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ABSTRACT

Every database engine runs on top of an operating system in
the host, strictly separated with the storage. This more-than-half-
century-old IHDE (In-Host-Database-Engine) architecture, how-
ever, reveals its limitations when run on fast flash memory SSDs.
In particular, the IO stacks incur significant run-time overhead and
also hinder vertical optimizations between database engines and
SSDs. In this paper, we envisage a new database architecture, called
SaS (SSD as SQL database engine), where a full-blown SQL database
engine runs inside SSD, tightly integrated with SSD architecture
without intervening kernel stacks. As IO stacks are removed, SaS
is free from their run-time overhead and further can explore nu-
merous vertical optimizations between database engine and SSD.
SaS evolves SSD from dummy block device to database server with
SQL as its primary interface. The benefit of SaS will be more out-
standing in the data centers where the distance between database
engine and the storage is ever widening because of virtualization,
storage disaggregation, and open software stacks. The advent of
computational SSDs with more compute resource will enable SaS
to be more viable and attractive database architecture.
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1 INTRODUCTION

All storage systems will eventually evolve to be database systems. -
Jim Gray

During the last decade, flash memory solid state drives (SSDs in
short) have been relentlessly replacing hard disks as the main stor-
age media because of several advantages such as fast latency, high
IOPS/$, and low power consumption. In particular, in warehouse-
scale data centers, mainly because of I/O rates many orders of
magnitude higher than disks, SSDs are increasingly displacing disk
drives as the repository of choice for databases in Web service [9].
In addition, flash storage is 20x cheaper than DRAM in terms of
capacity and the bandwidth gap between DRAM and flash is about
to disappear [25]. Therefore, flash storage is projected to erode
some of the key benefits of in-memory systems [1].
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Figure 1: Database architectures: IHDE vs. SaS

Meanwhile, with modern computer architecture, the storage
has been strictly separated from the host, and they interact with
each other with the block I/O interface. The dichotomy of host
and storage has forced database engines to segregate their data
processing logic from storage; thus, a database engine has to bring
data from the storage to the host, read and/or update data, and then
write updated data back to the storage for the durability.

This conventional in-host database engine (IHDE in short) archi-
tecture becomes undesirable when low-latency SSDs are used as
storage mainly for three reasons. First, the legacy I/O stack over-
head makes fast SSDs perform suboptimally [62]. A storage device
is connected to a host through a host bus adapter (HBA) in a com-
puter system (Figure 1.(a)). Between the segregated direct-attached
storage and host are located the I/O software stacks. While the
I/O stacks contribute to the latency of data access and the energy
consumption on hard disks very marginally (i.e., less than 1 percent
for both metrics), the same software accounts for 70 percent of the
latency and 87.7 percent of the energy on faster SSDs [62], thus de-
terring SSDs to realize their full performance potentials. Even with
numerous I/O stack optimizations [38] or direct access schemes
from user-space to storage [12, 29, 37], some overheads such as
system calls and memory copy will remain inevitable. Second, the
intervening I/O stack will hinder the ample opportunities for ver-
tical optimization between database engines and SSDs. Recently,
several novel interfaces for flash storage have been proposed, which
allow to achieve the transactional atomicity in databases [35, 48]
and manage the file system consistency without resorting to redun-
dant journaling [32, 45]. To be practical, however, those interfaces
have to be implanted across all the existing OS and file systems.
But, according to our experience [32, 35, 45, 48], it is a non-trivial
task to achieve vertical optimizations across the I/O stack, even in
a single OS/file system. Third, the physical segregation of host and
storage is neither economical nor architecturally elegant. It costs
more because of the separate pricing to host and storage, requires
more space to accommodate both components, consumes more
power, and necessitates the storage interface.

Further, the IHDE inefficiency is not confined to a single com-
puter node with direct attached storage. Its problem will be further
exacerbated in modern data centers which opt for virtualization
and disaggregation [76, 78]. The virtualization layer prolongs the
I/O stack between database engine and storage. Numerous open
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software stacks in cloud environment will further widen the gap
between two layers [61]. In addition, as the storage is disaggregated
from the compute for the elastic computation and their independent
scaling, the network latency between the decoupled compute and
storage will worsen the data movement overhead of IHDE. Thus,
it is compelling to re-architect database engines to minimize data
movement in warehouse-scale data centers [1, 68].

