
Seagull: An Infrastructure for Load Prediction and
Optimized Resource Allocation

Olga Poppe, Tayo Amuneke, Dalitso Banda, Aritra De, Ari Green, Manon Knoertzer, Ehi
Nosakhare, Karthik Rajendran, Deepak Shankargouda, Meina Wang, Alan Au, Carlo Curino, Qun
Guo, Alekh Jindal, Ajay Kalhan, Morgan Oslake, Sonia Parchani, Vijay Ramani, Raj Sellappan,

Saikat Sen, Sheetal Shrotri, Soundararajan Srinivasan, Ping Xia, Shize Xu, Alicia Yang, Yiwen Zhu
Microsoft, One Microsoft Way, Redmond, WA 98052

firstname.lastname@microsoft.com

ABSTRACT

Microsoft Azure is dedicated to guarantee high quality of service
to its customers, in particular, during periods of high customer
activity, while controlling cost. We employ a Data Science (DS)
driven solution to predict user load and leverage these predictions
to optimize resource allocation. To this end, we built the Seagull
infrastructure that processes per-server telemetry, validates the
data, trains and deploys ML models. The models are used to pre-
dict customer load per server (24h into the future), and optimize
service operations. Seagull continually re-evaluates accuracy of
predictions, fallback to previously known good models and triggers
alerts as appropriate. We deployed this infrastructure in produc-
tion for PostgreSQL and MySQL servers across all Azure regions,
and applied it to the problem of scheduling server backups during
low-load time. This minimizes interference with user-induced load
and improves customer experience.

PVLDB Reference Format:

Poppe et al. Seagull: An Infrastructure for Load Prediction and Optimized
Resource Allocation. PVLDB, 14(2): 154 - 162, 2021.
doi:10.14778/3425879.3425886

1 INTRODUCTION

Microsoft Azure, Google Cloud Platform, Amazon Web Services,
and Rackspace Cloud Servers are the leading cloud service providers
that aim to guarantee high quality of service to their customers,
while controlling operating costs [27, 38]. Achieving these conflict-
ing goals manually is labor-intensive, time-consuming, error-prone,
neither scalable, nor durable. Thus, these providers shift towards
automatically managed services. To this end, Data Science (DS)
techniques are deployed to predict resource demand and leverage
these predictions to optimize resource allocation [14].

Motivation. Backups of databases are currently scheduled by
an automated workflow that does not take typical customer activity
patterns into account. Thus, backups often collide with peaks of
customer activity resulting in inevitable competition for resources
and poor quality of service during backup windows. To solve this
problem currently, an engineer plots the customer load per database

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 2 ISSN 2150-8097.
doi:10.14778/3425879.3425886

per week and manually sets the backup window during low cus-
tomer activity. However, this solution is neither scalable to millions
of customers, nor durable since customer activity varies over time.
More recently, customers can select a backup window themselves.
However, they may not know the best time to run a backup. Instead
of these manual solutions, DS techniques could be deployed to pre-
dict customer load. These predictions could then be leveraged to
schedule backups during expected low customer activity.

An infrastructure that analyses historical load per system com-
ponent, predicts its future load, and leverages these predictions to
optimize resource allocation is valuable for many products and use
cases. Over the last two years we have built such an infrastructure,
called Seagull, and applied it to two scenarios: (1) Backup schedul-
ing of PostgreSQL andMySQL servers and (2) Preemptive auto-scale
of SQL databases. These scenarios required us to battle-test the in-
frastructure across all Azure regions and gave us confidence on the
high impact and generality of the Seagull approach.

Challenges. While building the Seagull infrastructure, we tack-
led the following open challenges.

• Design of an end-to-end infrastructure that predicts resource
utilization and leverages these predictions to optimize resource
allocation. This infrastructure must be: (a) Reusable for various
scenarios and (b) Scalable to millions of customers worldwide.

• Implementation and deployment of this infrastructure to produc-
tion to predict customer activity and schedule backups such that
they do not interfere with customer load.

• Accurate yet efficient customer low load prediction for optimized
backup scheduling. This challenge includes choice of an ML model
that finds the middle ground between accuracy and scalability. In
addition, prediction accuracy must be redefined to focus on pre-
dicting the lowest valley in customer CPU load that is long enough
to fit a full backup of a server of its backup day. Accurate load
prediction for the whole day is less critical for backup scheduling.

State-of-the-Art Approaches. Most of existing systems for
ML lack easy integration with Azure compute [8, 11, 15, 16, 23, 28].
Thus, we built our solution based on Azure ML [4].

While time series forecast in general and load prediction in
particular are well studied topics, none of the state-of-the-art ap-
proaches focused on predicting the lowest valley in customer CPU
load for optimized backup scheduling. Instead, existing approaches
focus on, for example, idle time detection for predictive resource
provisioning [26, 38], VM workload prediction for dynamic VM
allocation [13, 14], and demand-driven auto-scale [18–22, 35, 36].
Thus, these approaches do not tackle the unique challenges of low

154

https://doi.org/10.14778/3425879.3425886
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3425879.3425886


Figure 1: Seagull infrastructure

load prediction for optimized backup scheduling described above. In
particular, they neither define the accuracy of low load prediction,
nor compare several ML models with respect to low load prediction.

Proposed Solution. We built the Seagull infrastructure (Fig-
ure 1) that deploys DS techniques to predict resource utilization and
leverages these predictions to optimize resource allocation. This
infrastructure consumes prior load, validates this data, extracts fea-
tures, trains an ML model, deploys this model to a REST endpoint,
tracks the versions of all deployed models, predicts future load, and
evaluates the accuracy of these predictions. We deployed Seagull
to production worldwide to schedule backups of PostgreSQL and
MySQL servers during time intervals of expected low customer
activity. We achieved several hundred hours of improved customer
experience across all regions per month.

Contributions. Seagull features the following innovations.
•We designed and implemented an end-to-end Seagull infras-

tructure and deployed it in all Azure regions to optimize backup
scheduling of PostgreSQL and MySQL servers. We describe our
design principles and lessons learned. We present our optimization
techniques that reduce runtime and ensure scalability. We explain
how to reuse the infrastructure for other scenarios. We evaluate the
impact of the Seagull infrastructure on both improving customer
experience and reducing engineering effort.

