
Local Algorithms for Distance-generalized Core Decomposition
over Large Dynamic Graphs

Qing Liu, Xuliang Zhu, Xin Huang, Jianliang Xu

Hong Kong Baptist University, Hong Kong, China

{qingliu,csxlzhu,xinhuang,xujl}@comp.hkbu.edu.hk

ABSTRACT
The distance-generalized core, also called (k,h)-core, is defined as

the maximal subgraph in which every vertex has at least k vertices

at distance no longer than h. Compared with k-core, (k,h)-core can
identify more fine-grained subgraphs and, hence, is more useful

for the applications such as network analysis and graph coloring.

The state-of-the-art algorithms for (k,h)-core decomposition are

peeling algorithms, which iteratively delete the vertex with the

minimum h-degree (i.e., the least number of neighbors within h
hops). However, they suffer from some limitations, such as low par-

allelism and incapability of supporting dynamic graphs. To address

these limitations, in this paper, we revisit the problem of (k,h)-core
decomposition. First, we introduce two novel concepts of pairwise
h-attainability index and n-order H-index based on an insightful

observation. Then, we thoroughly analyze the properties of n-order
H-index and propose a parallelizable local algorithm for (k,h)-core
decomposition. Moreover, several optimizations are presented to ac-

celerate the local algorithm. Furthermore, we extend the proposed

local algorithm to address the (k,h)-core maintenance problem

for dynamic graphs. Experimental studies on real-world graphs

show that, compared to the best existing solution, our proposed

algorithms can reduce the (k,h)-core decomposition time by 1-3

orders of magnitude and save the maintenance cost by 1-2 orders

of magnitude.

PVLDB Reference Format:
Qing Liu, Xuliang Zhu, Xin Huang, Jianliang Xu. Local Algorithms for

Distance-generalized Core Decomposition over Large Dynamic Graphs.

PVLDB, 14(9): 1531 - 1543, 2021.

doi:10.14778/3461535.3461542

1 INTRODUCTION
The identification of cohesive subgraphs, in which vertices form

strong, intense, or frequent ties, is one of the major tasks for net-

work analysis [47]. To this end, many models have been proposed,

such as k-core [33], k-truss [26, 31, 45], maximal clique [12, 13],

quasi-cliques [43], and k-plexes [7, 52]. Among them, the k-core
model has received wide attention since its computation takes lin-

ear time and it is the basis of many other models. Specifically, a

k-core is a subgraph in which every vertex’s degree is no less than

k . Correspondingly, the core decomposition for a graph aims to

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 9 ISSN 2150-8097.

doi:10.14778/3461535.3461542

compute the coreness for each vertex (i.e., the maximum k such

that the vertex is in a k-core).
Recently, Bonchi et al. [9] proposed a new model called distance-

generalized core, also known as (k,h)-core. In a (k,h)-core, every
vertexv has at least k vertices whose distance tov is at most h. Gen-
eralized from k-core,1 the (k,h)-core model has several advantages

in network analysis by considering more structural information

of h-hop neighborhoods. First, the (k,h)-core model can find more

fine-grained subgraphs. Take the graph in Figure 1 as an example.

If we employ the k-core model, the whole graph is identified as a

2-core. In contrast, if we set h = 2, the (k,h)-core model can find

three different cores: a (4, 2)-core (i.e., the whole graph), a (5, 2)-

core (i.e., the subgraph induced by the gray and white vertices),

and a (7, 2)-core (i.e., the subgraph induced by the white vertices).

By identifying more fine-grained subgraphs, the (k,h)-core model

can help us better understand the hierarchy structure of the graph.

Second, by varying h, the (k,h)-core model can discover dense sub-

graphs of different structures. For instance, Figure 2 shows a case

study of two (k,h)-cores on a web graph web-polblogs.2 Clearly,

the two cores exhibit very different structures: the nodes of the

(k, 1)-core in Figure 2(a) has a peer relationship since they densely

connect to each other directly; the (k, 2)-core in Figure 2(b) has

a leader-follower structure, where the white (follower) nodes con-
nect to the black (leader) node directly but the white nodes do not

densely connect to each other.

Besides network analysis, the (k,h)-core model has many other

applications, such as distance-h graph coloring, maximum h-club
computation, landmarks selection, and community search [9]. For

example, in distance-h graph coloring, which can be applied to

various tasks such as schedule making, register allocation, and

seating planning, the distance-h chromatic number is defined as the

minimum number of colors needed to color a graph such that any

two vertices having the same color are more than h hops apart [35].

While finding the exact distance-h chromatic number is NP-hard, an

upper bound can be obtained by efficiently computing themaximum

coreness of non-empty (k,h)-cores [9].
In [9], Bonchi et al. devised a set of algorithms for (k,h)-core

decomposition, i.e., computing the coreness of each vertex given a

distance threshold h. However, these algorithms suffer from two

major limitations.

• First, the algorithms have low parallelism. Specifically, the

algorithms proposed in [9] are peeling algorithms, which

iteratively delete the vertex with the minimum h-degree (i.e.,
the least number of neighbors withinh hops). But the peeling

algorithms have two bottlenecks: (1) it needs global graph in-

formation to find the minimum h-degree vertex for deletion,

1
A k -core is equivalent to a (k , h)-core with h = 1.

2
http://networkrepository.com/web-polblogs.php

1531

v1

v2

v5
v3

v4

v6

v7

7

2(2)

5(5)

4(2)

6(6)

6(6)
9(6)

v2

v5 v6

v1

v2 v4

v3 v5

v6

v7

v8

v9

v10

v11

v12

v13

h = 1 h = 22

2

2

4

5

7

Core index

v1v2v3

v4v5

v6

v7 v8

v9 v10

v11

v12

v13

v14

v15

v16

4 5 6Core index:

v1
v2 v4

v3 v5

v6

v7

v8

v9

v10

v11

v12

v13

v1
v2v3

v4v5

v6

v7 v8

v9
v10

v11

v12

v13

v14

v15

v16 4 5 6

2-coreness

2 2 2

1-coreness

2-coreness

4 5 7

v2 v4

v3 v5

v6

v7

v8

v9

v10

v11

v12

v13

2 2

1-coreness 2-coreness

5 72 4

v1

Figure 1: (k , h)-core
(a) Case study I (h = 1) (b) Case study II (h = 2)

Figure 2: Case Study for (k , h)-core

v3

v4

7

2(2)

5(5)

4(2)

6(6)

6(6)
9(6)

v1

v2 v4

v3 v5

v6

v7

v8

v9

v10

v11

v12

v13

h = 1 h = 22

2

2

4

5

7

Core index

v1v2v3

v4v5

v6

v7 v8

v9 v10

v11

v12

v13

v14

v15

v16

4 5 6Core index:

v1
v2 v4

v3 v5

v6

v7

v8

v9

v10

v11

v12

v13

v1
v2v3

v4v5

v6

v7 v8

v9
v10

v11

v12

v13

v14

v15

v16 4 5 6

2-coreness

2 2 2

1-coreness

2-coreness

4 5 7

v2 v4

v3 v5

v6

v7

v8

v9

v10

v11

v12

v13

2 2

1-coreness 2-coreness

5 72 4

v1

v1
v2v3

v4v5

v6

v7 v8

v9
v10

v11

v12

v13

v14

v15

v16

4 5 6

2-coreness

Figure 3: (k , h)-core (h = 2)

and (2) it entails sequential processing, i.e., the vertices are

processed from low h-degree to high h-degree. These lead
to low parallelism of the peeling algorithms, making them

unable to handle large-scale graphs.

• Second, the proposed algorithms cannot support dynamic

graphs efficiently. In real-world applications, some graphs

are highly dynamic. The structures of these graphs may fre-

quently change by insertion/deletion of nodes/edges over

time. For example, in aweb graph, the update of web contents

may result in creation of new links or removal of existing

links. For dynamic graphs, many applications, such as in-

teractive graph visualization [44], require maintaining the

corenesses in real time. Although one can reevaluate the

corenesses upon each graph update by running a (k,h)-core
decomposition algorithm from scratch, it is inefficient es-

pecially when graph updates are frequent. More efficient

algorithms are desired to maintain the (k,h)-core over a

dynamic graph.

Motivated by this, we revisit the problem of (k,h)-core decom-

position in this paper. Inspired by [32], we find that we do not need

global graph information to perform the (k,h)-core decomposition.

More specifically, given a graphG and a positive integer h, a vertex
v’s coreness is i iff: (1) there exists a vertex set Vv in G such that

(i) |Vv | = i , (ii) ∀v ′ ∈ Vv , the coreness of v
′
is no less than i , and

(iii) ∀v ′ ∈ Vv , there exists a path p, whose length is no longer than

h, from v ′ to v and the coreness of every vertex on p is no less

than i; (2) there does not exist a vertex set V ′v in G such that (i)

|V ′v | = i + 1, (ii) ∀v ′ ∈ V ′v , the coreness of v
′
is no less than i + 1,

and (iii) ∀v ′ ∈ V ′v , there exists a path p, whose length is no longer

than h, from v ′ to v and the coreness of every vertex on p is no less

than i + 1. Take the graph in Figure 3 as an example. Assume h = 2.

For vertex v3, its coreness is 6, as we can find a qualified vertex set

Vv3
= {v2,v4,v5,v6,v7,v8}, in which every vertex’s coreness is 6.

For vertex v9, there exist six vertices, i.e., v2,v10,v11,v12,v13, and
v14, whose coreness is 6 and can reach v9 within 2 hops. But, for

v2, there does not exist a qualified path from v2 to v9. Hence, the
qualified vertex set forv9 isVv9

= {v10,v11,v12,v13,v14}, meaning

that the coreness of v9 is 5 rather than 6. In general, for any ver-

tex v , we can just make use of the vertices, whose distance to v is

no longer than the given h, to compute its coreness.

Following the above observation, we propose a new local algo-
rithm for (k,h)-core decomposition. As our algorithm is oriented

on vertices, which are independent of each other, it is highly paral-

lelizable. Moreover, we present a series of optimizations including

asynchronous processing, avoiding redundant computations, and

employing upper bounds, to further enhance the performance of

the local algorithm. In addition, we extend the proposed local algo-

rithm to address the (k,h)-core maintenance problem for dynamic

graphs. Specifically, we first filter out the vertices whose coreness

does not need to be updated. Next, we employ the local algorithm

to update the remaining vertices, during which we use each vertex’

original coreness to accelerate the computation of its new coreness.

Overall, this paper’s contributions are summarized as follows:

• We make an important observation for (k,h)-core decompo-

sition, based on which we propose two novel concepts of

pairwise h-attainability index and n-order H-index.
• We conduct a theoretical analysis on the n-order H-index,
and develop a parallelizable local algorithm for (k,h)-core de-
composition. Moreover, several optimizations are proposed

to further improve the algorithm’s performance.

• We explore the problem of (k,h)-core maintenance for dy-

namic graphs and extend the local algorithm to efficiently

update the (k,h)-core.
• We conduct extensive experiments on real-world graphs to

validate the efficiency of our proposed algorithms.

Roadmap: Section 2 defines the problem of (k,h)-core decompo-

sition. Section 3 presents our theoretical basis, based on which

Section 4 proposes the local algorithm. Section 5 extends the local

algorithm to address the (k,h)-core maintenance problem. Section

6 presents our experimental results. Finally, we review the related

work and conclude this paper in Sections 7 and 8, respectively.

