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ABSTRACT
Query optimizers rely on accurate cardinality estimation (CardEst)
to produce good execution plans. The core problem of CardEst is
how to model the rich joint distribution of attributes in an accurate
and compact manner. Despite decades of research, existing meth-
ods either over-simplify the models only using independent fac-
torization which leads to inaccurate estimates, or over-complicate
them by lossless conditional factorization without any indepen-
dent assumption which results in slow probability computation.
In this paper, we propose FLAT, a CardEst method that is simulta-
neously fast in probability computation, lightweight in model size
and accurate in estimation quality. The key idea of FLAT is a novel
unsupervised graphical model, called FSPN. It utilizes both inde-
pendent and conditional factorization to adaptively model different
levels of attributes correlations, and thus combines their advan-
tages. FLAT supports efficient online probability computation in
near linear time on the underlying FSPN model, provides effective
offline model construction and enables incremental model updates.
It can estimate cardinality for both single table queries and multi-
table join queries. Extensive experimental study demonstrates the
superiority of FLAT over existing CardEst methods: FLAT achieves
1–5 orders of magnitude better accuracy, 1–3 orders of magnitude
faster probability computation speed and 1–2 orders of magnitude
lower storage cost. We also integrate FLAT into Postgres to perform
an end-to-end test. It improves the query execution time by 12.9%
on the well-known IMDB benchmark workload, which is very close
to the optimal result 14.2% using the true cardinality.
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1 INTRODUCTION
Cardinality estimation (CardEst) is a key component of query op-
timizers in modern database management systems (DBMS) and
analytic engines [1, 53]. Its purpose is to estimate the result size of
a SQL query before its actual execution, thus playing a central role
in generating high-quality query plans.

Given a table T and a query Q , estimating the cardinality of
Q is equivalent to computing P—the probability of records in T
satisfying Q . Therefore, the core task of CardEst is to condense
T into a modelM to compute P . In general, such models could be
obtained in two ways: query-driven and data-driven. Query-driven
approaches learn functions mapping a query Q to its predicted
probability P , so they require large amounts of executed queries as
training samples. They only performwell if future queries follow the
same distribution as the training workload. Data-driven approaches
learn unsupervised models of Pr(T )—the joint probability density
function (PDF) of attributes in T . As they can generalize to unseen
query workload, data-driven approaches receive more attention
and are widely used for CardEst.
Challenge and Status of CardEst. An effectual CardEst method
should satisfy three criteria [13, 21, 57, 60], namely high estimation
accuracy, fast inference time and lightweight storage overhead, at
the same time. Existing methods have made some efforts in finding
trade-offs between the them. However, they still suffer from one or
more deficiencies when modeling real-world complex data.

In a nutshell, there exist three major strategies for building un-
supervised models of Pr(T ) on data table T . The first strategy di-
rectly compresses and stores all entries in Pr(T ) [15, 46], whose
storage overhead is intractable and the lossy compression may sig-
nificantly impact estimation accuracy. The second strategy utilizes
sampling [29, 65] or kernel density based methods [18, 23], where
samples from T are fetched on-the-fly to estimate probabilities.
For high-dimensional data, they may be either inaccurate without
enough samples or inefficient due to a large sample size.

The third strategy, factorization based methods, is to decom-
pose Pr(T ) into multiple low-dimensional PDFs Pr(T ′) such that
their suitable combination can approximate Pr(T ). However, exist-
ing methods often fail to balance the three criteria. Some meth-
ods, including deep auto-regression [17, 62, 63] and Bayesian Net-
work [12, 57], can losslessly decompose Pr(T ) using conditional

factorization. However, their probability computation speed is re-
duced drastically. Other methods, such as 1-D histogram [51] and
sum-product network [20], assume global or local independence be-
tween attributes to decompose Pr(T ). They attain high computation
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efficiency but their estimation accuracy is low when the indepen-
dence assumption does not hold. We present a detailed analysis of
existing data-driven CardEst methods in Section 2.
Our Contributions. In this paper, we address theCardEst problem
more comprehensively in order to satisfy all three criteria. We ab-
sorb the advantages of existing models and design a novel graphical
model, called factorize-sum-split-product network (FSPN). Its key
idea to adaptively decompose Pr(T ) according to the dependence
level of attributes. Specifically, the joint PDF of highly and weakly
correlated attributes will be losslessly separated by conditional
factorization and modeled accordingly. The joint PDF of highly
correlated attributes can be easily modeled as a multivariate PDF.
For the weakly correlated attributes, their joint PDF is split into
multiple small regions where attributes are mutually independent
in each. We prove that FSPN subsumes 1-D histogram, sum-product
network and Bayesian network, and leverages their advantages.

Based on the FSPN model, we propose a CardEst method called
FLAT, which is fast, lightweight and accurate. On a single table, FLAT
applies an effective offline method for the structure construction
of FSPN and an efficient online probability computation method
using the FSPN. The probability computation complexity of FLAT
is almost linear w.r.t. the number of nodes in FSPN. Moreover, FLAT
enables fast incremental updates of the FSPN model.

For multi-table join queries, FLAT uses a new framework, which
is more general and applicable than existing work [17, 20, 24, 63].
In the offline phase, FLAT clusters tables into several groups and
builds an FSPN for each group. In the online phase, FLAT combines
the probabilities of sub-queries in a fast way to get the final result.

In our evaluation, FLAT achieves state-of-the-art performance
on both single table and multi-table cases in comparison with all
existing methods [20, 23, 24, 29, 46, 57, 62, 64]. On single table, FLAT
achieves up to 1–5 orders of magnitude better accuracy, 1–3 orders
of magnitude faster probability computation speed (near 0.2ms)
and 1–2 orders of magnitude lower storage cost (only tens of KB).
On the JOB-light benchmark [28, 30] and a more complex crafted
multi-table workload, FLAT also attains the highest accuracy and
an order of magnitude faster computation time (near 5ms), while
requiring only 3.3MB storage space. We also integrate FLAT into
Postgres. It improves the average end-to-end query time by 12.9% on
the benchmark workload, which is very close to the optimal result
14.2% using the true cardinality. This result confirms with a positive
answer to the long-existing question whether and how much a
more accurate CardEst can improve the query plan quality [44]. In
addition, we have deployed FLAT in the production environment.

In summary, our main contributions are listed as follows:
1) We analyze in detail the status of existing data-driven CardEst

methods in terms of the above three criteria (in Section 2).
2) We present FSPN, a novel unsupervised graphical model,

which combines the advantages of existing methods in an adaptive
manner (in Section 3).

3) We propose FLAT, a CardEst method with fast probability
computation, high estimation accuracy and low storage cost, on
both single table and multi-table join queries (in Section 4 and 5).

4) We conduct extensive experiments and end-to-end test on
Postgres to demonstrate the superiority and practicality of our
proposed methods (in Section 6).

2 PROBLEM DEFINITION AND BACKGROUND
In this section, we formally define the CardEst problem and analyze
the status of data-driven CardEst methods. Based on the analysis,
we summarize some key findings that inspire our work.
CardEst Problem. Let T be a table with a set of k attributes A =
{A1,A2, . . . ,Ak }. T could either be a single or a joined table. Each
attribute Ai in T is assumed to be either categorical, so that values
can bemapped to integers, or continuous.Without loss of generality,
we assume that the domain of Ai is [LBi ,UBi ].

In this paper, we do not consider “LIKE” queries on strings. Any
selection query Q on T may be represented in canonical form:
Q = (A1 ∈ [L1,U1] ∧ A2 ∈ [L2,U2] ∧ · · · ∧ Ak ∈ [Lk ,Uk ]), where
LBi ≤ Li ≤ Ui ≤ UBi for all i . W.l.o.g., the endpoints of each
interval can also be open. We call Q a point query if Li = Ui for
all i and range query otherwise. If Q has no constraint on one side,
we can set Li = LBi or Ui = UBi . For any query Q ′ where the
constraint of an attribute Ai contains several intervals, we may
split Q ′ into multiple queries satisfying the above form.

Let Card(T ,Q) denote the number of records in T satisfying Q .
The CardEst problem asks to accurately estimate Card(T ,Q) with-
out executing Q on T . CardEst is often modeled and solved from a
statistical perspective. We can regard each attributeAi inT as a ran-
dom variable. The tableT essentially represents a set of i.i.d. records
sampled from the joint PDF Prt(A) = Prt(A1,A2, . . . ,Ak ). For any
query Q , let Prt(Q) denote the probability of records in T satisfy-
ing Q . We have Card(T ,Q) = Prt(Q) · |T |. Therefore, estimating
Card(T ,Q) is equivalent to estimating the probability Prt(Q). Un-
supervised CardEst solves this problem in a purely data-driven
fashion, which can be formally stated as follows:
Offline Training: Given a table T with a set A of attributes as
input, output a model P̂rt(A) for Prt(A) such that P̂rt(A) ≈ Prt(A).
Online Probability Computation: Given the model P̂rt(A) and
a query Q as input, output P̂rt(Q) · |T | as the estimated cardinality.
Data-Driven CardEst Methods Analysis. We use three criteria,
namely model accuracy, probability computation speed and storage

overhead, to analyze existing methods. The results are as follows:
1) Lossy FullStore [15] stores all entries in Prt(A) using compres-

sion techniques, whose storage grows exponentially in the number
of attributes and becomes intractable [62, 63].

