥 )−1𝑣2 mod 𝑁

For the opposite direction, if 𝐸 (𝑘, 𝑣1) = 𝐸 (𝑘, 𝑣2), then

(𝑚𝑔𝑟𝑥 )−1 (𝑣1 − 𝑣2) ≡ 0 mod 𝑁

Based on Observation 1, we have 𝑣1 − 𝑣2 = 0, then 𝑣1 = 𝑣2. □

Observation 3. If 𝐸 (𝑘1, 𝑣1), ..., 𝐸 (𝑘𝑡 , 𝑣𝑡 ) in the same row but dif-
ferent columns have been updated to be under the same key 𝑘0 via
KeyUpdate, then these ciphertexts can be converted back to be under
any key within {𝑘0, 𝑘1, ..., 𝑘𝑡 }.

Proof. As assumed in this observation, there exists a query 𝑄𝑖

that can update 𝐸 (𝑘𝑖 , 𝑣𝑖 ) to be under 𝑘0.

𝐸 (𝑘0, 𝑣𝑖 ) ← KeyUpdate(𝐸 (𝑘𝑖 , 𝑣𝑖 ), 𝑄𝑖 )

As we describe in section 2.1, the update process is computed as:

𝐸 (𝑘0, 𝑣𝑖 ) = 𝑞𝑖 · 𝐸 (𝑘𝑖 , 𝑣𝑖 ) · 𝐸 (𝑘 ′, 1)𝑝𝑖 mod 𝑁

It is clear that this equation is reversible:

𝐸 (𝑘𝑖 , 𝑣𝑖 ) = 𝑞−1𝑖 · 𝐸 (𝑘0, 𝑣𝑖 ) · (𝐸 (𝑘
′, 1)𝑝𝑖 )−1 mod 𝑁

To prove that 𝐸 (𝑘𝑖 , 𝑣𝑖 ) can be converted to any 𝐸 (𝑘 𝑗 , 𝑣𝑖 ) with
( 𝑗 ≠ 𝑖), we only need to prove that 𝐸 (𝑘0, 𝑣𝑖 ) can be converted to

𝐸 (𝑘 𝑗 , 𝑣𝑖 ) with ( 𝑗 ≠ 𝑖). This can be achieved by:

𝐸 (𝑘 𝑗 , 𝑣𝑖 ) = 𝑞−1𝑗 · 𝐸 (𝑘0, 𝑣𝑖 ) · (𝐸 (𝑘
′, 1)𝑝 𝑗 )−1 mod 𝑁 .

□

Since 𝑞𝑖 and 𝑝𝑖 can be applied to the whole column, the following

statement also holds.

Remark 1. If columns 𝑉1, ...,𝑉𝑡 (each encrypted under a column
key 𝑐𝑘𝑖 ) can be converted to be under the same column key 𝑐𝑘0 via
KeyUpdate, then these columns can be converted back to any column
key within {𝑐𝑘0, 𝑐𝑘1, ..., 𝑐𝑘𝑡 }.

Observation 4. The decryption procedure in comparison not only
applies to the difference, but also applies to the items being compared.
Specifically, if DO issues a query

𝑢 (𝑣1 − 𝑣2) ← 𝑐𝑚𝑝 (𝐸 (𝑘1, 𝑣1), 𝐸 (𝑘2, 𝑣2)),

then SP can get both 𝑢𝑣1 and 𝑢𝑣2.

Proof. Recall that the comparison operation is executed as fol-

lowing steps:

(1) 𝐸 (𝑘3, 𝑣1) ← KeyUpdate(𝐸 (𝑘1, 𝑣1), 𝑄);
(2) 𝐸 (𝑘3, 𝑣2) ← KeyUpdate(𝐸 (𝑘2, 𝑣2), 𝑄);
(3) 𝐸 (𝑘3, 𝑣1 − 𝑣2) = 𝐸 (𝑘3, 𝑣1) − 𝐸 (𝑘3, 𝑣2);
(4) 𝐸 (𝑘5, 𝑢 (𝑣1 − 𝑣2)) ← 𝐸 (𝑘3, 𝑣1 − 𝑣2) × 𝐸 (𝑘4, 𝑢);
(5) 𝑢 (𝑣1 − 𝑣2) ← KeyUpdate(𝐸 (𝑘5, 𝑢 (𝑣1 − 𝑣2)), 𝑄)

In Step 4, SP can use 𝐸 (𝑘3, 𝑣1) to substitute 𝐸 (𝑘3, 𝑣1 − 𝑣2), so that it
can get 𝑢𝑣1 in the end. Similarly, it can get 𝑢𝑣2. □

Clearly, these features we observed lead to serious information

leakage. We will explain how we exploit these leakage to develop

our attacks in Section 4. Furthermore, our attacks are independent

of the size of the security parameters, as these observations hold

for any size of the security parameters.

3 ADVERSARIAL MODEL
We only assume SP is an honest-but-curious adversary, i.e., it will

not deviate from the protocol specification, but will attempt to learn

all possible information from legitimately received messages (or

intermediate results). We assume the adversary has access to the

encrypted database but cannot issue queries; the adversary has no

auxiliary information (e.g., application details, public statistics or

prior versions) about the database; and known-plaintext attack is

not available to the adversary. In another words, ciphertext-only

attack is the only option for the adversary. We remark that this

adversarial model is much weaker than what is typically assumed in

attack-related literature for encrypted databases (cf. Section 8). We

further emphasis that this adversarial model captures all threats that

database customers are typically worried about: internal threats

like curious database administrators or employees, and external

threats like individual hackers or organized crime.

We introduce new notations as needed. A summary of notations

appears in Table 2.

Table 2: Summary of notations.

Notation Description

SP service provider

DO data owner

𝑀 plaintext space

𝑁 ciphertext space

𝑄 a query

𝑣 value of a data item

𝑉 a column of values

𝑐 ciphertext

𝑘 encryption key: 𝑘 = ⟨⟨𝑚,𝑥 ⟩ , 𝑟 ⟩
𝐸 () encryption function

𝜌 prime

𝛼 number of co-prime integers

𝑛 number of rows

𝑐𝑘 column key

𝑟 row key

4 CO-PRIME ATTACK AGAINST SDB
In this section, we explain how we exploit the observations we

made in Section 2.2 to develop our attacks against SDB.