Meanwhile, some SSD vendors are striving to enhance their stor-
age devices with more computing power and networking capabil-
ity [13, 17]. In addition, an OpenSSD board [15] is already equipped
with ARM server-grade cortex A53 CPU, FPGA, and 100G Mellanox
Ethernet. With networking enabled, the OpenSSD SSD can play the
role of stand-alone computer. Note that the A53 CPU is powerful
enough to run server-class database applications [57]. In summary,
SSDs are evolving from mere storage devices to super-computers.

Because it takes time and power to move data from one location to
another, all data suffers from data gravity [22]. In particular, in many
modern data centers with resources disaggregated, moving data
between storage and processors takes more time and as much power
as the processing itself. For this reason, in terms of data gravity,
it has long been recognized that it is better to pull computation
close to the large data than to bring data to the computation [71].
However, the idea of offloading the computation to the storage has
been considered impractical mainly for cost reasons [22].

As explained so far, enabling technologies as well as driving
forces are mature enough to trigger the paradigm shift in database
computing from host-centric to SSD-centric. In particular, the trend
toward resource-rich SSDs is a strong enabling force for the Dar-
winian evolution to new SSD-based database architecture. Thus, it
is high noon to depart from the 50 years-old IHDE architecture. In
this paper, as a true realization of Jim Gray’s vision that “all storage
systems evolve to be database systems” [22], we envision SaS (SSD
as SQL database system), as illustrated in Figure 1.(b). Its essential
idea is “to ship SQL processing to data, not data to the SQL engine”.
The SaS approach is in a consistent vein with a recent research
direction in database community which offloads some computes to
where the data resides (e.g., storage, memory) or along the path the
data moves [1, 8, 11, 24, 28, 41, 43, 75], but is more radical in that it
offloads a full database engine to SSD.

2 SAS:SSD AS SQL ENGINE

In SaS, a complete database engine (e.g., SQLite) in its entirety is
pushed down to SSD and runs tightly integrated with SSD architec-
ture, and SQL is provided as primary interface. With SaS, an SSD
plays not only the conventional role of storage but also the role
of SQL database engine. Hence, applications in other computing
nodes (e.g., Apache Memcached) can, without any intervening in-
host SQL engine (Figure 1.(a)), directly interact with the SSD itself
using SQL over the network (Figure 1.(b)).

Advantages By embedding a complete database engine into
an SSD, SaS evolves the SSD from a dummy block device to a DB
server, which in turn allows eliminating numerous IHDE-induced
technical and economical inefficiencies. First, by offloading a com-
plete database engine into an SSD and tightly integrating both
layers, SaS will avoid the IO stack overhead and also realize un-
precedented vertical optimizations between SQLite engine and FTL
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Figure 2: SaS: Overall Architecture

layer. Also, since one physical SaS device can play the role of both
computing and storage nodes, thus replacing the segregated host
and storage, SaS is an elegant and economical architecture. In par-
ticular, SaS can be a building block for scale-out architecture, where
each SSD has its own computing and networking capabilities [63].
Further, both SSD vendors and customers benefit from SaS. For
SSD vendors, the concept of SaS will add significant value to their
SSDs by turning simple storage devices into database computing
nodes. For customers, Sa$ is an attractive solution in terms of costs,
manageability, and power consumption.

Target Applications Taking into account the limited resource
capabilities of CPU and DRAM in today’s SSDs, we do not expect
in the foreseeable future that SaS can compete with the existing
THDEs at the enterprise-class applications. However we believe
that SaS can be an attractive, cost-effective database computing
and storage substrate for numerous emerging applications such as
edge computing, IoT, and smart city [46, 50, 69], whose workloads
can be characterized as data-intensive, intermittent, bursty, and
unpredictable. In such environments where computing power tends
to lack and power-efficiency, cost-effectiveness and manageability
are important metrics, SaS could be “a natural selection” over the
THDE architecture with separate host and storage. In addition, SaS
could be deployed in the cloud environment as serverless solutions
for small-scale blog databases with intermittent connections since
Sa$ can start at no latency and can scale to zero for unpredictable
connections and disconnections [2, 3].

