Are We Ready For Learned Cardinality Estimation?

Xiaoying Wang'*, Changbo Qu '™, Weiyuan Wu'*, Jiannan Wang', Qingqing Zhou®

Simon Fraser Univer

{xiaoying_wang, changboq, youngw, jnwang}@sfu.ca

ABSTRACT

Cardinality estimation is a fundamental but long unresolved prob-
lem in query optimization. Recently, multiple papers from different
research groups consistently report that learned models have the
potential to replace existing cardinality estimators. In this paper,
we ask a forward-thinking question: Are we ready to deploy these
learned cardinality models in production? Our study consists of three
main parts. Firstly, we focus on the static environment (i.e., no data
updates) and compare five new learned methods with nine tradi-
tional methods on four real-world datasets under a unified workload
setting. The results show that learned models are indeed more ac-
curate than traditional methods, but they often suffer from high
training and inference costs. Secondly, we explore whether these
learned models are ready for dynamic environments (i.e., frequent
data updates). We find that they cannot catch up with fast data up-
dates and return large errors for different reasons. For less frequent
updates, they can perform better but there is no clear winner among
themselves. Thirdly, we take a deeper look into learned models and
explore when they may go wrong. Our results show that the perfor-
mance of learned methods can be greatly affected by the changes
in correlation, skewness, or domain size. More importantly, their
behaviors are much harder to interpret and often unpredictable.
Based on these findings, we identify two promising research direc-
tions (control the cost of learned models and make learned models
trustworthy) and suggest a number of research opportunities. We
hope that our study can guide researchers and practitioners to work
together to eventually push learned cardinality estimators into real
database systems.

PVLDB Reference Format:

Xiaoying Wang, Changbo Qu, Weiyuan Wu, Jiannan Wang, Qingging Zhou.
Are We Ready For Learned Cardinality Estimation?. PVLDB, 14(9): 1640 -
1654, 2021.

doi:10.14778/3461535.3461552

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/sfu-db/AreCELearnedYet.

1 INTRODUCTION

The rise of “ML for DB” has sparked a large body of exciting research
studies exploring how to replace existing database components with
learned models [32, 37, 39, 68, 84, 98]. Impressive results have been
repeatedly reported from these papers, which suggest that “ML for
DB” is a promising research area for the database community to

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 9 ISSN 2150-8097.
doi:10.14778/3461535.3461552

* The first three authors contributed equally to this research.

sity "

1640

Tencent Inc.®
hewanzhou@tencent.com

explore. To maximize the impact of this research area, one natural
question that we should keep asking ourselves is: Are we ready to
deploy these learned models in production?

In this paper, we seek to answer this question for cardinality
estimation. In particular, we focus on single-table cardinality esti-
mation, a fundamental and long standing problem in query opti-
mization [18, 95]. It is the task of estimating the number of tuples
of a table that satisfy the query predicates. Database systems use
a query optimizer to choose an execution plan with the estimated
minimum cost. The performance of a query optimizer largely de-
pends on the quality of cardinality estimation. A query plan based
on a wrongly estimated cardinality can be orders of magnitude
slower than the best plan [42].

Multiple recent papers [18, 28, 30, 34, 95] have shown that learned
models can greatly improve the cardinality estimation accuracy
compared with traditional methods. However, their experiments
have a number of limitations (see Section 2.5 for more detailed
discussion). Firstly, they do not include all the learned methods in
their evaluation. Secondly, they do not use the same datasets and
workload. Thirdly, they do not extensively test how well learned
methods perform in dynamic environments (e.g., by varying update
rate). Lastly, they mainly focus on when learned methods will go
right rather than when they may go wrong.

We overcome these limitations and conduct comprehensive ex-
periments and analyses. The paper makes four contributions:

Are Learned Methods Ready For Static Environments? We
propose a unified workload generator and collect four real-world
benchmark datasets. We compare five new learned methods with
nine traditional methods using the same datasets and workload in
static environments (i.e., no data updates). The results on accuracy
are quite promising. In terms of training/inference time, there is
only one method [18] that can achieve similar performance with
existing DBMSs. The other learned methods typically require 10 —
1000 more time in training and inference. Moreover, all learned
methods have an extra cost for hyper-parameter tuning.

Are Learned Methods Ready For Dynamic Environments?
We explore how each learned method performs by varying up-
date rate on four real-world datasets. The results show that learned
methods fail to catch up with fast data updates and tend to re-
turn large error for various reasons (e.g., the stale model processes
too many queries, the update period is not long enough to get a
good updated model). When data updates are less frequent, learned
methods can perform better but there is no clear winner among
themselves. We further explore the update time vs. accuracy trade-
off, and investigate how much GPU can help learned methods in
dynamic environments.

When Do Learned Methods Go Wrong? We vary correlation,
skewness, and domain size, respectively, on a synthetic dataset, and
try to understand when learned methods may go wrong. We find
that all learned methods tend to output larger error on more cor-
related data, but they react differently w.r.t. skewness and domain
size. Due to the use of black-box models, their wrong behaviors are

Table 1: Taxonomy of New Learned Cardinality Estimators.

‘ Methodology ‘ Input ‘ Model

MSCN [34] Regression Query+Data Neural Network
LW-XGB [18] Regression Query+Data | Gradient Boosted Tree

LW-NN [18] Regression Query+Data Neural Network

DQM-Q [28] Regression Query Neural Network
Naru [95] | Joint Distribution Data Autoregressive Model
DeepDB [30] | Joint Distribution Data Sum Product Network
DQM-D [28] | Joint Distribution Data Autoregressive Model

very hard to interpret. We further investigate whether their behav-
iors follow some simple and intuitive logical rules. Unfortunately,
most of them violate these rules. We discuss four issues related to
deploying (black-box and illogical) learned models in production.