4.1 Co-prime probability
We first present the following theorem (proved in [16, 20]) about

co-prime probability, which is considered to be the theoretical foun-

dation for our attacks.
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Theorem 1. Given 𝛼 positive integers that are chosen uniformly
at random from Z𝑀 , the probability that they are co-prime is:

1

𝜁 (𝛼) +𝑂 (
1

|𝑀 | ),

where 𝜁 refers to the Riemann 𝜁 -function and 𝜁 (𝛼) =
+∞∑
𝑖=1

1

𝑖𝛼 .

Notice that 𝑂 ( 1

|𝑀 | ) can be ignored when |𝑀 | is large, then the

co-prime probability becomes
1

𝜁 (𝛼) . Figure 1 shows
1

𝜁 (𝛼) for 𝛼 ran-

dom integers. For instance, the probability for 4 randomly chosen

integers being co-prime is nearly 92.4%; the probability for 10 ran-

domly chosen integers being co-prime is close to 99.9%. To estimate

the error introduced by ignoring 𝑂 ( 1

|𝑀 | ), we set𝑀 to 2
24

and 2
80

respectively, pick 10
10

sets of 𝛼 random numbers, and calculate the

proportion of sets whose numbers are co-prime. Figure 2 shows

the difference between
1

𝜁 (𝛼) and the experimentally calculated co-

prime probabilities.
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Figure 1: Approximate probability for different number of
integers being co-prime.
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Figure 2: Difference between the experimentally calculated
probabilities and 1

𝜁 (𝛼) for different number of integers.

Figure 1 and Figure 2 show the co-prime probability of random

numbers in finite fields are high. For instance, the probability for

4 randomly chosen integers being co-prime is ∼ 92.4%; the proba-

bility for 10 randomly chosen integers being co-prime is ∼ 99.9%.

The success rate of our attack highly depends on this co-prime

probability, hence we name our attack co-prime attack. It utilizes
either of the following information that is revealed by SDB:

• Ratio amongdifferent plaintexts (revealed by addition
or sum/equi-join/group). Once the ratio among 𝛼 plain-

texts is revealed, all these 𝛼 plaintexts will be revealed if

they are co-prime. We assume, w.h.p. these 𝛼 plaintexts are

co-prime (our experimental results confirm this assumption).

• Products of the same plaintext with different coeffi-
cients (revealed by comparison). The coefficients are ran-

dom numbers used to mask the plaintext, thereby, w.h.p. they

are co-prime. Then, the greatest common divisor of these

products is exactly the plaintext.

In the rest of this section, we explain how we exploit the legiti-

mate queries to cause the above information leakage.

4.2 Co-prime attack against addition
Algorithm 1 shows the co-prime attack against the addition opera-

tion in SDB. It takes 𝛼 ciphertexts in the same row together with

a query calculating the sum of the corresponding plaintexts, and

it recovers all these 𝛼 plaintexts. Notice that a query typically
operates on the whole columns, hence we can recover all ci-
phertexts in the whole 𝛼 columns by running Algorithm 1
for each row separately.

As we described in Section 2.1, to answer a query 𝑄 that adds 𝛼

items in a row, SP (with the assistance ofDO) executes the following

two steps:

(1) Receiving respective 𝑄 from DO, SP executes the second

phase of KeyUpdate to convert all 𝛼 ciphertexts to be under

the same key:

𝐸 (𝑘0, 𝑣𝑖 ) ← KeyUpdate(𝐸 (𝑘𝑖 , 𝑣𝑖 ), 𝑄) 𝑖 ∈ [𝛼] .

(2) With all ciphertexts under the same key, SP can execute

addition directly:

𝐸 (𝑘0,
𝛼∑
𝑖=1

𝑣𝑖 ) ←
𝛼∑
𝑖=1

𝐸 (𝑘0, 𝑣𝑖 ) .

After the first step above (line 1-3), SP computes the ratio between

𝑣1 and other plaintexts (line 4-12). This is possible because after

KeyUpdate converts ciphertexts to be under the same key, the ci-

phertexts become both deterministic and additively homomorphic:

• deterministic: if 𝑣 = 𝑣 ′ then 𝐸 (𝑘0, 𝑣) = 𝐸 (𝑘0, 𝑣 ′);
• additively homomorphic: 𝛾𝐸 (𝑘0, 𝑣) = 𝐸 (𝑘0, 𝛾𝑣), which can

be considered as adding 𝛾 ciphertexts together.

With these two properties, SP can compute the ratio between 𝑣1

and any 𝑣𝑖 , if they are non-zero (cf. Observation 1), by finding 𝛾
(𝑖)
1

and 𝛾𝑖 s.t.,

𝛾𝑖𝐸 (𝑘0, 𝑣1) = 𝛾
(𝑖)
1

𝐸 (𝑘0, 𝑣𝑖 ).

Then 𝑣1 : 𝑣𝑖 = 𝛾
(𝑖)
1

: 𝛾𝑖 . SP can find

〈
𝛾
(𝑖)
1

, 𝛾𝑖

〉
by trying each pair in

Z2
𝑀
, which introduces 𝑂 (𝑀2) computational complexity and 𝑂 (1)
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Algorithm 1: Co-prime attack against addition (for 1 row)

Input: {𝐸 (𝑘1, 𝑣1), ..., 𝐸 (𝑘𝛼 , 𝑣𝛼 )}; a query 𝑄 with an operation

𝑣1 + ... + 𝑣𝛼
Output: 𝑣1, ..., 𝑣𝛼

1 for 𝑖 = 1→ 𝛼 do update to the same key
2 𝐸 (𝑘0, 𝑣𝑖 ) ← KeyUpdate(𝐸 (𝑘𝑖 , 𝑣𝑖 ), 𝑄) with the assistance

of DO
3 end

4 for 𝑖 = 2→ 𝛼 do compute the ratio between 𝑣1 and 𝑣𝑖

5 for 𝛾 (𝑖)
1

= 1→ 𝑀 do
6 for 𝛾𝑖 = 1→ 𝑀 do
7 if (𝛾𝑖𝐸 (𝑘0, 𝑣1) mod 𝑁 ) = (𝛾 (𝑖)

1
𝐸 (𝑘0, 𝑣𝑖 ) mod 𝑁 )

then
8 go to line 4

9 end
10 end
11 end
12 end

13 𝑣1 ← SmallestCommonMultiple(𝛾 (2)
1

, ..., 𝛾
(𝛼)
1
)

14 for 𝑖 = 2→ 𝛼 do
15 𝑣𝑖 := 𝑣1 · 𝛾𝑖

𝛾
(𝑖 )
1

16 end

17 return: 𝑣1, ..., 𝑣𝛼

space complexity. We have a way to reduce 𝑂 (𝑀2) computational

complexity to 𝑂 (𝑀), but 𝑂 (𝑀) space complexity is required. More

specifically, we maintain a key-value store; in the first loop, we

put each (𝛾 (𝑖)
1
· 𝐸 (𝑘0, 𝑣𝑖 ), 𝛾 (𝑖)

1
) into the store; in the second loop,

whenever we find 𝛾𝑖 · 𝐸 (𝑘0, 𝑣1) is in the store, we know 𝛾𝑖 and 𝛾
(𝑖)
1

are the values we want.