2) Sample and Kernel-based methods [18, 23, 29, 65] do not store
Prt(A) but rather sample records from T on-the-fly, or use aver-
age kernels centered around sampled points to estimate Prt(Q).
For high-dimensional data, they may be either inaccurate without
enough samples, or inefficient due to a large sample size.

Alternatively, a more promising way is to factorize Prt(A) into
multiple low-dimensional PDFs Prt(A′) such that: 1) |A′ | << |A| so
Prt(A′) is easier to store and model; and 2) a suitable combination,
e.g. multiplication, weighted sum and etc, of Prt(A′) approximates
Prt(A). Some representative methods are listed in the following:

3) 1-D Histogram [51] builds a (cumulative) histogram on each
attribute and assumes all attributes are mutually independent, so
P̂rt(Q) may be obtained inO(|A|) time. However, the estimation er-
rors may be high, since correlations between attributes are ignored.

4)M-D Histogram [7, 14, 46, 59] builds multi-dimensional his-
tograms to model the dependency of attributes. They identify sub-
sets of correlated attributes using models such as Markov network,
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build histograms on each subset and assume the independence
across different subsets. It improves the accuracy but the decompo-
sition is still lossy. Meanwhile, it is space consuming.

5)Deep Auto-Regression (DAR) [17, 62, 63] decomposes the joint
PDF according to the chain rule, i.e., Prt(A)=Prt(A1) ·

∏k
i=2Prt(Ai |

A1,A2, . . . ,Ai−1). Each conditional PDF can be parametrically mod-
eled by a deep neural network (DNN). While the expressiveness
of DNNs allows Prt(A) to be approximated well, probability com-
putation time and space cost increase with the width and depth of
the DNN. Moreover, for range query Q , computing Prt(Q) requires
averaging the probabilities of lots of sample points in the range.
Thus, the probability computation on DAR is relatively slow.

6) Bayesian Network (BN) [4, 12, 57] models the dependence
structure between all attributes as a directed acyclic graph and
assumes that each attribute is conditionally independent of the
remaining attributes given its parents. The probability Prt(A) is fac-
torized as Prt(A) =

∏k
i=1 Prt(Ai |Apa(i)), where pa(i) is the parent

attributes of Ai in BN. Learning the BN structure from data and
probability computation on BN are both NP-hard [5, 50].

7) Sum-Product Network (SPN) [20] approximates Prt(A) using
several local and simple PDFs. An SPN is tree structure where each
node stands for an estimated PDF P̂rt′(A′) of the attribute subset
A′ on record subset T ′ ⊆ T [45]. The root node represents P̂rt(A).
Each inner node is: 1) a sum node which splits all records (rows) in
T ′ into T ′i on each child such that P̂rt′(A′) =

∑
i wi P̂rt′i (A

′) with
weightswi ; or 2) a product node which splits attributes (columns) in
A′ on each child as P̂rt′(A′) =

∏
j P̂rt′(A′j )when allA

′
j are mutually

independent in T ′. Each leaf node then maintains a (cumulative)
PDF on a singleton attribute. The probability P̂rt(Q) can be com-
puted in a bottom-up manner using the SPN node operations for
both point and range queries. The storage overhead and probability
computation cost are linear in the number of nodes of SPN.

The performance of SPN heavily relies on the local independence
assumption. When it holds, the generated SPN is compact and
exhibits superiority over other methods [20, 62]. However, real-
world data often possesses substantial skew and strong correlations
between attributes [57]. In this situation, SPN can not split these
attributes using the product operation and might repeatedly apply
the sum operation to split records into extremely small volumes [39],
i.e., |T ′ | = 1. This would heavily increase the SPN size, degrade its
efficiency and make the model inaccurate [6, 39].
Inspirations.We find that independent factorization has low stor-
age cost and supports fast inference but may incur huge estimation
errors; conditional factorization can accurately decompose the PDF
but the inference is costly. To this end, we propose a new unsuper-
vised model, called factorize-split-sum-product network (FSPN),
which applies both kinds of factorization methods in an adaptive
manner. This design choice makes it possible to obtain a CardEst
method that can simultaneously satisfy all three criteria.

3 THE FSPNMODEL
In this section, we present FSPN, a new tree-structured graphical
model. We first explain the key ideas of FSPN with an example and
then present its formal definition. Finally, we compare FSPN with
aforementioned models.

Key Ideas of FSPN. FSPN can factorize attributes with different
dependence levels accordingly. The conditional factorization ap-
proach is used to split highly andweakly correlated attributes. Then,
highly correlated attributes are directly modeled together while
weakly correlated attributes are recursively approximated using the
independent factorization approach. Figure 1(a) gives an example
of table T with a set A of four attributes water turbidity (A1), tem-

perature (A2), wave height (A3) and wind force (A4). We elaborate
the process to construct its FSPN in Figure 1(b) as follows:

At first, we examine the pairwise correlations and find that A3
and A4 are globally highly correlated, so they can not be easily
decomposed as independent attributes. Instead, we can losslessly
separate them from other attributes as early as possible and process
each part respectively. Let H = {A3,A4} andW = {A1,A2}. We
apply the conditional factorization approach and factorize Prt(A) =
Prt(W ) · Prt(H |W ) (as node N1 in step 1○). Prt(W ) and Prt(H |W )
are then modeled in different ways.

The two attributes A1 and A2 are weakly correlated on T . If we
split all records inT intoT1 andT2 based on whetherA1 is less than
50 (as nodeN2 in step 2○),A1 andA2 are independent on bothT1 and
T2. This situation is called contextually independent, where T1 and
T2 refer to the specific context. Since Prt1 (W ) = Prt1 (A1) · Prt1 (A2)
(as node N4 in step 3○), we then simply use two univariate PDFs
(such as histograms in leaf nodes L1 and L2 in step 3○) to model
Prt1 (A1) and Prt1 (A2) on T1, respectively. Similarly, we also model
Prt2 (W ) = Prt2 (A1) · Prt2 (A2) on T2 (as node N5).

For the conditional PDF Prt(H |W ), we do not need to specify
Pr(H |w) for each valuew ofW . Instead, we can recursively split T
into multiple regions Tj in terms ofW such that H is independent
ofW in each contextTj , i.e., Prtj (H ) = Prtj (H |W ). At this time, for
any value w ofW falling in the same region, Prtj (H |w) stays the
same, so we only need to maintain Prtj (H ) for each region. We refer
to this situation as contextual condition removal. In our example,
we split T into T3 and T4 (as nodes N3 in step 4○) by whether
the condition attribute A1 is less than 0.9.W is independent of H
on each leaf node region, so we only need to model Prt3 (H ) and
Prt4 (H ). Thus, wemodel them as twomultivariate leaf nodes L5 and
L6 in step 4○. Note that, attribute values in H are interdependent
and their joint PDFs Prt3 (H ) and Prt4 (H ) are sparse in the two-
dimensional space, so they are easy modeled as a multivariate PDF.

Finally, we obtain an FSPN in Figure 1(c) containing 11 nodes,
where 5 inner nodes represent different operations to split data and
6 leaf nodes keep PDFs for different parts of the original data.
Formulation of FSPN. Let F denote a FSPN modeling the joint
PDF Prt(A) for records T with attributes A. F is a tree structure.
Each node N in F is a 4-tuple (An,Cn,Tn,On) where:
•Tn ⊆ T represents a set of records where the PDF is built on. It

is called the context of node N .
• An,Cn ⊆ A represent two sets of attributes. We call An and

Cn the scope and condition of node N , respectively. If Cn = ∅, N
represents the PDF Prtn (An); otherwise, it represents the condi-
tional PDF Prtn (An |Cn). The root of F , such as N1 in Figure 1(c),
represents the joint PDF Prt(A) with An = A, Cn = ∅ and Tn = T .
• On stands for the operation specifying how to split data to

generate its children in different ways:
1) A Factorize ( |○) node, such as N1 in step 1○, splits highly
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	𝑨𝟏 𝑨𝟐 	𝑨𝟑 𝑨𝟒

0.27 43.7 0.9 5.5
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… … … …

2.61 62.8 1.5 8.9

0.97 73.6 2.1 11.7

W = { 𝑨𝟏, 𝑨𝟐 }
weakly correlated

H = { 𝑨𝟑, 𝑨𝟒 }
highly correlated
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 (a) Ocean Observation Data Table  (c) The FSPN Structure
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PrT4(H)

②

④③

 (b) Detailed Steps to Construct the FSPN Structure

①

𝑨𝟏 < 0.9?