Research Opportunities. We identify two future research direc-
tions: i) control the cost of learned methods and ii) make learned
methods trustworthy, and suggest a number of promising research
opportunities. We publish our code and datasets on GitHub! to
facilitate future research studies. We hope our work can attract
more research efforts in these directions and eventually overcome
the barriers of deploying learned estimators in production.

The rest of the paper is organized as follows: We present a sur-
vey on learned cardinality estimation in Section 2 and describe
the general experimental setup in Section 3. We explore whether
learned methods are ready for static environments in Section 4
and for dynamic environments in Section 5, and examine when
learned methods go wrong in Section 6. Future research opportuni-
ties are discussed in Section 7. Multi-table scenario are discussed
in Section 8 and related works are reviewed in Section 9. Finally,
we present our conclusions in Section 10.

2 LEARNED CARDINALITY ESTIMATION

In this section, we first formulate the cardinality estimation (CE)
problem, then put new learned methods into a taxonomy and
present how each method works, and finally discuss the limita-
tions of existing evaluation on learned methods.

2.1 Problem Statement

Consider a relation R with n attributes {Ay, ..
over R with a conjunctive of d predicates:

SELECT COUNT(*) FROM R
WHERE 67 AND --- and 6,4,

.,Ap} and a query

where 0; (i € [1,d]) can be an equality predicate like A = a, an
open range predicate like A < a, or a close range predicate like
a < A < b. The goal of CE is to estimate the answer to this query,
i.e., the number of tuples in R that satisfy the query predicates. An
equivalent problem is called selectivity estimation, which computes
the percentage of tuples that satisfy the query predicates.

2.2 Taxonomy

The idea of using ML for CE is not new (see Section 9 for more
related work). The novelty of recent learned methods is to adopt
more advanced ML models, such as deep neural networks [18, 28,
34], gradient boosted trees [18], sum-product networks [30], and
deep autoregressive models [28, 95]. We call these methods “new
learned methods” or “learned methods” if the context is clear. In
contrast, we refer to “traditional methods” as the methods based on
histogram or classic ML models like KDE and Bayesian Network.

Uhttps://github.com/sfu-db/AreCELearnedYet

1641

: Train Stage

)

Train

: Inference Stage
N\

Result
Train

—

(b) Joint Distribution Methods

Figure 1: Workflow of Learned Methods.

..... » : Optional

N
CE
Result

Query

Statistics

J

Look Up
Statistics

(a) Regression Methods

Table 1 shows a taxonomy of new learned methods?. Based on
the methodology, we split them into two groups - Regression and
Joint Distribution methods. Regression methods (a.k.a query-driven
methods) model CE as a regression problem and aim to build a map-
ping between queries and the CE results via feature vectors, i.e.,
query — feature_vector — CE_result. Joint Distribution methods
(a.k.a data-driven methods) model CE as a joint probability distribu-
tion estimation problem and aim to construct the joint distribution
from the table, i.e., P(A1, Az, - - , Ap), then estimate the cardinal-
ity. The Input column represents what is the input to construct
each model. Regression methods all require queries as input while
joint distribution methods only depend on data. The Model column
indicates which type of model is used correspondingly. We will
introduce these methods in the following.

2.3

Workflow. Figure 1(a) depicts the workflow of regression methods.
In the training stage, it first constructs a query pool and gets the
label (CE result) of each query. Then, it goes through the query
featurization module, which converts each query to a feature vector.
The feature vector does not only contain query information but
also optionally include some statistics (like a small sample) from
the data. Finally, a regression model is trained on a set of (feature
vector, label) pairs. In the inference stage, given a query, it converts
the query to a feature vector using the same process as the training
stage, and applies the regression model to the feature vector to get
the CE result. To handle data updates, regression methods need to
update the query pool and labels, generate new feature vectors, and
update the regression model.

There are four regression methods: MSCN, LW-XGB, LW-NN,
and DQM-Q. One common design choice in them is the usage
of log-transformation on the selectivity label since the selectivity
often follows a skewed distribution and log-transformation is com-
monly used to handle this issue [19]. These works vary from many
perspectives, such as their input information, query featurization,
and model architecture.

Methodology 1: Regression

MSCN [34] introduces a specialized deep neural network model
termed multi-set convolutional network (MSCN). MSCN can sup-
port join cardinality estimation. It represents a query as a feature
vector which contains three modules (i.e., table, join, and predicate
modules). Each module is a two-layer neural network and different
module outputs are concatenated and fed into a final output net-
work, which is also a two-layer neural network. MSCN enriches the
training data with a materialized sample. A predicate will be evalu-
ated on a sample, and a bitmap, where each bit indicates whether
a tuple in the sample satisfies the predicate or not, will be added

2Naru, DeepDB and MSCN are named by their authors. For convenience of discussion,
we give others the following short names. Lightweight Gradient Boosting Tree (LW-
XGB) and Lightweight Neural Network (LW-NN) are two models from [18]. From [28],
two complementary methods are proposed, Data&Query Model - Data (DQM-D) and
Data&Query Model - Query (DQM-Q).

LW-XGB/NN
°

MSCN
0@
[] []

DQM-D/Q DeepDB

Figure 2: Comparison results available in existing studies.

to the feature vector. This enrichment has been proved to make
obvious positive impact on the model performance [34, 95].

LW-XGB/NN [18] introduces a lightweight selectivity estimation
method. Its feature vector consists of two parts: range features +
CE features. The range features represent a set of range predicates:
(a1,b1,a2,ba, - -+, an, by). The CE features represent heuristic es-
timators (e.g., the one that assumes all columns are independent).
Note that the CE features can be cheaply derived from the statistics
available in the database system. LW-NN (LW-XGB) train a neural
network (gradient boost tree) model using the generated features.
Unlike MSCN which minimizes the mean q-error, they minimize
the mean square error (MSE) of the log-transformed label, which
equals to minimizing the geometric mean of q-error with more
weights on larger errors and also can be computed efficiently.

