On the Efficiency of K-Means Clustering: Evaluation,
Optimization, and Algorithm Selection

Sheng Wang Yuan Sun Zhifeng Bao
New York University RMIT University RMIT University
swang@nyu.edu yuan.sun@rmit.edu.au zhifeng.bao@rmit.edu.au
ABSTRACT - k=10
This paper presents a thorough evaluation of the existing methods 0 il Full
that accelerate Lloyd’s algorithm for fast k-means clustering. To gzo 19'216'816, 9
. . c . £ Regroup e
do so, we analyze the pruning mechanisms of existing methods, S 15 i
and summarize their common pipeline into a unified evaluation £ Yinyang e
framework UniK. UniK embraces a class of well-known methods and 2 Index mm—
enables a fine-grained performance breakdown. Within UniK, we 8 s Distance ——
0.1

thoroughly evaluate the pros and cons of existing methods using
multiple performance metrics on a number of datasets. Furthermore,
we derive an optimized algorithm over Unik, which effectively hy-
bridizes multiple existing methods for more aggressive pruning. To
take this further, we investigate whether the most efficient method
for a given clustering task can be automatically selected by machine
learning, to benefit practitioners and researchers.

PVLDB Reference Format:

Sheng Wang, Yuan Sun, and Zhifeng Bao. On the Efficiency of K-Means
Clustering: Evaluation, Optimization, and Algorithm Selection. PVLDB,
14(2): 163 - 175, 2021.

doi:10.14778/3425879.3425887

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/tgbnhy/fast-kmeans.

1 INTRODUCTION

As one of the most widely-used clustering algorithms, k-means aims
to partition a set of n points into k (k < n) clusters where each
point is assigned to the cluster with the nearest centroid [43, 70].
Answering k-means is NP-hard and Lloyd’s algorithm [48] is a
standard approach. Essentially, it randomly initializes k centroids,
then assigns each point to the cluster with the nearest centroid
and refines each centroid iteratively. In each iteration, it needs to
compute n - k distances in the assignment step and access n data
points in the refinement step. Such intensive computations make
the Lloyd’s algorithm slow, especially in partitioning large datasets.

Accelerating the Lloyd’s algorithm for k-means clustering has
been investigated for more than 20 years since the first work was
published [58]. Most of the existing acceleration methods focus
on how to reduce intensive distance computations, which can be
broadly divided into two categories: 1) the index-based methods
that group and prune points in batch [27, 44, 50, 58], and 2) the

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 2 ISSN 2150-8097.
doi:10.14778/3425879.3425887

163

BigCross (d=57) NYC-Taxi (d=é)
Figure 1: The performances of representative methods,
Regroup, Yinyang, Index and Full (using multiple pruning mech-
anisms) on two clustering datasets, where d is the dimen-
sionality of the dataset. The gray bar (“Distance”) denotes the
time taken by each method to compute distance.

sequential methods that scan each point one by one and utilize
a bound based on triangle inequality to avoid calculating certain
distance [26, 34-38, 40, 41, 46, 53, 59, 61, 71].

1.1 Motivations

Conducting a thorough evaluation of existing k-means algo-
rithms. Whilst a large body of methods have been proposed to
accelerate the Lloyd’s algorithm for k-means clustering, there is
still a lack of thorough evaluation on the efficiency of these meth-
ods. Moreover, there seems to be some misunderstanding on the
performance of certain methods in the literature. For example, the
index-based method [44] was interpreted to be slower compared to
the sequential methods (e.g., Yinyang [35], Regroup [61]) when the
dimensionality of dataset is greater than 20 [35], and hence was
discarded by the machine learning (ML) community in its most
recent studies [35, 53, 61]. However, we show in Figure 1 that the
index-based method is in fact relatively fast and has the poten-
tial to significantly accelerate large-scale clustering when using a
proper data structure. This motivates us to conduct a fair and more
thorough efficiency evaluation on existing methods.

In fact, most existing studies considered reducing the number of
distance computations as the main goal to improve the efficiency
of their methods. However, a method that computes fewer number
of distances does not simply guarantee to have a shorter compu-
tational time. For example in Figure 1, the Full method, which is
armed with multiple pruning techniques, has the least number of
distance computation, but overall is the slowest on the BigCross
dataset. This is because other metrics, such as the number of data
accesses and the time taken to compute a bound for pruning, also
contribute to the computational cost. To identify the key metrics, it
is essential to analyse the pruning mechanisms of existing methods
and extract a unified framework, such that existing methods can
well fit to enable a fine-grained performance breakdown of existing
methods and in turn a more comprehensive evaluation.

https://doi.org/10.14778/3425879.3425887
https://github.com/tgbnhy/fast-kmeans
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3425879.3425887

Selecting the best k-means algorithm for a given task. Fast
k-means clustering for an arbitrary dataset has attracted much at-
tention [49]. Unfortunately, there is no single algorithm that is
expected to be the “fastest” for clustering all datasets, which is
also in line with the “no free lunch" theorem in optimization [69].
That calls for an effective approach that is able to select the best
algorithm for a given clustering task. However, existing selection
criteria are still based on simple rules, e.g., choosing the index-based
method when the dimensionality of dataset is less than 20. Given
the complex nature of clustering, they are unlikely to work well in
practice. Given the large amount of data collected from our evalua-
tions, it is natural to apply ML to learn an optimal mapping from a
clustering task to the best performing algorithm. Note that the idea
of using ML for algorithm selection [52] has been explored before,
e.g., meta-learning [66] and auto-tuning in database management
[47, 65]. However, as we will see shortly, it is nontrivial to apply this
technique to k-means clustering because problem-specific features
have to be carefully designed to describe datasets to be clustered.