When some of the 𝑣s are negative, to find the ratio between 𝑣1
and 𝑣𝑖 , we run line 5-11 for two times: in the first time, we assume

they are with the same sign and run it as before; if it fails, in the

second time, we assume they are with opposite sign and multiply

−1 to 𝐸 (𝑘0, 𝑣𝑖 ), and then run as before
1
.

After finding all ratios:

〈
𝛾
(2)
1

, 𝛾2

〉
, ...,

〈
𝛾
(𝛼)
1

, 𝛾𝛼

〉
, SP can merge

them by calculating the smallest commonmultiple of

〈
𝛾
(2)
1

, ..., 𝛾
(𝛼)
1

〉
:

𝛾1 ← SmallestCommonMultiple(𝛾 (2)
1

, ..., 𝛾
(𝛼)
1
).

Then, the ratio among 𝑣1, ..., 𝑣𝛼 is:

𝛾1 :
𝛾1𝛾2

𝛾
(2)
1

: ... :
𝛾1𝛾𝛼

𝛾
(𝛼)
1

If 𝑣1, ..., 𝑣𝛼 are co-prime, SP can recover all of them:

𝑣1 := 𝛾1

𝑣2 :=
𝛾1𝛾2

𝛾
(2)
1

...

1
This strategy can be applied to all attacks we present in this paper.

𝑣𝛼 :=
𝛾1𝛾𝛼

𝛾
(𝛼)
1

.

Recall that the co-prime probability for 𝑣1, ..., 𝑣𝛼 is high when 𝛼 is

large. Even for 𝛼 = 4, the co-prime probability is still ∼ 92.4%.

Notice that Algorithm 1 only considers a single query that adds

all 𝛼 columns. Next, we show that SP can still recover the plaintexts

even if these 𝛼 columns are queried separately as long as the queries

are connected.

Definition 1 (Connected qeries). Suppose query 𝑄 involves
addition among a set of columns {𝑉1,𝑉2, ...}, and query 𝑄 ′ involves
addition among another set of columns {𝑉 ′

1
,𝑉 ′

2
, ...}. Then, 𝑄 and 𝑄 ′

are connected if {𝑉1,𝑉2, ...} ∩ {𝑉 ′
1
,𝑉 ′

2
, ...} ≠ ∅. We say a set of queries

are connected if any two of them can be connected with each other.

Observation 5. If a set of queries are connected, the columns
touched by these queries can be converted to be under any column
key of these columns.

Proof. We first prove that this statement holds for two con-

nected queries𝑄 and𝑄 ′: {𝑉1,𝑉2, ...} and {𝑉 ′
1
,𝑉 ′

2
, ...} are touched by

𝑄 and 𝑄 ′ separately. Suppose there is a column 𝑉𝑑 ∈ {𝑉1,𝑉2, ...} ∩
{𝑉 ′

1
,𝑉 ′

2
, ...} and its column key is 𝑐𝑘𝑑 . According to Remark 1,

columns in {𝑉1,𝑉2, ...} can be converted to be under the same col-

umn key 𝑐𝑘𝑑 ∈ {𝑐𝑘1, ...}; Similarly, columns in {𝑉 ′
1
,𝑉 ′

2
, ...} can be

converted to be under 𝑐𝑘𝑑 ∈ {𝑐𝑘 ′1, ...} as well. As {𝑉1,𝑉2, ...} ∪
{𝑉 ′

1
,𝑉 ′

2
, ...} can be converted to be under the same key 𝑐𝑘𝑑 , based

on Remark 1 again, columns in {𝑉1,𝑉2, ...} ∪ {𝑉 ′
1
,𝑉 ′

2
, ...} can be

converted to be under any key in {𝑐𝑘1, 𝑐𝑘2, ...} ∪ {𝑐𝑘 ′
1
, 𝑐𝑘 ′

2
, ...}.

This can be easily extended to multiple connected queries. □

Figure 3:𝑄1 and𝑄2 are connected queries;𝑄2 and𝑄3 are con-
nected queries. Then, the columns touched by𝑄1,𝑄2 and𝑄3

can be converted to be under the same column key.

Figure 3 visualizes Observation 5.

Observation 5 implies that a set of connected queries, each of

which adds a set of columns, is equal to a single query that adds all

these columns. Then, Algorithm 1 can be applied directly.

4.3 Co-prime attacks against sum, equi-join
and group-by

The co-prime attack against the sum operation in SDB is shown

in Algorithm 2. It takes a column of ciphertexts together with a

sum query calculating the sum of this column, and outputs the

corresponding plaintexts. Recall that, Algorithm 1 requires the

query to touch 𝛼 columns to reach a successful rate of (
+∞∑
𝑖=1

1

𝑖𝛼 )
−1
.

The successful rate for Algorithm 2 is (
+∞∑
𝑖=1

1

𝑖𝑛 )
−1
, where 𝑛 is the

number of rows; and typically 𝑛 is at least in the order of millions.
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Therefore, via this attack, SP can always recover the plaintexts of a

column with ∼ 100% probability.

Algorithm 2: Co-prime attack against sum (for 1 column)

Input: a column of encrypted items 𝐸 (𝑘1, 𝑣1), ..., 𝐸 (𝑘𝑛, 𝑣𝑛); a sum
query 𝑄 for this column

Output: 𝑣1, ..., 𝑣𝑛
1 for 𝑖 = 1→ 𝑛 do update to the same key
2 𝑚−1𝑣𝑖 ← KeyUpdate(𝐸 (𝑘𝑖 , 𝑣𝑖 ), 𝑄) with the assistance of

DO
3 end

4 for 𝑖 = 2→ 𝑛 do compute the ratio between 𝑣1 and 𝑣𝑖

5 for 𝛾 (𝑖)
1

= 1→ 𝑀 do
6 for 𝛾𝑖 = 1→ 𝑀 do
7 if (𝛾𝑖𝑚−1𝑣1 mod 𝑁 ) = (𝛾 (𝑖)

1
𝑚−1𝑣𝑖 mod 𝑁 ) then

8 go to line 4

9 end
10 end
11 end
12 end

13 𝑣1 ← SmallestCommonMultiple(𝛾 (2)
1

, ..., 𝛾
(𝛼)
1
)

14 for 𝑖 = 2→ 𝛼 do
15 𝑣𝑖 := 𝑣1 · 𝛾𝑖

𝛾
(𝑖 )
1

16 end
17 return: 𝑣1, ..., 𝑣𝑛

Even worse, for other columns that have not been touched by a

sum query, SP can still recover them with ∼ 100% probability, as

long as they are“connected” with a column touched by a sum query.