DQM-Q [28] proposes a different featurization approach. It uses
one-hot encoding to encode categorical columns and treats nu-
merical attributes as categorical attributes by automatic discretiza-
tion [15]. DQM-Q trains a neural network model. When a real-
world query workload is available, DQM-Q is able to augment the
training set and train the model with the augmented set.

2.4 Methodology 2: Joint Distribution

Workflow. Figure 1(b) depicts the workflow of joint distribution
methods. In the training stage, it transforms the data into a format
ready for training a joint distribution model. In the inference stage,
given a query, it generates one or multiple requests to the model
and combine the model inference results into the final CE result.
To handle data updates, joint distribution methods need to update
or retrain the joint distribution model.

There are three joint distribution methods: Naru, DeepDB, and
DQM-D. Compared to traditional methods like histogram and sam-
pling, these new methods adopt more complex models to further
capture additional information in the data, such as fine-grained
correlation or conditional probability between columns.

Autoregressive Model. Naru [95] and DQM-D [28] propose simi-
lar ideas. They factorize the joint distribution into conditional distri-
butions using the product rule: P(A1, Ay, ..., An) = P(A1)P(Az2]A1)-
-+ P(AplA1, ..., Ap—1). They adopt the state-of-the-art deep autore-
gressive models such as MADE [23] and Transformer [89] to ap-
proximate the joint distribution.

The joint distribution can directly return results to point queries.
To support range queries, they adopt a sampling based method,
which runs importance sampling in an adaptive fashion. Specifically,
Naru uses a novel approximation technique named progressive
sampling, which samples values column by column according to
each internal output of conditional probability distribution. DQM-
D adopts an algorithm [44] originally designed for Monte-Carlo
multi-dimensional integration, which conducts multiple stages of
sampling. At each stage, it selects sample points in proportion to
the contribution they make to the query cardinality according to
the result from the previous stage.

Sum-Product Network. DeepDB [30] builds Sum-Product Net-
works (SPNs) [72] to capture the joint distribution. The key idea is
to recursively split the table into different clusters of rows (creating
a sum node to combine them) or clusters of columns (assuming dif-
ferent column clusters are independent and creating a product node

1642

Table 2: Workload used in existing experimental studies.

Predicate Operator Consider

Number | Equal Range (e10)}
MSCN 0~ |D]| v v X
LW-XGB/NN 2~ |D| X close range v
Naru 5~11 v open range v
DeepDB 1~5 v v X
DQM-D/Q 1~ |D| v x v
Our Workload | 1~ [D| v v v

to combine them). KMeans is used to cluster rows and Random-
ized Dependency Coefficients [50] is used to identify independent
columns. Leaf nodes in an SPN represent a single attribute dis-
tribution, which can be approximated by histograms for discrete
attributes or piecewise linear functions for continuous attributes.

2.5 Limitations of Existing Experiments

As pointed in the Introduction, existing experimental studies have
a number of limitations. We provide more detail in this section.

Firstly, many new learned methods have not been compared with
each other directly. Figure 2 visualizes the available comparison
results using a directed graph. Each node represents a method, and
if method A has compared with method B in A’s paper, we draw
a directed edge from A to B. Since many methods were proposed
in the same year or very close period, the graph is quite sparse
and misses over half of the edges. For example, LW-XGB/NN is
one of the best regression methods, but it has no edge with any
other method. DeepDB and Naru are two state-of-the-art joint
distribution methods, but there is no edge between them.

Secondly, there is no standard about which datasets to use and
how to generate workloads. Other than the IMDB dataset (adopted
by MSCN and DeepDB), none of the datasets adopted in one work
appear in another work. As for workloads, these works generate
synthetic queries differently. Table 2 compares their generated
workloads. For join queries in the JOB-light benchmark (used in
MSCN and DeepDB), we report their properties related to single
table. |D| denotes the number of columns in the dataset and OOD
(out-of-domain) means that the predicates of a query are generated
independently. Such queries often lead to zero cardinality.

Thirdly, existing works are mostly focused on the static environ-
ment (i.e., no data update setting). However, dynamic environments
are also common in practice. Some papers have explored how their
method performs when the data updates, but the way that they
update the data varies. As a result, the performance numbers cannot
be used to compare between methods. Furthermore, existing studies
have not extensively explored the trade-off between accuracy and
updating time. For example, Naru is a more accurate method but
requires longer time to update the model. It is unclear whether it
can still give good accuracy for high update rates.

3 EXPERIMENTAL SETUP

Our study evaluates learned cardinality estimators under different
settings. We describe the general setup used in all of our experi-
ments in this section.

Evaluation Metric. We use g-error as our accuracy metric to mea-
sure the quality of the estimation result. Q-error is a symmetric
metric which computes the factor by which an estimate differs from
max (est(q),act(q))
min(est(q),act(q))
a query’s actual cardinality is 10 and estimated cardinality is 100,
max(100,10) _ 10

min(100,10) — ~°

the actual cardinality: error = For example, if

then error =

Table 3: Dataset characteristics. “Cols/Cat" means the num-
ber of columns and categorical columns; “Domain" is the
product of the number of distinct values for each column.

Dataset Size(MB) Rows Cols/Cat Domain
Census [16] 4.8 49K 13/8 1016
Forest [16] 44.3 581K 10/0 1027
Power [16] 110.8 21IM 7/0 107
DMV [62] 972.8 11.6M 11/10 1013

Q-error is the metric adopted by all learned methods [18, 28, 30,
34, 95]. It measures the relative error, which can penalize large and
small results to the same extent. Furthermore, it has been proved
to be directly related to the plan quality in query optimization [59].

Learned Methods & Implementation. As shown in Table 1, there
are five recently published papers on learned methods: Naru [95],
MSCN [34], LW-XGB/NN [18], DeepDB [30], and DQM [28]. We
exclude DQM from our study since its data driven model has a
similar performance with Naru and its query driven model does
not support our workload (confirmed with DQM’s authors).