Figure 1: An ocean observation data table and its corresponding FSPN.

correlated attributes from the remaining ones by conditional factor-
ization only when Cn = ∅. Let H ⊆ An be a subset of highly corre-
lated attributes. It generates the left child Nl = (An − H , ∅,Tn,Ol)

and the right child Nr = (H ,An − H ,Tn,Or). We have Prtn (An) =

Prtn (An − H ) · Prtn (H |An − H ).
2) A Sum ( +○) node, such as N2 in step 2○, splits the records in

Tn in order to enforce contextual independence only when Cn = ∅.
We partition Tn into subsets T1,T2, . . . ,Tn and generate each child
Ni = (An, ∅,Ti ,Oi ) with weight wi = |Ti |/|Tn | for N . We can re-
gard N as a mixture of models, i.e., Prtn (An) =

∑n
i=1wi Prti (An).

3) A Product ( ×○) node, such as N4 in step 3○, splits the scope
An of N only whenCn = ∅ and contextual independence holds. Let
A1,A2, . . . ,Am be the mutually independent partitions of An. N
generates children Nj = (Aj , ∅,Tn,O j ) for all 1 ≤ j ≤ m such that
Prtn (An) =

∏m
j=1 Prtn (Aj ).

4) A Split ( −○) node, such as N3 in step 4○, partitions the records
Tn into disjoint subsets T1,T2, . . . ,Td only when Cn , ∅. For each
1 ≤ i ≤ d , N generates the child Ni = (An,Cn,Ti ,Oi ). Note that
for any value c of Cn, there exists exactly one j such that c falls in
the region of Tj . The semantic of split is different from sum. The
split node divides a large model of PrTn (An |Cn) into several parts
by the values of Cn. Whereas, the sum node decomposes a large
model of PrTn (An) to small models on the space of An.

5) A Uni-leaf (□) node, such as L1 and L2 in step 3○, keeps the
univariate PDF PrTn (An), such as histogram or Gaussian mixture
model, only when |An | = 1 and Cn = ∅.

6) A Multi-leaf (□□) node, such as L5 and L6 in step 4○, main-
tains the multivariate PDF PrTn (An) only when Cn , ∅ and An is
independent of Cn on Tn.

The above operations are recursively used to construct F with
three constraints: 1) for a factorize node, the right child must be
a split node or multi-leaf; the left child can be any type in sum,
product, factorize and uni-leaf; 2) the children of a sum or product
node could be any type in sum, product, factorize and uni-leaf; and
3) the children of a split node can only be split or multi-leaf nodes.
Differences with SPN. As the name suggests, FSPN is inspired by
SPN and its successful application in CardEst [20]. However, FSPN
differs from SPN in two fundamental aspects. First, in terms of the
underlying key ideas, FSPN tries to adaptively model attributes
with different levels of dependency, which is not considered in
SPN. Second, in terms of the fundamental design choices, FSPN can
split weakly and highly correlated attributes, and models each class
differently: 1) weakly correlated attributes are modeled by sum and

product operations; and 2) for highly correlated attributes, FSPN
uses split and multi-leaf nodes. SPN only uses the first technique
on all attributes. As per our analysis in Section 2, this can generate
a large structure since local independence can not easily hold.

Moreover, a simple extension of SPN with multi-leaf nodes also
seems unlikely to mitigate its inherent limitations. This is because
multi-leaf nodes can only efficiently model highly correlated at-
tributes, as their joint PDF can be easily reduced to and modeled
in a low dimensional space. Otherwise, their storage cost grows
exponentially so the model size would be very large. FSPN guar-
antees that multi-leaf nodes are only applied on highly correlated
attributes, whereas SPN and its extensions lack such mechanism.
Our experimental results in Section 6.1 exhibit that the model size
of SPN with multi-leaf nodes are much larger than FSPN and may
exceed the memory limit on highly correlated table.
Generality of FSPN. We show that FSPN generalizes 1-D His-
togram, SPN and BNmodels. First, when all attributes are mutually
independent, FSPN becomes 1-D Histogram. Second, FSPN degen-
erates to SPN by disabling the factorize operation. Third, FSPN
could equally represent a BN model on discrete attributes by itera-
tively factorizing each attribute having no parents from others. We
put the transformation process in Appendix A.1. Based on it, we
obtain Lemma 1 (proved in Appendix A.2) stating that the FSPN is
no worse than SPN and BN in terms of expressive efficiency.

Lemma1Given a tableT with attributesA, if the joint PDF Prt(A)
is represented by an SPN S or a BN B with space cost O(M), then
there exists an FSPN F that can equivalently model Prt(A) with no

more than O(M) space.

4 SINGLE TABLE CardEst METHOD
In this section, we propose FLAT, a fast, lightweight and accurate
CardEst algorithm built on FSPN. We first introduce how FLAT
computes the probability on FSPN online in Section 4.1. Then, we
show how FLAT constructs the FSPN from data offline in Section 4.2.
Finally, we discuss how FLAT updates the model in Section 4.3.

4.1 Online Probability Computation
FLAT can obtain the probability (cardinality) of any query Q in
a recursive manner on FSPN. We first show the basic strategy of
probability computation with an example, and then present the
detailed algorithm and analyze its complexity.
Basic Strategy. As stated in Section 2, the query Q can be repre-
sented in canonical form:Q = (A1 ∈ [L1,U1]∧A2 ∈ [L2,U2]∧ · · · ∧
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Ak ∈ [Lk ,Uk ]), where Li ≤ Ai ≤ Ui is the constraint on attribute
Ai . Obviously,Q represents a hyper-rectangle range in the attribute
space whose probability needs to be computed. In Figure 2, we give
an example query Q on the FSPN in Figure 1(c).

First, considering the root node N1, computing the probability of
Q on this factorize node is a non-trivial task. For each point r ∈ Q ,
we can obtain its probability Prr (A1,A2) from node N2 and the
conditional probability Prr (A3,A4 |A1,A2) from node N3. However,
for different r , Prr (A3,A4 |A1,A2) is modeled by different PDFs on
multi-leaf nodes L5 or L6 of N3. Thus, we must split Q into two
regions to compute the probability of Q (as step 1○ in Figure 2). To
this end, we push Q onto N3, whose splitting rule on the condition
attributes (A1 < 0.9) would divide Q into two hyper-rectangle
ranges Q1 and Q2 on multi-leaf nodes L5 or L6, respectively. For
Q1 (or Q2), the probability Pr(A3,A4 |A1,A2) = Pr(A3,A4) can be
directly obtained from the multivariate PDF on L5 (or L6).

Then, we can compute the probability Pr(A1,A2) for each region
Q1 andQ2 from N2. Obviously, for the sum node (e.g. N2) and prod-
uct node (e.g. N4), the probability of each region can be recursively
obtained by summing (as step 3○) or multiplying (as step 2○) the
probability values of its children, respectively. In the base case, the
probability on the singleton attribute A1 (or A2) is obtained from
the uni-leaf nodes L1 and L3 (or L2 and L4). Finally, since Pr(A1,A2)
and Pr(A3,A4) are independent in Q1 and Q2, we can multiply and
sum them together ((as step 4○)) to obtain the probability of Q .
Algorithm Description. Next, we describe the online probabil-
ity computation algorithm FLAT-Online. It takes as inputs a FSPN
F modeling Prt(A) and the query Q , and outputs Prt(Q) on F .
Let N be the root node of F . For any node N ′ in F , let Fn′ de-
note the FSPN rooted at N ′. FLAT-Online recursively computes the
probability of Q by the following rules:

Rule 1 (lines 2–3): Basically, if N is a uni-leaf node, we directly
return the probability of Q on the univariate PDF of the attribute.

Rule 2 (lines 4–11): if N is a sum node or a product node, let
N1,N2, . . . ,Nt be all of its children.We can further call FLAT-Online
on each child to obtain the probability on the PDF represented by
each child. Then, node N computes a weighted sum (for sum node)
or multiplication (for product node) of these probabilities.

Rule 3 (lines 12–18): if N is a factorize node, let LC and RC be
its left and right child modeling Prt(W ) and Prt(H |W ), respec-
tively. All descendants of RC are split or multi-leaf nodes. Let
L1, L2, . . . , Lt be all multi-leaf descendants of RC . We assume that
each split node divides the attribute domain space in a grid manner,
which is ensured by the FSPN structure construction method in
Section 4.2. Then, each Li maintains a multivariate PDF on a hyper-
rectangle range specified by all split nodes on the path from RC to
Li . Based on these ranges, we can divide the range of query Q into
Q1,Q2, . . . ,Qt . For eachQi , the probability hi on highly correlated
attributes H could be directly obtained from Li . The probability
wi on attributesW could be recursively obtained by calling FLAT-
Online on Flc, the FSPN rooted at LC , and Qi . After that, since H
is independent ofW on the range of each Qi , we sum all products
hiwi together as the probability of Q .
Complexity Analysis. We assume that, on each leaf node, the
probability of any range can be computed in O(1) time, which
can be easily implemented by a cumulative histogram or Gaussian

Range A1 ■ A2 ■ A3 ■ A4 ■
Bound [0, 10] [0, 100] [0, 100] [0, 100]
Leaf L5 [0, 0.9) [0, 100] [0, 100] [0, 100]
Leaf L6 [0.9, 10] [0, 100] [0, 100] [0, 100
QueryQ [0.6, 1.4] [35, 65] [2, 3] [60, 70]
Query Q1 [0.6, 0.9) [35, 65] [2, 3] [60, 70]
Query Q2 [0.9, 1.4] [35, 65] [2, 3] [60, 70]
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Figure 2: An example of the FLAT probability computation.