• We conducted comprehensive analysis to classify the servers
into homogeneous groups based on their typical customer activity
patterns. Majority of servers are either stable or follow a daily or a
weekly pattern. Thus, the load per server on previous (equivalent)
day is a strong predictor of the load per server today. This heuris-
tic, called persistent forecast, correctly predicted the lowest load
window per server on its backup day in 96% of cases.

• We defined the accuracy of low load window prediction as
the combination of two metrics. One, the lowest load window is
chosen correctly if there is no other window that is long enough to
fit a full backup and has significantly lower average user CPU load.
Two, the load during a lowest load window is predicted accurately
if majority of predicted data points are within a tight acceptable
error bound of their respective true data points.

• We applied several ML models commonly used for time series
prediction (NimbusML [9], GluonTS [7], and Prophet [10]) to predict
low load of unstable servers that do not follow a pattern that can be

recognized by persistent forecast. We compared these models with
respect to accuracy and scalability on real production data during
one month in four Azure regions. Surprisingly, the accuracy of ML
models is not significantly higher than the accuracy of persistent
forecast. Thus, we deployed persistent forecast based on previous
day to predict low load for all servers.

Outline. We present the Seagull infrastructure in Section 2.
We classify the servers in Section 3. Section 4 defines low load pre-
diction accuracy. Section 5 compares the ML models. We evaluate
Seagull in Sections 6, summarize lessons learned in Section 7 and,
review related work in Section 8. Section 9 concludes the paper.

2 SEAGULL INFRASTRUCTURE

In this section, we summarize our design principles, give an overview
of the Seagull infrastructure, and describe how to reuse it.

2.1 Design Principles

Modularity. With the goal to reuse the Seagull infrastructure
for various products and scenarios at Microsoft, we had to design
it in a modular way. At the same time, we were determined to
solve a specific task of optimized backup scheduling. To achieve
both goals, we grouped the use-case-agnostic and use-case-specific
components together (Figure 1). The use-case-agnostic components
can be reused in several scenarios (Section 2.4). For example, any
ML model can be plugged in. Nevertheless, the use-case-agnostic
components often have to be adjusted to a particular data set, prod-
uct, and scenario. For example, if the load of most servers is stable
or conforms to a business pattern (Section 3), a simple heuristic
can be used to predict the load. Complex ML models may not be
needed (Section 5). However, the usage patterns may change over
time. This observation justifies the need for a robust infrastructure
that automatically detects these changes, notifies about them, and
allows to easily replace the model.

Scalability. With the goal to deploy the Seagull infrastructure
in all Azure regions, we had to ensure that it scales well for pro-
duction data. Thus, we broke the input data down by region and
ran a DS pipeline per region. Since the size of regions varies, the
size of input files ranges from hundreds of kilobytes to a few gi-
gabytes. Consequently, the runtime of a pipeline ranges from few
minutes to few hours (Figures 7(a) and 8). We used Dask [6] to run
time-consuming computations in parallel and achieved up to 4X
speed-up compared to single-threaded execution (Figure 8(b)).

The choice of anMLmodel is determined not only by its accuracy
but also by its scalability. For example, ARIMA [2] is computation-
ally intensive since it searches the optimal values of six parameters
to make an accurate load prediction per server. Parameter sharing
among servers caused worsening of accuracy. While inference time
is within a few seconds, fitting may take up to 3 hours per server.
Hence, executing ARIMA in parallel for each server does not make
runtime of ARIMA comparable to other models (Figure 7(a)). Thus,
we excluded ARIMA from further consideration.

2.2 Use-Case-Agnostic Offline Components

The use-case-agnostic components consume the load per system
component (e.g., database, server, VM) and apply ML models to
predict future load of this component.

155



Load Extraction Module is implemented as a recurring query
that extracts relevant data from raw production telemetry and
stores this data in Azure Data Lake Store (ADLS) [3]. These files
are input to the Azure ML pipeline.

For the backup scheduling scenario, we have selected the average
customer CPU load percentage per five minutes as an indicator of
customer activity. Other signals (memory, I/O, number of active
connections, etc.) can be added to improve accuracy. In this paper,
customer CPU load percentage per server is referred to as load per
server for readability. Servers are due for full backup at least once a
week. Thus, the load extraction query runs once a week per region.

Azure ML Pipeline is the core component of the Seagull in-
frastructure. It is built using the functionality of Azure Machine
Learning (AML) [4] that facilitates end-to-end machine learning
life cycle. This pipeline consumes the load, validates it, extracts
features, trains a model, deploys the model, and makes it accessi-
ble through a REST endpoint. The pipeline tracks the versions of
deployed models, performs inference, and evaluates the accuracy
of predictions. Results are stored in Cosmos DB [5], globally dis-
tributed and highly available database service. Based on predicted
load, resource allocation can be optimized in various ways.

In our case, the predictions are input to the backup scheduling
algorithm. A run of the AML pipeline is scheduled once a week
per region since servers are due for full backup at least once a
week. Due to space limitations, we focus on the following five most
interesting modules of the pipeline:

• Data Validation Module. Since data validation is a well-
studied topic [12], we implemented existing rules such as detection
of schema and bound anomalies.

• Feature Extraction Module. Lifespan and typical resource
usage patterns are features that are useful for load prediction. In par-
ticular, we differentiate between short-lived and long-lived servers,
stable and unstable servers, servers that follow a daily or a weekly
pattern and servers that do not conform to such a pattern, pre-
dictable and unpredictable servers in Sections 3 and 4.2. We will
extend this module by other features [32] to improve accuracy.

• Model Training and Inference Modules. While many ML
models can be plugged into the Seagull infrastructure, we com-
pared NimbusML [9], GluonTS [7], and Prophet [10] with respect
to accuracy and scalability. We applied these models to servers that
cannot be accurately predicted by persistent forecast in Section 5.

• Accuracy Evaluation Module. For backup scheduling, accu-
rate load prediction for the whole day per server is less important
than accurate prediction of lowest load window per day and server.
Thus, we tailor prediction accuracy to our use case. We measure if
the lowest load window is chosen correctly and if the load during
this window is predicted accurately in Sections 3.1 and 4.