For Naru® and DeepDB*, we adopt the implementation released
by the authors with minor modifications in order to support our
experiments. We choose ResMADE as basic autoregressive build-
ing block for Naru because it is both efficient and accurate. For
MSCN, since the original model supports join query, it needs extra
input features to indicate different joins and predicates on different
tables. To ensure a fair comparison on single table cardinality es-
timation, we modify the original code’ by only keeping features
represent predicates and qualifying samples. We implement both
neural network (LW-NN, on PyTorch [67]) and gradient boosted
tree (LW-XGB, on XGBoost [10]) approach for LW-XGB/NN accord-
ing to the description in its original paper [18], and use Postgres’s
estimation result on single column to compute the CE features.

All the code including dataset manipulation, workload genera-
tion and estimator evaluation are released®.

Hardware and Platform. We perform our experiments on a server
with 16 Intel Xeon E7-4830 v4 CPUs (2.00GHz). For the neural net-
work models (Naru, MSCN, LW-NN), we run them not only on
CPU but also on a NVIDIA Tesla P100 GPU to gain more insights
under different settings.

4 ARE LEARNED METHODS READY FOR
STATIC ENVIRONMENTS?

Are learned estimators more accurate than traditional methods in
static environment? What is the cost for the high accuracy? In this
section, we first compare the accuracy of learned methods with
traditional methods, and then measure their training and inference
time in order to see whether they are ready for production.

4.1 Setup

Dataset. We use four real-world datasets with various character-
istics (Table 3). We choose these datasets because first, the size of
these datasets are in different magnitudes and the ratio between
categorical and numerical columns varies; second, each dataset has
been used in the evaluation of at least one prior work in this field.

Workload. We propose a unified workload generator. The goal
of our workload generator is to be able to cover all the workload

3https://github.com/naru-project/naru
“https://github.com/DataManagementLab/deepdb-public
Shttps://github.com/andreaskipf/learnedcardinalities
Shttps://github.com/sfu-db/AreCELearnedYet

1643

Census
Forest
Power
DMV

102 10t 100

Query Selectivity
Figure 3: Distribution of workload selectivity.

103

settings used in existing learned methods (see Table 2). We apply
the same generator setting on all datasets in the same experiment.

Intuitively, a query with d predicates can be thought of as a hyper-
rectangle in a d-dimensional space. A hyper-rectangle is controlled
by its center and width. Correspondingly, a query is controlled by
its query center and range width. For example, consider a query
with d = 2 predicates:

SELECT COUNT(*) FROM R
WHERE 0 < A; <20 AND 20 < Az <100

Its query center is (@, 1002—_20) = (10,40) and its range width is
(20 — 0, 100 — 20) = (20, 80).

There are two ways to generate query centers. For ease of illustra-
tion, suppose that we want to generate a query center for columns
Aj, Az. The first way () is to randomly select a tuple ¢ from the
table. Let t[A1], t[Az] denote the attribute values of the tuple on A;
and Ay. Then, we set the query center to (t[A1], t[Az2]). The second
way (@) is to independently draw a random value ¢; and ¢z from
the domain of A; and Ay, respectively, and set the query center to
(c1, ¢2). @ is called out-of-domain (OOD in Table 2), which aims to
test the robustness of learned estimators more comprehensively
from the entire joint domain.

There are two ways to generate range widths. Let the domain for
A; be [min;, max;] and the domain size be size; = max; —min;. The
first way (@) is to uniformly select a value w; from [0, size;]. The
second way (@) is to select a value from an exponential distribution
with a parameter A; (we set 1 = 10/size; by default). Note that if A;
is a categorical column, we will only generate an equality predicate
for it, thus the width is set to zero in this case. If a range on one
side is larger than max; or smaller than min;, then it becomes an
open range query. Thus, our workload contains both open and close
range queries.

Our workload generator covers all the above settings (D, @,
@,). To generate a query, we first uniformly select a number d
from 1 to |D| and randomly sample d distinct columns to place the
predicates. The query center is generated from (D and) with a
probability of 90% and 10%, respectively, and the range width is
generated from @ and @ in equal proportions. The reason that we
do not use an equal probability for the query center is that OOD
is typically less common than the other way in real workloads.
Figure 3 shows the selectivity distribution of generated workloads
on different datasets, which results in a broad spectrum.

Hyper-parameter Tuning. We describe hyper-parameter tuning
for each model. More details can be found in our Github repository.

For neural network methods (Naru, MSCN, LW-NN), we control
the model size within 1.5% of the data size for each dataset. For
each method, we select four model architectures with different
numbers of layers, hidden units, embedding size, etc. and train each
model in different batch size and learning rate in accordance with
the original papers. Since MSCN and LW-NN are query-driven
methods, we select 10K queries as a validation set to determine
which hyper-parameters are better. Since Naru is a data-driven
method (i.e., no query as input), we use training loss to find optimal
hyper-parameters.

For LW-XGB, we vary the number of trees (16, 32, 64...) as in [18].
Since LW-XGB is a query-driven method, similar to MSCN and
LW-NN, we select 10K validation queries for it.

For DeepDB, we do a grid search on RDC threshold and mini-
mum instance slice and only keep the models within the size budget
(i.e., 1.5% of the data size). An interesting finding is that DeepDB
does not output the training loss like Naru during construction, thus
queries are needed for hyper-parameter tuning. However, DeepDB
is designed to be a data-driven method, which is not supposed to
use queries. To ensure a fair comparison with other methods, we
select a very small number of validation queries (i.e., 100 queries)
for DeepDB to do hyper-parameter tuning.

To ensure a fair comparison, we use 100K queries to train all the
query-driven methods (MSCN, LW-XGB/NN).