Algorithm FLAT-Online(F,Q )
1: let N be the root node of F
2: if N is uni-leaf node then
3: return Prt(Q ) by the univariate PDF on the attribute modeled by N
4: else if N is a sum node then
5: let N1, N2, . . . , Nt be the children of N with weightsw1,w2, . . . ,wt
6: pi ← FLAT-Online(Fni ,Q ) for each 1 ≤ i ≤ t
7: return

∑t
i=1wipi

8: else if N is a product node then
9: let N1, N2, . . . , Nt be the children of N
10: pi ← FLAT-Online(Fni ,Q ) for each 1 ≤ i ≤ t
11: return

∏t
i=1 pi

12: else
13: let LC be the left child modeling Prt(W ) and RC be the right child modeling Prt(H |W )
14: let L1, L2, . . . , Lt be all the multi-leaf descendants of RC
15: splitQ intoQ1,Q2, . . . ,Qt by ranges of L1, L2, . . . , Lt
16: get hi ofQi on variables H from the multivariate PDF on Li for each 1 ≤ i ≤ t
17: wi ← FLAT-Online(Flc,Qi ) for each 1 ≤ i ≤ t
18: return

∑t
i=1 hiwi

mixture functions. Let n be the number of nodes in FSPN. Let f
andm be the number of factorize and multi-leaf nodes in FSPN,
respectively. The maximum number of ranges to be computed on
each node is O(mf ), so the time cost of FLAT-Online is O(mf n).

By our empirical testing, the actual time cost of FLAT-Online is
almost linear w.r.t. the number of nodes in FSPN for two reasons.
First, FSPN is compact on real-world data so both f and n are small.
Second, the computation on many ranges in each node could be
easily done in parallel. In our testing, the speed of FLAT-Online
is even near the histogram method and 1–3 orders of magnitude
faster than other methods (See Section 6.1).

4.2 Offline Structure Construction
We show the general process to build an FSPN in Figure 3 and put
the pseudocode of the algorithm FLAT-Offline in Appendix B.1 [66].
FLAT-Offline works in a top-down manner. Each node N takes the
scope attributes An, the condition attributes Cn and the context of
records Tn as inputs, and recursively decompose the joint PDF to
build the FSPN rooted at N . To build the FSPN F modeling table
T with attributes A, we can directly call FLAT-Offline(A, ∅,T ). We
briefly scan its main procedures as follows:
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Figure 3: FLAT Structure Construction Process.

1. Separating highly correlated attributes with others: whenCn =

∅, FLAT-Offline firstly detects if there exists a set H of highly cor-
related attributes since the principle of FSPN is to separate them
with others as early as possible (step 1○ in Figure 3). We find H by
examining pairwise correlations, e.g. RDC [35], between attributes
and iteratively group attributes whose correlation value is larger
than a threshold τh . If H , ∅, we set N to be a factorize node. The
left child and right child of N recursively call FLAT-Offline to model
Prtn (An − H ) and PrTn (H |An − H ), respectively.

2. Modeling weakly correlated attributes: if Cn = ∅ and H = ∅,
we try to split Prtn (An) into small regions such that attributes inAn

are locally independent. Specifically, if |An | = 1,N is a uni-leaf node.
We call the Leaf-PDF procedure to model univariate PDF Prtn (An)

using off-the-shelf tools. In our implementation, we choose his-
tograms [46] and parametric Gaussian mixture functions [47] to
model categorical and continuous attributes, respectively.

Otherwise, we partition An into mutually independent subsets
based on their pairwise correlations (step 2○ in Figure 3). Two at-
tributes are regarded as independent if their correlation value is
no larger than a threshold τl . If An can be split into mutually in-
dependent subsets A1,A2, . . . ,Am , we set N to be a product node
and call FLAT-Offline to model each PrTn (Ai ). If not, the local in-
dependency does not exist, so we need to split the data (step 3○ in
Figure 3). Similar to [11], we apply a clustering method, such as
k-means [26], to cluster Tn to T1,T2, . . . ,Tn according to An . The
records in the same cluster are similar, so the corresponding PDF
becomes smoother and attributes are more likely to be independent.
At this time, we set N to be a sum node and call FLAT-Offline to
model PrTi (An) with weightwi = |Ti |/|Tn | for each 1 ≤ i ≤ n.

3. Modeling conditional PDF : when Cn , ∅, we model the condi-
tional PDF PrTn (An |Cn). First, we compute pairwise correlations
across all attributes in An and Cn . If An is independent of Cn, N is
a multi-leaf node. We model the multivariate PDF PrTn (An) using
the piecewise regression technique [40] and maintain its range in
the attribute domain space.

Otherwise, we further split records in Tn (step 4○ in Figure 3).
Probability computation requiresTn to be divided into grids in terms
of Cn. We apply a heuristic d-way partition method where d is a
hyper-parameter. We choose the attribute c ∈ Cn that maximizes
the pairwise correlations between An and Cn. Intuitively, dividing
the space by c would largely break their correlations. We set N to
be a split node, evenly divide the range of c on Tn into d parts and

get the clusters T1,T2, . . . ,Td . After that, we call FLAT-Offline to
model PrTi (An |Cn) for each 1 ≤ i ≤ d .
Complexity Analysis. Let n be the number of nodes in the re-
sulting FSPN and s be the number of sum nodes. On each inner
node, we can sample a set of r records from table T to compute
the RDC scores between attributes. The time cost of calling RDC
is O(r log r ), so the total time cost is O(n |A|2r log r ). On each sum
node, we can also use the sampled records to compute the central
points of the clusters and then assign each record to the nearest
cluster. We denote the maximum iteration time in k-means as t .
The total clustering time cost on all sum nodes is O(stkr ). Besides,
on each node, we need to scan all records inT to assign them to the
children (for inner nodes) or building the PDFs (for leaf nodes). The
total scanning time cost is O(n |T |). Therefore, the time complexity
of FLAT-Offline isO(n |A|2r log r + n |T | + stkr ). As n is often small,
it is efficient. By our testing, learning the structure of an FSPN is
faster than SPN and DAR to model the same joint PDF.

4.3 Incremental Updates
When the tableT changes, we apply an incremental update method
FLAT-Update to ensure the underlying FSPN model can fit the new
data. To attain high estimation accuracy while saving update cost,
we try to preserve the original FSPN structure to the maximum
extent while fine-tuning its parameters for better fitting.

Let ∆T be the data inserted into (or deleted from) T . We could
traverse the FSPN in a top-down manner to fit T + ∆T (or T − ∆T ).
Specifically, for each factorize node N , since the conditional factor-
ization is a lossless decomposition of the joint PDF, we propagate
∆T to its children. For each split node, we propagate each record in
∆T to the corresponding child according to its splitting condition.

On each original multi-leaf node L, we recheck whether the
conditional independence still holds after adding (or deleting) some
records. If so, we just update the parameters of its multivariate PDF
by ∆T . Otherwise, we reset it as a split node and run of FLAT-Offline
to further divide its domain space accordingly.

For each sum node, we store the centroids of all clusters in struc-
ture construction. We could assign each record in ∆T to the nearest
cluster (or remove each record from its original cluster), propagate
it to that child and update the weight of each child accordingly.

For each product node, we also recheck whether the indepen-
dence between attributes subset still holds after adding (or deleting)
some records. If not, we run FLAT-Offline to reconstruct the sub-
structure of the FSPN accordingly. Otherwise, we directly pass ∆T
to its children. On each uni-leaf node, we update its parameters of
the univariate PDF by ∆T . Obviously, after updating, the generated
FSPN can accurately fit the PDF of T + ∆T (or T − ∆T ).

We put the pseudocode of FLAT-Update in Appendix B.2 [66]. It
can run in the background of the DBMS. In case of significant data
change or schema changes, such as inserting or deleting attributes,
the FSPN could be rebuilt by calling FLAT-Offline in Section 4.2.

5 MULTI-TABLE CardEst METHOD
In this section, we discuss how to extend FLAT algorithm to multi-
table join queries. We first describe our approach on a high level,
and then elaborate the key techniques in details.
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Algorithm FLAT-Multi(D ,Q )

1: organize all tables in D as a join tree J% offline
2: for each edge (A, B) ∈ J do
3: if RDC(a, b) ≥ τl for any attribute a of A and b of B then
4: A← {A, B }
5: for each node T in J with attributes At of T do
6: add scattering coefficient columns St in T
7: Ft ← FLAT-Offline(At ∪ St, ∅, T)
8: let E = {T1,T2, . . . ,Td } denote all nodes in touched byQ % online
9: for i ← 1 to d do
10: compute pi in Eq. (1) by Technique II
11: return |E | ·

∏d
i=1 pi

Main Idea. To avoid ambiguity, in the following, we use printed
letters, such as T ,D, to represent a set of tables, and calligraphic
letters, such as T ,D, to represent the corresponding full outer join
table. Given a database D, all information of D is contained in D.
DAR-based approach [62] builds a single large model on D. It is
easy to use and applicable to any type of joins between tables in D
but suffer from significant limitations. First, no matter how many
tables are involved in a query, the entire model has to be used for
probability computation, which may be inefficient. Second, the size
of D grow rapidly w.r.t. the number of tables in D, so its training
cost is high even using samples from D. Third, in case of data
update of any table in D, the entire model needs to be retrained.