2 PROBLEM FORMULATION
LetG(VG , EG) be an undirected, simple, and unweighted graph with

a set VG of vertices and a set EG of edges. A subgraph H (VH , EH)
of G satisfies VH ⊆ VG and EH = {(u,v) ∈ EG : u,v ∈ VH }. For
a vertex v , we denote the neighbors of v in G as NG (v) = {u ∈
V (G) : (u,v) ∈ EG }. We extend the concept of neighbors from 1-hop

neighborhood to h-hop neighborhood. The set of h-neighbors of v
in graphG is denoted byNG (v,h) = {u : u ∈ VG ∧distG (v,u) ≤ h},
where distG (v,u) is the shortest-path distance between v and u in

G . Thus,NG (v) = NG (v, 1). The h-degree of vertexv inG is defined

as the cardinality of v’s h-neighbors, i.e., degG (v,h) = |NG (v,h)|.
In addition, we denote Gh [v] as a subgraph of G induced by the

vertices NG (v,h). Without loss of generality, we assume that h > 1

holds throughout this paper, as in [9].

Definition 2.1. ((k,h)-core [9]). Given a graph G, two positive
integers k and h, the (k,h)-core of G is a maximal subgraph H ⊆ G
satisfying ∀v ∈ VH , degH (v,h) ≥ k .

Based on (k,h)-core, we define h-coreness as follows.

1532

Definition 2.2. (h-coreness). Given a positive integer h, for a
vertex v ∈ V (G), the h-coreness of v is the largest number k such that
there exists a (k,h)-core containing v , denoted by

CG (v,h) = arg max

∃(k ,h)-core H ⊆G ,v ∈VH
k .

Take the graph in Figure 1 as an example and assume that h = 2.

The subgraph induced by the gray and white vertices is a (5, 2)-

core since every vertex’s 2-degree in the subgraph is no less than

5. Vertex v4 is in (5, 2)-core but not in (7, 2)-core. Hence, the 2-

coreness of v4 is 5. For simplicity, hereafter we simply use coreness

to refer to h-coreness and use C(v,h) to denote CG (v,h). Next,
we present an important concept of (k,h)-attainability, which is a

natural property of (k,h)-core.

Definition 2.3. ((k,h)-attainability). Given two vertices v and
u in G, we say v and u are (k,h)-attainable if and only if there
exists a path p = (v1, ...,vl) in (k,h)-core H ⊆ G such that (i)
v1 = v , vl = u; (ii) the length l of path p satisfies l ≤ h; and (iii)
min

1≤i≤l (CG (vi ,h)) ≥ k .

The property of (k,h)-attainability is very useful for our algo-

rithm development, which gives a new view of (k,h)-core analysis
in terms of path connectivity w.r.t. the coreness and distance con-

straints. For example, in Figure 1, v4 and v9 are (5, 2)-attainable
since in the path p = (v4,v6,v9), CG (v6, 2) = CG (v9, 2) = 7 and

CG (v4, 2) = 5. In addition, the (k,h)-core has two more structural

properties, i.e., (i) uniqueness: for two given values of k and h, the
(k,h)-core is unique; and (ii) containment: if h is fixed, the (k + 1,h)-
core is a subgraph of the (k,h)-core. Based on the above concepts,

we formally define the problem studied in this paper.

Problem. ((k,h)-core Decomposition in Dynamic Graphs).
Given a graphG and a positive integerh, the (k,h)-core decomposition
is to compute the coreness for every vertex inG . Moreover, when graph
G undergoes the updates of edge insertions/deletions, it needs to update
all vertices’ corenesses accordingly.

It is worth mentioning that the problem definition includes two

aspects: (1) computing the coreness for all vertices, which assumes

that the graph is static; and (2) updating the coreness for all vertices

when the graph changes, which is also called (k,h)-core mainte-

nance. Correspondingly, we propose efficient algorithms for these

two aspects in Sections 4 and 5, respectively. When h = 1, the

(k,h)-core decomposition corresponds to the well-known problem

of core decomposition, which has been extensively studied in the

literature (see Section 7 for a detailed survey).

3 THEORETICAL BASIS
In this section, we provide a detailed theoretical analysis, which lays

the foundation for our algorithms. Specifically, we first introduce

two novel concepts of pairwise h-attainability index and n-order
H-index, and then analyze the properties of n-order H-index.

3.1 n-Order H-Index

Motivations based on H-index. Recall that, according to our

observation in Section 1, if a vertex v’s coreness is k , a part of

conditions are: (1) there exists a vertex set Vv in G such that (i)

|Vv | = k and (ii) ∀v ′ ∈ Vv , the coreness of v
′
is no less than k . (2)

(0, 1)-truss
(1, 1)-truss
(1, 1)-truss

v2

v1

v3

v4 v5

v6

H1

H2

H3

v8

v7

v9

v1

v2

v5

v3 v4

v6 v7

10

5(5) 8(8) 10(9)

9(9) 9(9) 7(7)

v1

v2

v5

v3 v4

v6 v7

7

2(2) 5(5) 4(2)

6(6) 6(6) 9(6)

v1

v2

v5

v3 v4

v6 v7

7/4

2/2/6 5/5/ 4/2/

6/6/ 6/6/ 9/6/

v1

v2

v5

v3 v4

v6 v7

7

2 5 4

6 6 9

Av1(v2, 3) = 2

Av1(v3, 3) = 5

Av1(v4, 3) = 2

Av1(v5, 3) = 6

Av1(v6, 3) = 6

Av1(v7, 3) = 6
Figure 4: Example of Pairwise h-attainability Index (h=3)

there does not exist a vertex set V ′v in G such that (i) |V ′v | = k + 1,
(ii) ∀v ′ ∈ V ′v , the coreness of v

′
is no less than k + 1. It is very simi-

lar to the semantic of H-index, which is first proposed by Jorge E.

Hirsch [23] to measure the citation impact of a scholar or a journal.

For a scholar, the H-index is defined as the maximum value of l
such that there exist at least l papers whose citation is no smaller

than l . Formally, given a set of integers S = {x1, x2, ..., xn }, we
denote the operator H(·) to compute the H-index, i.e., H(S) =
H({x1, x2, ..., xn }) = argmaxk (|{x ∈ S : x ≥ k}| ≥ k). For exam-

ple, S = {1, 2, 3, 4, 5, 6, 7}, the H-index of S is H(S) = 4 as there

exist 4 integers {4, 5, 6, 7} that are no less than 4.

However, the direct application of H-index cannot help resolve

(k,h)-core decomposition as the current H-index definition does not

capture the path constraint of h-hop reachability, which is shown

as (k,h)-attainability in Definition 2.3. As such, we propose a novel

(k,h)-core based H-index (to be formally defined in Definition 3.2)

for the computation of corenesses. To start with, we first introduce

a concept of pairwise h-attainability index.

Pairwise h-attainability Index. Assuming that each vertex v ∈
V (G) is associated with an H-index, denoted as H(v), we give a

definition of pairwise h-attainability index as follows.

Definition 3.1. (Pairwise h-attainability Index). Given two
vertices u,v inG and a positive integer h, the pairwise h-attainability
index of u w.r.t. v , denoted by Av (u,h), is

Av (u,h) = max

∀p∈P
(min

∀w (,v)∈p
H(w)) (1)

where P is the set of paths from u to v whose distance is no longer
than h.

In a word, the pairwise h-attainability index of u w.r.t. v is the

maximum of the minimum H-indexes for every path from u to v
whose distance is no longer than h. An example is given in Figure 4,

where each vertex’s H-index is shown by the number next to it. We

list the vertices’ pairwise 3-attainability indexes w.r.t.v1 on the right
part of the figure. For v3, there exist three paths (no longer than 3

hops) from v3 to v1, i.e., p1 = (v3,v2,v1), p2 = (v3,v2,v5,v1), and
p3 = (v3,v6,v5,v1). TheminimumH-indexes forp1,p2, andp3 are 2,
2, and 5, respectively. Hence, the pairwise 3-attainability index ofv3
w.r.t.v1 is 5. Note that, without the need of enumerating all possible

paths, the pairwise h-attainability index can be more efficiently

computed using an incremental method, as will be shown in Section

4.1. For conciseness, we simply call the pairwise h-attainability
index the attainability index in the rest of the paper.

n-order H-index. Based on the attainability index introduced

above, we formally define the n-order H-index.

1533

Definition 3.2. (n-order H-index). Given a graphG , a positive
integer h, and a vertex v ∈ VG , the n-order H-index of vertex v w.r.t.
h, denoted by H(n)G (v,h), is defined as

H(n)G (v,h) =

{
degG (v,h) n = 0

H(A
(n−1)
v (u1,h), ..., A

(n−1)
v (ui ,h)) n > 0

(2)

where i = degG (v,h) and ∀j ∈ [1, i], uj ∈ NG (v,h); A
(n)
v (u,h)

denotes the vertexu’s n-order attainability index w.r.t.v and h, which
is computed in the same way as in Equation 1. Specifically,

A
(n)
v (u,h) = max

∀p∈P
(min

∀w (,v)∈p
H(n)G (w,h)) (3)

By Definition 3.2, a vertex v’s 0-order H-index equals v’s h-

degree, i.e., H(0)G (v,h) = degG (v,h); for n ≥ 1, v’s n-order H-index
is the H-index value of allv’sh-neighbors’ (n−1)-order attainability

indexes, i.e., H(n)G (v,h) = H(S
(n−1)) where S(n−1) = {A

(n−1)
v (u,h) :

u ∈ NG (v,h)}. Take vertex v1 in Figure 4 as an example. As-

sume that h = 2. H(0)G (v1, 2) = degG (v1, 2) = 4. H(1)G (v1, 2) =

H(A
(0)
v1
(v2, 2),A

(0)
v1
(v3, 2),A

(0)
v1
(v5, 2),A

(0)
v1
(v6, 2)) = H(6, 6, 5, 5) =

4. Note that when the context is clear, we drop subscripts and use

H(n)(v,h) instead of H(n)G (v,h).

3.2 Convergence and Asynchrony
In this section, we analyze the properties ofn-orderH-indexH(n)G (v,h),
including the convergence, convergence bound, asynchrony, and

relative independence of 0-order H-index. All these properties are

critically important for developing correct and fast algorithms. Due

to space limitations, we omit the proof for the lemmas and theorems

that intuitively hold.

3.2.1 Convergence.

Theorem 3.1. (Monotonicity) Given a vertexv in graphG , ∀n ∈
N, it holds that H(n)(v,h) ≥ H(n+1)(v,h).

Proof. We prove the theorem by mathematical induction.

(i) For n = 0, ∀v ∈ VG , H(0)(v,h) = degG (v,h). H
(1)(v,h) =

H(A
(0)
v (u1,h), ..., A

(0)
v (ui ,h))where i = degG (v,h). Thus,H

(1)(v,h)

≤ degG (v,h) = H(0)(v,h).
(ii) Assume that the theorem holds for n =m, i.e., H(m)(v,h) ≥

H(m+1)(v,h). We prove H(m+1)(v,h) ≥ H(m+2)(v,h) as follows.
Based on Equation 3, A

(m)
v (u,h) ≥ A

(m+1)
v (u,h). We have

H(m+2)(v,h) = H(A(m+1)v (u1,h), ..., A
(m+1)
v (ui ,h))

≤ H(A
(m)
v (u1,h), ..., A

(m)
v (ui ,h))

= H(m+1)(v,h)

Hence, H(m+1)(v,h) ≥ H(m+2)(v,h) holds.
Based on (i) and (ii), the theorem is proved. □

According to Theorem 3.1, the n-order H-index H(n)(v,h) is
monotonic and non-increasing w.r.t. the increasing n. Based on the

definitions of H-index operatorH(·) and attainability index A(·),

H(n)(v,h) is always a non-negative integer. Hence, when the number

n is large enough, H(n)(v,h) can converge to a nonnegative value.