Traditional Techniques. We compare with a variety of traditional
techniques, which are either used by real database systems or re-
ported to achieve the state-of-the-art performance recently. The
methods we chose can represent a wide range of solutions.

Postgres, MySQL and DBMS-A are used to represent the perfor-
mance of real database systems. We use PostgreSQL 11.5 and
8.0.21 MySQL Community Server, and DBMS-A is a leading com-
mercial database system. They estimate cardinality rapidly with
simple statistics and assumptions. In order to let them achieve
their best accuracy level, we set the number of histogram buckets
to the upper limit (10,000 for Postgres, 1024 for MySQL). For
DBMS-A, we create several multi-column statistics in order to
cover all columns with histograms. Note that even with the max-
imum number of buckets, size of these statistics is much smaller
than our size budget, and result in less memory consumption
than other traditional and learned methods in our experiment.

Sample-A, Sample-B exhibit estimators adopt sampling. Sample-A
uses a uniform random sample, which is well known that it would
result in large error when no tuple in the sample satisfies all the
predicates. Therefore we also include Sample-B, which assumes
independence between each predicate in zero-tuple cases. We
sample 1.5% tuples from each dataset for both methods.

MHIST [73] builds a multi-dimensional histogram on the entire
dataset. We choose Maxdiff as the partition constraint with Value
and Area being the sort and source parameter since it is the most
accurate choice according to [74]. We run the MHIST-2 algorithm
iteratively until it reaches to 1.5% of the data size.

QuickSel [66] represents query-driven multi-dimensional synop-
sis approaches’ performance. It models the data distribution with
uniform mixture model by leveraging query feedback. We choose
QuickSel because it shows better accuracy than query-driven
histograms including STHoles [6] and ISOMER [81] in [66]. We
use 10K queries to train the model.

Bayes [13] shows the estimation results of probabilistic graphical
model approaches [14, 24, 88]. We adopt the same implementa-
tion in [95], which uses progressive sampling to estimate range
queries and shows a very promising accuracy.

KDE-FB [29] represents the performance of modeling data dis-
tribution with kernel density models. It improves naive KDE by
optimizing the bandwidth with query feedback. We sample 1.5%
tuples from each dataset (max to 150K) and use 1K queries to
train the model.

4.2 Are Learned Methods More Accurate?

We first want to understand the learned methods’ effort on accu-
racy improvement, comparing with traditional methods. We test all
the methods using 10K queries on each dataset. Table 4 shows the
g-error comparison result. Bold values in the “Traditional Methods”
section denotes the minimum q-error that traditional methods can

1644

reach, while in the “Learned Methods” section it highlights the
learned methods that can achieve a smaller (or equal) g-error than
the best traditional method. The last row summaries the compari-
son by using “win” to denote learned methods beating traditional
methods, and “lose” means the opposite.

Overall, learned methods are more accurate than traditional
methods in almost all the scenarios. The best learned method can
beat the best traditional method up to 14X on max q-error. The
improvement over the three real database systems is particularly
impressive. For example, they achieve 28X, 51X, 938X, and 1758%
better max g-error on Census, Forest, Power and DMV, respectively.
Even in the only exception that learned methods lose (50th on
Forest), they can still achieve very similar performance to the best
traditional result.

To see how the predicates affect the accuracy, we group the test
queries based on the number of predicates and plot the g-error
distribution of each group on Census dataset. Figure 4 shows the re-
sult. “Best Learned” (or “Best Traditional”) represents the minimum
g-error that learned (or traditional) methods can achieve on each
percentile (max, 75th, median, 25th, min) value in the boxplot. We
can see that the performance degrades when the number of predi-
cates increases for both methods. It is because queries with more
predicates tend to result in lower selectivity and the correlation be-
tween attributes tend to be more complex. In addition, within each
group, Best Learned always outperforms Best Traditional, which
further demonstrates the superiority of learned methods over tra-
ditional methods. We also divide the queries based on the operator
type (equality or range) and have the same observation that Best
Learned outperforms Best Traditional in both groups.

Among all learned methods, Naru is the most robust and accurate
one. It basically has the best g-error across all scenarios and keeps
its max g-error within 200. As for query-driven methods, LW-XGB
can achieve the smallest g-error in most situations except for max
g-error, in which it cannot beat MSCN. We find that the queries
which have large errors on LW-XGB and LW-NN usually follow
the same pattern: the selectivity on each single predicate is large
while the conjunctive of multiple such predicates is very small. This
pattern cannot be well captured by the CE features (AVI, MinSel,
EBO) adopted LW-XGB/NN. In comparison, MSCN can handle this
situation better which may be due to the sample used in its input.

We observe that the same algorithm performs quite differently
on different datasets in terms of max g-error. But for the other error
metrics like median, the performance is consistent across datasets.
This is because max g-error can be easily affected by a few queries.
Most methods (e.g., DeepDB, LW-XGB/NN) tend to have bigger
max error on larger dataset due to the increasing range of possible
cardinality values (number of tuples in total). On the other hand,
Naru shows very impressive max q-error on the largest DMV than
other datasets. It is because Naru models all columns as discrete
values and learns the embedding representation of each value. Since
DMV has the smallest domain size (smaller number of discrete
values) and also the biggest model budget (larger embedding size),
Naru can learn a better representation. MSCN maintains its max
error in the same magnitude on all datasets using a random sample,
which also leads to the same observation in Sample-A.

4.3 What Is the Cost For High Accuracy?

Since learned methods can beat the cardinality estimators used in
real database systems by a large margin, can we just directly deploy
them? In this section, we examine the cost of these highly accurate

Table 4: Estimation errors on four real-world datasets.