2.1 Architecture and Design Goals

The vision of SaS cannot be realized by simply porting a database
engine to run inside SSD controllers. Its realization brings at least
three challenges: limited computing power, limited OS functionali-
ties, and SQL interface support on top of SSD with block interface.
At the same time, the SaS approach provides opportunities such as
vertical optimization and hardware-based acceleration.

With these challenges and opportunities in mind, we set three
design goals of SaS, as explained below. Figure 2 shows the straw-
man SaS architecture where its three layers of SQL interface, SQLite
engine, and flash storage are illustrated using the Cosmos Open
SSD [49].



SQL Interface from SSD A prerequisite for an SSD to evolve
into an SQL database system is to support the SQL interface. As
shown in Figure 1, SaS supports SQL as its primary interface over
the PCle storage protocol as well as the network (i.e., JDBC). In
particular, it is quite novel but challenging to support the tuple-
oriented SQL interface over the block-oriented storage interface.

Vertical IO Optimization As discussed above, the IHDE ap-
proach is suboptimal due to the legacy IO stack overhead and limited
vertical optimization. The second design goal of SaS$ is to eliminate
IO stack overhead and explore various vertical IO optimizations be-
tween SQLite engine and flash storage layer. This goal is achievable
by integrating the database engine with FTL: the engine bypasses
the kernel IO stacks and directly interacts with FTL. Fortunately, as
detailed later, the integration of SQLite engine with the FTL code in
Cosmos board can be accomplished with minimal changes in both
modules because SQLite, like other DBMS engines, has its virtual
OS layer for portability across different OSes [60].

Hardware-assisted Acceleration Another design goal of SaS
is to accelerate its performance by exploiting hardware resources
which are expected to be available from computational SSDs [14].
This goal is well-aligned with research themes outlined in the Seat-
tle report [1], including heterogeneous computation, NVM, and
HW-SW co-design. As recently demonstrated [39, 43], FPGA spe-
cialization can power-efficiently accelerate a few key operations in
SQL engines such as selection, group-by, and even index probing.
We expect that the tight architectural integration of CPU and FPGA
in the Cosmos+ board [40] enables a more efficient and flexible
offloading than the existing approaches. In addition, with the help
of NVM (Non-Volatile Memory) directly accessible from the CPU of
the Cosmos board, SaS will be able to realize near zero-latency dura-
bility, thus boosting the performance of OLTP workloads [34, 53].

2.2 Related Work

In-Storage Processing. The idea of offloading computation
down to the storage and thus minimizing the data transfer between
host and storage in Sa$ is not new or novel. Since the late 1970s,
numerous in-storage processing (ISP in short) schemes have been
intermittently proposed in the names of database machine, intelli-
gent, and active disk [10, 36, 55]. The ISP approach has been recently
revisited in the context of SSDs [18, 23, 30, 65]. Though, the ISP ap-
proach has not been so successful in the commercial market, except
for Oracle’s Exadata [70]. To our best knowledge, all the existing
ISPs have partially offloaded specific data-intensive operations such
as selection, join, and aggregation to the storage while the main
body of the database engine resides in the host and thus still has to
interact with the storage device. In contrast, SaS fully offloads an
SQL engine to the storage so that it can completely bypass the IO
stack overhead and freely explore vertical optimizations.

The idea of ISP has recently revived in cloud databases running
on data centers where compute and storage nodes are decoupled
for elastic computing. To minimize the increased access latency to
the storage in disaggregated data centers, database engines need to
be rearchitected [1]. For instance, Amazon AuroraDB [68] pushes
redo log processing to the storage node, instead of writing each
dirty page in its entirety. Unlike AuroraDB, Sa$ is running a full
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database engine inside the storage itself. In this respect, SaS can be
said to take the "anti-disaggregation" approach.