Application Insights Dashboard [1] provides summarized
view of the pipeline runs to facilitate real-time monitoring and
incident management. Examples of incidents include missing or
invalid input data, errors or exceptions in any step of the pipeline.

2.3 Use-Case-Specific Online Components

The use-case-specific components leverage predicted load to opti-
mize backup scheduling. The backup scheduler runs within Master
Data Service (MDS) runner per day and cluster. The Runner Service

deploys executables which probe their respective services resulting
in measurement of availability and quality of service. The runner
service is deployed in each Azure region.

For those servers that are due for full backups the next day, the
backup scheduling algorithm verifies if these servers were predicted
correctly for the last three weeks. In this way, we verify that the
servers were predictable for several weeks and we do not reschedule
a backup at a worse time based on predictions we are not confident
in. Three weeks of history is a compromise between prediction
confidence and relevance of this rule to the majority of servers
(58% of servers survive beyond three weeks, Figure 3). For such
predictable servers, the algorithm extracts the predicted load for
the next day and selects a time window during which customer
activity is expected to be the lowest. The algorithm stores the
start time of this window as a service fabric property of respective
PostgreSQL and MySQL database instances. This property is used
by the backup service to schedule backups. Servers that did not
exist or were unpredictable for the last three weeks are scheduled
for backup at default time.

2.4 Reuse of Seagull for Other Scenarios

So far, we applied the Seagull infrastructure to two different sce-
narios: (1) Backup scheduling of PostgreSQL and MySQL servers
and (2) Preemptive auto-scale of SQL databases. Based on this ex-
perience, we now summarize how to reuse the use-case-agnostic
components of Seagull.

No Changes. All interfaces between the use-case-agnostic com-
ponents, Model Deployment and Tracking are designed indepen-
dently from any scenario and require no changes.

Parameter Updates. Data Ingestion and Validation, storage of
results to CosmosDB, Pipeline Scheduler, Incident Management,
and Application Insights Dashboard are parameterized to facilitate
easy adjustment to a new scenario. For example, to account for
changes of input data, we automatically deduce schema and other
data properties (e.g., range of numeric attribute values) from the
input data. The schema and data properties are stored in a file. After
the file has been verified by a domain expert, it is used to detect
schema and bound anomalies.

Other components require similar parameter updates. For exam-
ple, Data Ingestion requires update of the location of input data in
ADLS and access rights to this data. Also, the schema of CosmosDB
tables, frequency of pipeline runs, and gathered statistics may be
different for other scenarios.

Adjustments. Load Extraction, Feature Extraction, Model Train-
ing, Inference, and Accuracy Evaluation may require non-trivial
customization. For example, other forecast signals (CPU, memory,
disk, I/O, etc.) and features (subscriber identifier, number of active
connections, etc.) may be needed for other scenarios. Accuracy
and scalability of ML models heavily depend on the input data and
scenario (Sections 3 and 5). Accuracy Evaluation may have to be
tailored to the use case requirements (Section 4).

3 POSTGRESQL AND MYSQL SERVERS

In this section, we first define load prediction accuracy metric and
then use this metric to measure if a server has stable load or follows
a daily or a weekly pattern.

156



Figure 2: Acceptable error bound

3.1 Load Prediction Accuracy Metric

While there are several established statistical measures of prediction
error (e.g., mean absolute scaled error and mean normalized root
mean squared error), we found them unintuitive and cumbersome
to use in our case. They produce a number representing prediction
error per server per day. They give no insights into whether the
lowest load window was chosen correctly per server per day nor
whether the load was predicted accurately during this window.
Thus, Definitions 3.2 and 4.2 below define these two metrics.

Definition 3.1. (Acceptable Error Bound, Bucket Ratio Met-

ric) Given predicted and true load for a server 𝑠 during a time
interval 𝑡 , we define the bucket ratio metric for the server 𝑠 and the
interval 𝑡 as the percentage of predicted data points that are within
the acceptable error bound of +10/−5 of their respective true data
points during 𝑡 .

Definition 3.1 specifies an asymmetric error bound that tolerates
up to 10% over-predicted load but only at most 5% under-predicted
load because a slight overestimation of low load periods is less
critical for our use case than a slight underestimation that may
result in interference with high customer load. In Definitions 3.1–
4.3, we plug in constants that were empirically chosen by domain
experts and are now used in production for the backup scheduling
use case. Other constants can be plugged in for other scenarios.

Definition 3.2. (Accurate Load Prediction) Prediction of the
load of a server 𝑠 during a time interval 𝑡 is accurate if the bucket
ratio of the server 𝑠 during the time interval 𝑡 is at least 90%. Oth-
erwise, a prediction is inaccurate.

In Figure 2, we depict predicted load as blue line, true load as
back line, and acceptable error bound as gray area. Intuitively, a
prediction is accurate if 90% of the blue line is in the gray area. Even
though the prediction looks close enough, the bucket ratio is only
75%. Thus, this prediction is inaccurate. This example illustrates
that Definitions 3.1 and 3.2 impose strict constraints on accuracy.

3.2 Server Classification

We classify the servers with respect to typical customer behavior
in Figure 3. The classification provides valuable insights about load
predictability. We will leverage these insights while choosing the
ML model in Section 5. Given a random sample of several tens of

Figure 3: Classification of servers

thousands of servers from four regions during one month in 2019,
Figure 3 summarizes the percentage of servers per class.

Definition 3.3. (Short-Lived Server) A server is called long-lived
if it existed more than three weeks. Otherwise, a server is called
short-lived.

As shown in Figure 3, 58% of servers survive for more than
three weeks creating enough history to make a reliable conclusion
whether they are predictable (Section 4.2). Remaining 42% of servers
are short-lived. We exclude them from further consideration.

Definition 3.4. (Stable Server) A long-lived server is called stable
during a time interval 𝑡 if its load is accurately predicted by its
average load during the time interval 𝑡 (Definition 3.2). Otherwise,
a server is called unstable.