Estimator Census Forest Power DMV

50th 95th 99th Max 50th 95th 99th Max 50th 95th 99th Max 50th 95th 99th Max

Traditional Methods
Postgres 140 186 580 1635 1.21 17.0 71.0 9374 1.06 15.0 235 2-10° 1.19 78.0 3255 1-10°
MySQL 140 19.2 63.0 1617 1.20 48.0 262 7786 1.09 26.0 2481 2-10° 1.40 1494 3-10% 4.10°
DBMS-A 4.16 122 307 2246 344 363 1179 4-10* 1.06 8.08 69.2 2-10° 1.46 23.0 185 3-10%
Sample—A 1.16 31.0 90.0 389 1.04 170 67.0 416 1.01 1.22 8.00 280 1.01 1.42 19.0 231
Sample—B 1.16 11.0 340 1839 1.04 9.83 38.0 9136 1.01 1.25 8.00 2-10° 1.01 1.43 10.0 3.104
MHIST 4.25 138 384 1673 3.83 66.5 288 2-10% 4.46 184 771 1-10° 1.58 13.8 90.8 3.104
QuickSel 3.02 209 955 6523 138 150 142 7814 3.13 248 1-10* 4-10° 126 1-10° 4-10° 4-10°
Bayes 1.12 3.50 8.00 303 1.13 7.00 29.0 1218 1.03 240 15.0 3-10* 1.03 1.85 12.9 1-10°
KDE-FB 1.18 23.0 750 293 1.04 5.00 17.0 165 1.01 1.25 9.00 254 1.01 1.50 36.0 283
Learned Methods

MSCN 1.38 7.22 155 88.0 1.14 7.62 20.6 377 1.01 2.00 9.91 199 1.02 5.30 25.0 351
LW-XGB 1.16 3.00 6.00 594 1.10 3.00 7.00 220 1.02 172 5.04 5850 1.00 1.68 6.22 3.104
LW-NN 1.17 3.00 6.00 829 1.13 3.10 7.00 1370 1.06 1.88 4.89 4-10% 116 3.29 22.1 3.104
Naru 1.09 250 4.00 57.0 1.06 3.30 9.00 153 1.01 1.14 1.96 161 1.01 1.09 1.35 16.0
DeepDB 1.11 400 850 59.0 1.06 5.00 14.0 1293 1.00 1.30 2.40 1568 1.02 1.86 5.88 5086
Lvs. T win win win win lose win win win win win win win win win win win

10?

Estimator
[Best Learned
[0 Best Traditional

Q-Error

10°
2

Ly

Predicates

3

Figure 4: Q-Error comparison between the best learned and
traditional method by varying # of predicates on Census.

learned methods. We compare learned methods with database sys-
tems in terms of training time and inference time to see whether
they can reach the level of DBMS products. Figure 5 shows the
comparison result.

Training Time. For learned methods, we record the time used
to train the models reported in Table 4. For database systems, we
record the time to run the statistics collection commands.
Database systems can finish collecting statistics in seconds on
all datasets, while learned methods generally need minutes or even
hours, which depends on the underlying machine learning model.
LW-XGB, which builds on gradient boosted tree, is the fastest
learned method. It can be as fast as some DBMS when using fewer
trees like in Census and Power dataset. DeepDB is the second
fastest, which needs a few minutes to build the SPN model, which
also affected by the input sample size and stop conditions. Meth-
ods adopt neural networks in general need longer time. Since we
use the same epochs on all datasets, Naru’s training time highly
depends on the data size and platform. With GPU, it only needs 1
minute on Census but takes more than 4 hours on DMV, and this
time would be 5% to 15X slower on CPU. GPU acceleration also
impacts LW-NN, which takes around 30 minutes to finish training
on all datasets but the time can be up to 20x longer on CPU. On
the other hand, MSCN exhibits similar training time on the two
devices, and GPU is even 3.5X slower than CPU on small datasets.
It is because MSCN needs to handle the conditional workflow for
minimizing its loss (mean g-error), which becomes slower on GPU
and the impact becomes more obvious when the model is smaller.
There is a tradeoff between training time and model accuracy.
Neural network methods (Naru, MSCN and LW-NN) trained in an
iterative fashion would produce larger error with fewer training
iterations. For all these models, we adopt the same epochs reported

1645

in the original paper on all datasets, although some models can
achieve similar performance with much fewer iterations. For exam-
ple, using 80% less time, we can train a Naru model on DMV dataset
with only slightly performance degrade. However, even if we only
run 1 epoch on GPU, it will still be much slower than database
systems. We will further explore this trade-off in Section 5.3.

Inference Time. We compute the average inference time of the
10K test queries by issuing the queries one by one. Figure 5 shows
the result. For database systems, we approximate the time by the
latency they return execution plan (without executing it), which
should be longer than the real cardinality estimation time due to
other overheads such as parsing and binding. Despite of that, all
three DBMSs can finish the whole process in 1 or 2 milliseconds. In-
ference time of learned methods depends on the underlying model.
Query-driven methods (MSCN and LW-XGB/NN) are very com-
petitive and can achieve similar or better latency than DBMS (but
notice that DBMS’s result includes other overheads). It is because
they adopt general regression models that directly model the query
space and also has been well optimized in terms of implementation.
On the other hand, the remaining methods adopt more specialized
models and are much slower. SPN model in DeepDB needs around
25ms on three larger datasets and takes an average of 5ms on Cen-
sus. Naru’s inference procedure includes a progressive sampling
mechanism, which needs to run the model thousand of times in
order to get the accurate result. Its total time is sensitive to the
running device, which needs 5ms to 15ms on GPU, and CPU can
be up to 20X slower.

The cardinality estimator could be invoked many times dur-
ing query optimization. Long inference latency can be a blocking
issue of bring these accurate learned estimators like Naru and
DeepDB into production, especially for OLTP applications with
short-running queries. In addition, shortening the inference time
of these methods is not a trivial task. Despite the featurization,
the bottlenecks of learned methods mostly come from the under-
lining models, i.e. NN, SPN, XGB, MSCN. To speed up a model’s
inference time may require techniques, such as model compres-
sion/distillation. One exception is Naru, whose bottleneck is, instead
of Auto-regressive Model, the dependency of the selectivity com-
putation for each attribute in the progressive sampling procedure,
which needs to be done sequentially.