More specifically, suppose a set of columns are touched by a set of

connected queries (cf. Definition 1), based on Observation 5, these

columns can be converted to be under the same column key. If a

sum query is issued for any of these columns, Algorithm 2 can be

applied to all these columns. Moreover, the co-prime attack against

sum applies to equi-join and group-by as well.

However, co-prime attack against sum may fail to attack group-
by and equi-join if items in the operated columns are so large (e.g.,

the items are in string type) that we cannot get ratios between them

by trying each pair in Z2
𝑀
. However, since ciphertexts are converted

to𝑚−1𝑣1, ...,𝑚−1𝑣𝑛 , the same plaintexts have the same ciphertexts,

which reveals plaintexts frequency. Therefore, group-by and equi-
join in SDB can be attacked by frequency analysis [19]. This attack

is beyond the scope of this paper.

4.4 Co-prime attack against comparison
Algorithm 3 describes the co-prime attack against the comparison
operation in SDB. In this attack, if an encrypted item has been

compared for 𝛼 times (no matter compared with the encrypted

item in the same row, or with a constant), SP can recover it with a

probability of nearly (
+∞∑
𝑖=1

1

𝑖𝛼 )
−1
.

Algorithm 3: Co-prime attack against comparison (for 1 row)

Input: 𝐸 (𝑘0, 𝑣); {𝐸 (𝑘1, 𝑢1), ..., 𝐸 (𝑘𝛼 , 𝑢𝛼 }); 𝛼 queries {𝑄1, ..., 𝑄𝛼 },
each with an operation comparing 𝑣 and other values

Output: 𝑣

1 for 𝑖 = 1→ 𝛼 do update to a given key
2 𝐸 (𝑘 ′

𝑖
, 𝑣) ← KeyUpdate(𝐸 (𝑘0, 𝑣), 𝑄𝑖 ) with the assistance

of DO
3 end

4 for 𝑖 = 1→ 𝛼 do compute the product of 𝑣 and 𝑢𝑖
5 𝐸 (𝑘 ′′

𝑖
, 𝑢𝑖𝑣) ← 𝐸 (𝑘 ′

𝑖
, 𝑣) × 𝐸 (𝑘𝑖 , 𝑢𝑖 )

6 𝑢𝑖𝑣 ← KeyUpdate(𝐸 (𝑘 ′′
𝑖
, 𝑣𝑖𝑢), 𝑄𝑖 ) with the assistance of

DO
7 end
8 𝑣 ← GreatestCommondivisor(𝑢1𝑣, ..., 𝑢𝛼𝑣)
9 return: 𝑣

Recall that to compare 𝑣 with 𝑣𝑖 , SP executes

𝑢𝑖 (𝑣 − 𝑣𝑖 ) ← 𝑐𝑚𝑝 (𝐸 (𝑘0, 𝑣), 𝐸 (𝑘 ′𝑖 , 𝑣𝑖 )),

and compares 𝑢𝑖 (𝑣 − 𝑣𝑖 ) with 𝑁
2
. According to Observation 4, SP

not only gets 𝑢𝑖 (𝑣 − 𝑣𝑖 ), but also gets 𝑢𝑖𝑣 (line 4 -6). With 𝛼 queries

{𝑄1, ..., 𝑄𝛼 } for 𝑣 , SP gets 𝛼 products {𝑢1𝑣, ..., 𝑢𝛼𝑣}. Notice that

{𝑢1, ..., 𝑢𝛼 } are random numbers, hence w.h.p. they are co-prime

when 𝛼 is large. Even for 𝛼 = 4, the co-prime probability is still

nearly 92.4%. Then, SP can recover 𝑣 by computing the greatest

common divisor of {𝑢1, ..., 𝑢𝛼 } (line 8):

𝑣 = GreatestCommonDivisor(𝑢1𝑣, ..., 𝑢𝛼𝑣)

The situation becomes even worse when we consider connected

queries. Recall that the columns touched by a set of connected

queries can be converted to be under any column key of these

columns (c.f. Observation 5). Then, these 𝛼 queries are no longer

required to be issued for the same column; they can be issued

for different columns as long as these columns are “connected”.

Furthermore, the plaintexts of all these columns will be recovered.

Recall that the connected queries are defined for queries involv-

ing addition operations. We remark that if a comparison query is

issued for two columns (then it involves addition between these

two columns), it can also be connected with other queries.

4.5 Summary
We have presented three attacks against five different operations

in SDB. Now, we compare them and give a summary.

In the attacks against addition, we assume data items are under

uniform distribution in plaintext space. With this assumption, we

only need four columns to be added together to recover plaintexts

with at least 90% probability.

In the attacks against sum (also equi-join and group-by), we only
need to assume there are enough rows in a database so that elements

in the same column are co-prime with nearly 100% probability,

which always happens in real-world. With this weak assumption,

we can recover all plaintexts in a column in nearly 100% probability.

Besides, with more columns whose ciphertexts have been converted

to be under the same column key, we can recover more columns.
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In the attacks against comparison, we do not need any assumption

about the plaintexts. We only need four comparison operations on

any column of the columns whose ciphertexts can be converted to

be under the same column key.

5 EXPERIMENTS
In this section, we evaluate our co-prime attack by conducting the

following benchmarks:

• Credit. This is the “default of credit card clients” dataset

taken from the UCI machine learning repository
2
. It consists

30000 rows and 25 columns, containing banking information

of credit card clients in Taiwan from April to September. It

did not specify queries, so we generate queries with addition,
comparison and sum operations by ourselves.

• TPC-C. This is an on-line transaction processing benchmark

simulating a complete environment for terminal operators to

execute transactions against a database
3
. We pick 4 columns

from its database: C_BALANCE, OL_O_ID, S_QUANTITY

and OL_AMOUNT. In the query stream of TPC-C, there are

update queries with addition operation querying C_ BAL-

ANCE; there are queries with comparison operation querying
OL_O_ID and S_QUANTITY; and there are queries with sum
operation querying OL_AMOUNT. CryptDB [22] uses this

benchmark to evaluate its performance.