High-level Storage Interfaces Sa$S provides the SQL language
as its interface. Likewise, there have been other innovative ap-
proaches which support high-level semantic interface beyond the
dummy block interface, such as OSD (Object Storage Device) [20]
and KV-SSD (Key-Value SSD) [54]. In particular, KV-SSD is recently
proposed to support the simple put/get interface of key-value stores
as the new abstraction of SSDs. We believe that, compared to object
or key-value interfaces, the SQL interface is the most appropriate
abstraction for offloading database management functionality to
computational SSDs. First of all, SQL is the lingua franca for data
access, and thus, the existing SQL-based application can easily mi-
grate to SaS. Second, Sa$ carries out query processing inside SSD so
that the data movement between query processor and flash memory
chip would be quite less than that in OSD and KV-SSD approaches.

10 Stack Optimizations SasS is different from the existing IO
stack optimization schemes [12, 29, 37, 38]: while the latter aims
at minimizing IO stack overhead, SaS will eliminate the overhead
since no data need to move between host, and storage and the 10
stack between DB engine and FTL is also removed. In addition, SaS
can further reduce IO operations by vertically integrating the DB
engine with FTL, which is orthogonal to any IO stack optimization.

NVM-based Databases As NVM (non-volatile memory) be-
comes commercially available (e.g., Intel’s DC Optane Persistent
Memory), numerous NVM-based database techniques have been
proposed to leverage its characteristics such as low latency and
byte-addressability for better performance [6, 66, 67]. Since NVM
is, like DRAM, directly accessible by CPU, NVM-based database
systems can achieve persistence and scalability while eliminating
the IO stacks. However, since the role of NVM is still unclear for
database workloads due to its price [26], we expect that flash will
be used as the primary storage for databases. Hence, we pursue SaS
as the opposite extreme of NVM-based databases.

3 SAS-ZERO: CURRENT STATUS

To demonstrate that SaS could be a competitive execution substrate
for next-generation database engines and also to identify its oppor-
tunities as well as limitations, we have prototyped a simple version
of SaS (hereafter, SaS-Zero) on the real Cosmos+ OpenSSD [40]. The
board employs a controller based on Dual Core ARM Cortex-A9 on
top of Xilin Zyng-7000 board with 256KB SRAM, 1GB DDR3DRAM,
and 32GB MLC Nand flash memory. In SaS-Zero, SQLite [58] is
chosen as the database engine primarily because of its small code-
base, tiny memory footprint, and minimal OS dependency. The
source code of SQLite 3.29 amalgamation version written in C was
compiled as the firmware for the Cosmos+ board and then offloaded
down to the designated NAND flash memory area in the SSD. In
addition, the bootloader of the SSD was modified to load the SQLite
runtime binary to the designated DRAM area upon booting. The
SQLite heap memory including the page cache are also located in
Cosmos+ board DRAM, together with the FTL mapping informa-
tion. Thus, as depicted in Figure 2, the SQLite engine itself, not FTL,
is responsible for interfacing with host applications.



3.1 SQL Interface Layer

SaS-Zero currently supports the SQL language through the storage
interface and the Ethernet network interface.

First, when directly attached to the host, SaS supports SQL com-
mands by two vendor specific commands, sas_query (0x81) and
sas_result (0x82). To be specific, by leveraging the nvme-io-passthru
command, which allows to submit arbitrary IO commands [16, 47],
host-side applications can send SQL statements and receive their
results to/from SaS via newly specified sas-commands. The format
of the commands is almost same as the existing NVMe read/write
command. However, if sas_query command is issued, SaS will re-
gard the data from the host to the firmware buffer through DMA
as an SQL statement, then execute it on the SQLite inside SaS, and
save the query’s result, including even error message at the buffer.
Meanwhile, if sas_result command is issued, SaS will pass the query
result from the firmware buffer to the host buffer via DMA.

Second, when accessed over the network via JDBC-like inter-
face, the network layer in SaS-Zero is implemented by porting the
network module to handle packet processing, user-level network
protocol processing (TCP), non-blocking, and event-driven sched-
uling. To be specific, SaS-Zero implements using the Iwip raw API
to execute callback functions, which are invoked by the lwip core
function when the corresponding event occurs [27]. This user-level
TCP stack was taken because the OS service is unavailable with
the Cosmos+ board. Bypassing the OS kernel while handling SQL
statements through the network controller, SaS-Zero can avoid the
interference of the networking stack scheduler and also the context
switch overhead, achieving higher throughput and lower latency.