Census (4.8MB) Forest (44.3MB)

102 o)
5} @ % Postgres
10t 8) & MysQL
I * * % DBMS-A
E 10° o (=] a8 E\A:‘ @ Naru
£ % v A @ Naru (GPU)
b Power (110.8MB) DMV (972.8MB) @ MSCN
I © @ MSCN (GPU)
g 10) A LW-NN
I & ¢ o A LW-NN (GPU)
o V LW-XGB
100 * * < DeepDB
ol Py ¢ " A oa

102 1072 10° 102

Training Time (min)

1072 10°
Figure 5: Training and inference time comparison between
learned methods and real database system (MSCN’s CPU and
GPU results on DMV are overlapped).

Hyper-parameter Tuning. Hyper-parameter tuning is another
cost for learned methods. The learned models shown in Table 4
represent the models with the best hyper-parameters. However,
without hyper-parameter tuning, learned models may perform very
badly. In our experiment, we found the ratio between the largest
and the smallest max g-error among models with different hyper-
parameters for the same method can be up to 10°.

While essential for high accuracy, hyper-parameter tuning is a
highly expensive process since it needs to train multiple models in
order to find the best hyper-parameters. For example, as shown in
Figure 5, Naru spends more than 4 hours in training a single model
on DMV with GPU. If five models are trained, then Naru needs to
spend 20+ hours (almost a day) on hyper-parameter tuning.

4.4 Main Findings

Our main findings of this section are summarized as follows:

e In our experiment, new learned estimators can deliver more ac-
curate prediction than traditional methods in general and among
learned methods, Naru shows the most robust performance.

In terms of training time, new learned methods can be slower
than DBMS products in magnitudes except for LW-XGB.

New learned estimators that based on regression models (MSCN
and LW-XGB/NN) can be competitive to database systems in
inference time, while methods that model the joint distribution
directly (Naru and DeepDB) requires much longer time.

GPU can speed up the training and inference time of some of the
new learned estimators, however it cannot make them as quick
as DBMS products and sometimes introduce overhead.
Hyper-parameter tuning is an extra cost which cannot be ignored
for adopting neural network based estimators.

5 ARE LEARNED METHODS READY FOR
DYNAMIC ENVIRONMENTS?

Data updates in databases occur frequently, leading to a “dynamic”
environment for cardinality estimators. In this section, we aim to
answer a new question: Are learned methods ready for dynamic
environments? We want to understand the gap of adopting recent
learned methods in real systems. We first discuss how learned
methods perform against DBMSs in dynamic environments, then
explore the trade-off between the number of updating epochs and
accuracy, and finally investigate how much GPU can help.

5.1 Setup

Dynamic Environment. In a dynamic environment, both model
accuracy and updating time matter. Consider a time range [0, T].
Suppose that there are n queries uniformly distributed in this time

1646

t, =75 mins

07 T » T =100 mins
Start updating Finish updating
Naru |
b AN
Y
75% queries 25% queries

Figure 6: An illustration of a dynamic environment.

range. Suppose that given a trained initial model, the model update
starts at timestamp 0 and finishes at timestamp t,, (t,, < T). For the
first n - tT“ queries, their cardinalities will be estimated using the

stale model. For the remaining n - (1 — tT“) queries, the updated
model will be used.

Figure 6 shows an example. Suppose T = 100 mins and Naru
spends t;, = 75 mins updating its model. Then, Naru needs to esti-
mate the cardinalities for 75% (25%) of the queries using the stale
(updated) model. Since many queries will be handled by the (inac-
curate) stale model, although Naru performs the best in the static
environment, this may not be the case in this dynamic environment.

Dataset & Workload & Metric We use the same four real-world
datasets as Section 4. We append 20% new data to the original
dataset and apply our workload generation method to the updated
data to general 10K test queries. That is, the testing workload con-
tains 10K queries. And these queries will be uniformly distributed
in [0, T]. Here, T is a parameter in our dynamic environment. Intu-
itively, it represents how “frequent” the data is being updated. For
example, if the data is periodically updated every 100 mins, then
we can set T = 100 mins. We report the 99th percentile g-error of
the 10K queries. It is worth noting that we have shown a variety
of error metrics (50%, 95%, 99%, and max errors) in Table 4. Based
on the results of Table 4, we found that learned methods improve
more on the larger errors (99% and max), compared to traditional
methods. Since max error is sensitive to outliers, we chose 99%
error. To further mitigate the impact of outliers, in our experiment
setting, we were using a large number of queries (10,000 queries)
for testing. It means that 99% error is the 100th largest error, thus
it was not dominated by a few outlier queries.

Data Update. We ensure that the appended 20% new data has
different correlation characteristics from the original dataset. Oth-
erwise, the stale model may still perform well and there is no need
to update the model. To achieve this, we create a copy of the origi-
nal dataset and sort each column individually in ascending order,
which leads to the maximum Spearman’s rank correlation between
every pair of columns. We randomly pick up 20% of the tuples from
this copied dataset and append them to the original dataset.