Another approach [20] builds a set of small models, where each
captures the joint PDF of several tables D ′ ⊆ D. The joint PDF of
attributes in D ′ (the full outer join table of D ′) is different from
that in D since each record in D ′ can appear multiple times in D.
Therefore, the local model of D ′ needs to involve some additional
columns to correct such PDF difference. When a query touches
tables in multiple models, all local probabilities are corrected and
merged together to estimate the final cardinality. This approach
is more efficient and flexible, but it only supports the primary-
foreign key join. This is not practical as many-to-many joins are
very common in query optimization (see Section 6.3 for examples
on the benchmark workload).

To overcome their drawbacks, our approach absorbs the key
ideas of [20] and also builds a set of small local models. However,
we extend this method to be more general and applicable. First,
we develop a new PDF correction paradigm, inspired by [20], to
support more types of joins, e.g., inner or outer and many-to-many
(See the following Technique I). Second, we specifically optimize
the probability computation and correction process based on our
FSPN model (See Technique II). Third, we develop incremental
model updates method for data changes (See Technique III).
Algorithm Description. We present a high-level description of
our approach in the FLAT-Multi algorithm, which takes a database
D and a query Q as inputs. The main procedures are as follows:

1. Offline Construction (lines 1–7): We first organize all tables in
D as a tree J based on their joins. Initially, each node in J is a table
in D, and each edge in J is a join between two tables. We do not
consider self-join and circular joins in this paper. Based on J , we
can partition all tables in D into multiple groups such that: tables
are highly correlated in the same group but weakly correlated in
different groups. Specifically, for each edge (A,B) in J , we sample
some records from A ▷◁ B, the outer join table, and examine the
pairwise attribute correlation values between A and B. If some
correlation values are higher than a threshold, we learn the model

on A ▷◁ B together, so we merge {A,B} to a single node. We repeat
this process until no pair of nodes needs to be merged. After that,
the probability across different nodes can roughly be assumed as
independent on their full outer join table.

After the partition, each node T in J represents a set of one or
more single tables. We add some scattering coefficient columns in
its outer join table T for PDF correction. The details are explained
in the following Technique I. Then, we construct a FSPN Ft on T
using FLAT-Offline in Section 4.2. If T is large, we do not explicitly
materialize it. Instead, we draw some samples from T using the
method in [65] and train the FSPN model on them.

Figure 4 depicts a example database with three tables. The join
between Tb and Tc is a many-to-many join. Ta and Tb are highly
correlated so they are merged together into nodeT1. Then, we build
two FSPNs Ft1 and Ft2 on table Ta ▷◁ Tb and Tc, respectively.

2. Online Processing (lines 8–12): Let E = {T1,T2, . . . ,Td } denote
all nodes in J touched by the query Q and Qi be the sub-query on
Ti . By our assumption, the probability of eachQi is independent on
the table E = T1 ▷◁ T2 ▷◁ · · · ▷◁ Td . We can efficiently correct the
probability from the local model Fti on Ti to E by a new paradigm.
Finally, we multiply all probabilities to get the final result.

Technique I: Probability Correction Method. We need to cor-
rect the probability to account for the effects of joining from two
aspects. We elaborate the details with the example query Q in Fig-
ure 4(e). Q is divided into two sub-queries: Q1 (Tb.b2 >0.5 on node
T1) andQ2 (Tc.c2 < 0.3 on nodeT2). First, on nodeT1, the FSPN Ft1
is built on table Ta ▷◁ Tb instead of table Tb individually. As each
record in Tb can occur multiple times in Ta ▷◁ Tb, the probability
obtained by Ft1 needs to be down-scaled to remove the effects of
Ta. Second, the probability obtained on node T2 is defined on table
Tc individually but not on Tb ▷◁ Tc. Therefore, the probability of
Q2 (and also Q1) needs to be up-scaled to add the effects of joining.

The above corrections are achieved by adding extra columns in
table Ti of each node Ti . These columns track the number of times
that a record in a single table A appears in Ti , i.e., the scattering
effect. Previous works [20, 62] add columns to process the scattering
effects of each join in only one side. However, our solution considers
the scattering effects on two sides of each join. It is more practical
by supporting more join types in one framework, and more general
by processing down-scale and up-scale effects at the same time.

For each pair of joined tables (A,B) in a node Ti , we add two
additional attributes Sa,b and Sb,a in Ti . Sa,b indicates how many
records in B can join with this record in A and vice versa. We call
such Sa,b scattering coefficient. In Figure 4(d), we add two columns
Sa,b and Sb,a in the tableTa ▷◁ Tb ofT1. These columns are be used
to down-scale the effects of untouched tables inside each node.

Similarly, for up-scale correction, we can regard node Ti as the
root of the join tree J . For each distinct sub-tree of J rooted at Ti
containing nodes E ′ = {T ′1,T

′
2, . . . ,T

′
d }, we add a column Sti ,E′

in table Ti indicating the scattering coefficient of each record in
Ti to the outer join table E ′ = T ′1 ▷◁ T

′
2 ▷◁ · · · ▷◁ T

′
d . For the

node T2 in Figure 4(c), we add the column S
t2, {t1,t2 } indicating

the scattering coefficient of each record in Tc when joining with
Ta ▷◁ Tb. The method to compute the values of these scattering
coefficient columns has been proposed in [65]. Briefly speaking, we
can obtain the values of Sti ,E′ by recursively aggregating over all
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(a) Table Ta
A1 A2
b 0
c 2
b 3
c 4

(b) Table Tb
B1 B2 B3
1 0.3 M
0 0.6 D
3 0.4 D
2 0.7 M
4 0.5 K
3 0.2 K

(c) Table Tc of
node T2

C1 C2 S
t2 ,{t1 ,t2}

D 0.2 2
M 0.7 2
D 0.8 2
K 0.9 2

(d) Table Ta ▷◁ Tb of node T1
A1 A2 B1 B2 B3 Sa,b Sb,a S

t1 ,{t1 ,t2}
null null 1 0.3 M 0 0 1
b 0 0 0.6 D 1 1 2
b 3 3 0.4 D 2 1 2
c 2 2 0.7 M 1 1 1
c 4 4 0.5 K 1 1 1
b 3 3 0.2 K 2 1 1

(e) Join Tree J and Query Q

𝑇!𝑇" 𝑇#
𝐴!=𝐵" 𝐵# =𝐶"

node 𝑇" node 𝑇!

Q : select count(*) from Tb full
outer join Tc on Tb.b3 = Tc.c1
where Tb.b2>0.5 and Tc.c2<0.3

Figure 4: Example databases and join query.

sub-trees rooted at Ti ’s children. Using dynamic programming, the
time cost of computing scatter coefficient values over all nodes is
linear w.r.t. table size.

As all tables form a join tree, the number of added scattering
columns in each node is linear w.r.t. its number of tables. In each
nodeTi , all scattering coefficient columns are learned together with
other attributes when constructing the FSPN Fti .

We can estimate the cardinality by the following lemma. We
put the detailed correctness proof in Appendix C of the technical
report [66]. In a high order, for each record with down-scale value
s and up-scale value e , we correct its probability satisfying Qi by
a factor of e/s . We set e or s to 1 if it is 0 since records with zero
scattering coefficient also occur once in the full outer join table.

Lemma 2 Given a query Q , let E = {T1,T2, . . . ,Td } denote all
nodes in J touched byQ . On each nodeTi , let S = {Sa1,b1 , Sa2,b2 , . . . ,
San ,bn }, where each (Aj ,Bj ) is a distinct join such that Bj is not in
Q . Let s = (s1, s2, . . . , sn ) where Saj ,bj = sj ∈ N for all 1 ≤ i ≤ n
denote an assignment to S and dlm(s) =

∏n
j=1max{sj , 1}. Let

pi =
|Ti |

|E |
·
∑
s ,e

(
PrTi (Qi ∧ S =s ∧ Sti ,e=e) ·

max{e, 1}
dlm(s)

)
. (1)

Then, the cardinality of Q is |E | ·
∏d

i=1 pi .
Consider again query Q in Figure 4(e). For the sub-query Q1 on

node T1, we need to down-scale by Sb,a and up-scale by S
t1, {t1,t2 } .

By Eq. (1), we have p1 = (1 ∗ 2 + 1 + 1)/8 = 1/2. Similarly, we
have p2 = 1/4 for sub-query Q2, so the final cardinality of Q is
8 ∗ (1/8) = 1.