53.5% of servers are long-lived and stable and thus easily pre-
dictable (Figure 3). 4.4% of long-lived unstable servers require a
more detailed analysis. They are further classified into those that
follow a daily or a weekly pattern and those that do not conform
to such a pattern.

Definition 3.5. (Server with Daily Pattern) Given the load of
a server 𝑠 on two consecutive days 𝑑 − 1 and 𝑑 , the server 𝑠 has a
daily pattern on day 𝑑 if its load on day 𝑑 is accurately predicted
by its load on the previous day 𝑑 − 1. A server has a daily pattern
during a time interval 𝑡 if its load conforms to this daily pattern on
each day during the whole time period 𝑡 .

Figure 4 shows an example of a server with a strong daily pattern.
We plot the load on this day in black and on the previous day in
blue. These lines overlap almost perfectly. The bucket ratio is 95%.
Such a precise daily pattern could be the result of an automated
recurring workload.

Definition 3.6. (Server with Weekly Pattern) Given the load
of a server 𝑠 on two consecutive equivalent days of the week 𝑑 − 7
and 𝑑 , the server 𝑠 has a weekly pattern on day 𝑑 if its load on day 𝑑
is accurately predicted by its load on the previous equivalent day of
the week 𝑑 − 7. A server has a weekly pattern during a time interval
𝑡 if it does not have a daily pattern during the time period 𝑡 and its
load conforms to a weekly pattern on each day during the whole
time interval 𝑡 .

Figure 5 shows an example of a server that follows a weekly
pattern. Similarly to previous Sunday (December 1), the load on
this Sunday (December 8) is medium before noon and high after
noon. The bucket ratio is over 90%. In contrast, the load on previous
day (December 7) is low before noon and medium after noon. The

157



Figure 4: Server with daily pattern

Figure 5: Server with weekly pattern

bucket ratio is only 1%. Thus, we conclude that this server follows
a weekly pattern but does not conform to a daily pattern.

0.2% of servers conform to a daily or a weekly pattern and thus
are easy to predict (Figure 3). Even though this percentage is rela-
tively low, hundreds of top-revenue customers fall into this class of
servers and cannot be disregarded.

Summary. Figure 3 illustrates that 53.7% of servers is expected
to be predictable because their load is either stable or conforms to
a pattern. 4.2% of the servers are neither stable nor follow a pattern.
They are likely to be unpredictable. 42.1% are short-lived and thus
excluded. These insights will be used while choosing the ML model
to predict low load per server in Section 5.

4 LOW LOAD PREDICTION ACCURACY

In addition to the load prediction accuracy metric in Section 3.1,
we define the lowest load window metric. Based on these metrics,
we formulate the backup scheduling problem.

4.1 Lowest Load Window Metric

For each server on its backup day, our goal is to predict the lowest
valley in the user load that is long enough to run a full backup
of this server. The time interval of this valley is called the lowest
load window. We measure if this window is chosen correctly and if
the load during this window is predicted accurately. Accurate load
prediction during the whole day is less critical in our case.

Definition 4.1. (Lowest Load (LL) Window) Let 𝑠 be a server
which is due for full backup on day𝑑 . Let 𝑏 be the expected duration

Figure 6: Correctly chosen LL window

of full backup of the server 𝑠 . True LL window for the server 𝑠 on the
day 𝑑 is the time interval of length 𝑏 during which the average true
load of the server 𝑠 on the day 𝑑 is minimal across all other time
intervals of length 𝑏 on the day 𝑑 . Predicted LL window is defined
analogously based on predicted load of the server 𝑠 on day 𝑑 .

Definition 4.2. (Correctly Chosen LLWindow) Let𝑤𝑡 and𝑤𝑝

be the true and predicted LL windows for a server 𝑠 on day 𝑑 . If the
average true load during the predicted LL window𝑤𝑝 is within an
acceptable error bound of the average true load during the true LL
window𝑤𝑡 , then the predicted LL window𝑤𝑝 is chosen correctly.

In Figure 6, the true and predicted LL windows do not overlap.
However, the average true load during true LL window is only
slightly lower than the average true load during predicted LL win-
dow. Thus, the true LL window would not be a significantly better
time interval to run a backup than the predicted LL window. Hence,
we conclude that the predicted LL window is chosen correctly.

4.2 Backup Scheduling Problem Statement

For each server 𝑠 that is due for full backup on day 𝑑 , we aim to:
(1) Correctly choose the LL window on day 𝑑 to schedule a backup
during this LL window on day 𝑑 and (2) Accurately predict the
load during this LL window to move a backup from default backup
day to another day of the week if the load is lower on another day.
These two metrics are orthogonal. Indeed, the true and predicted LL
windows may coincide. However, the true load may be significantly
higher than the predicted load [33]. The opposite case is also possi-
ble. Namely, the load may be predicted accurately during predicted
LL window but the true load during the true LL window may be
much lower than during the predicted LL window [33]. Based on
these observations, we conclude that only both metrics combined
give us reliable insights about low load prediction accuracy.

Definition 4.3. (Predictable Server) A long-lived server is called
predictable if for the last three weeks its LL windows were chosen
correctly and the load during these windows was predicted accu-
rately (Definitions 3.2 and 4.2).

As explained in Section 2, we change backup window for pre-
dictable servers only. Servers that did not exist or were not pre-
dictable for three weeks, default to current backup time that is
chosen independently from customer activity.

158



(a) Training and inference (b) LL windows (c) Load during LL windows (d) Predictable servers

Figure 7: Low load prediction using Persistent Forecast (PF), NimbusML (N), GluonTS (G), and Prophet (P)

5 LOW LOAD PREDICTION

In this section, we describe the ML models commonly used for
time series forecast, choose a model per each class of servers, and
compare the models with respect to their accuracy and scalability.

5.1 ML Models for Time Series Forecast

We now summarize the key ideas of the ML models that we consid-
ered to predict low customer activity.

Persistent Forecast refers to replicating previously seen load
per server as the forecast of the load for this server. We compared
three variations of persistent forecast:

• Previous day takes the load per server on the previous day and
utilizes it as predicted load on the next day.

• Previous equivalent day forecasts the load of a server by repli-
cating its load on previous equivalent day of the week.

• Previous week average uses the average load per server during
previous week as predicted load per server.