• TPC-H. This is a decision support benchmark measuring

multiple aspects of the capability of a database system to

process queries
4
. We pick four columns from its database:

L_QUANTITY, L_DISCOUNT, PS_AVAILQTY, and L_ EX-

TENDEDPRICE. In the query stream of TPC-H, there are

queries with comparison operation querying PS_AVAILQTY

and L_QUANTITY; and there are queries with sum oper-

ation querying L_QUANTITY, L_DISCOUNT and L_ EX-

TENDEDPRICE. SDB [26] uses this benchmark to evaluate

its performance.

The target columns and query operations in TPC benchmarks are

summarized in Table 3. Besides, we give some necessary statistical

information about our target columns in Table 4.

Table 3: Columns and operations in TPC benchmarks.

Attributes Benchmark Operation

C_BALANCE TPC-C 𝑎𝑑𝑑

OL_O_ID TPC-C > (<)
S_QUANTITY TPC-C > (<)
OL_AMOUNT TPC-C 𝑠𝑢𝑚

PS_AVAILQTY TPC-H > (<)
L_QUANTITY TPC-H > (<) & 𝑠𝑢𝑚

L_DISCOUNT TPC-H 𝑠𝑢𝑚

L_EXTENDEDPRICE TPC-H 𝑠𝑢𝑚

2
https://archive.ics.uci.edu/ml/datasets.php

3
http://www.tpc.org/tpcc/

4
http://www.tpc.org/tpch/

Table 4: Statistical information about the datasets we use. 0
(%) are calculated with original datasets. Other information
are all calculated with datasets removed 0s.

Benchmark 0 (%) Neg (%) Min Max Ave

Credit 10.1 3.2 -10 136468 4948.7

TPC-C 2.4 0 0 104900 11487.6

TPC-H 15.3 1.3 -339603 1684259 29657.2

5.1 Experimental settings
We encrypt the databases using SDB and perform co-prime attacks

against their queries. To be consistent with [26], we set 𝜌1 and 𝜌2 to

be 512 bits. Besides, to show that our attacks work under different

parameter settings, we conduct experiments with larger security

parameters and give results in Figure 4.

As 0s can be easily attacked (cf. Observation 1), we remove

all rows that contain 0s. Moreover, larger databases (more rows

and more columns) result in better attacking performance, for the

following reasons:

• For the attacks against sum/equi-join/group-by, more rows

result in higher co-prime probability, and hence higher re-

covery rate.

• For the attack against addition, more columns being added

result in higher co-prime probability, and hence higher re-

covery rate; but independent of the number of rows.

• For the attack against comparison, more times a column being

compared result in higher co-prime probability, and hence

higher recovery rate.

To this end, we only consider small databases: we randomly pick

1000 rows and at most 12 columns from each dataset to conduct

experiments. Our experimental results in Table 6 and Figure 6

validate the above statement. In Table 6, the recovery rate is at most

85.7% with 4 columns being added and it is at least 95% with 10

columns being added. In Figure 6, the recovery rate is about 92%

with 4 range queries and it is almost 100% with 10 range queries.

All experiments were conducted on a Mac laptop with Intel

Core i5 processor and 8GB Memory running macOS High Sierra

(v10.13.6). In all of our experiments, we repeat the process 10 times.

5.2 Attacking time
We first measure the time usage of the attack against addition
with different plaintext spaces and parameter settings (with ran-

domly generated data). The results are shown in Figure 4: our attack

against addition works with different plaintexts smaller than 2
20

and can succeed under different parameter settings. Since the attack

against comparison is influenced little by larger parameter settings

(as it only iterates 𝛼 times) and attack against sum/equi-join/group-
by is similar to attack against addition, we do not repeat these

experiments here.

Attacking a plaintext space of 2
20

requires 30 minutes on our

laptop. This time usage will increase linearly as the plaintext space

grows (e.g., attacking a plaintext space of 2
24

requires 8 hours),

thereby attacking a larger plaintext space requires more dedicated
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Figure 4: Time usage of co-prime attack against addition
with different plaintext spaces and different parameter set-
tings.

machines. However, we argue that 2
24

is large enough for the com-

mon databases. To demonstrate this, we survey datasets from differ-

ent fields including business, economics, education and other fields

in Kaggle
5
. In each field, we pick the most popular 240 datasets and

calculate the proportion of columns whose items are no more than

2
20
, 2

22
and 2

24
respectively (cf. Table 5).

Table 5: The proportion of columnswhose items are nomore
than 2

20, 222 and 2
24 respectively.

Field < 2
20 (%) < 2

22 (%) < 2
24 (%)

Business 94.9 95.8 96.9

Economics 83.0 85.3 86.7

Education 91.3 94.8 98.3

Health 92.0 94.8 97.5

Arts and Entertainment 91.1 93.5 95.2

5.3 Against addition
In the “credit” database, there are 12 columns that support addition.
To evaluate the performance of our co-prime attack against addition,
we generate queries such as:

SELECT 𝑐 =
∑𝑘
𝑖=1 𝑐𝑖 .

We randomly pick 𝑘 = 2, ..., 12 columns from the database and

execute the above query.

For example, if we pick 5 columns from the database, the addition
query would be performed among these 5 columns; we repeat this

experiment ten times, and each time we re-select another 5 columns

(if we pick 12 columns, then we have no other option but add these

12 columns once).We report max, min, avg and std of the proportion

of recovered plaintexts in Table 6. Notice that the data values are

not randomly distributed as we assumed in Section 4.2. Therefore,

the proportion of recovered plaintexts is lower than the theoretical

5
https://www.kaggle.com/

Table 6: Co-prime attack against addition in the “Credit”
benchmark. Col indicates how many columns have been
added together. Min, Max, Average and Stddev separately in-
dicate the minimum, maximum, average and standard devi-
ation of the proportion of recovered plaintexts in our exper-
iments. Cost indicates the time usage of the attack.

# Col Min(%) Max(%) Average(%) Stddev(%) Cost(s)

2 34.0 58.3 47.2 8.5 111.6

3 60.4 79.5 67.1 6.5 229.8

4 57.4 85.7 76.8 8.6 291.9

5 81.8 89.4 84.0 2.4 264.9

6 77.2 94.0 88.5 5.0 478.5

7 90.5 94.9 92.8 1.5 645.3

8 90.9 96.2 94.1 1.6 792.0

9 93.0 96.3 94.8 0.9 781.2

10 95.0 97.2 96.2 0.7 999.9

11 96.2 97.3 97.0 0.4 1090.0

12 97.3 97.3 97.3 \ 1229.1

probability. However, there are still 76.8% plaintexts being recovered

when the number of columns is 4; and it reaches 97.3% when the

number of columns is 12.