3.2 SQLite and Virtual OS Layer

Like other DBMSs, SQLite relies on several OS functionalities such
as file I/O and memory management. Unfortunately, however, the
Cosmos+ board does not support any OS as of now. Thus, for all OS
primitives on which SQLite is dependent, we have to customize cor-
responding functions. Here we elaborate on how SaS-Zero makes
SQLite engine directly interface with the vanilla FTL in Cosmos+
board with no intervention of OS kernel. We also discuss how tech-
nical issues such as heap memory allocation, address translation,
and IO completion are handled in SaS-Zero. Also, we illustrate two
optimizations enabled by the integration of SQLite and FTL.

VFS4Cosmos When it needs to use any file service to store and
access data, SQLite does not directly call the underlying OS but in-
stead invokes its virtual OS interface (VFS) layer [60]. The VFS layer
then redirects the request to the underlying OS. The indirect ab-
straction of file service via the VFS layer is intended to make SQLite
portable across various operating systems. In order to bypass the
OS kernel for file operations, we extended the vanilla FTL in the
Cosmos+ to support file operations for SQLite and also accordingly
modified the VFS layer to call the extended FTL. Thus, upon receiv-
ing any file operation (i.e., OS_read, OS_write, or OS_sync) from
the upper SQLite layer, the modified VFS, VFS4Cosmos, will redirect
the operation to the corresponding operation of the extended FTL
(i.e., ftl_read, ftl_write, or ftl_sync). With these minimal changes in
both VFS and FTL layers, all the upper SQLite layers work without
any change, the legacy OS kernel layers are completely bypassed,
and two layers of SQLite and FTL are more tightly integrated.
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Unified Space Management and Address Translation Since
each file system and FTL manages its space and carries out address
translation, many approaches have been proposed to unify the
redundant functionalities [44, 73]. In this regard, the integration
of SQLite and FTL in SaS will bring an opportunity for trimming
the redundant space management functionalities at two layers and
reducing the address translation overhead. SaS-Zero as of now
regards the whole physical space of NAND flash memory as one
file. Thus it can support only a single database instance. For this
reason, Sas-Zero can skip the offset-to-LBA translation and instead
translate the file offset into a logical block address (i.e., LBA) using
the simple modular operation.

Memory Allocation The memory management functional-
ity is essential to run SQLite. In addition, the DRAM area with
limited capacity has to be shared by the SQLite and the Cosmos+
firmware (i.e, FTL) in SaS-Zero. The Cosmos+ board, however,
does not provide any primitive for memory management on which
SaS-Zero and SQLite rely. Because of this, for memory manage-
ment in SaS-Zero, we borrowed the memsys5 memory allocator in
SQLite [59], which allows static allocation of SQLite memory region.
The memsys5 allocator is designed for use on embedded systems
such as Cosmos+ board. When SQLite is compiled with the op-
tion SQLITE_ENABLE_MEMSYS5 enabled, the memsys5 memory
allocator will be included in the build. Under the memsys5 mem-
ory allocator, a fixed size of DRAM area is statically pre-allocated
and a first-fit and buddy-allocator algorithm will, using the region,
handle dynamic memory (de-)allocation requests from the SQLite.
Thus, while using dynamic memory (de-)allocations, SQLite will
never access data out of the bound. In this way, SaS-Zero can pre-
vent SQLite’s dynamic memory allocation from encroaching the
metadata area of FTL.