Lemma 3.1. For two vertices v , u in G and ∀n ∈ N, it holds that
A
(n)
u (v,h) ≥ minw ∈VG H(n)(w,h).

Proof. A
(n)
v (u,h) = max∀p∈P (min∀w (,v)∈p H

(n)
G (w,h)) ≥

min∀p∈P (min∀w (,v)∈p H
(n)
G (w,h)) ≥ minw ∈VG H(n)(w,h). □

Lemma 3.2. Given a graph G and a positive integer h, let
degmin (G,h) = minw ∈VG degG (w,h). For ∀v ∈ VG and ∀n ∈ N,
we have H(n)(v,h) ≥ degmin (G,h).

Proof. We prove the theorem by mathematical induction.

(i) For n = 0, H(0)(v,h) = degG (v,h) ≥ degmin (G,h) holds.
(ii) Assume that the theorem holds for n = m, i.e., ∀v ∈ VG ,

H(m)(v,h) ≥ degmin (G,h). By Lemma 3.1, A
(m)
u (v,h) ≥ minw ∈VG

H(m)(w,h) ≥ degmin (G,h). For H
(m+1)(v,h) =H(A

(m)
v (u1,h), ...,

A
(m)
v (ui ,h)), there exist at least degmin (G,h) cases for different

uj ’s such that A
(m)
v (uj ,h) ≥ degmin (G,h). Thus, H

(m+1)(v,h) ≥
degmin (G,h).

Based on (i) and (ii), the theorem is proved. □

Lemma 3.3. Given a graph G and a subgraph G ′ ⊆ G, ∀v ∈ VG′
and ∀n ∈ N, it holds that H(n)G (v,h) ≥ H(n)G′ (v,h).

Based on the above lemmas and Theorem 3.1, we show the

limitation of H(n)(v,h).

Theorem 3.2. (Convergence)

lim

n→∞
H(n)(v,h) = C(v,h) (4)

Proof. We prove the theorem from the following two aspects:

(i)H(∞)(v,h) ≥ C(v,h). LetG ′ ⊆ G be a (C(v,h),h)-core that con-
tains v . Then, we have degmin (G

′,h) = C(v,h). Combining Lem-

mas 3.3 and 3.2, ∀n ∈ N, H(n)G (v,h) ≥ H(n)G′ (v,h) ≥ degmin (G
′,h) =

C(v,h). Hence, H(∞)(v,h) ≥ C(v,h).
(ii) H(∞)(v,h) ≤ C(v,h). Let the vertex set U = {u : u ∈

VG and H(∞)(u,h) ≥ H(∞)(v,h)} and G ′′ ⊆ G be the subgraph

of G induced by U ∪ v . For the vertex v , according to Definition

3.2, H(∞)(v,h) = H(A(∞)v (u1,h), ..., A
(∞)
v (ui ,h)). We can find a

vertex setU ′ from v’s h-neighbors such that (i) |U ′ | = H(∞)(v,h),
and (ii) ∀u ∈ U ′, A

(∞)
v (u,h) ≥ H(∞)(v,h). Based on Equation 3,

H(∞)(u,h) ≥ A(∞)v (u,h) ≥ H(∞)(v,h). Hence,∀u ∈ U ′,H(∞)(u,h) ≥
H(∞)(v,h), meaning thatU ′ ⊆ U . Therefore, degG′′(v,h) ≥ |U

′ | =

H(∞)(v,h). In the sameway, we can prove that∀u ∈ U , degG′′(u,h) ≥

H(∞)(v,h). Thus, G ′′ is a (H(∞)(v,h), h)-core. If vertex v has been

in a (H(∞)(v,h), h)-core, its coreness is at least H(∞)(v,h), i.e.,
C(v,h) ≥ H(∞)(v,h).

Combining (i) and (ii), the theorem is proved. □

Theorem 3.2 implies that the vertex’s n-order H-index finally

converges to its coreness. Take vertex v2 in Figure 4 as an exam-

ple. We can find that, H(0)(v2, 2) = 6, H(1)(v2, 2) = H(2)(v2, 2) =
4 = C(v2, 2). It is worth mentioning that Theorem 3.2 lays the

correctness foundation of the local algorithm to be proposed in

Section 4.1.

1534

3.2.2 Convergence Bound. Now, we show that H(n)(v,h) can con-

verge to C(v,h) in a limited number of steps, which is denoted

as convergence bound. It guarantees that our proposed local algo-

rithm can run efficiently. First, we introduce a concept of h-degree
hierarchy.

Definition 3.3. (h-degree Hierarchy). Given a graph G and a
positive integer h, the i-th (i ∈ N) h-degree hierarchy, denoted by Di ,
is the set of vertices that have the minimumh-degree inG ′ whereG ′ is
a subgraph ofG induced by the vertex set VG \

⋃
0≤j<i Dj . Formally,

Di = {v : argmin

v ∈VG \
⋃

0≤j<i Dj

degG′(v,h)} (5)

Consider the graph G in Figure 4 and h = 2. Since both v1
and v4 have the minimum 2-degree, which is equal to 4, D0 =

{v1,v4}. After deleting v1 and v4 from the graph, the vertices in

the remaining subgraph have the same 2-degree, which is 4. Thus,

D1 = {v2,v3,v5,v6,v7}. For the vertices belonging to different

h-degree hierarchies, we have the following theorem.

Lemma 3.4. Given two vertices vi ∈ Di , vj ∈ Dj , if i ≤ j, it holds
that C(vi ,h) ≤ C(vj ,h).

Theorem 3.3. (Convergence Bound) Given a graph G and a
vertex v ∈ Di , then for n ≥ i , H(n)(v,h) = C(v,h).

Proof. We prove the theorem by induction on i .
When i = 0, D0 is the set of vertices that have the minimum h-

degree in the graphG . It is obvious thatG is the maximal (k , h)-core

for vertices of D0. Thus, ∀v ∈ D0, H(0)(v,h) = degG (v,h) = C(v,h).
Assume that the theorem is valid up to i =m, i.e.,∀u ∈ Dj (j ≤ m),

for n ≥ j, H(n)(u,h) = C(u,h). Let v ∈ Dm+1. For the h-neighbors
of v , we divide them into two sets S ′ and S ′′. Specifically, S ′ =
{v ′ : v ′ ∈ NG (v,h) ∧ ∃j < m + 1,v ′ ∈ Dj } and S ′′ = {v ′′ : v ′′ ∈
NG (v,h) ∧ ∃j ≥ m + 1,v

′′ ∈ Dj }. The (m + 1)-order H-index of v

is: H(m+1)(v,h) = H(A(m)v (v
′
1
,h),A

(m)
v (v

′
2
,h), ...,A

(m)
v (v

′
x ,h), ...,

A
(m)
v (v

′′
1
,h),A

(m)
v (v

′′
2
,h), ...,A

(m)
v (v

′′
y ,h), ...), where v

′
x ∈ S

′
and

v ′′y ∈ S ′′. (i) For ∀v ′x ∈ S ′, according to the above assumption,

Lemma 3.4 and Equation 3,A
(m)
v (v

′
x ,h) ≤ H(m)(v ′x ,h) = C(v ′x ,h) ≤

C(v,h). (ii) Let G ′ be the subgraph of G induced by the vertex set⋃
j≥m+1 Dj . Obviously,G

′
is a (degG′(v,h),h)-core. Thus,C(v,h) ≥

degG′(v,h)= |S
′′ |. Combining (i) and (ii),H(m+1)(v,h) ≤ C(v,h). In

addition, according to Theorems 3.1 and 3.2,H(m+1)(v,h) ≥ C(v,h).
Hence, H(m+1)(v,h) = C(v,h). Therefore, the theorem holds when

i =m + 1. □

Theorem 3.3 indicates that for each vertex v ∈ Di , the n-order
H-index of v converges to v’s coreness at the step of n = i .

3.2.3 Asynchrony. Next, we introduce the property of asynchrony

for n-order H-index, which can be used to optimize the local algo-

rithms (Section 4.2). First, we introduce the concept of systematic

time step t (we call it round t for short). At each round, every vertex

can compute its n-order H-index only once. Assume that at the

initial round t0, we have computed the vertices’ H-indexes in dif-

ferent orders. Specifically, we assume that for each vi ∈ VG , we

have computed H(ni)(vi ,h), where ni ’s for different vi ’s could be

different. Based on it, we denote Ht (v,h) as the n-order H-index

of v computed at round t based on the n-order H-indexes of v’s
h-neighbors at round t − 1. Formally,

Ht (v,h) = min(Ht−1(v,h),H(At−1
v (u1,h), ..., A

t−1
v (ui ,h))) (6)

where At−1
v (ui ,h) is the attainability index of v’s h-neighbor ui at

round t − 1, which is computed in the same way as in Equation 3.

Then, we have the following theorem.

Theorem 3.4. (Asynchrony) Given the n-order H-indexes of all
vertices at start time, ∀v ∈ VG , it holds that

lim

t→∞
Ht (v,h) = C(v,h) (7)

3.2.4 Relative Independence of 0-order H-index. Theorem 3.2 con-

verges a vertex v’s n-order H-index to its coreness, which starts

from v’s h-degree. The following theorem shows that v’s coreness
can also be converged from other values.

Theorem 3.5. (Relative Independence) For each vertex v ∈ VG ,
we set

H(n)G (v,h) =

{
rv n = 0

min(H(n−1)G (v,h),H(S(n−1))) n > 0

(8)

where rv ≥ C(v,h) and S(n−1) = {A
(n−1)
v (u,h) : u ∈ NG (v,h)},

then it holds that

lim

n→∞
H(n)G (v,h) = C(v,h) (9)

Thus, as long as H0(v,h) is no less than its coreness C(v,h), the
n-order H-index of v can finally converge to C(v,h). This property
is greatly helpful to the optimization of our local algorithm (Section

4.2) and (k,h)-core maintenance (Section 5). It is worth mentioning

that in Equations 6 and 8, the operation min() is used to ensure

that the n-order H-index is monotonic and non-increasing w.r.t. the

increasing n and finally converges to the coreness of v .

4 LOCAL ALGORITHM FOR (k,h)-CORE
DECOMPOSITION

In this section, we first present a local algorithm for (k,h)-core
decomposition based on the n-order H-index and its theoretical

results in Section 3. Then, we propose several optimizations to

accelerate the algorithm.

4.1 Local Algorithm
According to Theorem 3.2, the n-order H-index H(n)(v,h) finally
converges to its coreness when n is large enough. Thus, a basic

method for (k,h)-core decomposition is to iteratively compute

H(n)(v,h) for all vertices. One important issue of this method is that

we need to determine when to stop the iterative computation. We

propose to terminate the iterations when H(n)(v,h) = H(n−1)(v,h)
for each vertex v . It is because if H(n)(v,h) = H(n−1)(v,h), we have
H(n+1)(v,h)=H(A(n)v (u1,h),...,A

(n)
v (ui ,h))=H(A

(n−1)
v (u1,h), ...,

A
(n−1)
v (ui ,h))=H(n)(v,h). Similarly,∀j > 1, we can deriveH(n+j)(v,

h) = H(n−1)(v,h), meaning H(n)(v,h) has converged to its coreness.