The size of plaintext space in “credit” is

[
0, 220

]
(most plaintexts

are no more than 2
20
; only 5 elements are over 2

20
), hence we can

try each pair in Z𝑘
2
20
to find the ratio among 𝑘 items, which takes

111.6-1229.1 seconds (cf. Table 6). However, the values in the “credit”

benchmark are typically small so that most time we do not need to

go over the whole plaintext space.

We also evaluate the performance of our co-prime attack against

addition via the TPC-C benchmark. The addition operations of

TPC-C are included in the update queries:

UPDATE customer SET c_balance = c_balance + ?.

where ? is a number generated in TPC-C query stream. Figure 5

shows the proportion of recovered plaintexts with different number

of update queries.
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Figure 5: Proportion of recovered plaintexts of co-prime at-
tack against addition with update queries in TPC-C.
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5.4 Against sum
We evaluate our co-prime attack against sum operation using all

three benchmarks. In each benchmark, we select all columns that

can be queried with a sum operation and try to recover these

columns with our co-prime attack. Here is an example of a sum
query in TPC-C:

SELECT SUM(ol_amount) FROM order_line WHERE ol_o_id = ?
AND ol_d_id = ? AND ol_w_id = ?

If we run our attack for all rows, we can certainly recover 100%

plaintexts. So, we randomly choose 2 − 𝑛 rows to run our attack.

We run 10 times for each column in TPC-C and TPC-H, and record

the minimum and maximum number that makes our attack success.

For Credit, we run once for each column.

Table 7: Co-prime attack against sum in all benchmarks.
Columns indicates how many columns that can be queried
with sum. Recovered indicates howmany columnswe recov-
ered.Min andMax separately indicate theminimumand the
maximum number of rows to make our attack success.

Benchmark Columns Recovered Min Max

Credit 12 12 2 5

TPC-C 1 1 2 6

TPC-H 3 3 2 5

The co-prime attacks against equi-join and group-by are identical
as that against sum. They can also recover 100% plaintexts as long

as the number of rows is enough. So, we omit these experiments.

5.5 Against comparison
Recall that the success rate of our co-prime attack against compari-

son is independent of the data distribution; but only depends on the

co-prime probability of the random masks {𝑢1, ..., 𝑢𝛼 } 6 . Then, for
each benchmark we only need to evaluate one column; the attack

performance on other columns should be similar. In the “credit”

benchmark, we select one column and generate 2-10 range queries

for this column. In the TPC-C and TPC-H benchmarks, we select

one column from each benchmark, and pick the first 2-10 range

queries regarding this column from the query stream. Here is an

example of a range query in TPC-C:

SELECT count(*) FROM stock WHERE s_w_id = ? AND s_i_id = ?
AND s_quantity < ?

Figure 6 shows the proportion of recovered plaintexts of co-

prime attack against comparison with different number of range

queries. In all these three benchmarks, more than 90% plaintexts

are recovered with 4 range queries to the same column; and almost

100% plaintexts are recovered with 10 range queries to the same

column. So the range queries in SDB is fragile under co-prime attack

against comparison.

6
To keep consistent with SDB, each of them has 80 bits.

6 COUNTERMEASURES
Recall that the attacks against addition and sum/equi-join/group-by
require SP to iterate the plaintext space to find the ratio. The basic

idea of our countermeasures is to enlarge the plaintext space by

multiplying a random value to each data item, so that SP can no

longer iterate it. Data items in the same row should be multiplied

with the same value for two reasons: (1) additions can still be done,

and (2)DO does not need to store random values for all items in the

database. However, this is not enough to prevent the attack against

addition, as SP can still iterate the original plaintext space to find

the ratio. To this end, we also add noise to the new plaintext. The

encryption scheme becomes:

Encryption. DO encrypts a data item 𝑣 as:

𝑐 := (𝑚𝑔𝑟𝑥 )−1 · (𝑎𝑣 + 𝑏) mod 𝑁,

where 0 ≪ 𝑏 ≪ 𝑎 and𝑀 ≪ 𝑎𝑣 + 𝑏 ≪ 𝑁 . The column key is ⟨𝑚, 𝑥⟩
and the row key is ⟨𝑟, 𝑎⟩. DO does not store 𝑏.

Multiplication:Given two ciphertexts𝐸 (𝑘1, 𝑎𝑣1+𝑏1) and𝐸 (𝑘2, 𝑎𝑣2+
𝑏2) in the same row, SP computes:

𝐸 (𝑘3, 𝑎2𝑣1𝑣2+(𝑎𝑣1𝑏2+𝑎𝑣2𝑏1+𝑏1𝑏2)) ← 𝐸 (𝑘1, 𝑎𝑣1+𝑏1)×𝐸 (𝑘2, 𝑎𝑣2+𝑏2).
Notice that 𝑎must be large enough so that 𝑎𝑣1𝑏2+𝑎𝑣2𝑏1+𝑏1𝑏2 ≪ 𝑎2,

and (𝑎𝑣1𝑏2 + 𝑎𝑣2𝑏1 + 𝑏1𝑏2) is considered as the new “𝑏”.

KeyUpdate: The KeyUpdate function is the same as before.

Addition. Given two ciphertexts 𝐸 (𝑘1, 𝑎𝑣1 +𝑏1) and 𝐸 (𝑘2, 𝑎𝑣2 +𝑏2)
in the same row, DO first convert them to be under the same key

𝑘3 then adds them together:

𝐸 (𝑘3, 𝑎(𝑣1 + 𝑣2) + (𝑏1 + 𝑏2)) ← 𝐸 (𝑘1, 𝑎𝑣1 + 𝑏1) + 𝐸 (𝑘2, 𝑎𝑣2 + 𝑏2) .

Decryption. Given a ciphertext 𝑐 = (𝑎𝑡𝑣 + 𝑏) · (𝑚𝑔𝑟𝑥 )−1, DO
decrypts it as follows:

𝑚 ←
[
𝑐 ·𝑚𝑔𝑟𝑥 mod 𝑁

𝑎𝑡

]
where 𝑡 is the number of times a ciphertext has been multiplied.

Decryption can succeed because 𝑏 is much smaller than 𝑎𝑡 so that

it will be canceled by the “rounding” operation.