1.2 Our Contributions

In this paper, we design a unified experimental framework to evalu-
ate various existing k-means clustering methods, and design an ML
approach to automatically select the best method for a given clus-
tering task. More specifically, we make the following contributions:

o We review the index-based and sequential methods and describe
their pruning mechanisms in Sections 3 and 4.

Inspired by the common pruning pipeline of existing methods,
we design a unified evaluation framework UnikK in Section 5, that
enables us to compare existing methods more fairly and com-
prehensively. Some key insights obtained are: 1) the index-based
method can be very fast even for high-dimensional data, when
equipped with a proper data structure such as Ball-tree [64]; and
2) no single method can always perform the best across all cases.
Detailed evaluations are in Section 7.2.

The above further motivates us to design an adaptive setting for
our UniK, which applies the bound-based pruning from sequential
methods to assign points in batch without scanning all centroids.
In Section 7.2.3, we evaluate our adaptive UniK and show that
it outperforms the existing k-means algorithms when tested on
various real-world datasets.

To take it further, we adopt ML to automatically select the best
method for a given clustering task in Section 6. This is achieved
by learning from our evaluation records which contain the per-
formance of all the methods on various datasets. An evaluation
on multiple learning models is conducted in Section 7.3.

2 PRELIMINARIES

Given a dataset D = {x1, x2, - - - , x } of n points, and each point has
d dimensions, k-means aims to partition D into k mutually exclusive
subsets S = {51, S2, - - - , St } to minimize the Sum of Squared Error,

k
IR

Jj=1x€S;

1

arg min
S

where ¢j = |SL| Dixe S; % namely the centroid, is the mean of points
J
in Sj.

164

2.1 Lloyd’s Algorithm

With the initialized k centroids, the Lloyd’s algorithm for k-means
[48] conducts the assignment and refinement in an iterative manner
until all the centroids do not change.

Initialization. It randomly chooses k points in D as the initial
centroids. Normally, k-means++ [20] is the default initialization
method which aims to make k centroids far away from each other.

Assignment. It needs to assign each of the n data points to a cluster
with the nearest centroid, and therefore requires n - k number of
distance computations.

Refinement. It needs to read every data point in a cluster to update
the centroid. Hence n data accesses are conducted.

ExampLE 1. Figure 3 shows two centroids c1, c2 (red) and five data
points (black) bounded by a node N. The assignment step in Lloyd’s
algorithm computes the distance from every point x; to every centroid
¢j to determine the nearest cluster.!

2.2 Acceleration

Given a dataset and k, there are four types of acceleration for fast
k-means with the Lloyd’s algorithm:

e Hardware Acceleration. Parallelization [73], GPU [72], and
cache [23] can accelerate it at physical level.

e Approximate Acceleration. It aims to find approximate clus-
tering results within a bounded error w.r.t. the exact result of the
Lloyd’s algorithm, by developing techniques like sampling [19]
and mini-batch [54].

o Fast Convergence. It uses efficient initialization techniques
such as k-means++ [20, 22]. As Celebi et al. [28] have done an
evaluation on this, it will not be our focus.

e Exact Lloyd’s Algorithm. It focuses on reducing the number
of distance computations in the Lloyd’s algorithm, and can be
integrated with the above methods to reduce their running time.

Clustering has been evaluated from different perspectives. For
example, Muller et al. [51] evaluated clustering in subspace projec-
tions of high-dimensional data; Hassanzadeh et al. [42] proposed a
framework to evaluate clustering for duplicate detection. In con-
trast, this is the first work that evaluates all accelerating tricks
to reduce distance computations in the exact Lloyd’s algorithm.
Figure 2 summarizes a timeline of fast Lloyd’s algorithms.

3 INDEX-BASED ALGORITHMS

By assigning points to the nearest clusters in batch, index-based
algorithms have been proposed to support fast k-means, such as
kd-tree [44, 58] and Ball-tree [50]. Intuitively, if an index node that
covers m points is assigned to a cluster directly, then m - k number
of distance computations and m data accesses can be reduced.

3.1 Typical Indexes

kd-tree. Indexing the dataset using kd-tree [24] can accelerate k-
means with batch-pruning for low dimensional data [44, 58], where
its intuition is presented in Figure 3(a): node N locates in the hy-
perplane H of ¢; completely, thus all the points in N are closer

1By default, index i and j refer to data and cluster index respectively in the rest of this paper.

165

166

167

168

169

170

171

172

173

174

175