Local algorithm for parallel (k,h)-core decomposition.We de-

velop a local algorithm for (k,h)-core decomposition, which is out-

lined in Algorithm 1. Specifically, the algorithm first computes the

h-degree for all vertices (lines 1-3). Then, it iteratively computes

1535

Algorithm 1 Local Algorithm

Input: a graph G ; a positive integer h;
Output: the h-coreness for each vertex v in G ;

1: for each vertex v ∈ VG in parallel do
2: compute degG (v , h);
3: H(0)[v] ← degG (v , h);
4: Taд ← true; n ← 0;

5: while Taд = true do
6: Taд ← false; n ← n + 1;
7: for each vertex v ∈ VG in parallel do
8: H(n)[v] ← compute H(n)(v , h) using Algorithm 2;

9: if H(n)[v] , H(n−1)[v] then
10: Taд ← true;
11: C(v , h) ← H(n)[v] for each vertex v ∈ VG ;

12: return {C(v , h) : v ∈ VG };

H(i)(v,h) using Algorithm 2 until the n-order H-index and (n − 1)-
order H-index are the same for all vertices (lines 5-10). Finally, it

returns the h-coreness for all vertices (line 12). It is worth men-

tioning that the two procedures of Algorithm 1 are independent

and can be efficiently implemented in parallel computing: (1) the

computation of a vertex’s h-degree is independent for different

vertices (lines 1-3); and (2) at one particular round of iterations,

the computation of H(i)(v,h)’s is independent of each other (lines

7-10).

ComputeH(n)(v,h) . Algorithm 2 outlines the details ofH(n)(v,h)
computation. It takes the (n−1)-order H-indexes ofv’s h-neighbors

as inputs and outputs H(n)(v,h). Specifically, the algorithm first

computes the (n − 1)-order attainability index for each vertex

u ∈ NG (v,h) (lines 1-15), and then uses H(·) operator to com-

pute the H-index (line 16). It is worth noting that the (n − 1)-order
attainability index is computed using an incremental method by

gradually expanding graphGh [v]. It starts by computing the (n−1)-
order attainability index of u whose distance to v is d = 1 (lines

2-4). Then, it iteratively checks each vertex u ′ that belongs to the

v’s h-neighbors, that can form a path to v within a distance of d ,
from d = 2 to d = h (lines 6-15). If a vertex u ′ is newly visited or a

longer path can generate a larger (n − 1)-order attainability index,

u ′’s (n − 1)-order attainability index is assigned with the minimum

value of its (n − 1)-order H-index and the (n − 1)-order attainability
index of u ′’s predecessor (lines 11-13).

Example 1. We use a graphG in Figure 5 to illustrate Algorithm 1.
The detailed updating steps of n-order H-index is shown in Table 1.
Specifically, H(0)(·) represents a vertex’s h-degree. After three rounds
of updating iterations, the n-order H-indexes of all vertices converge
to their corenesses as H(3)(·) = H(4)(·). Algorithm 1 takes a total of 4
iterations.

Complexity Analysis. Let Ṽ and Ẽ be the vertex set and edge

set of the maximum subgraph induced by a vertex’s h-neighbors;
r be the number of iterations to compute the n-order H-indexes.
We analyze the complexity of Algorithm 1. Specifically, it runs

n = r iterations to compute H(n)(v,h) for v ∈ V (G). For comput-

ing H(n)(v,h) in each iteration, Algorithm 2 needs to traverse the

subgraph Gh [v], which takes O(h(|Ṽ | + |Ẽ |)) time. As a result, the

total time complexity of Algorithm 1 is O(r |VG |h(|Ṽ | + |Ẽ |)). The
time complexity of the state-of-the-art algorithm for (k,h)-core
decomposition is O(|VG | |Ṽ |(|Ṽ | + |Ẽ |)) [9]. Both algorithms take

Algorithm 2 H(n)(v,h) Computation

Input: the set of {H(n−1)[u] : u ∈ NG (v , h)};
Output: the n-order H-index of v as H(n)(v , h);
1: Initialization: A[.] ← 0; A′[.] ← 0; visit [.] ← f alse ;
2: for each vertex u ∈ NG (v , 1) do
3: A[u] ← H[u]; A′[u] ← H[u]
4: Add u into a queue Q;

5: d ← 2;

6: while d ≤ h do
7: Another queue: Q′ ← ∅;

8: while Q , ∅ do
9: Pop a vertex u from Q; visit [u] ← true ;
10: for each vertex u′ ∈ NGh [v](u , 1) do
11: if visit [u′] = false or A′[u′] < min(H[u′], A′[u]) then
12: A[u′] ← min(H[u′], A′[u]);
13: Add u′ into Q′;
14: d ← d + 1; Q ← Q′;
15: A′[u] ← A[u] for all u ∈ NG (v , h);
16: H(n)(v , h) ← H({A[u] : u ∈ NG (v , h)}) by Def. 3.2;

17: return H(n)(v , h);

v1

v2 v3 v11
v12

v13
v14

v10

v9
v5

v8

v4

v7
v6
Figure 5: A Running Example

O(|Ṽ | + |Ẽ |) space. As will be verified in the experiments, r is very
small. Thus, Algorithm 1 has a better efficiency performance.

4.2 Optimizations
In this section, we propose three non-trivial optimizations to accel-

erate the local algorithm in Algorithm 1.

Optimization 1: Asynchronous processing.
In each iteration, Algorithm 1 computes H(n)(v,h) based on the

(n − 1)-order H-index H(n−1)(u,h) for u ∈ NG (v,h). However, be-
fore computing H(n)(v,h), the H(n)(u,h) values for some neighbors

u ∈ NG (v,h) may have already been computed. Thus, if we use

H(n)(u,h) instead of H(n−1)(u,h) to compute H(n)(v,h), it helps the
algorithm to converge faster. The correctness of this optimization

is guaranteed by Theorem 3.4.

Example 2. We illustrate Optimization 1 on graph G in Figure 5.
The running steps are shown in Table 1. Compared with the synchro-
nous processing, i.e., local algorithm in Table 1, the local algorithm
integrated with Optimization 1 yields the same results using three
iterations but converges faster.

Optimization 2: Reducing redundant computations.
According to Theorem 3.3, for a vertex v that belongs to the

h-degree hierarchy Di , H(n)(v,h) converges to its coreness within

i iterations. Afterwards, H(n)(v,h) does not change any more for

n ≥ i . However, Algorithm 1 continues to compute H(n)(v,h) even
if it has converged. This incurs unnecessary computations, which

should be avoided. For example, for the local algorithm in Table

1, the vertex v1 has converged to its coreness at H(0)(v1) = 4.

But, in the following four iterations, H(n)(v1,h) is still repeatedly

1536

Table 1: Illustration of Local Algorithm and Three Optimizations on Graph G in Figure 5. Here, h = 2.

Method H(n)(·) Vertex
v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14

Local Algorithm

H(0)(·) 4 6 10 6 8 6 6 11 10 10 5 7 6 5 
⇒ 4 I terations

H(1)(·) 4 4 6 6 6 4 6 6 6 6 5 5 5 5

H(2)(·) 4 4 6 5 6 4 5 6 5 5 5 5 5 5

H(3)(·) 4 4 5 5 5 4 5 5 5 5 5 5 5 5

H(4)(·) 4 4 5 5 5 4 5 5 5 5 5 5 5 5

Local Algorithm
+

Optimization 1

H(0)(·) 4 6 10 6 8 6 6 11 10 10 5 7 6 5  ⇒ 3 I terationsH(1)(·) 4 4 6 5 6 4 5 6 6 6 5 5 5 5

H(2)(·) 4 4 5 5 5 4 5 5 5 5 5 5 5 5

H(3)(·) 4 4 5 5 5 4 5 5 5 5 5 5 5 5

Local Algorithm
+

Optimization 2

H(1)(·) 1 1 1 1 1 1 1 1 1 1 1 1 1 1  ⇒ 37.5% ReductionH(2)(·) 0 1 1 1 1 1 1 1 1 1 0 1 1 0
H(3)(·) 0 0 1 1 1 0 1 1 1 1 0 0 0 0
H(4)(·) 0 0 1 0 1 0 0 1 0 0 0 0 0 0

Local Algorithm
+

Optimization 3

H∗(0)(·) 4 6 10 6 8 6 6 11 10 10 5 7 6 5 
⇒ 4 I terations

H∗(1)(·) 4 5 6 6 6 5 6 6 6 6 5 5 5 5

H∗(2)(·) 4 5 6 5 6 5 5 6 5 5 5 5 5 5

H∗(3)(·) 4 5 5 5 5 5 5 5 5 5 5 5 5 5

H∗(4)(·) 4 5 5 5 5 5 5 5 5 5 5 5 5 5

H(0)(·) 4 5 5 5 5 5 5 5 5 5 5 5 5 5
 ⇒ 2 I terationsH(1)(·) 4 4 5 5 5 4 5 5 5 5 5 5 5 5

H(2)(·) 4 4 5 5 5 4 5 5 5 5 5 5 5 5

computed. If we can identify such converged vertices as early as

possible, it will improve the algorithm efficiency. On the other hand,

the computation of h-degree hierarchy for a graph is expensive as

mentioned previously. Thus, we propose the following lemma to

avoid the unnecessary n-order H-index computation.

Lemma 4.1. Given a graph G and a positive integer h, ∀v ∈ VG
and ∀n ∈ N, the following two cases hold:

(1) If ∀u ∈ NG (v,h), H(n−2)(u,h) = H(n−1)(u,h), it holds that
H(n)(v,h) = H(n−1)G (v,h);

(2) Assume that u ∈ NG (v,h) and H(n−2)(u,h) > H(n−1)(u,h),
(a) ifH(n−2)(u,h) ≥ H(n−1)(v,h) andH(n−1)(u,h) ≥ H(n−1)(v,h),

u will not trigger the decrease of H(n)(v,h).
(b) ifH(n−2)(u,h) < H(n−1)(v,h) andH(n−1)(u,h) < H(n−1)(v,h),

u will not trigger the decrease of H(n)(v,h).

According to Lemma 4.1, (1) if all of the h-neighbors of v do not

change their (n−1)-order H-indexes,H(n)(v,h) remains unchanged;

(2) If a vertex u’s (n − 1)-order H-index decreases, it may affect the

n-order H-index of u’s h-neighbor v . But, in the following two

cases, u does not trigger the decrease of H(n)(v,h) compared with

H(n−1)(v,h): (a) both the (n − 2)-order H-index and (n − 1)-order
H-index of u are larger than the (n − 1)-order H-index of v ; (b) both
the (n− 2)-order H-index and (n− 1)-order H-index of u are smaller

than the (n − 1)-order H-index of v .
Based on Lemma 4.1, we propose the second optimization for

reducing redundant computations. Specifically, in Algorithm 1, if

the n-order H-index of u does not satisfy neither one of the two

cases in Lemma 4.1, it needs to make marks to computeH(n+1)(v,h)
for v ∈ NG (u,h) in the next iteration. Thus, for those vertices that

are not marked, we can save the computation of H(n+1)(v,h) by
directly copying from H(n)(v,h) to H(n+1)(v,h).