Notice that this new encryption scheme can only support a

limited number of additions and multiplications: addition might

make 0 ≪ 𝑏 ≪ 𝑎 no longer hold and multiplication might make

𝑀 ≪ 𝑎𝑣 +𝑏 ≪ 𝑁 no longer hold. Furthermore, this scheme cannot

securely support comparisons, as the attack against comparison
does not require SP to iterate the plaintext space (cf. Algorithm 3).

We leave it as a future work to refine this encryption scheme.

7 DISCUSSION
7.1 Lesson learned
SDB is in fact a multiplicatively-homomorphic encryption scheme

of the form: (𝑚𝑔𝑟𝑥 )−1 ·𝑣 , where ⟨⟨𝑚, 𝑥⟩ , 𝑟 ⟩ can be considered as the

randomness, because for any two different ciphertexts, they either

have different ⟨𝑚, 𝑥⟩ or different 𝑟 . To add some ciphertexts, one has

to make them with the same ⟨⟨𝑚, 𝑥⟩ , 𝑟 ⟩, otherwise, addition cannot

be done. Then, SDB can be considered as an encrypted database,

where the ciphertexts are encrypted under the same key. We prove

the following theorem for such kind of encrypted databases:
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Figure 6: Proportion of recovered plaintexts of co-prime attack against comparison with different number of range queries.

Theorem 2. In an encrypted database where the ciphertexts are
encrypted under the same key, if a Leakage function 𝐿(·) can be ap-
plied to a single column of ciphertexts with sublinear communication,
then it can be applied to all ciphertexts.

Proof. We define the leakage function 𝐿(·) as:

𝑓 (𝑚) ← 𝐿(𝑐),

where 𝑐 is the ciphertext,𝑚 is the plaintext, and 𝑓 (𝑚) is the leaked
information. Consider the following two cases:

(1) The encryption is deterministic. Then, it is clear that 𝐿(·)
can be applied to all other ciphertexts, as they are encrypted

under the same key.

(2) The encryption is non-deterministic, which means that each

ciphertext has different randomness. Suppose there are 𝑛

ciphertexts in a column. Let 𝛽 denote the information sent

from DO to SP. As the communication is sublinear, 𝛽 can

be customized for at most 𝑚 (𝑚 < 𝑛) ciphertexts in this

column. Recall that 𝐿(·) can be applied to the whole column,

which means 𝛽 is applicable to the rest (𝑛 −𝑚) ciphertexts
as well. That means the randomness in the ciphertexts has

no effect on 𝛽 . Then, 𝛽 can be applied to the ciphertexts in

other columns.

□

In SDB, the leakage function for addition is (𝑘0𝑣1, ..., 𝑘0𝑣𝛼 ), where
𝑘0 = (𝑚𝑔𝑟𝑥 )−1. SP has to iterate the plaintext space to find ratio

and recover 𝑣𝑖 . We can prevent the co-prime attack by enlarging

the plaintext space (cf. Section 6). However, the leakage function for

comparison is (𝑢0𝑣, ..., 𝑢𝛼𝑣) and SP can easily find 𝑣 . In summary,

we point out the following two research directions for preventing

the co-prime attack:

• Encrypt different columns using different keys. Then, we

need to explore how to support interoperability.

• Try to minimize the leakage function!

7.2 Attacking other schemes
We remark that our co-prime attack is not specific to SDB. Instead,

it can also be applied to other encryption schemes having similar

favors with SDB. For example, our co-prime attack can be applied to

an encryption scheme [8] that has been widely used in outsourced

computation [4, 10, 12, 25]. It works as follows:

• Setup:

{(𝑁 ′, 𝑑), (𝑀 ′, 𝑟 )} ← 𝐺𝑒𝑛(1𝜆)

(𝑁 ′, 𝑑) are public while (𝑀 ′, 𝑟 ) are private. 𝑁 ′ should have

many small divisors and there should be many elements less

than 𝑁 ′ that are co-prime with it.𝑀 ′ is a divisor of 𝑁 ′ and
𝑟 ∈ Z𝑁 ′ is co-prime with 𝑁 ′.
• Encryption:

𝑐 ← 𝐸𝑛𝑐 (𝑣, 𝑟, 𝑑, 𝑁 ′, 𝑀 ′)

divides 𝑣 into a 𝑑-tuple (𝑣 (1) , 𝑣 (2) , ..., 𝑣 (𝑑) ) ∈ Z𝑑
𝑁 ′ such that

𝑣 =
∑𝑑
𝑖=1 𝑣

(𝑖)
mod 𝑀 ′; the ciphertext is

𝑐 = (𝑣 (1) · 𝑟, 𝑣 (2) · 𝑟2, ..., 𝑣 (𝑑) · 𝑟𝑑 ) mod 𝑁 ′

• Decryption:

𝑣 ← 𝐷𝑒𝑐 (𝑐, 𝑟, 𝑁 ′, 𝑀 ′)

the plaintext is calculated as:

(𝑣 (1) , ..., 𝑣 (𝑑) ) = (𝑐 (1)𝑟−1, ..., 𝑐 (𝑑)𝑟−𝑑 ) mod 𝑁 ′

𝑣 =

𝑑∑
𝑖=1

𝑣 (𝑖) mod 𝑀 ′

• Addition:

𝐸 (𝑣1 + 𝑣2) ← 𝐴𝑑𝑑 (𝑐1, 𝑐2)

computes 𝐸 (𝑣1 + 𝑣2) (𝑘) = 𝑐
(𝑘)
1
+ 𝑐 (𝑘)

2
mod 𝑁 ′

• Multiplication:

𝐸 (𝑣1 · 𝑣2) ← 𝑀𝑢𝑙𝑡 (𝑐1, 𝑐2)

computes 𝐸 (𝑣1 · 𝑣2) (𝑘) =
∑

𝑖+𝑗=𝑘+1
𝑐
(𝑖)
1

𝑐
( 𝑗)
2

mod 𝑁 ′

Due to co-prime probability (cf. Section 4.1), this scheme can

be attacked under known-plaintext attack, which was introduced

in [7, 24]. Suppose there are 𝑑 + 2 known pairs (𝑣𝑖 , 𝐸 (𝑣𝑖 )), the
adversary recovers (𝑀 ′, 𝑟 ) by constructing the following equations:
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𝑣1 𝑐

(1)
1
· · · 𝑐 (𝑑 )

1

𝑣2 𝑐
(1)
2
· · · 𝑐 (𝑑 )

2

.

.

.
.
.
.

.

.