As a remark, if two tables A and B are inner joined in Q , we can
add the constraint Sa,b>0 and Sb,a>0 (or Sa,e>0 and Sb,e>0 if A
and B in different nodes) in Eq. (1) to remove all records in A or B
that have no matches. Similarly, we only add Sb,a > 0 or Sa,b > 0
to Q for left and right join, respectively.
Technique II: Fast Probability Computation: Notice that, the
value pi in Eq. (1) involves summing over the probabilities of each
assignment to the down-scale value s and up-scale value e . If we
directly obtain all these probabilities, the time cost is very high.
Instead, we present an optimized method to compute pi , which
only requires a single traversal on the underlying FSPN model.

Specifically, on any node T in the join tree, let St and At denote
the scattering coefficient and attribute columns in T , respectively.
When constructing the FSPN Ft, we first use a factorize root node
to split the joint PDF PrT (St,At) into PrT (At) on the left child
LC and PrT (St |At) on the right child RC . Each leaf node L of RC
models a PDF of St. By FSPN’s semantic, the probabilities of any

query Q on At and St are independent on each L. Then, we have

Pr′
T
(Q )=

∑
l

(
Prl(At) ·

∑
s ,e

(
Prl(S = s ∧ St,e = e) ·

max{e , 1}
dlm(s)

))
=
∑
l

(
Prl(At) · E

[
max{e , 1}
dlm(s)

])
.

(2)

For the left part, the probability Prl(At) could be computed with
the FSPN rooted at node LC using the method in Section 4.1. For
the right part, it is a fixed expected value ofmax{e, 1}/dlm(s) of St.
Therefore, we can pre-compute the expected value for each possible
S, St,e ⊆ St on each leaf L. After that, each pi in Eq. (1) could be
obtained by traversing the FSPN Fti only once. By our empirical
analysis in Section 4.1, the CardEst time cost for multi-table queries
is also near linear w.r.t. the number of nodes in FSPNs.
Technique III: Incremental Updates. Next, we introduce how
to update the underlying FSPN models in multi-table cases. We
put the pseudocode of our algorithm FLAT-Update-Multi in Appen-
dix B.2 [66] and describe the procedures as follows.

First, we consider the case of inserting some records ∆C in a
tableC of the nodeT . It affects T in three aspects: 1) each record in
∆C can join with other tables in T . We use ∆T+ to denote all new
records inserted into T ; 2) each record in T , which does not find
a match in table C (null) but can join with the new records in ∆C ,
needs to be removed. We denote them as ∆T−; and 3) the scattering
coefficient of each record in T , which can join with new records in
∆C , needs to be enlarged. We denote these records as ∆T∗. We can
directly join ∆C with T to identify ∆T+, ∆T− and ∆T∗ accordingly.

Next, we describe how to incrementally update the FSPN Ft built
by Technique II. Recall that the root node N of Ft is a factorize node
separating attributes and scattering coefficient columns, which
enables fast incremental update. The left child LC of N models
PrT (At) on all attribute columns. We could update it to fit the
data T + ∆T+ − ∆T− by directly calling the FLAT-Update method
in Section 4.3. The right child RC of N models PrT (St |At) on all
scattering coefficients columns. Each multi-leaf L of RC only stores
some expected values of St defined by Eq. (2). We can pre-build
a hash table on the probability of each assignment s of St. Then,
based on the changes of scattering columns in ∆T+, ∆T− and ∆T∗,
we can incrementally update all expected values.

Finally, as T changes, we need to propagate the effects to other
nodesT ′ to update all scattering columns St′,e. For efficiency, it can
run in the background asynchronously. Specifically, after each time
interval such as one day, we scan all tables and recompute the scat-
tering coefficients using the method in [65]. Then we incrementally
update the expected values stored in FSPN Ft′ .

1496



For the case of deleting some records ∆C in a table C of the
node T , the updating could be done in a very similar way. At this
time, we obtain ∆T− containing all removed tuples joining with ∆C
previously, ∆T+ containing all added tuples having no matches in
table C and ∆T∗ containing all original records whose scattering
coefficients are reduced. Then we update the FSPN Ft and Ft′ of
other nodes T ′ in the same way as the insertion case. Notice that,
the data insertion and deletion can also be done simultaneously as
long as we maintain the proper set of records ∆T+, ∆T− and ∆T∗. In
the complex case of creating new tables or deleting existing tables
in the database, the model could be retrained offline.

6 EVALUATION RESULTS
We have conducted extensive experiments to demonstrate the su-
periority of our proposed FLAT algorithm. We first introduce the
experimental settings, and then report the evaluation results of
CardEst algorithms on the single table and multi-table cases in
Section 6.1 and 6.2, respectively. Section 6.3 reports the effects of
updates. Finally, in Section 6.4, we integrate FLAT into the query
optimizer of Postgres [8] and evaluate the end-to-end query opti-
mization performance.
Baselines. We compare FLAT with a variety of representative
CardEst algorithms, including:

1) Histogram: the simplest 1-D histogram based CardEstmethod
widely used in DBMS such as SQL Server [34] and Postgres [8].

2) Naru: a DAR based algorithm proposed in [63]. We adopt the
authors’ source code from [64] with the var-skip speeding up tech-
nique [31]. It utilizes a DNN with 5 hidden layers (512, 256, 512, 128,
1024 neuron units) to approximate the PDFs. The sampling size is
set to 2, 000 as the authors’ default. We do not compare with the
similar method in [17], since their performance is close.

3) NeuroCard [62]: an extension of Naru onto the multi-table
case. We also adopt the authors’ source code from [36] and set the
sampling size to 8, 000 as the authors’ default.

4) BN: a Bayesian network based algorithm. We use the Chow-
Liu Tree [4, 16] based implementation to build the BN structure,
since its performance is better than others [12, 57].

5) DeepDB: a SPN based algorithm proposed in [20]. We adopt
the authors’ source code from [19] and apply the same hyper-
parameters, which set the RDC independence threshold to 0.3 and
split each node with at least 1% of the input data.

6) SPN-Multi: a simple extension of SPN with multivariate leaf
nodes. It maintains a multi-leaf node if the data volume is below
1% and attributes are still not independent.

7)MaxDiff: a representative M-D histogram based method [46].
We use the implementation provided in the source code repository
of [64]. We do not compare with the improved methods DBHist [7],
GenHist [14] and VIHist [59] are they are not open-sourced.

8) Sample: the method uniformly samples a number of records
to estimate the cardinality. We set the sampling size to 1% of the
dataset. It is used in DBMS such as MySQL [48] and MariaDB [52].
We do not compare with other method such as IBJS [29] since their
performance has been verified to be less competitive [20, 62, 64].

9) KDE: kernel density estimator based method for CardEst. We
have implemented it using the scikit-learn module [33].

10) MSCN: a state-of-the-art query-driven CardEst algorithm

described in [24]. For each dataset, we train it with 105 queries
generated in the same way as the workload.

Regarding FLAT hyper-parameters as described in Section 4.2,
we set the RDC threshold τl = 0.3 and τh = 0.7 for filtering inde-
pendent and highly correlated attributes, respectively, and set d = 2
for d-way partition of records. Similar to DeepDB, we also do not
split a node when it contains less than 1% of the input data. The
sensitivity analysis of hyper-parameters are put in Appendix D [66].
Evaluation Metrics. Based on our discussion in Section 1, we con-
centrate on examining three key metrics: estimation accuracy, time
efficiency and storage overhead. For estimation accuracy, we adopt
the widely used q-error metric [17, 20, 24, 28, 30, 63] defined as the
larger value ofCard(T ,Q)/�Card(T ,Q) and �Card(T ,Q)/Card(T ,Q),
so its optimal value 1. We report the whole q-error distribution
(50%, 90%, 95%, 99% and 100% quantile) of each workload. For time
efficiency, we report the estimation latency and model training time.
For storage overhead, we report the model size.
Environment. All above algorithms have been implemented in
Python. All experiments are performed on a CentOS Server with
an Intel Xeon Platinum 8163 2.50GHz CPU having 64 cores, 128GB
DDR4 main memory and 1TB SSD.

6.1 Single Table Evaluation Results
We use two single table datasets: 1) GAS is real-world gas sensing
data obtained from the UCI dataset [49] and contains 3,843,159
records. We extract the most informative 8 columns (Time, Humid-

ity, Temperature, Flow_rate, Heater_voltage, R1, R5 and R7 ); and 2)
DMV [42] is a real-world vehicle registration information dataset
and contains 11,591,877 tuples. We use the same 11 columns as [64].