Example 3. We integrate Optimization 2 into Algorithm 1 and run
it on the graph in Figure 5. The local algorithm + Optimization 2 in
Table 1 shows the computation of n-order H-indexes, where 1 denotes
that the n-order H-index is computed and 0 denotes not. Optimization
2 can reduce unnecessary computations by 37.5%.

Optimization 3: Lazy n-order H-index.
As analyzed in Section 4.1, Algorithm 2 takes O(h(|Ṽ | + |Ẽ |))

time for computing H(n)(v,h). If there is a large number of such

n-order H-index computations, it should be prohibitively expensive.

Thus, the third optimization aims to reduce the number of n-order
H-index computations. To this end, we introduce a new concept

called lazy n-order H-index.

Definition 4.1. Given a graph G and a positive integer h, the
lazy n-order H-index of v , denoted by H∗(n)G (v,h), is

H∗(n)G (v,h) =

{
degG (v,h) n = 0

H(H∗(n−1)G (u1,h), ..., H
∗(n−1)
G (ui ,h)) n > 0

(10)

where i = degG (v,h) and ∀j ∈ [1, i], uj ∈ NG (v,h).

The lazy n-order H-index directly uses (n − 1)-order H-index, in-
stead of (n−1)-order attainability index in Def. 3.2. In the following,

we analyze the properties of lazy n-order H-index.

Lemma 4.2. Given a graph G and a positive integer h, ∀v ∈ VG
and ∀n ∈ N, it holds that H∗(n)(v,h) ≥ H∗(n+1)(v,h).

In other words, H∗(n)(v,h) is monotonously non-increasing w.r.t.

the increasing n, i.e., H∗(0)(v,h)≥ H∗(1)(v,h)≥ ... holds. As with
H(n)(v,h), when the number n is large enough, H∗(n)(v,h) also can
converge to a nonnegative value.

Theorem 4.1.

lim

n→∞
H∗(n)(v,h) ≥ C(v,h). (11)

1537

Proof. First, we prove that ∀v ∈ VG and ∀n ∈ N, H∗(n)(v,h) ≥
H(n)(v,h). We can prove it by mathematical induction.

(i) For n = 0, ∀v ∈ VG , H∗(0)(v,h) = H(0)(v,h) = degG (v,h).
(ii) Assume that the result is valid for n = m, i.e., ∀v ∈ VG ,

H∗(m)(v,h) ≥ H(m)(v,h). Based on Equation 3, A
(m)
v (u,h) ≤

H(m)(u,h) ≤ H∗(m)(u,h). For H(m+1)(v,h), we have

H(m+1)(v,h) = H(A(m)v (u1,h), ..., A
(m)
v (ui ,h))

≤ H(H(m)(u1,h), ..., H(m)(ui ,h))

≤ H(H∗(m)(u1,h), ..., H∗(m)(ui ,h))

= H∗(m+1)(v,h)

Hence, it also holds for n = m + 1. As a result, H∗(n)(v,h) ≥
H(n)(v,h) holds.

When n → ∞, H∗(∞)(v,h) ≥ H(∞)(v,h) = C(v,h). Thus, the
theorem is proved. □

Based on Theorem 4.1, the lazy n-order H-index of vertex v is an

upper bound of its corenessC(v,h), evenwhenn becomes infinity. If

we use H∗(∞)(v,h) to initialize H(0)(v,h) in Algorithm 1, it can help

reduce the iterations since H∗(∞)(v,h) ≤ degG (v,h). Fortunately,

H(n)(v,h) can still converge to its coreness, thanks to Theorem

3.5. It is worth mentioning that the total number of iterations (the

number of iterations for lazy n-order H-index computation plus

the number of iterations for n-order H-index computation) may

increase, but the overall performance of Algorithm 1 using Op-

timization 3 improves. This is because the computation of lazy

n-order H-index only takes O(|Ṽ |) time, which is more efficient

than that of n-order H-index(O(h(|Ṽ | + |Ẽ |))). Thus, this optimiza-

tion of lazy n-order H-index can improve the performance of our

local algorithm significantly.

Example 4. Table 1 shows the improvement of Algorithm 1 im-
plemented by Optimization 3 of lazy n-order H-index. The algorithm
first computes the lazy n-order H-index for every vertex. After three
iterations, the lazy n-order H-indexes of all vertices have converged.
Then, it continues to perform the n-order H-index computation. It
takes only one iteration to converge and obtain the results, which use
two less iterations than Algorithm 1.

5 (k,h)-CORE MAINTENANCE OVER
DYNAMIC GRAPHS

In the previous sections, we have studied and proposed algorithms

for (k,h)-core decomposition in static graphs. Differently, in this sec-

tion, we further investigate the problem of (k,h)-core maintenance
in dynamic graphs, where the network structure changes with edge

insertions and deletions.

5.1 (k,h)-Core Maintenance
In many real-word applications, a graph undergoes constant up-

dates with edge insertions/deletions. The problem of (k,h)-core
maintenance over a dynamic graph G focuses on the coreness up-

date when an edge (u,v) is inserted into or deleted fromG . Note that
our proposed algorithms can be easily extended to handle a batch of

edge insertions and deletions, as well as node insertions/deletions,

because the node insertion/deletion can be simulated by a sequence

of edge insertion and deletion preceded/followed by an

insertion/deletion of a node.

In the remainder of this section, we consistently use CG (w,h)
and CG′(w,h) to represent the coreness of a vertex w before and

after an edge insertion/deletion of (u,v), respectively, where G ′ is
a new graph updated from G. We have the following properties.

Lemma 5.1. Given a vertexw ∈ V (G) ∪V (G ′),
(1) if NG (w,h) , NG′(w,h), the coressness ofw may change, i.e.,

CG (w,h) , CG′(w,h);
(2) if CG (w,h) , CG′(w,h), the coressness of w’s h-neighbor

w ′ ∈ NG (w,h) ∪ NG′(w,h) may change;
(3) if CG (w,h) , CG′(w,h), then |CG (w,h) − CG′(w,h)| ≥ 1

holds.

For h = 1, the problem of (k,h)-core maintenance is exactly

equivalent to the problem of core maintenance [39]. Existing stud-

ies [29, 39, 40] show that |CG (w,h) − CG′(w,h)| = 1 for core main-

tenance. However, in our (k,h)-core maintenance for h > 1, the

change of |CG (w,h) − CG′(w,h)| may be much larger than 1. This

leads to a more challenging task for (k,h)-core maintenance. An

intuitive method to address the (k,h)-core maintenance is to re-

compute the coreness for every vertex in the updated graphG by

Algorithm 1 or peeling methods [9]. Obviously, these computing-

from-scratch approaches are inefficient when the graph G is large

and the graph updates happen frequently.

In this section, we propose efficient algorithms by extending our

proposed local algorithm in Algorithm 1. Recall that Algorithm 1

iteratively computes the n-order H-index from the initial h-degree
for every vertex until it converges. Actually, in most cases, there

exist a number of vertices that keep their corenesses unchanged, i.e.,

CG (w,h) = CG′(w,h). Hence, it is unnecessary to recompute the

n-order H-index for all vertices. In addition, the obtained coreness

CG (w,h) in the original graph G can be used for the (k,h)-core
computation in the updated graphG ′. Motivated by this, when we

extend the local algorithm to handle the (k,h)-core maintenance,

we need to consider two key questions, i.e., (1) how to identify the

unaffected vertices inG ′ precisely; and (2) how to best utilize the

existing coreness in G.

5.2 Edge Deletion Algorithm
We present an edge deletion algorithm for (k,h)-core maintenance

based on two important rules as follows.

Identification of Unaffected Vertices. We first identify those

vertices having unchanged corenesses when an edge (u,v) is deleted
from graph G.

Theorem 5.1. For a removed edge e = (u,v) and a vertex w in
G , if CG (w,h) > min{CG (u,h), CG (v,h)}, it holds that CG (w,h) =
CG′(w,h).

Based on Theorem 5.1, if a vertex’s coreness in the original

graph G is larger than min{CG (u,h),CG (v,h)}, its coreness does
not change in the updated graph G ′.

Utilization of Original Corenesses. Next, we explore the utiliza-
tion of the existing corenesses.

Theorem 5.2. For any subgraph G ′ ⊆ G and a vertex v ∈ VG′ ,
CG (v,h) ≥ CG′(v,h) holds.

1538

Algorithm 3 Edge Deletion Algorithm

Input: a graph G ; a positive integer h; a deleted edge e = (u , v) ∈ EG ;

original corenesses {CG (w , h) : w ∈ V (G)}
Output: new corenesses {CG′ (w , h) : w ∈ V (G′)};
1: Let be a new graph G′ with VG′ = VG and EG′ = EG \ {(u , v)};
2: for each vertex w ∈ VG′ do
3: if CG (w , h) > min(CG (u , h), CG (v , h)) then
4: Update[w] ← false;
5: H(0)[w] ← CG (w , h);
6: else
7: Update[w] ← true;
8: Compute degG′ (w , h);
9: H(0)[w] ← min(CG (w , h), degG′ (w , h));
10: Iteratively compute H(n)[w] for w ∈ VG′ with Update[w] = true

until it converges; // Invoking the lines 4-11 of Algorithm 1

11: CG′ (v , h) ← H(n)[v] for each vertex v ∈ VG ;

12: return the new corenesses {CG′ (v , h) : v ∈ VG′ };

Theorem 5.2 indicates that v’s coreness in graph G is no smaller

than its coreness in any updated graph G ′ ⊆ G. Hence, CG (v,h)
is an upper bound of CG′(v,h). According to the relative indepen-

dence of 0-order H-index presented in Theorem 3.5, we useCG (v,h)
to initialize the 0-order H-index of v in G ′. If CG (v,h) is smaller

than its h-degree in the updated graph, |deдG′(v,h)|, this initializa-
tion strategy can help the algorithm converge in a faster way. Note

that if CG (v,h) is larger than |deдG′(v,h)|, we still use |deдG′(v,h)|
to initialize the 0-order H-index.

Based on the above two useful rules, we propose an edge deletion

algorithm for (k,h)-core maintenance in Algorithm 3. Specifically,

the algorithm first identifies the vertices that do not change their

corenesses in G ′ (lines 3-5) and also initializes the 0-order H-index

for the affected vertices (lines 7-9). Then, it iteratively computes

the n-order H-index for all affected vertices until they converge,

which uses the same steps of Algorithm 1 and omits the duplicated

details (line 10). Finally, the algorithm returns the new corenesses

{CG′(v,h) : v ∈ VG′}.

5.3 Edge Insertion Algorithm
In this section, we present an edge insertion algorithm for (k,h)-
core maintenance. We first analyze the identification of unaffected

vertices.

Identification of Unaffected Vertices. Based on Lemma 5.1, an

edge insertion may increase the corenesses of some vertices, which

in turn increase the corenesses of their h-neighbors. But, we find
that some of the h-neighbors do not change their corenesses. Specif-
ically, assume that for two vertices w and w ′, the coreness of w
increases after an edge insertion, and w ′ ∈ NG′(w,h) holds. If
CG (w,h) is larger than CG (w ′,h), the coreness of w ′ will not in-
crease in the updated G ′. Accordingly, we have the following up-
dating rule.

Theorem 5.3. Given a graph G, G has an update with an edge
insertion of (u,v) < EG . Defining a vertex set S = NG (u,h − 1) ∪

NG (v,h − 1) ∪ {u,v}. If CG (w,h) < minw ′∈S CG (w ′,h), it holds
that CG (w,h) = CG′(w,h).