NimbusML [9] is a Python module that provides Python bind-
ings for ML.NET. NimbusML aims to enable data science teams that
are more familiar with Python to take advantage of ML.NET’s func-
tionality and performance. It provides battle-tested, state-of-the-art
ML algorithms, transforms, and components. Specifically, we use
Singular Spectrum Analysis to transform forecasts.

GluonTS [7] is a toolkit for probabilistic time series modeling,
focusing on deep learning-based models. We train a simple feed
forward estimator. We tried several other estimators but this model
achieved highest accuracy.

Prophet [10] is open source software released by Facebook.
It forecasts a time series data based on an additive model where
non-linear trends are fit with yearly, weekly, and daily seasonality,
plus holiday effects. It works well for time series that have strong
seasonal effects and several seasons of historical data. Prophet is
robust to missing data and shifts in the trend. It handles outliers
well. We fit Prophet with daily seasonality enabled.

5.2 ML Model per Class of Servers

In this section, we discuss the applicability of each model in Sec-
tion 5.1 to each class of servers in Section 3.2. We differentiate
between two cases:

• Stable servers and servers that follow business patterns that can
be recognized by persistent forecast. Obviously, such servers can
be accurately predicted by persistent forecast and no complex ML
models are needed. Indeed, the previous week average can predict

the load of stable servers (Definition 3.4); 53.5% of servers are stable
(Figure 3). Previous equivalent day is more powerful than previous
week average because it captures a weekly pattern (Definition 3.6),
including stable load which covers 53.6% of servers. Previous day is
also more powerful than previous week average, since it captures a
daily pattern (Definition 3.5), including stable load. 53.7% of servers
can be predicted by the previous day’s pattern. Since previous day
is suitable for the largest subset of servers, we focus on this variant
in the following.

• Unstable servers that do not conform to a pattern that can be rec-
ognized by persistent forecast. 4.2% of servers fall into this category.
In Section 5.3, we apply ML models to such servers to find out if
these models can detect a predictable load pattern for these servers.

5.3 Experimental Comparison of ML Models

5.3.1 Experimental Setup. We conducted all experiments on a VM
running Ubuntu 18.04. This VM has 16 CPUs and 64GB of RAM.

Input Data. As described in Section 2, the pipeline runs per
Azure region once a week. Thus, our input data is partitioned
by region and week. Since the size of regions varies, the size of
input files ranges from hundreds of kilobytes to a few gigabytes.
Below, we randomly selected four input files with different sizes to
demonstrate the scalability of ML models and determine if there are
differences in accuracy of predictions between models and regions.
The input files are in csv format. They contain server identifier,
timestamp in minutes, average user CPU load percentage per five
minutes, default backup start and end timestamps.

To identify predictable servers, we have to consider three weeks
(Definition 4.3). To infer the load per server on its backup day, ML
models are trained on one week of data prior to backup day per
server. Thus, each input data set contains four weeks in one region,
unless stated otherwise. We consider servers have at least three
days of history prior to their backup days to train the ML models.

Methodology. We implemented the Seagull pipeline in Python.
Our base-line implementation is single-threaded. Ourmulti-threaded
Dask-based [6] implementation partitions the data per server and
processes servers in parallel.

Metrics. For each ML model, we measure the percentage of
correctly chosen LL windows, the percentage of LL windows with
accurately predicted load, and the percentage of predictable servers
among servers that existed at least three weeks (Definitions 3.2,
4.2, and 4.3). We measure the runtime of training, inference, and
accuracy evaluation in minutes.

159



5.3.2 Stable Servers and Servers with Pattern. As explained in Sec-
tion 5.2, majority of long-lived servers have stable load or follow
daily or weekly patterns that can be recognized by persistent fore-
cast. Therefore, we use persistent forecast to predict the load of such
servers. For our sample data set, this heuristic correctly selected
99.83% of LL windows, accurately predicted the load during 99.06%
of all windows, and classified 96.92% of servers as predictable.

5.3.3 Unstable Servers Without Pattern. We now apply ML mod-
els described in Section 5.1 to unstable servers that do not follow
business patterns that can be recognized by persistent forecast.

Training and Inference. Persistent forecast does not require
training because it uses the load per server on the previous day as
predicted load per server on the next day.

NimbusML scales well (Figure 7(a)). Runtime for training and
inference increases linearly from 2.5 seconds to 4 minutes as the
number of servers grows from 10 to 700. Some of these measure-
ments are not visible due to log scale.

GluonTS also scales well. Training time ranges from 4 to 10
minutes, while inference time ranges from 0.2 to 16 seconds as the
number of servers grows from 10 to 700.

Prophet is not scalable. Its training time increases from 1 to 34
minutes, while inference time grows from 1 to 15 hours as the
number of servers increases from 10 to 100. Thus, we implemented
Prophet on Dask and achieved up to 60X speedup compared to
single-threaded execution. However, when the number of servers
exceeds 200, Prophet runs out of memory on Dask for any number
of workers, while single-threaded execution does not terminate.

Low Load Prediction Accuracy. NimbusML correctly chooses
the highest percentage of LL windows compared to other tools
(Figure 7(b)). There is slight variance in accuracy of load prediction
during LL windows and the percentage of predictable servers across
regions and models (Figures 7(c) and 7(d)). Accuracy of persistent
forecast, NimbusML, and GluonTS is comparable with respect to
these two metrics. Prophet has similar or lower accuracy compared
to the other models.

5.4 Choice of Model for Final Deployment

To find the middle ground between the accuracy of low load predic-
tion and the overhead of model training and inference, we deployed
persistent forecast based on previous day to production. This heuris-
tic correctly selected 99% of low load windows, accurately predicted
the load during 96% of all windows, and classified 75% of long-lived
servers as predictable. The accuracy of other models is not signifi-
cantly higher than the accuracy of persistent forecast. Persistent
forecast does not introduce any computational delay due to training
and thus scales better than other models. Lastly, it is easier to main-
tain a single model for the entire fleet of servers than a different
model per each class of servers.

6 INFRASTRUCTURE EVALUATION

We now evaluate runtime, scalability, and impact of Seagull.