For each dataset, we generate a workload containing 105 ran-
domly generated queries. For each query, we use a probability of
0.5 to decide whether an attribute should be contained. As stated in
Section 2, the domain of each attributeA is mapped into an interval,
so we uniformly sample two values l and h from the interval such
that l ≤ h and set A ∈ [l,h].
Estimation Accuracy. Table 1 reports the q-error distribution for
different CardEst algorithms. As main take-away, their accuracy
can be ranked as FLAT ≈Naru≈ SPN-Multi > BN > DeepDB >>
Sample/MSCN >> KDE >> MaxDiff/Histogram. The details are
as follows:

1) Overall, FLAT ’s estimation accuracy is very high. On both
datasets, the median q-error (1.001 and 1.002) is very close to 1,
the optimal value. On GAS, FLAT attains the highest accuracy. The
accuracy of Naru and SPN-Multi is comparable to FLAT, which is
marginally better than FLAT on DMV. The high accuracy of Naru
and stems from its AR based decomposition and the large DNN
representing the PDFs. SPN-Multi achieves high accuracy as it
models the PDFs of attributes without independence assumption.

2) The accuracy BN and DeepDB is worse than FLAT. At the 95%
quantile, FLAT outperforms BN by 3.6× and DeepDB by 71× on
GAS. The error of BN mainly arises from its approximate structure
construction. DeepDB appears to fail at splitting highly correlated
attributes. Thus, it causes relatively large estimation errors for
queries involving these attributes.
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Table 1: Performance of CardEst algorithms on single table.

TrainingDataset Algorithm 50% 90% 95% 99% Max Size (KB) Time (Min)

GAS

Histogram 2.732 53.60 163.0 2 · 106 3 · 107 34 1.3
Naru 1.007 1.145 1.340 2.960 16.50 6, 365 216
BN 1.011 1.208 1.550 4.780 36.80 108 8.2

DeepDB 1.039 1.765 2.230 95.12 619.2 218 54
SPN-Multi 1.005 1.169 1.289 1.461 3.702 31,253 62
MaxDiff 2.211 86.7 196.0 3 · 104 8 · 105 3 · 105 310
Sample 1.046 1.625 2.064 6.017 3, 410 - -
KDE 3.307 5.469 6.742 471.0 2 · 104 - 27
MSCN 2.610 68.47 129.0 1 · 105 7 · 105 2, 663 662

FLAT (Ours) 1.001 1.127 1.183 1.325 3.178 198 19

DMV

Histogram 1.184 2.541 41.72 710.0 2 · 105 24 1.6
Naru 1.006 1.184 1.368 6.907 49.03 7, 564 146
BN 1.003 1.264 1.818 9.800 176.0 59 5.4

DeepDB 1.005 1.574 2.604 27.90 534.0 247 48
SPN-Multi 1.004 1.163 1.347 7.225 58.37 53,267 53
MaxDiff 1.802 6.304 28.81 4, 320 3 · 104 7 · 105 249
Sample 1.122 1.619 9.010 551.0 7, 077 - -
KDE 3.493 15.07 104.0 589.0 5 · 104 - 48
MSCN 1.215 2.612 4.420 17.90 1, 192 2, 566 744

FLAT (Ours) 1.002 1.255 1.795 9.805 76.50 53 2.4

3) The accuracy of MSCN and Sample appears unstable. FLAT
outperforms MSCN by 109× and 1.8× on GAS and DMV, respec-
tively. As MSCN is query-driven, its accuracy relies on if the work-
load is “similar” to the training samples. Whereas, FLAT outper-
forms Sample by 4.5× and 56× on GAS and DMV, respectively as
the sampling space of DMV is much larger than GAS.

4) FLAT largely outperforms Histogram,MaxDiff and KDE since
Histogram and MaxDiff makes coarse-grained independence as-
sumption and KDE may not well characterize high-dimensional
data by tuning a good bandwidth for kernel functions [23].
Estimation Latency. Figure 5 reports the average latency of all
CardEst methods. Since onlyMSCN and Naru provide the imple-
mentation optimized for GPUs, we compare all CardEst methods
on CPUs for fairness. We provide the comparison results on GPUs
in Appendix E.1 [66]. In summary, their speed on CPUs can be
ranked as Histogram ≈ FLAT > MSCN > SPN-Multi/DeepDB >
KDE/Sample >> Others. The details are as follows:

1) Histogram runs the fastest, it requires around 0.1ms for each
query. FLAT is close with a latency around 0.2ms and 0.5ms on DMV
and GAS, respectively. Both are much faster than all other methods.
This can be credited to the FSPN model used in FLAT being both
compact and easy to traverse for probability computation.MSCN
is also fast since it only requires a forward pass over DNNs.

2) DeepDB, SPN-Multi, KDE and Sample need up to 10ms for
each query. FLAT is 1–2 orders of magnitude faster than them
because the FSPN model used in our FLAT is more compact than
the SPN model in DeepDB and SPN-Multi. In addition, KDE and
Sample need to examine large amount of samples, thus less efficient.

3)MaxDiff, BN and Naru need 10–100ms for each query. FLAT
is 2–3 orders of magnitude faster than them, e.g., 213× and 599×
faster than Naru on GAS and DMV, respectively. The time cost of
MaxDiff is spent on decompressing the joint PDF. The inference
on BN is NP-hard and hence inefficient. Naru requires repeated
sampling for range querie so it is computationally demanding.
Model Training Time. As shown in the last column in Table 1,
FLAT is very efficient in training. Specifically, on DMV, FLAT is 61×
and 20× faster than Naru and DeepDB in training. This is due to
the structure of FSPN is much smaller than SPN, and our training

FLAT

Figure 5: Estimation latency of CardEst algorithms.

process does not require iterative gradient updates as required for
SGD-based training of DNNs [2].
Storage Overhead. Storage costs are given in Table 1. The storage
cost of Histogram and BN is proportional to the attribute number so
they require the smallest storage. FLAT is also very small requiring
about 2× of Histogram. DeepDB requires more storage space than
FLAT since the learned SPN has more nodes. They consume 10–
100KB of storage. MSCN and Naru consume several MB since they
store large DNN models. SPN-Multi requires tens of MB as it needs
to maintain themulti-leaf nodes on not highly correlated attributes,
as we discussed in Section 3. The storage cost of MaxDiff is the
highest since it stores the compressed joint PDF.
Model Node Number. To give more details, we also compare the
number of nodes (or neurons) in DeepDB, SPN-Multi and Naru.
The 5-layer DNN in Naru is fully connected and contains 2, 432
neurons. The SPN used in DeepDB contains 873 and 823 nodes
on GAS and DMV, respectively. SPN-Multi contains 825 and 787
nodes on GAS and DMV, respectively. Whereas, the FSPN in FLAT
only uses 210 and 20 nodes on GAS and DMV, respectively. FSPN
uses 21×, 7.4× and 7× less nodes than DNN, SPN and SPN-Multi
to model the same joint PDF.
Stability.We also examine FLAT on synthetic datasets. The results
in Appendix E.2 show that FLAT is stable to varied correlations and
distributions and relatively robust to varied domain size.

6.2 Multi-Table Evaluation Results
We evaluate the CardEst algorithms for the multi-table case on
the IMDB benchmark dataset. It has been extensively used in prior
work [20, 28, 30, 62] for cardinality estimation. We use the provided
JOB-light query workload with 70 queries and create another more
complex and comprehensive workload JOB-ours with 1, 500 queries.

JOB-light’s schema contains six tables (title, cast_info,movie_info,
movie_companies,movie_keyword,movie_info_idx) where all other
tables can only join with title. Each JOB-light query involves 3–6
tables with 1–4 filtering predicates on all attributes. JOB-ours uses
the same schema as JOB-light but each query is a range query using
4–6 tables and 2–7 filtering predicates. The predicate of each at-
tribute is set in the same way as on single table. Figure 6 illustrates
the true cardinality distribution of the two workloads. The scope
of cardinality for JOB-ours is wider than JOB-light. Note that, the
model of each CardEst method is the same for the two workloads.
As the attributes are highly correlated on IMDB, the model size of
SPN-Multi exceeds our memory limit, so we can not evaluate it.
Results on JOB-light. Table 2 reports the q-error and storage cost
of CardEst methods on the JOB-light workload. We observe that:

1498



True Cardinality of queries

Figure 6: Cardinality distribution of workload on IMDB.

Table 2: Performance of CardEst algorithms on JOB-light.

Algorithm 50% 90% 95% 99% Max Size (KB)
Histogram 8.310 1, 386 6, 955 8 · 105 2 · 107 131
NeuroCard 1.580 4.545 5.910 8.480 8.510 7, 076

BN 2.162 28.00 74.60 241.0 306.0 237
DeepDB 1.250 2.891 3.769 25.10 31.50 3.7 · 104
MaxDiff 32.31 5, 682 5 · 104 4 · 106 4 · 107 4 · 105
Sample 2.206 65.80 1, 224 5 · 104 1 · 106 -
KDE 10.56 563.0 4, 326 4 · 105 8 · 106 -
MSCN 2.750 19.70 97.60 622.0 661.0 3, 421

FLAT (Ours) 1.150 1.819 2.247 7.230 10.86 3, 430

1) The accuracy of FLAT is the highest among all algorithms.
NeuroCard is only a bit better w.r.t the maximum q-error, which
reflects only one query in the workload. At the 95% quantile, FLAT
outperforms NeuroCard by 2.6×, BN by 33×, DeepDB by 1.7× and
MSCN by 43×. The reasons have been explained in Section 6.1.