Model Update. The initial models we use are the same as Section 4,
which are tuned towards a better accuracy. We follow the original
papers of the learned methods to update their models unless stated
otherwise. Naru and DeepDB are trained on data. As described
in their papers, Naru is updated by one epoch, while DeepDB is
updated by inserting a small sample (1%) of the appended data
to its tree model. MSCN and LW-XGB/NN use query results as
training data. Since the updating procedure is not discussed in the
original MSCN paper, we adopt LW-XGB/NN’s updating procedure
for MSCN. After generating a training workload, we use a sample
(5% of the original datasets) to update the query label. LW-XGB and
LW-NN originally use 2K and 16K queries for updating accordingly.
We assign 10K queries for MSCN as a fair size of training data.
Note that the updating time is different from the training time
presented in Figure 5. To update a model quickly, the updating
time involves fewer epochs. Also, for query driven methods, they

Census Forest

99th Q-error

Power DMV
Methods:

Postgres

MySQL
DBMS-A
DeepDB
Naru
LW-XGB
MSCN
XEXXXX XX | XXXXX XXX | XXX | X | XXX XX | LW-NN
3 30 300 0.1 1 50 1 10 100 5 50 500
T (sec) T (min) T (min) T (min)
Figure 7: DBMSs vs learned methods under different dynamic environments on four datasets.
. C , T=10 F t, T=100 mi
need to add the query results’ updating time because this is a major ensus mne ores e
difference between data-driven and query-driven learned methods. 5 10° ‘
b 102 Dynamic
o Stale
s 10? Updated
[«
o

5.2 Which Method Performs the Best in
Dynamic Environments?

In this experiment, we test 5 learned methods against 3 DBMSs
on CPU. We vary T for each dataset to represent different update
frequencies: high, medium, low. Note that our four datasets are
different in size, so T is set differently for each dataset. The results
are shown in Figure 7. If a model cannot finish updating within T,
we will put “x” in the figure.

We first compare DBMSs with learned methods. We can see that
DBMSs have more stable performance than learned methods by
varying T. The reason is that DBMSs have very short updating time
and almost all the queries are run on their updated statistics. We also
observe that many learned methods cannot catch up with fast data
updates. Even if they can, they do not always outperform DBMSs.
For example, when T = 50 mins on DMV, DBMS-A outperforms
DeepDB by about 100X since the updated DeepDB model cannot
capture correlation change well.

We then compare different learned methods. Overall, LW-XGB
can perform better or at least comparable with others in most cases.
MSCN and LW-NN do not perform well since they need longer up-
dating time and the stale models process too many queries. DeepDB
usually has a very short updating time. However, its updated model
cannot capture the correlation change well, thus it does not outper-
form LW-XGB/NN in most cases. Recall that Naru has a very good
accuracy when there is no update. In dynamic environments, how-
ever, Naru does not outperform LW-XGB when update frequencies
are high or medium. Naru has a similar performance with DBMSs
on Census and Forest. This is because Naru uses 1 epoch to update
its model, which is not enough to have good accuracy for Census
and Forest. For DMV, we have the same observation as [18]. Naru
performs well on DMV within 1 epoch. We will discuss this trade-off
between updating epochs and accuracy in the next subsection.

In terms of updating time, there is no all-time winner on differ-
ent datasets. For example, on Census, DeepDB (data driven) is the
fastest method, whereas on DMV, LW-XGB (query driven) is the
fastest one, although these two methods are the top-2 fastest meth-
ods in this experiment. The reason behind this is that the updating
time of data driven methods is usually proportional to the size of
the data. Intuitively, data driven methods compress the information
of the data to the models to represent the joint distribution. When
the size of the data gets larger, the complexity of the model should
be higher and harder to train. In contrast, query driven methods
have the training overhead of generating query labels. However,
given a larger dataset and a fixed number of training queries, the
complexity of their models do not necessarily become higher. In
practice, the choice of using data or query driven methods is really
subjective to the applications.

We can observe that each method performs differently on differ-
ent datasets. One major reason is that in the dynamic environment,
there is a trade-off between updating time and estimation accu-
racy. If a method needs a longer updating time, more queries in

1647

101+
1

,_
<

0 15 20

epochs

0 15 20 5

epochs

5

N

Figure 8: Trade-off (Naru): epochs vs accuracy.

the workload will be estimated by the stale model, thus the overall
estimation accuracy will degrade.

In addition, there are some other reasons that could cause the
degradation of accuracy for each individual method. For Naru, one
epoch of updating might be insufficient to learn a good updated
model. For MSCN, LW-XGB and LW-NN, the ground truth labels
are generated from a sample which might introduce errors. For
DeepDB, without restructuring the tree, the underlying correlation
is assumed unchanged. This assumption might hurt the perfor-
mance when correlation change happens.

5.3 What Is the Trade-off Between Updating
Time and Accuracy?

We explore the trade-off between the number of updating epochs
and accuracy for learned methods. Due to the space limit, we only
show Naru’s results on Census and Forest to illustrate this point.

We set T = 10 mins on Census and T = 100 mins on Forest to
ensure Naru with different epochs can finish updating within T.
Figure 8 shows our results. “Stale” represents the stale model’s per-
formance on 10K queries. “Updated” represents the updated model’s
performance. “Dynamic” represents the Naru’s performance (the
stale model first and then the updated model) on 10K queries. We
can see a clear trade-off of Naru on Forest. That is, “Dynamic” first
goes down and then goes up. The reason is that long training time
(epochs) makes the model update slow. It leaves more queries exe-
cuted using the stale mode. Even though more epochs improve the
updated model’s performance, it hurts the overall performance.

In this Naru experiment, we show the trade-off between updating
time and accuracy by varying the number of epochs. There are
other ways to achieve this trade-off. For example, for query-driven
methods, they need to update the answers to a collection of queries.
Using sampling is a nice way to reduce the updating, but it will
lead to approximate answers, thus hurting the accuracy. It is an
interesting research direction to study how to balance the trade-off
for learned methods.

5.4 How Much Does GPU Help?

We explore how much GPU can help Naru and LW-NN. We set T =
100 mins on Forest and T = 500 mins on DMV to ensure they can
finish updating within T. The results are shown in Figure 9.

We can see that with the help of GPU, LW-NN is improved by
around 10X and 2X on Forest and DMV, respectively. There are two
reasons for these improvements: (1) LW-NN’s training time can be
improved by up to 20x with GPU; (2) A well-trained LW-NN (500
epochs) has a good accuracy. For Naru, it is improved by 2x on
DMV. However, it does not get improved on Forest. This is because