Polling-based I0 Completion After submitting read, write,
or sync IO request to the storage, SQLite has to wait until the IO
completes. Thus, SaS-Zero needs an IO completion model. Despite
its system overheads of interrupt handling, the interrupt-driven
model has been taken by the most OS kernels because the model has
worked well for slow rotating harddisks. With SaS-Zero, however,
we decided to take the synchronous polling-based IO completion
model for several reasons. First, Cosmos+ board does not provide
any OS support for interrupt handling. Second, the synchronous
completion allows I/O requests to bypass the kernel’s heavyweight
asynchronous block I/O subsystem. Third, and most importantly, on
top of fast flash storage, the synchronous polling is, despite its spin-
waiting for the completion, known to outperform the asynchronous
interrupt [72]. Lastly, since VFS4Cosmos in SaS now directly com-
municates with FTL, we believe that the polling mechanism can be
further enhanced to optimize the polling time as well as to reduce
CPU cycles and thus power consumption for polling.

Reducing Memory Copies For each page write operation in
THDE, the same page content has to be multiply copied along the
multiple IO stacks, such as file systems, device drivers, and DMA;
from user buffer to kernel buffer, to device buffer (via DMA request),
to NAND buffer, eventually to NAND flash chip. The same is true
with the page read operation. In contrast, since SaS can minimize
the layers between applications and NAND flash memory chips



and data is processed near the storage, it will drastically reduce
the number of page copies and the amount of data to transfer to
the applications. Even with the initial version of SaS-Zero, two
memory copy operations are necessary for each page read or write
operation: that is, one between SQLite’s pager and VFS’s cache and
the other between VFS’s cache and NAND flash chip buffer. To
further reduce the memory copy operation, we modified the VFS
layer to directly transfers pages between SQLite’s pager and NAND
flash chip buffer, thus bypassing its in-between cache.

Supporting the Share Interface: Finally, we also extended
the vanilla FTL with the SHARE interface [48] which can guarantee
the atomic page writes upon failures. With the help of SHARE,
compared to IHDE which has to write pages redundantly, SaS could
halve the amount of write to the flash storage and accordingly the
time taken to flush pages upon transaction commit.

3.3 Preliminary Results and Lessons

Experimental Setup The experiments were done on a Ubuntu
18.04 LTS with 5.4.19 kernel. It was equipped with four Intel (R)
Core(TM) i7-6700 3.4 GHz processor and 48GB DRAM; and Cos-
mos+ board as the database storage device. To evaluate the per-
formance benefit of SaS-Zero, we measured the CPU and IO times
while running two benchmarks, AndroBench [4] and Python TPC-
C (Pytpcc) [5], using SQLite in IHDE and SaS modes, respectively.
AndroBench is a simple update-intensive mobile benchmark with
1,024 auto-commit update statements. The results are presented in
Table 1. For IHDE, the ext4 file system in ordered mode was used,
and the SQLite engine was run in rollback journal mode. In the
case of Pytpcc, we measured the elapsed time taken to complete
10,000 transactions against initial database of 100MB (i.e., 1 ware-
house) in each mode. In all experiments, the size of database page
was set to 16KB to match the page size of flash memory chips used
in the Cosmos+ board. In addition, the buffer sizes of both SQLite
modes are equally set to 32MB (i.e., 2,000 pages by default). Besides,
for IHDE mode, the direct I/O option was enabled to minimize the
interference from ext4’s page caching.

Analysis To our surprise, as shown in Table 1, SaS-Zero outper-
forms IHDE in terms of total execution times for both benchmarks.
Though spending more CPU times than IHDE, SaS takes quite less
IO time. Provided that the CPU used for IHDE and SaS was Intel
i7-6770 3.4GHz and Arm Cortex-A9 1GHz, respectively, IHDE will
apparently outperform SaS in terms of CPU time. But, the CPU
time gap between the two modes is rather quite small considering
the absolute speeds of the two CPUs used in the experiment. This
is mainly because Sa$, unlike IHDE, bypasses the kernel IO stacks.
Meanwhile, SaS has, compared to IHDE, reduced the IO time by
approximately 50% and 33% in both benchmarks, respectively. This
improvement in IO time is due to two optimizations: single write
journaling by share and memory copy reduction. In addition, un-
like THDE, SaS need not transfer pages between host and storage.
The IO improvement ratio in Pytpcc is slightly less than that in
AndroBench since Pytpcc includes read-only transactions while
AndroBench does only update statements.