2) In terms of storage size,Histogram andBN are still the smallest
and MaxDiff is still the largest. FLAT ’s space cost is 3.3MB, which
is 10.8× and 2.1× less than DeepDB and NeuroCard, respectively.
In comparison with the single table case, FLAT ’s space cost is
relatively large. This is because for the multi-table case, FSPN needs
to process more attributes—the scattering coefficients columns and
materialize some values for fast probability computation. However,
it is still reasonable and affordable for modern DBMS.
Results on JOB-ours. On this workload, FLAT is also the most
accurate CardEst method. As reported in Table 3, we observe that:

1) The performance of FLAT is better than NeuroCard and still
much better than others. At the 95% quantile, FLAT outperforms
NeuroCard, DeepDB and MSCN by 1.4×, 4.3× and 7.8×, respec-
tively. The performance of other algorithms drops significantly on
this workload. A similar observation is also reported in [62]. This
once again demonstrates the shortcomings of these approaches,
especially for complex data and difficult queries.

2) The q-error of FLAT on JOB-ours is relatively larger than that
on JOB-light because JOB-ours is a harder workload. As shown
in Figure 6, the true cardinality of the tail 5% queries in JOB-ours

is often less than 100. However, the performance of FLAT is still
reasonable since the median value is only 1.2.

We also examine the detailed q-errors of FLAT and otherCardEst
methods with different number of tables and predicates in queries.
Due to space limits, we put the results in Appendix E.3 of the
technical report [66]. The results show that the accuracy of our
FLAT is more stable with number of joins and predicates.
Time Efficiency. Figure 7 exhibits the average estimation latency
on the two workload. Obviously, Histogram is still the fastest while
MaxDiff is still the slowest. FLAT requires around 5ms for each

FLAT

Figure 7: Estimation latency on IMDB.

Table 3: Performance of CardEst algorithms on JOB-ours.

TrainingAlgorithm 50% 90 95% 99% Max Time (Min)
Histogram 15.71 7480 4 · 104 1 · 106 4 · 108 2.7
NeuroCard 1.538 9.506 81.23 8012 1 · 105 173

BN 2.213 25.60 2456 2 · 105 7 · 106 7.3
DeepDB 1.930 28.30 248.0 1 · 104 1 · 105 68
MaxDiff 45.50 8007 2 · 105 9 · 106 1 · 109 79
Sample 2.862 116.0 3635 3 · 105 4 · 107 -
KDE 8.561 1230 1 · 104 9 · 105 2 · 108 15
MSCN 4.961 45.7 447.0 8576 1 · 105 1, 744

FLAT (Ours) 1.202 6.495 57.23 1120 1 · 104 53

query, which is still much faster than others. It outperforms BN
by 5×, Sample by 12.4×, KDE by 4.8× and DeepDB by 5.2×. The
training time on the IMDB dataset is given in the last column of
Table 3. FLAT is faster than NeuroCard and close to DeepDB.

6.3 Effects of Updates
We examine the performance of our incremental update method.
Specifically, for data insertion evaluation, we train the base model
on a subset of IMDB data before 2004 (80% of data) and insert the
rest data for updating. For data deletion, we train the base model
on all data and delete the data after 1991. We compare the accuracy
on the JOB-light workload and the update time cost of our update
method with two baselines: he original stale model and the new
model retained on the whole data. From Table 4, we observe that:

1) The accuracy of the retrained model is the highest but it re-
quires the highest updating time. The accuracy of the non-updated
model is the lowest since the data distribution changes.

2) Our update method makes a good trade-off: its accuracy is
close to the retrained model but its time cost is much lower. This
shows that our FSPN model can be incrementally updated on its
structure and parameters to fit the new data in terms of both inser-
tion and deletion. This is a clear advantage since the entire model
does not need to be frequently retrained in presence of new data.

6.4 End-to-End Evaluation on Postgres
To examine the performance of ML-based CardEst algorithms in
real-world DBMS, we integrate our FLAT and NeuroCard into the
query optimizer of Postgres 9.6.6 to perform an end-to-end test. We
do not compare with DeepDB since it can not support many-to-
many join. However, for many star-join queries between a primary
key and multiple foreign keys in the workload, the sub-queries
on joining foreign keys are many-to-many joins. Meanwhile, we
add the method which uses the true cardinality of each sub-query
during query optimization as the baseline. We report the results
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Figure 8: Comparison of CardEst algorithms integrated into Postgres.

Table 4: Effects of updates on IMDB.

Update Method 50% 90% 95% 99% Max Time (Min)

Insertion
Non-Updated 1.201 2.297 3.862 18.93 47.14 0
Retrained 1.150 1.819 2.247 7.230 10.86 53

Our Method 1.153 1.821 2.480 8.914 13.72 1.2

Deletion
Non-Updated 1.218 2.263 3.905 15.47 56.21 0
Retrained 1.129 1.763 2.253 6.815 15.3 49

Our Method 1.134 1.791 2.432 8.285 19.78 1.0

of the JOB-light workload on the IMDB benchmark dataset. The
results on JOB-ours are similar and put in the Appendix E.4 [66].

We disable parallel computing in Postgres and only allow pri-
mary key indexing to minimize the impact of other factors [28,
58].We report the total query time excluding the CardEst time cost
in Figure 8(a) and the end-to-end query time (including plan com-
piling and execution) in Figure 8(b). We observe that:

1) Accurate CardEst results can help the query optimizer gener-
ate better query plans. Without considering the CardEst latency,
bothNeuroCard and FLAT improve over Postgres by near 13%. Their
improvement is very close to the optimal result using true cardinal-
ity in query compiling (14.2%). This verifies that the accuracy of
FLAT is sufficient to generate high-quality query plans.

2) For the end-to-end query time, the improvement of FLAT is
more significant thanNeuroCard. Overall, FLAT improves the query
time by 12.9% while NeuroCard only improves 4.6%. This is due to
the CardEst needs to do multiple times in query optimization. The
latency of NeuroCard is much longer than FLAT and degrades its
end-to-end performance.

3) The improvement of FLAT becomesmore significant on queries
with more joins. On queries joining 4 tables, FLAT improves the
end-to-end query time by 26.5% because the search space of the
query plans grows exponentially w.r.t. the join number. If a query
only joins 2 or 3 tables, its query plan is almost fixed. When it
joins more tables, the inaccurate Postgres results may lead to a
sub-optimal query plan while our FLAT providing more accurate
CardEst results can find a better plan. This phenomenon has also
observed and explained in [44].

7 RELATEDWORK
We briefly review prior work on query-drivenCardEstmethods and
machine learning (ML) applied to problems in databases. The data-
driven CardEst methods have already been discussed in Section 2.
Query-Driven CardEst Methods. Initially, prior research has ap-
proached query-drivenCardEst by utilizing feedback of past queries

to correct generated models. Representative work includes correct-
ing and self-tuning histograms with query feedbacks [3, 10, 22, 54],
updating statistical summaries in DBMS [55, 61], and query-driven
kernel-based methods [18, 23]. Later on, with the advance of deep
learning, focus shifted to learning complex mappings from “fea-
turized” queries to their cardinalities. Different types of models,
such as deep networks [32], tree-based regression models [9] and
multi-set convolutional networks [24], were applied. In general,
clear drawbacks of query-driven CardEst methods are as follows:
1) their performance heavily relies on the particular choice of how
input queries are transformed into features; 2) they require large
amounts of previously executed queries for training; and 3) they
only behave well, when future input queries follow the same dis-
tribution as the training query samples. Therefore, query-driven
CardEst methods are not flexible and generalizable enough.
ML Applied in Databases. Recently, there has been a surge of
interest in using ML-based methods in order to enhance the perfor-
mance of database components, e.g. indexing [41], data layout [25],
query execution [43] and scheduling [37]. Among them, learned
query optimizers are a noteworthy hot-spot. [38] proposed a query
plan generation model by learning embeddings for all queries. [27]
applied reinforcement learning to optimize the join order. We are
currently trying to integrate FLAT with these two approaches to
design an end-to-end solution for query optimization in databases.

Moreover, it is worth mentioning that the proposed FSPN model
is a very general unsupervised model, whose scope of application
is not limited to CardEst. We are in the process of trying to apply
to other scenarios in databases that also require modeling the joint
PDF of high-dimensional data, such as approximate group-by query
processing [56], hashing [25] and multi-dimensional indexing [41].

8 CONCLUSIONS
In this paper, we propose FLAT, an unsupervised CardEst method
that is simultaneously fast in probability computation, lightweight
in storage cost and accurate in estimation quality. It supports queries
on both single table and multi-tables. FLAT is built on FSPN, a new
graphical model which adaptively models the joint PDF of attributes
and combines the advantages of existing CardEstmodels. Extensive
experimental results on benchmarks and the end-to-end evaluation
on Postgres have demonstrated the superiority of our proposed
methods. In the future work, we believe in that FLAT could serve
as a key component in an end-to-end learned query optimizer for
DBMS and the general FSPN model can play larger roles in more
database-related tasks.
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