Theorem 5.3 indicates that the vertices, whose corenesses are

smaller than the minimum coreness of the h-degree changed ver-

tices in the new graph G ′, keep their corenesses unchanged.

Algorithm 4 Edge Insertion Algorithm

Input: a graph G ; a positive integer h; an inserted edge e = (u , v) < EG ;

original corenesses {CG (w , h) : w ∈ V (G)}
Output: new corenesses {CG′ (w , h) : w ∈ V (G′)};
1: Let be a new graph G′ with VG′ = VG and EG′ = EG ∪ {(u , v)};
2: Let be a vertex set: S ← NG (u , h − 1) ∪ NG (v , h − 1) ∪ {u , v };
3: A lower bound: kmin ← minw∈S C(w , h);
4: A vertex set: S ′′ ← {w ′′ ∈ VG′ : C(w ′′, h) ≥ kmin }
5: Let G′′ be a subgraph of G′ induced by S ′′;
6: for each vertex w ∈ VG′ do
7: if C(w , h) < kmin then
8: Update[w] ← false;
9: H(0)[w] ← C(w , h);
10: else
11: Update[w] ← true;
12: Compute degG′′ (w , h);
13: H(0)[w] ← degG′′ (w , h);
14: Iteratively compute H(n)[w] for w ∈ VG′ with Update[w] = true

until it converges; // Invoking the lines 4-11 of Algorithm 1

15: CG′ (v , h) ← H(n)[v] for each vertex v ∈ VG ;

16: return the new corenesses {CG′ (v , h) : v ∈ VG′ };

Utilization of Original Corenesses. Next, we explore the utiliza-
tion of the existing corenesses in G.

Theorem 5.4. Give a new graphG ′ after an edge insertion of (u,v).
LetG ′′ be a subgraph ofG ′ induced by the vertex set VS , where VS =
{w ∈ VG : CG (w,h) ≥ minw ′∈S CG (w ′,h)} and S = NG (u,h −
1) ∪ NG (v,h − 1) ∪ {u,v}. It holds that ∀w ∈ VG′′ , CG′(w,h) ≤
degG′′(w,h).

Proof. Since the vertices in VG′ \VG′′ have smaller corenesses

than that of all vertices in VG′′ , these vertices does not affect the
coreness of vertices inVG′′ . In other words, ∀w ∈ VG′′ , CG′(w,h) =
CG′′(w,h). In addition,∀w ∈ VG′′ ,CG′′(w,h) ≤ degG′′(w,h). Hence,
∀w ∈ VG′′ , CG′(w,h) ≤ degG′′(w,h). □

Theorem 5.5. For a vertexw ∈ VG , if ∃n ∈ N such thatH(n)G′ (w,h)
= CG (w,h), it holds that CG′(w,h) = CG (w,h).

Both Theorems 5.4 and 5.5 can be used to accelerate the n-order
H-index computation for affected vertices. Specifically, Theorem

5.4 can use degG′′(w,h) as 0-order H-index for initialization, as

degG′′(w,h) ≤ degG′(w,h). Theorem 5.4 can reduce the n-order
H-index computation redundancy for the vertices when their core-

nesses have converged.

Algorithm. Based on above three theorems, we propose an edge

insertion algorithm for (k,h)-core maintenance in Algorithm 4.

Specifically, the algorithm first computes a lower bound kmin (lines

2-3), i.e., the minimum affected coreness, and forms the subgraph

G ′ induced by the vertices whose coreness in the origin graph G is

no smaller than kmin (lines 4-5). Then, it identifies all unaffected

vertices based on Theorem 5.3 (lines 7-9), and sets the 0-order H-

index for the affected vertices by Theorem 5.4 (lines 11-13). Next, it

iteratively computes the n-order H-index for all affected vertices

until it converges (line 14). It is worth mentioning that in these

iterations, the algorithm employs Theorem 5.5 to stop the n-order
H-index computation of v when v’s n-order H-index in G ′ reaches
its coreness CG (v,h) in G. Finally, the algorithm returns the result

of new corenesses {CG′(v,h) : v ∈ VG′}.

1539

Table 2: Dataset Statistics (davд , dmax , diam represent the av-
erage degree, the maximum degree, and the network diame-
ter, respectively; K = 10

3, M = 10
6, and B = 10

9)
Dataset Abbr. |VG | |EG | davд dmax diam

celegans CE 453 2K 8 237 8

dmela DM 7K 26K 6 190 12

Facebook FB 4K 88.2K 44 1K 8

ca-HepPh CH 11.2K 118K 20 491 13

WormNet WN 15.2K 246K 33 375 13

Douban DB 155K 327K 4 287 9

Amazon AM 335K 926K 3 549 44

DBLP DP 317K 1M 6 343 21

roadNet-PA PA 1.1M 1.5M 3 9 786

Flickr FK 106K 2.3M 44 5.4K 9

Hyves HY 1.4M 2.8M 4 31K 10

Youtube YT 1.1M 2.99M 5 29K 20

road-asia RA 12M 13M 2 9 48K
Patent PT 3.7M 16.5M 8 793 22

road-usa RU 24M 29M 2 9 256

Orkut OR 3M 117M 76 33K 9

uk-2005 UK 39M 783M 40 1.7M 23

it-2004 IT 41M 1.1B 50 1.3M 26

6 EMPIRICAL EVALUATION
We conduct experiments to evaluate the efficiency of our proposed

algorithms. All experiments are implemented in C++ and conducted

on a Linux Server with 2.10 GHz CPU and 256 GB memory run-

ning Ubuntu. The algorithms are parallelized using OpenMP. All

algorithms use 16 threads for parallel computation by default.

Datasets.Weuse 18 different types of real-world networks in exper-

iments. Table 2 summarizes the statistics of these networks. Specif-

ically, celegans3, dmela3, and WormNet3 are biological networks;
ca-HepPh4 and DBLP4 are collaboration networks; Amazon4 is a co-
purchasing network; Patent4 is a citation network; roadNet-PA4,
roadNet-asia3, and roadNet-usa3 are road networks; Douban3,
Facebook4, Youtube4, Flickr4, Orkut4 , and Hyves5 are social net-
works; uk-20053 and it-20043 are web graphs.

6.1 Convergence Evaluation
In this experiment, we conduct the convergence evaluation of our

algorithms on the real-world networks. In Section 3, we show that

a vertex’s n-order H-index can finally converge to its coreness and

offer a theoretical upper bound for the number of iterations by

Theorem 3.3. We compare five of our algorithms including the

local algorithm in Algorithm 1 (Local), Algorithm 1 integrating our

three optimizations respectively, i.e., Local+OPT1, Local+OPT2, and
Local+OPT3, and Algorithm 1 integrating all three optimizations

(Local+), against the theoretical upper bound (Theory).

Exp-1: Evaluation of the number of iterations. Table 3 reports
the number of iterations required by different algorithms to con-

verge for h = 2 and h = 3. Note that Optimization 3 uses the lazy

n-order H-index H∗(n)(·). In Table 3, we also report the number of

iterations for computing H∗(n)(·). We can observe that the number

3
http://networkrepository.com/

4
http://snap.stanford.edu/

5
http://konect.cc/networks/

Table 3: # Iterations of Different Methods

h Methods Datasets
CE FB DM AM PA

h = 2

Theory 128 221 1,270 30,511 11,436

Local 12 14 42 35 188

Local+OPT1 7 8 24 18 99

Local+OPT2 12 14 42 35 188

Local+OPT3

H∗(n)(·) 12 14 44 29 136

H(n)(·) 6 1 40 31 172

Local+

H∗(n)(·) 8 8 23 14 85

H(n)(·) 6 1 22 15 97

h = 3

Theory 45 27 2,667 52,323 68,392

Local 7 7 39 72 416

Local+OPT1 5 6 21 38 208

Local+OPT2 7 7 39 72 416

Local+OPT3

H∗(n)(·) 7 7 55 54 253

H(n)(·) 1 2 36 69 323

Local+

H∗(n)(·) 5 6 29 36 143

H(n)(·) 1 2 19 30 153

0 2 4 6 8 10 12 14
Iterations

0

20

40

60

80

100

Co
nv

er
ge

nc
e

Ra
te

 (%
)

Local+
OPT1
OPT2

OPT3
Local
Theory

(a) h = 2

0 5 10 15 20 25 30
Iterations

0

20

40

60

80

100

Co
nv

er
ge

nc
e

Ra
te

 (%
)

Local+
OPT1
OPT2

OPT3
Local
Theory

(b) h = 3

Figure 6: Convergence Rate on Amazon

of iterations required by our algorithms is much less than that of

Theory. For example, for Local, when h = 2, it converges within

4.2% of the total iterations needed by Theory on average. Recall

that Optimizations 1 and 3 use asynchronous processing and lazy

n-order H-index to optimize the local algorithm. Both of them can

reduce the number of iterations. On the other hand, Optimization 2

mainly tries to reduce the redundant n-order H-index computation

in each iteration, which does not affect the number of iterations.

Thus, both Local+OPT1 and Local+OPT3 have less iterations than

Local while Local+OPT2 has the same number of iterations as Lo-

cal. Overall, our optimized algorithm of Local+ consumes the least

iterations since it integrates all three optimizations.

Exp-2: Evaluation of convergence rate. We evaluate the con-

vergence rate of all algorithms, from which we can see how fast

each algorithm converges. The convergence rate of an iteration is

computed as the percentage of the accumulated converged vertices

when this iteration finishes. When the convergence rate is equal to

100%, all vertices converge. Figures 6(a) and 6(b) show the results of

convergence rate on Amazon for h = 2 and h = 3, respectively. We

can observe that our algorithms converge much faster than Theory.

For example, at the 10-th iteration, almost 97% of the vertices have

converged for Local while only 2% of the vertices have converged in

Theory. Moreover, for our algorithms, the majority of the vertices

can converge in a few iterations. As shown in Table 3, the number

of iterations of Local on Amazon is 35 for h = 2. Figure 6(a) shows

that Local’s convergence rate has reached 97% in 10 iterations (less

than
1

3
of the total iterations). Moreover, Local+ achieves the best

converge performance among all methods.

1540

2 3 4 5
h

0
20
40
60
80

100

Im
pr

ov
em

en
t (

%
) OPT1

OPT2
OPT3
Local+

(a) CH

2 3 4 5
h

0
20
40
60
80

100

Im
pr

ov
em

en
t (

%
) OPT1

OPT2
OPT3
Local+

(b) FB

Figure 7: Efficiency of optimizations

CE DM FB CH WN DB AM DP PA FK HY YT RA RU PT OR UK IT
Datasets

10 2
100
102
104
106
108
INF

Ti
m

e
(s

ec
)

h-LB+UB
Local+

Figure 8: Local+ VS. h-LB+UB

6.2 Efficiency Evaluation
In this experiment, we evaluate the efficiency of (k,h)-core decom-

position algorithms. Note that we denote the running time as ‘INF’

if an algorithm cannot complete within two weeks.

Exp-3: Evaluation of optimization efficiency. We evaluate the

efficiency of the three optimizations proposed in Section 4.2 on CH
and FB. We vary h from 2 to 5. There are four competitor methods

including Optimization 1 (OPT1), Optimization 2 (OPT2), Optimiza-

tion 3 (OPT3), and the combination of all of them (Local+). Figure 7

reports the efficiency improvement results of all different optimiza-

tion methods w.r.t. the local algorithm in Algorithm 1. We can

observe that all the three optimizations are effective and efficient.