.
𝑣𝑑+1 𝑐

(1)
𝑑+1 · · · 𝑐

(𝑑 )
𝑑+1



−1
𝑟−1

.

.

.
𝑟−𝑑

 =
[
0

0

0

0

]
mod 𝑀 ′ (1)

Denote this coefficientmatrix as𝐴1. As the equation has a nontrivial

solution (−1, 𝑟−1, ..., 𝑟−𝑑 ) mod 𝑀 ′ ∈ 𝑍𝑑+1
𝑀′ , we have 𝑑𝑒𝑡 (𝐴1) ≡ 0

mod 𝑀 ′, which means 𝑑𝑒𝑡 (𝐴1) is a multiple of 𝑀 ′. With 𝑑 + 2
known pairs, the adversary can construct

(𝑑+2
𝑑+1

)
= 𝑑+2 determinants:

(𝐴1, 𝐴2, ..., 𝐴𝑑+2). Suppose there are 𝑘 determinants (𝐴1, .., 𝐴𝑘 ) (2 ≤
𝑘 ≤ 𝑑+2) satisfy𝑑𝑒𝑡 (𝐴𝑖 ) ≠ 0. As ( 𝑑𝑒𝑡 (𝐴1)

𝑀′ , ...,
𝑑𝑒𝑡 (𝐴𝑘 )

𝑀′ ) are co-prime

w.h.p,𝑀 ′ can be recovered:

𝑀 ′ ← 𝑔𝑐𝑑 (𝑑𝑒𝑡 (𝐴1), 𝑑𝑒𝑡 (𝐴2), ..., 𝑑𝑒𝑡 (𝐴𝑘 ))

With𝑀 ′, the adversary can get 𝑟 ′ that satisfies 𝑟 ≡ 𝑟 ′ mod 𝑀 ′ by
solving Equation 1. Although the original scheme decrypts cipher-

texts with 𝑟 , 𝑟 ′ can be used for decryption as well.

8 RELATED WORK
Most encrypted databases (e.g., CryptDB [22], MONOMI [23]) lever-

age property-preserving encryption (PPE) to support comparisons.

Deterministic encryption (DET) encrypts the same plaintexts to the

same ciphertexts, so that equal operation, join operation and group-

by operation can be done. Order preserving encryption (OPE) [3, 6]

preserves the order information of plaintexts, so that range queries

and comparison operations can be processed. PPE-based encrypted

databases like CryptDB are vulnerable to many attacks since sen-

sitive information are leaked from ciphertexts: OPE leaks order

information of plaintexts and DET leaks which plaintexts are equal.

Many attacks have been proposed, we compare some of them with

our Co-prime attack.
Leakage from ciphertexts. PPE inherently leaks information

about plaintext such as frequency and order, which has been ex-

ploited extensively by various of attacks. Naveed [19] attack DET-

and OPE-encrypted databases based on frequency analysis and

sorting. They estimate plaintext frequency and order in advance

so that they can compare frequency and order to find a map from

ciphertexts to plaintexts. Cash et al. [11] adapt the attack proce-

dure as a min-weight non-crossing bipartite matching, attacking a

widely used OPE scheme [6]. Compared with [19], the non-crossing

attack performs better when plaintext data are drawn from large

domains. Bindschaedler et al. [5] present a new inference tech-

nique called multinomial attack against property-revealing encryp-

tion(PRE) schemes. Considering correlation between columns, they

construct the attack based on Bayesian inference problem in multi

dimensions. Besides, with the correlation and plaintexts gotten, they

can infer columns protected by semantically secure encryption or

redaction with machine learning and record linkage methods.

Leakage from queries.WhenDO issues a query, what SP returns

may leak information about plaintexts. Such attack usually need

plenty of queries to recover plaintexts and most of them assume

queries are under known distribution. Kellaris et al. [13] develop a

generic reconstruction attack on any encrypted database support-

ing range queries where either access pattern (which elements are

returned) or communication volume (how many elements are re-

turned) is leaked. However, it assumes the query distribution is

known and it requires at least 𝑂 (𝑀2
log𝑀) (𝑀 is the number of

distinct plaintext values) range queries. [15] improves𝑂 (𝑀2
log𝑀)

to 𝑀 log𝑀 + 𝑂 (𝑀) and presents an approximate reconstruction

attack which only needs the access pattern leakage of𝑂 (𝑀) queries.
It can recover plaintext values in a dense dataset within a constant

ratio of error.

Kornaropoulos et al. [14] present a reconstruction attack that

succeeds without any knowledge about the query or data distribu-

tion. Based on the search-pattern leakage and a technique named

support size estimation, they use range queries and 𝑘-nearest-

neighbor(k-NN) queries to reconstruct plaintext values under a

variety of skewed query distributions. However, it still requires

queries to be under some fixed distributions. For example, queries

should touch all plaintext values, if all queries only touch plaintexts

from [0, 𝑀/2] (only plaintexts in this interval are returned), then

plaintexts in [𝑀/2, 𝑀] cannot be recovered.
Comparison. We compare these attacks with our co-prime attack

in the context of attacking SDB. Recall that the sum, equi-join and

group-by operations in SDB leak plaintext frequency in the same

column. So attacks based on plaintext frequency [5, 11, 19] can be

applied to SDB, However, auxiliary information about the plaintext

frequency is required. Attacks based on range queries and k-NN
queries [13–15] can be applied to SDB, because the comparison
operation in SDB leaks access patterns and volume information.

However, at least 𝑀 log(𝑀) + 𝑂 (𝑀) queries are required for full

reconstruction and 𝑂 (𝑀) queries are required for approximate

reconstruction in [15].
Compared with these attacks, our co-prime attack can attack

more operations in SDB and needs no more than 10 queries to

recover all plaintexts. Besides, our assumption is much weaker: we

only assume plaintexts are under randomly uniform distribution

(our attack still works when this assumption is not satisfied).

9 CONCLUSION
In this paper, we revisit the security of SDB and make four ob-

servations, which incur serious information leakage but was not

mentioned in their paper. We exploit these observations and pro-

pose a ciphertext-only attack named co-prime attack. We show how

to use it to attack the addition, sum, comparison, join and group-
by operations in SDB. We evaluate our attack in three real-world

benchmarks. For columns that support addition and comparison,
we recover 84.9%− 99.9% plaintexts. For columns that support sum,

equi-join and group-by, we recover 100% plaintexts. Nevertheless,

we still think the data interoperability is an important issue, and

we admit that there are a bunch of smart designs in SDB. In future

work, we will attempt to fix the security flaws of SDB and propose

an encrypted database that supports data interoperability.
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