6.1 Runtime and Scalability

In Figure 8(a), we measure the runtime of the use-case-agnostic
components per Azure region. These components are: Data Inges-
tion, Data Validation, Feature Extraction, Model Deployment, and

(a) All components (b) Accuracy evaluation

Figure 8: Runtime and scalability evaluation

Accuracy Evaluation. Runtime of Model Training and Inference per
ML model are evaluated in Figure 7(a). Model Tracking, Pipeline
Scheduler, and Incident Management run concurrently with other
components and do not block the flow of the data through the
AML pipeline. Thus, they are omitted in Figure 8(a). Since Load
Extraction runs outside of the pipeline for all regions at once, it is
also omitted. Load Extraction takes 30 minutes given the petabyte
scale and complexity of raw telemetry.

In Figure 8, we measure the runtime for the same four regions
of as in Figure 7(a). While Figure 7(a) considers four weeks to train
ML models and infer future load, Figure 8 considers only one week
which corresponds to our production settings (Section 2.2).

Model Deployment takes about one minute independently from
deployed model. Runtime of other components increases linearly
with growing input size. When input size exceeds 1GB, Accuracy
Evaluation becomes a bottleneck. Thus, we partitioned input data
per server and ran Accuracy Evaluation in parallel per server using
Dask [6]. Figure 8(b) compares single-threaded and multi-threaded
Accuracy Evaluation per server on its backup day. While Dask is 5
seconds slower than the single-threaded execution for 60MB, Dask
consistently wins for input sizes over 400MB. For 2.5GB, Dask is
26% faster than single-threaded execution.

To further optimize backup scheduling, we will move a backup
of a server from its default backup day to other day of the week if
the load is lower and/or prediction is more accurate on another day.
In Figure 8(b), we also measure the runtime of accuracy evaluation
on each day one week ahead per server. Dask consistently achieves
3-4.6X speedup compared to the single-threaded implementation
for all input sizes. For 2.5GB, the single-threaded implementation
runs for over 1 hour, while Dask terminates after 15 minutes which
is an acceptable computational delay for a large Azure region.

6.2 Impact and Future Work

The impact of the Seagull infrastructure is two-fold, namely, it
improves customer experience and reduces engineering effort.

Improved Customer Experience. Seagull is deployed for
tens of thousands of PostgreSQL and MySQL servers in tens of
Azure regions to optimize backup scheduling. In Figure 9(a), we
compare predicted LL windows (Definition 4.1) to default backup
windows for all servers in all regions during one month in 2020.

For busy servers with customer load over 60% of capacity, 7.7% of
backup collisions with peaks of customer activity are now avoided
which corresponds to several hundred hours of improved customer

160



(a) Backup scheduling (b) Auto-scale

Figure 9: Impact evaluation per use case

experience. 91.1% of default windows are as good as LL windows
on respective backup days. This happens by chance when default
windows do not collide with high customer load. Only 1.2% of
LL windows were not chosen correctly. This can be explained by
unexpected change of customer behavior compared to the previous
three weeks (Definition 4.3). For servers with predictable daily
patterns (Definition 3.5), the results are similar. In particular, 12.5%
of backups were moved from default windows that coincided with
customer activity to correctly chosen LL windows (Definition 4.2).
This percentage corresponds to several hundred hours of improved
customer experience. As expected, for stable servers (Definition 3.4),
99.5% of default windows correspond to LL windows.

We also use the LL window metric (Section 4) to measure if
backup windows selected by customers correspond to predictable
LL windows and suggest windows with expected lower load instead.

While analysing the load, we concluded that many servers are
not only predictable but also do not use the full capacity most of
the time. Figure 9(b) illustrates the percentage of servers per maxi-
mal CPU load percentage of capacity per time unit. Only 3.7% of
servers reach their CPU capacity per week, i.e., for 96.3% of servers
resources could be saved. This observation opens up opportunities
to overbook or auto-scale resources [26, 34]. We will explore these
optimization techniques in follow-up projects to amplify impact.

Reduced Engineering Effort. Thanks to the automated load
analysis enabled by Seagull, the engineers do not have to study
customer behavior to select backup windows (Section 1). This man-
ual approach was labor-intensive, time-consuming, neither scalable
to millions of customers, nor durable since load patterns vary.

Based on the Seagull infrastructure, the time to setup a load
prediction pipeline for other use cases came down from months
to weeks. As described in Section 2.4, we applied Seagull to two
scenarios so far. It took several months for a dedicated team of three
software engineers, two data scientists, and a project manager to
build, optimize, test, and deploy the Seagull infrastructure to pro-
duction worldwide. However, it took only a few weeks to adjust this
infrastructure to a new use case. In particular, we updated param-
eters of the use-case-agnostic components, re-implemented Load
Extraction and Accuracy Evaluation, and hooked the predictions
with the backup scheduling service.

7 LESSONS LEARNED

Keep Version One Simple. We originally started building the
Seagull infrastructure to predict the load of several millions of

SQL databases and enable preemptive auto-scale of resources. Since
this was a complex and risky endeavor, we first tested the infras-
tructure on a smaller fleet of tens of thousands of PostgreSQL and
MySQL servers and a less risky scenario of backup scheduling. We
closely monitored, optimized, and adjusted the infrastructure since
its deployment. Next, we will apply this matured system to more
ambitious and risky scenarios and at higher scale.

Verify Assumptions. Building a reliable and scalable infras-
tructure like Seagull is challenging. Thus, it is important to verify
all assumptions that such a project relies upon. For example, when
we started building Seagull, the mechanisms that scale resources of
SQL databases were slow. Thus, reactive auto-scale was unreliable
and preemptive policies were needed. However, in the meantime,
these mechanisms were optimized making even reactive auto-scale
suitable for many databases. This example illustrates the need for a
generic infrastructure to minimize loss of effort and amplify impact.

8 RELATEDWORK

Systems forMLwere proposed in the past. However, most of them
lack easy integration with Azure compute [8, 11, 15, 16, 23, 28]. In
particular, security, privacy, license, compatibility, and interfaces
would have to be done from scratch. Thus, we built the Seagull
infrastructure upon Azure products [1, 3–5]. They offer all features
we needed to build Seagull. We also considered leveraging the
model-serving infrastructure Resource Central [14]. However, at
that time, AML [4] provided support and integration for a broader
set of modeling and tracking tools.