For example, when h = 2, OPT1, OPT2, OPT3, and Local+ improve

the performance of the local algorithm by up to 34%, 67%, 79%, and

87% on FB dataset, respectively. On average, OPT1, OPT2, OPT3,

and Local+ improve the performance of the local algorithm by up

to 42%, 36%, 19%, and 73% on CH dataset, respectively. In addition,

we can observe that for FB, the improvements of optimizations

decrease with the increase of h. This is because the larger h, the
denser the graph, which deteriorates the effect of optimizations.

Exp-4: Local+ VS. h-LB+UB. We next compare the efficiency per-

formance of our optimized method Local+ with h-LB+UB [9], which

is the state-of-the-art algorithm for (k,h)-core decomposition. Note

that we implement h-LB+UB following the pseudocodes outlined

in [9], but make minor revisions to obtain the exact results for

all cases. We make two modifications. Specifically, (i) at line 6 of

Algorithm 3 [9], we move v to B[max(degG[V \v](u,h),k)]; and (ii)

at line 13 of Algorithm 6 [9], we compute the exact h-degree for the
vertices. The running time results are reported in Figure 8. Local+

consistently outperforms h-LB+UB, by 1-3 orders of magnitude, on

all datasets. Moreover, h-LB+UB cannot finish within two weeks on

OR, UK, and IT, whereas Local+ still works well for these datasets,

which validates the superiority of our proposed algorithm. Note

that the performance of Local+ can be further improved by using

more threads, thanks to its high parallelism, as will be shown in

the next experiment.

Exp-5: Parallelism evaluation w.r.t. # threads. We test the par-

allelism performance of both Local+ and h-LB+UB varying by the

h-LB+UB,h=2
Local+,h=2

h-LB+UB,h=3
Local+,h=3

h-LB+UB,h=4
Local+,h=4

2 4 8 16 32
Threads

1

4

7

10

13

16

19

Sp
ee

du
p

(a) FB

2 4 8 16 32
Threads

1

3

5

7

9

11

Sp
ee

du
p

(b) AM

Figure 9: Parallelism evaluation w.r.t. # threads

2 3 4 5
h

100

101

102

103

104

105

Ti
m

e
(s

ec
)

DB
AM

DP
PA

Figure 10: Effect of h

104 105 106 107 108 109

Subgraph Size (|VG|)

10 2

100

102

104

106

Ti
m

e
(s

ec
)

UK, h-LB+UB
UK, Local+
IT, h-LB+UB
IT, Local+

Figure 11: Effect of |VG |

number of threads. Figure 9 reports the results by varying the num-

ber of threads from 1 to 32. Obviously, using more threads allows

more vertices to compute the n-order H-indexes simultaneously in

a single iteration and thus improves the overall performance of Lo-

cal+. For example, in Figure 9(a), if h = 4, Local+ is 18x faster when

the number of threads increases from 1 to 32. In addition, Local+

has higher parallelism performance than h-LB+UB. Moreover, we

can observe that in some cases the speedup of Local+ is not very

high. For example, in Figure 9(b), if h = 2, the speedup of Local+ is

5 on AM when the number of threads increases to 32. The limited

speedup is due to two reasons: 1) As shown in Exp-1, most vertices

converge within the first few iterations. In the remaining iterations,

only a few vertices compute the n-order H-index in parallel, which

limits the effect of parallelism. 2) The vertices with a high h-degree
take a long time to compute the H-index, which locks a thread for

a prolonged time.

Exp-6: Effect of h. We evaluate the effect of h on Local+. Figure 10

shows the results of Local+ by varyingh from 2 to 5 on four datasets.

With the increase of h, the performance of Local+ becomes worse.

It is because when h increases, the size of a vertex’s h-neighbors
enlarges, which leads to two efficiency issues: (1) the computation

of n-order H-index takes more time since the subgraph induced by

a vertex’s h-neighbors becomes larger; and (2) the total number of

iterations may increase since the value of 0-order H-index increases.

Exp-7: Effect of |VG |. We evaluate the effect of |VG | using a set of
subgraphs extracted from the large datasets UK and ITwith different
fractions of vertices. The results are reported in Figure 11. As shown,

when the graph size increases, Local+ takes more time for (k,h)-
core decomposition. Nevertheless, (i) Local+ is consistently much

faster than h-LB+UB on all sizes of graphs; (ii) h-LB+UB cannot

complete within two weeks when the graph size is larger than 10
8

while Local+ scales better to large graphs.

1541

Table 4: Update Time for Edge Deletions (sec)
Update
Mode h Methods Datasets

FB DM CH AM PA

Single

h = 2

Local+ 0.26 0.83 5.57 1.89 2.23

EDA 0.11 0.01 0.09 0.01 0.01

h = 3

Local+ 0.91 9.35 7.44 14.16 4.37

EDA 0.64 0.66 1.08 0.01 0.01

Batch

h = 2

Local+ 0.29 0.88 5.78 2.08 2.22

EDA 0.26 0.18 0.92 0.02 0.01

h = 3

Local+ 0.92 10.02 7.44 13.14 4.32

EDA 0.89 4.86 4.92 0.3 0.01

Table 5: Update Time for Edge Insertions (sec)
Update
Mode h Methods Datasets

FB DM CH AM PA

Single

h = 2

Local+ 0.23 0.77 5.82 2.01 2.37

EIA 0.01 0.59 4.01 0.54 0.79

h = 3

Local+ 0.95 9.15 7.44 14.09 4.32

EIA 0.37 8.2 3.26 9.32 2.03

Batch

h = 2

Local+ 0.26 0.85 5.47 2.01 2.23

EIA 0.08 0.69 4.75 0.67 0.86

h = 3

Local+ 1.2 9.35 7.45 14.09 4.45

EIA 1.18 9.24 5.42 9.75 2.21

6.3 Update Evaluation
In this experiment, we evaluate the efficiency of our proposed up-

dating algorithms for (k,h)-core maintenance over dynamic graphs,

including the edge deletion algorithm in Algorithm 3 (EDA) and

the edge insertion algorithm in Algorithm 4 (EIA). We compare

the algorithms with Local+, which recomputes (k,h)-core using the
optimized local algorithm. Two update modes are considered, i.e.,

single edge update and a batch of edge updates. For the batch up-

dates, we insert or delete 2–100 edges at a time. In each experiment,

we generate 500 updates and report the average results using 16

threads. Note that the edges for updating are randomly generated.

Exp-9: Efficiency of edge deletion update. We evaluate the effi-

ciency of the edge deletion algorithms on five datasets. The results

are reported in Table 4. We can observe that EDA is much faster

than Local+, achieving 1 to 2 orders of magnitude of improvement

in most cases. However, the advantage of EDA for the batch up-

date is not as great as the single edge update. This is because the

batch processing usually makes more vertices to change their h-
corenesses. Hence, EDA takes more time. But the performance of

Local+ does not deteriorate too much since the cardinality of the

graph is only slightly changed.

Exp-10: Efficiency of edge insertion update. Finally, we study
the efficiency of edge insertion updating. Table 5 shows the results

for EIA and Local+ in terms of single and batch processing under

h = 2 and h = 3. As expected, EIA has a better performance than

Local+ in all cases. For example, when h = 2, EIA is 50% and 38.2%

faster than Local+ for single and batch processing, respectively.

7 RELATED WORK
Core Decomposition. Due to widespread applications, such as

graph visualization [2, 5], community search [14, 25, 42], network

topology analysis [3, 10], and system structure analysis [50], the

problem of core decomposition has been extensively studied [33].

An in-memory algorithm [6], a disk-based algorithm [11], and a

semi-external algorithm [48] are proposed for core decomposition.

Khaouid et al. [28] implemented the algorithms of [6, 11] based

on the GraphChi and Webgraph models. In addition, several local

algorithms [32, 37, 41] have been proposed for core decomposi-

tion by utilizing the vertices’ neighborhood information. However,

these local algorithms do not consider the (k,h)-attainability of

(k,h)-core and thus cannot be used for (k,h)-core decomposition.

Based on different computing architectures, many works proposed

parallel algorithms [15, 17] and distributed algorithms [34, 36].

Besides, core decomposition has also been studied over directed

graphs [22], weighted graphs [16], bipartite graphs [30], temporal

graphs [21, 49], uncertain graphs [8, 38], multilayer graphs [19, 20],

and heterogeneous information networks [18].

CoreMaintenance. The problem of core maintenance is to update

vertices’ corenesses when the graph evolves over time. Sariyuce

et al. [39, 40] and Li et al. [29] developed several incremental al-

gorithms. Zhang et al. [51] proposed a new order-based algorithm

through explicitly maintaining the k-order for a graph. Note that
the k-core maintenance algorithms proposed by [29, 39, 40, 51]

simulate the peeling-based k-core decomposition algorithms. How-

ever, these algorithms usually resort to auxiliary structures, e.g.,

[51] needs to keep track of the vertex deletion order, to maintain

the vertex’s degree, which yields additional space complexity. It is

also non-trivial to extend these algorithms to (k,h)-core mainte-

nance due to the (k,h)-attainability of (k,h)-core. More recently,

semi-external algorithms [48], distributed algorithms [1], and par-

allel algorithms [24, 27, 46] are proposed for core maintenance. In

addition, Bai et al. [4] studied the core maintenance problem for

temporal graphs.

In contrast to thek-core that only considers a vertex’s 1-neighbors,
the (k,h)-core takes a vertex’sh-neighbors into consideration, which
is more complex [9]. New (k,h)-core decomposition and mainte-

nance algorithms are proposed in this paper to address the defi-

ciency of the state-of-the-art algorithms in [9].

8 CONCLUSIONS
This paper revisits the problem of (k,h)-core decomposition. First,

we introduce two novel concepts of pairwise h-attainability index

and n-order H-index. We show that the n-order H-index possesses
several nice properties such as convergence and asynchrony. Based

on that, we propose a parallelizable local algorithm for (k,h)-core
decomposition, which iteratively computes each vertex’s n-order
H-index until convergence. Several optimizations are developed to

further enhance the efficiency of the local algorithm. Moreover, we

extend the local algorithm to handle (k,h)-core maintenance over

dynamic graphs. Finally, experimental results based on real-world

datasets demonstrate the efficiency of our proposed algorithms.

ACKNOWLEDGMENTS
This work is supported by Research Grants Council of Hong Kong

under GRF/ECS Projects 22200320, 12200819, 12200917, CRF Project

C6030-18GF, and Guangdong Basic and Applied Basic Research

Foundation (Project No. 2019B1515130001). Jianliang Xu is the cor-

responding author.