In addition, to evaluate the effect of the host-level IO stack opti-
mization on IHDE, we modified SQLite so as to run on io_uring [7],
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(unit: second) CPU 10 Total
IHDE 1.29 9.78 11.07

Androbench SaS 1.52 5.13 6.65
IHDE-iouring | 0.69 9.33 10.02
[HDE 334 143.4 176.8
Pytpce (1 wh) SaS 54.77 | 95.95 | 150.72
IHDE-iouring | 15.54 | 147.74 | 163.28

Table 1: Performance Comparison: IHDE vs. SaS

which was recently incorporated into Linux mainstream, and mea-
sured the CPU and IO times taken to complete each of two bench-
marks when run in the modified SQLite version. The results (two
rows denoted as IHDE-iouring) are also included in Table 1.
io_uring was designed to achieve zero-copy and to minimize the
invocations of system calls by leveraging the shared ring buffer be-
tween user and kernel space, to utilize asynchronous IOs for better
throughput, and to squeeze the performance of low-latency SSDs by
adopting polling-based IO [7]. However, since IOs in vanilla SQLite
are mostly synchronous, io_uring has less effect on reducing the
10 stack overhead. Thus, to further leverage the benefit of io_uring,
we have modified IHDE-iouring to equip the polling-based IO com-
pletion policy by enabling the IORING_SETUP_IOPOLL option.
As shown in Table 1, IHDE-iouring can significantly improve the
the IO stack overhead over IHDE. Nonetheless, IHDE-iouring is
still considerably outperformed by Sa$ in terms of IO time, because
SaS can achieve the single-write journaling with the help of Share
while IHDE-iouring has to resort to redundant journaling for write
atomicity. This further motivates the SaS approach.

Lessons from SaS-Zero The above comparison between IHDE
and SaS-Zero illustrates both the opportunities and limitations of
SaS. Since it bypasses the kernel IO stacks, SaS can improve the
IO efficiency as well as save the CPU cycles. In addition, various
vertical optimizations made with SaS can drastically reduce the I/O
time. Meanwhile, the limited computing power (e.g., Arm Cortex A9)
and resource (i.e., less CPU cache and slower DRAM) in Cosmos+
SSD will make SaS slower than IHDE. Thus, we need to strengthen
its opportunities further while compensating its limitations.

3.4 Limitations

Though innovative, the current SaS artifact has a few limitations
in terms of scalability, programmability, and multi-instance support,
each of which we believe could be overcome.

First, the SaS approach may not suit applications with data set too
large to fit on a single SaS device. In such large-scale data processing,
data has to be partitioned across multiple SaS devices, and a user-
level query needs to be accordingly decomposed into subqueries
over those SaS nodes. Hence, we may need to develop distributed
query processing scheme coordinating multiple SaS nodes [21]. Al-
ternatively, sharding can be used to make the SaS approach scalable,
which splits data into many shards and distributes them across
multiple database instances [52]. In practice, the sharded database
architecture has been widely taken by major cloud service providers
as well as database vendors as scale-out solutions for their database
services [51, 52, 74, 77]. In particular, their shard managers allow



scaling database backend without any sharding logic in database
applications. They shed light on developing automatic and trans-
parent sharding mechanisms for multiple SaS instances running in
a shared nothing manner.

Second, developing and maintaining the software in SaS is less
flexible and more time consuming than IDHE because a flexible and
generic programming model for high-level languages such as C is
not available from SSDs. As computational SSDs will proliferate,
however, new programming environments for SSDs are expected
to be defined and available in the foreseeable future [8, 19]. In par-
ticular, Samsung has already demonstrated [23, 30] that commodity
SSD can offer a high-level programming model with generality and
expressiveness enough to support database engine modules.

Third, one SaS device could not support multiple database in-
stances. As a consequence of circumventing file system, the current
SaS-Zero artifact simply assumes the whole NAND space as a single
file, treats the SQLite file offset as LBA, and therefore supports only
a single address space. This is a serious constraint that no database
system is willing to make, in particular given that SSDs with the
capacity of several tens TBs are not uncommon and SSD capacities
are ever growing. Hence, we will investigate supporting multiple
databases instance in a SaS device in the future.