Load Prediction for optimized resource allocation on a cluster
has become a popular research direction in the recent years. Existing
approaches focus on predicting survivability of databases for opti-
mized resource provisioning [32], idle time detection for database
quiescing and overbooking [26, 38], database workload prediction
for database consolidation [17], VM workload prediction [24] for
oversubscribing servers [14], dynamic VM provisioning [13], and
reducing performance interference between VMs co-located on the
same physical machine [30], workload classification for capacity
planning and task scheduling [29], cost- and QoS-aware application
placement in virtualized server clusters [37, 39], and preemptive
auto-scale of resources [18–22, 25, 31, 34–36]. None of these ap-
proaches focused on predicting low load windows for optimized
scheduling of system maintenance tasks. Thus, these approaches
neither define low load prediction accuracy, nor compare ML mod-
els from the perspective of low load prediction.

9 CONCLUSIONS

We built the Seagull infrastructure for load prediction and opti-
mized resource allocation on the cloud. While the infrastructure
is applicable to a wide range of use cases, we illustrated it by the
backup scheduling scenario.

ACKNOWLEDGMENTS

The authors thank Akshaya Annavajhala, Purnesh Dixit, Larry
Franks, Chris Lauren, and Santhosh Pillai for fruitful discussions
about AML. We are grateful to Ashvin Agrawal and Hiren Patel
for their help with large-scale telemetry analysis. We thank Matteo
Interlandi, Siqi Liu, and Markus Weimer for their feedback.

161



REFERENCES

[1] 2020. Application Insights. https://docs.microsoft.com/en-us/azure/azure-
monitor/app/app-insights-overview.

[2] 2020. ARIMA. https://pypi.org/project/pmdarima/.
[3] 2020. Azure Data Lake Analytics. https://azure.microsoft.com/en-us/services/

data-lake-analytics.
[4] 2020. Azure ML. https://azure.microsoft.com/en-us/services/machine-learning/.
[5] 2020. Cosmos DB. https://docs.microsoft.com/en-us/azure/cosmos-db/

introduction.
[6] 2020. Dask. https://dask.org/.
[7] 2020. GluonTS. https://gluon-ts.mxnet.io/.
[8] 2020. MLflow. https://mlflow.org/.
[9] 2020. NimbusML. https://docs.microsoft.com/en-us/python/api/nimbusml/

nimbusml.timeseries.ssaforecaster.
[10] 2020. Prophet. https://facebook.github.io/prophet/.
[11] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray,
Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan
Yu, and Xiaoqiang Zheng. 2016. TensorFlow: A system for large-scale machine
learning. In OSDI. 265–283.

[12] Eric Breck, Neoklis Polyzotis, Sudip Roy, Steven Euijong Whang, and Martin
Zinkevich. 2019. Data Validation for Machine Learning. In SysML.

[13] Rodrigo Calheiros, Enayat Masoumi, R. Ranjan, and Rajkumar Buyya. 2014.
Workload Prediction Using ARIMA Model and Its Impact on Cloud Applications’
QoS. IEEE Transactions on Cloud Computing 3 (08 2014), 449–458.

[14] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark Russinovich, Marcus Fontoura,
and Ricardo Bianchini. 2017. Resource Central: Understanding and Predicting
Workloads for Improved Resource Management in Large Cloud Platforms. In
SOSP. 153–167.

[15] Daniel Crankshaw, Peter Bailis, Joseph E. Gonzalez, Haoyuan Li, Zhao Zhang,
Michael J. Franklin, Ali Ghodsi, and Michael I. Jordan. 2015. The Missing Piece
in Complex Analytics: Low Latency, Scalable Model Management and Serving
with Velox. In CIDR.

[16] Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J. Franklin, Joseph E. Gon-
zalez, and Ion Stoica. 2017. Clipper: A Low-Latency Online Prediction Serving
System. In NSDI. 613–627.

[17] Carlo Curino, Evan Jones, Samuel Madden, and Hari Balakrishnan. 2011.
Workload-Aware Database Monitoring and Consolidation. In SIGMOD. 313–324.

[18] Sudipto Das, Feng Li, Vivek R. Narasayya, and Arnd Christian König. 2016.
Automated Demand-driven Resource Scaling in Relational Database-as-a-Service.
In SIGMOD. 1923–1924.

[19] Christina Delimitrou and Christos Kozyrakis. 2014. Quasar: Resource-Efficient
and QoS-Aware Cluster Management. SIGPLAN Not. 49, 4 (Feb. 2014), 127–144.

[20] Avrilia Floratou, Ashvin Agrawal, Bill Graham, Sriram Rao, and Karthik Ra-
masamy. 2017. Dhalion: Self-Regulating Stream Processing in Heron. In Proc.
VLDB Endow. 1825–1836.

[21] Zhenhuan Gong, Xiaohui Gu, and John Wilkes. 2010. PRESS: PRedictive Elastic
ReSource Scaling for cloud systems. In TNSM. 9–16.

[22] Sadeka Islam, Jacky Keung, Kevin Lee, and Anna Liu. 2012. Empirical Prediction
Models for Adaptive Resource Provisioning in the Cloud. Future Generation
Comp. Syst. 28 (01 2012), 155–162.

[23] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long,
Ross Girshick, Sergio Guadarrama, and Trevor Darrell. 2014. Caffe: Convolutional

Architecture for Fast Feature Embedding. In MM. Association for Computing
Machinery, 675–678.

[24] Arijit Khan, Xifeng Yan, Shu Tao, and Nikos Anerousis. 2012. Workload Char-
acterization and Prediction in the Cloud: A Multiple Time Series Approach. In
IEEE Network Operations and Management Symposium. 1287–1294.

[25] Cinar Kilcioglu, Justin M. Rao, Aadharsh Kannan, and R. Preston McAfee. 2017.
Usage Patterns and the Economics of the Public Cloud. In WWW. 83–91.