1542

REFERENCES
[1] Hidayet Aksu, Mustafa Canim, Yuan-Chi Chang, Ibrahim Korpeoglu, and Özgür

Ulusoy. 2014. Distributed k-Core ViewMaterializationand Maintenance for Large

Dynamic Graphs. IEEE Trans. Knowl. Data Eng. 26, 10 (2014), 2439–2452.
[2] J. Ignacio Alvarez-Hamelin, Luca Dall’Asta, Alain Barrat, and Alessandro Vespig-

nani. 2005. Large scale networks fingerprinting and visualization using the k-core

decomposition. In NIPS. 41–50.
[3] José Ignacio Alvarez-Hamelin, Luca Dall’Asta, Alain Barrat, and Alessandro

Vespignani. 2008. K-core decomposition of Internet graphs: hierarchies, self-

similarity and measurement biases. Networks Heterog. Media 3, 2 (2008), 371–393.
[4] Wen Bai, Yadi Chen, and Di Wu. 2020. Efficient temporal core maintenance of

massive graphs. Inf. Sci. 513 (2020), 324–340.
[5] Vladimir Batagelj, Andrej Mrvar, and Matjaz Zaversnik. 1999. Partitioning Ap-

proach to Visualization of Large Graphs. In GD. 90–97.
[6] Vladimir Batagelj and Matjaz Zaversnik. 2003. An O(m) Algorithm for Cores

Decomposition of Networks. CoRR cs.DS/0310049 (2003). http://arxiv.org/abs/

cs/0310049

[7] Devora Berlowitz, Sara Cohen, and Benny Kimelfeld. 2015. Efficient Enumeration

of Maximal k-Plexes. In SIGMOD. 431–444.
[8] Francesco Bonchi, Francesco Gullo, Andreas Kaltenbrunner, and Yana Volkovich.

2014. Core decomposition of uncertain graphs. In SIGKDD. 1316–1325.
[9] Francesco Bonchi, Arijit Khan, and Lorenzo Severini. 2019. Distance-generalized

Core Decomposition. In SIGMOD. 1006–1023.
[10] Shai Carmi, Shlomo Havlin, Scott Kirkpatrick, Yuval Shavitt, and Eran Shir. 2007.

A model of Internet topology using k-shell decomposition. Proceedings of the
National Academy of Sciences 104, 27 (2007), 11150–11154.

[11] James Cheng, Yiping Ke, Shumo Chu, and M. Tamer Özsu. 2011. Efficient core

decomposition in massive networks. In ICDE. 51–62.
[12] James Cheng, Yiping Ke, Ada Wai-Chee Fu, Jeffrey Xu Yu, and Linhong Zhu.

2010. Finding maximal cliques in massive networks by H*-graph. In SIGMOD.
447–458.

[13] James Cheng, Linhong Zhu, Yiping Ke, and Shumo Chu. 2012. Fast algorithms

for maximal clique enumeration with limited memory. In SIGKDD. 1240–1248.
[14] Wanyun Cui, Yanghua Xiao, Haixun Wang, and Wei Wang. 2014. Local search of

communities in large graphs. In SIGMOD. 991–1002.
[15] Naga Shailaja Dasari, Desh Ranjan, and Mohammad Zubair. 2014. ParK: An

efficient algorithm for k-core decomposition on multicore processors. In Big Data.
9–16.

[16] Marius Eidsaa and Eivind Almaas. 2013. S-core network decomposition: A

generalization of k-core analysis to weighted networks. Physical Review E 88, 6

(2013), 062819.

[17] Hossein Esfandiari, Silvio Lattanzi, and Vahab S. Mirrokni. 2018. Parallel and

Streaming Algorithms for K-Core Decomposition. In ICML. 1396–1405.
[18] Yixiang Fang, Yixing Yang, Wenjie Zhang, Xuemin Lin, and Xin Cao. 2020. Ef-

fective and Efficient Community Search over Large Heterogeneous Information

Networks. Proc. VLDB Endow. 13, 6 (2020), 854–867.
[19] Edoardo Galimberti, Francesco Bonchi, and Francesco Gullo. 2017. Core Decom-

position and Densest Subgraph in Multilayer Networks. In CIKM. 1807–1816.

[20] Edoardo Galimberti, Francesco Bonchi, Francesco Gullo, and Tommaso Lanciano.

2020. Core Decomposition in Multilayer Networks: Theory, Algorithms, and

Applications. ACM Trans. Knowl. Discov. Data 14, 1 (2020), 11:1–11:40.
[21] Edoardo Galimberti, Martino Ciaperoni, Alain Barrat, Francesco Bonchi, Ciro

Cattuto, and Francesco Gullo. 2019. Span-core Decomposition for Temporal

Networks: Algorithms and Applications. CoRR abs/1910.03645 (2019). http:

//arxiv.org/abs/1910.03645

[22] Christos Giatsidis, Dimitrios M. Thilikos, and Michalis Vazirgiannis. 2011. D-

cores: Measuring Collaboration of Directed Graphs Based on Degeneracy. In

ICDM. 201–210.

[23] Jorge E. Hirsch. 2005. An index to quantify an individual’s scientific research

output. Proc. Natl. Acad. Sci. U.S.A. 102, 46 (2005), 16569–16572.
[24] Qiang-Sheng Hua, Yuliang Shi, Dongxiao Yu, Hai Jin, Jiguo Yu, Zhipeng Cai,

Xiuzhen Cheng, and Hanhua Chen. 2020. Faster Parallel Core Maintenance

Algorithms in Dynamic Graphs. IEEE Trans. Parallel Distrib. Syst. 31, 6 (2020),
1287–1300.

[25] Xin Huang, Laks V. S. Lakshmanan, and Jianliang Xu. 2019. Community Search
over Big Graphs. Morgan & Claypool Publishers. https://doi.org/10.2200/

S00928ED1V01Y201906DTM061

[26] Xin Huang, Wei Lu, and Laks V. S. Lakshmanan. 2016. Truss Decomposition of

Probabilistic Graphs: Semantics and Algorithms. In SIGMOD. 77–90.

[27] Hai Jin, Na Wang, Dongxiao Yu, Qiang-Sheng Hua, Xuanhua Shi, and Xia Xie.

2018. Core Maintenance in Dynamic Graphs: A Parallel Approach Based on

Matching. IEEE Trans. Parallel Distrib. Syst. 29, 11 (2018), 2416–2428.
[28] Wissam Khaouid, Marina Barsky, S. Venkatesh, and Alex Thomo. 2015. K-Core

Decomposition of Large Networks on a Single PC. Proc. VLDB Endow. 9, 1 (2015),
13–23.

[29] Rong-Hua Li, Jeffrey Xu Yu, and Rui Mao. 2014. Efficient Core Maintenance in

Large Dynamic Graphs. IEEE Trans. Knowl. Data Eng. 26, 10 (2014), 2453–2465.
[30] Boge Liu, Long Yuan, Xuemin Lin, Lu Qin, Wenjie Zhang, and Jingren Zhou.

2019. Efficient (α , β)-core Computation: an Index-based Approach. In WWW.

1130–1141.

[31] Qing Liu, Minjun Zhao, Xin Huang, Jianliang Xu, and Yunjun Gao. 2020. Truss-

based Community Search over Large Directed Graphs. In SIGMOD. 2183–2197.
[32] Linyuan Lü, Tao Zhou, Qian-Ming Zhang, and H Eugene Stanley. 2016. The

H-index of a network node and its relation to degree and coreness. Nature
communications 7, 1 (2016), 1–7.

[33] Fragkiskos D. Malliaros, Christos Giatsidis, Apostolos N. Papadopoulos, and

Michalis Vazirgiannis. 2020. The core decomposition of networks: theory, algo-

rithms and applications. VLDB J. 29, 1 (2020), 61–92.
[34] Aritra Mandal and Mohammad Al Hasan. 2017. A distributed k-core decom-

position algorithm on spark. In 2017 IEEE International Conference on Big Data,
BigData 2017, Boston, MA, USA, December 11-14, 2017. 976–981.

[35] S Thomas McCormick. 1983. Optimal approximation of sparse Hessians and

its equivalence to a graph coloring problem. Mathematical Programming 26, 2

(1983), 153–171.

[36] Alberto Montresor, Francesco De Pellegrini, and Daniele Miorandi. 2013. Dis-

tributed k-Core Decomposition. IEEE Trans. Parallel Distrib. Syst. 24, 2 (2013),
288–300.

[37] Michael P. O’Brien and Blair D. Sullivan. 2014. Locally Estimating Core Numbers.

In ICDM. 460–469.

[38] You Peng, Ying Zhang, Wenjie Zhang, Xuemin Lin, and Lu Qin. 2018. Efficient

Probabilistic K-Core Computation on Uncertain Graphs. In ICDE. 1192–1203.
[39] Ahmet Erdem Sariyüce, Bugra Gedik, Gabriela Jacques-Silva, Kun-Lung Wu, and

Ümit V. Çatalyürek. 2013. Streaming Algorithms for k-core Decomposition. Proc.
VLDB Endow. 6, 6 (2013), 433–444.

[40] Ahmet Erdem Sariyüce, Bugra Gedik, Gabriela Jacques-Silva, Kun-Lung Wu, and

Ümit V. Çatalyürek. 2016. Incremental k-core decomposition: algorithms and

evaluation. VLDB J. 25, 3 (2016), 425–447.
[41] Ahmet Erdem Sariyüce, C. Seshadhri, and Ali Pinar. 2018. Local Algorithms for

Hierarchical Dense Subgraph Discovery. Proc. VLDB Endow. 12, 1 (2018), 43–56.
[42] Mauro Sozio and Aristides Gionis. 2010. The community-search problem and

how to plan a successful cocktail party. In SIGKDD. 939–948.
[43] Charalampos E. Tsourakakis, Francesco Bonchi, Aristides Gionis, Francesco Gullo,

and Maria A. Tsiarli. 2013. Denser than the densest subgraph: extracting optimal

quasi-cliques with quality guarantees. In SIGKDD. 104–112.
[44] Tatiana von Landesberger, Arjan Kuijper, Tobias Schreck, Jörn Kohlhammer,

Jarke J. vanWijk, Jean-Daniel Fekete, and Dieter W. Fellner. 2011. Visual Analysis

of Large Graphs: State-of-the-Art and Future Research Challenges. Comput.
Graph. Forum 30, 6 (2011), 1719–1749.

[45] Jia Wang and James Cheng. 2012. Truss Decomposition in Massive Networks.

Proc. VLDB Endow. 5, 9 (2012), 812–823.
[46] Na Wang, Dongxiao Yu, Hai Jin, Chen Qian, Xia Xie, and Qiang-Sheng Hua.

2017. Parallel Algorithm for Core Maintenance in Dynamic Graphs. In ICDCS.
2366–2371.

[47] Stanley Wasserman and Katherine Faust. 1994. Social Network Analysis: Meth-
ods and Applications. Cambridge University Press. https://doi.org/10.1017/

CBO9780511815478

[48] DongWen, Lu Qin, Ying Zhang, Xuemin Lin, and Jeffrey Xu Yu. 2016. I/O efficient

Core Graph Decomposition at web scale. In ICDE. 133–144.
[49] HuanhuanWu, James Cheng, Yi Lu, Yiping Ke, Yuzhen Huang, Da Yan, and Hejun

Wu. 2015. Core decomposition in large temporal graphs. In Big Data. 649–658.
[50] Haohua Zhang, Hai Zhao, Wei Cai, Jie Liu, and Wanlei Zhou. 2010. Using the k-

core decomposition to analyze the static structure of large-scale software systems.

J. Supercomput. 53, 2 (2010), 352–369.
[51] Yikai Zhang, Jeffrey Xu Yu, Ying Zhang, and Lu Qin. 2017. A Fast Order-Based

Approach for Core Maintenance. In ICDE. 337–348.
[52] Yi Zhou, Jingwei Xu, Zhenyu Guo, Mingyu Xiao, and Yan Jin. 2020. Enumerating

Maximal k-Plexes with Worst-Case Time Guarantee. In AAAI. 2442–2449.

1543