[26] Willis Lang, Karthik Ramachandra, David J. DeWitt, Shize Xu, Qun Guo, Ajay
Kalhan, and Peter Carlin. 2016. Not for the Timid: On the Impact of Aggressive
over-Booking in the Cloud. Proc. VLDB Endow. 9, 13 (2016), 1245–1256.

[27] Ang Li, Xiaowei Yang, Srikanth Kandula, and Ming Zhang. 2010. CloudCmp:
Comparing Public Cloud Providers. In IMC. 1–14.

[28] Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram Venkatara-
man, Davies Liu, Jeremy Freeman, DB Tsai, Manish Amde, Sean Owen, Doris
Xin, Reynold Xin, Michael J. Franklin, Reza Zadeh, Matei Zaharia, and Ameet
Talwalkar. 2016. MLlib: Machine Learning in Apache Spark. Journal of Machine
Learning Research 17, 34 (2016), 1–7.

[29] Asit K. Mishra, Joseph L. Hellerstein, Walfredo Cirne, and Chita R. Das. 2010. To-
wards Characterizing Cloud Backend Workloads: Insights from Google Compute
Clusters. SIGMETRICS Perform. Eval. Rev. 37, 4 (March 2010), 34–41.

[30] Dejan Novaković, Nedeljko Vasić, Stanko Novaković, Dejan Kostić, and Ricardo
Bianchini. 2013. DeepDive: Transparently Identifying andManaging Performance
Interference in Virtualized Environments. In USENIX ATC. 219–230.

[31] Pradeep Padala, Kai-YuanHou, Kang G. Shin, Xiaoyun Zhu, Mustafa Uysal, Zhikui
Wang, Sharad Singhal, and Arif Merchant. 2009. Automated Control of Multiple
Virtualized Resources. In EuroSys. 13–26.

[32] Jose Picado, Willis Lang, and Edward C. Thayer. 2018. Survivability of Cloud
Databases - Factors and Prediction. In SIGMOD. 811–823.

[33] Olga Poppe, Tayo Amuneke, Dalitso Banda, Aritra De, Ari Green, Manon Kno-
ertzer, Ehi Nosakhare, Karthik Rajendran, Deepak Shankargouda, Meina Wang,
Alan Au, Carlo Curino, Qun Guo, Alekh Jindal, Ajay Kalhan, Morgan Oslake, So-
nia Parchani, Vijay Ramani, Raj Sellappan, Saikat Sen, Sheetal Shrotri, Soundarara-
jan Srinivasan, Ping Xia, Shize Xu, Alicia Yang, and Yiwen Zhu. 2020. Seag-
ull: An Infrastructure for Load Prediction and Optimized Resource Allocation.
https://arxiv.org/abs/2009.12922. Technical report.

[34] Nilabja Roy, AbhishekDubey, andAniruddhaGokhale. 2011. Efficient Autoscaling
in the Cloud Using Predictive Models for Workload Forecasting. In CLOUD. 500–
507.

[35] Zhiming Shen, Sethuraman Subbiah, Xiaohui Gu, and John Wilkes. 2011. Cloud-
Scale: Elastic Resource Scaling for Multi-tenant Cloud Systems. In SOCC. 1–14.

[36] Rebecca Taft, Nosayba El-Sayed, Marco Serafini, Yu Lu, Ashraf Aboulnaga,
Michael Stonebraker, Ricardo Mayerhofer, and Francisco Andrade. 2018. P-Store:
An Elastic Database System with Predictive Provisioning. In SIGMOD. 205–219.

[37] Akshat Verma, Puneet Ahuja, editor="Issarny Valérie Neogi, Anindya", and
Richard Schantz. 2008. pMapper: Power and Migration Cost Aware Applica-
tion Placement in Virtualized Systems. In Middleware. 243–264.

[38] Lalitha Viswanathan, Bikash Chandra, Willis Lang, Karthik Ramachandra, Jig-
nesh M. Patel, Ajay Kalhan, David J. DeWitt, and Alan Halverson. 2017. Predictive
Provisioning: Efficiently Anticipating Usage in Azure SQL Database. In ICDE.
1111–1116.

[39] Hailong Yang, Alex Breslow, Jason Mars, and Lingjia Tang. 2013. Bubble-Flux:
Precise Online QoS Management for Increased Utilization in Warehouse Scale
Computers. In ISCA. 607–618.

162

https://docs.microsoft.com/en-us/azure/azure-monitor/app/app-insights-overview
https://docs.microsoft.com/en-us/azure/azure-monitor/app/app-insights-overview
https://pypi.org/project/pmdarima/
https://azure.microsoft.com/en-us/services/data-lake-analytics
https://azure.microsoft.com/en-us/services/data-lake-analytics
https://azure.microsoft.com/en-us/services/machine-learning/
https://docs.microsoft.com/en-us/azure/cosmos-db/introduction
https://docs.microsoft.com/en-us/azure/cosmos-db/introduction
https://dask.org/
https://gluon-ts.mxnet.io/
https://mlflow.org/
https://docs.microsoft.com/en-us/python/api/nimbusml/nimbusml.timeseries.ssaforecaster
https://docs.microsoft.com/en-us/python/api/nimbusml/nimbusml.timeseries.ssaforecaster
https://facebook.github.io/prophet/
https://arxiv.org/abs/2009.12922

	Abstract
	1 Introduction
	2 Seagull Infrastructure
	2.1 Design Principles
	2.2 Use-Case-Agnostic Offline Components
	2.3 Use-Case-Specific Online Components
	2.4 Reuse of Seagull for Other Scenarios

	3 PostgreSQL and MySQL Servers
	3.1 Load Prediction Accuracy Metric
	3.2 Server Classification

	4 Low Load Prediction Accuracy
	4.1 Lowest Load Window Metric
	4.2 Backup Scheduling Problem Statement

	5 Low Load Prediction
	5.1 ML Models for Time Series Forecast
	5.2 ML Model per Class of Servers
	5.3 Experimental Comparison of ML Models
	5.4 Choice of Model for Final Deployment

	6 Infrastructure Evaluation
	6.1 Runtime and Scalability
	6.2 Impact and Future Work

	7 Lessons Learned
	8 Related Work
	9 Conclusions
	Acknowledgments
	References