4 FUTURE RESEARCH DIRECTIONS

Based on the experience with SaS-Zero, we have identified three
research directions which can make SaS more competitive or can
overcome some limitations of current SaS-Zero artifact.

SQL Support from SSD SaS has to support the SQL interface
for both contexts of direct attached storage (DAS) and networked
environment. In the case of networked SaS, we expect to be able to
implant the conventional standard database interfaces such as JDBC
and access-over-HT TP easily on top of the Ethernet Physical Layer
(i.e., Ethernet PHY). However, in the case of DAS environment, it is
challenging to support tuple-oriented and set-oriented semantics
on top of the dummy block interface. To be specific, SaS should
be able to accept SQL statements of variable length as its input
from applications and then return a set of variable-sized tuples as
its output to applications. In sending SQL statements to SaS, we
can emulate using the NVMe write command or by buffering SQL
statements in device driver’s buffer. In receiving a set of tuples from
SaS, however, the existing storage interface is inappropriate for two
reasons. First, since the size of query result is not known in advance,
the existing storage read command can not be naively utilized.
Second and more importantly, since the execution time of an SQL
statements is, depending on many parameters, unpredictable and
usually takes long, the interrupt-based block interface protocol
is inappropriate for this scenario. To overcome the impedance
mismatch between the set-oriented SQL interface and the block-
oriented storage interface, we need to explore a large design space
about the unit of SQL result to be returned to applications, the
checking mechanism of SQL statement completion, and the number
of SQL statements to be concurrently serviced by a SaS device. In
addition, we need to develop a sharding mechanism which can
manage large data over multiple SaS instances.
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Tighter Integration of DB engine and FTL SaS-Zero has re-
moved the intervening IO stacks between DB engine and FTL, thus
eliminating significant run-time overheads from the stacks. We will
further realize the full performance potential of SaS by tightly inte-
grating DB engine with FTL. To be specific, by making DB engine
aware of the underlying SSD architecture and the data layout and
also by allowing DB engine to control the physical placement of
data in SSD and to schedule the data accesses [31, 64], we can fur-
ther optimize most major database module such as storage manager,
buffer manager, query processor, and transaction manager [18, 35].
For instance, by placing data pages with different lifetimes in dif-
ferent flash blocks [33], SaS can drastically improve SaS in terms of
write amplification, performance, and lifespan, thus realizing the
concept of multi-streamed SSD truly. As another example, we can
accelerate B-tree traversal by adding the functionality of reading
multiple pages at once to the FTL interface [56]. Also, to support
multi-tenant database in one SaS device, we plan to introduce an-
other address translation layer between SQLite engine and FTL,
which is aware of database instances (i.e., name or ID).

Hardware-assisted acceleration Next-generation SSDs will
be armed with richer computing resources. For instance, the new
version of Cosmos+ board, Daisy OpenSSD [15], will use server-
grade A53 CPU, larger FPGA logic gates, 100G Ethernet, and battery-
backed NVM. To make SaS perform comparable to IHDE, it is com-
pelling to accelerate core database functionalities by leveraging
such hardware features. In this regard, we plan three hardware-
assisted accelerations. First, based on the performance breakdowns
from the experiments in Section 3.3, we identified three paralleliz-
able tasks as candidates for FPGA implementations: SQL parsing,
B-tree traversal [39], and query processing operators (e.g., sort-
ing and joins[43]). Second, we expect to boost the transaction
processing by utilizing a small amount of NVM in novel ways.
Byte-addressable NVM can realize the full potential of logical log-
ging [53]. In addition, we expect to further reduce the amount of
writes to flash memory by caching the small number of hot dirty
pages in NVM. These optimizations will also shorten the recovery
time and prolong the lifespan of the flash storage [53]. Third, we will
extend SaS to support the replication mechanism where the master
can propagate its update to its slave SaS devices efficiently and
consistently with the help of 100G Ethernet, RDMA, and NVM. For
instance, the primary SaS can directly store its new SQL statements
to its slaves’ NVM over the RDMA interface [42, 53].

5 CONCLUDING REMARKS

In this paper, we envisioned the idea of SaS and argued it is high
noon for SSDs to evolve from dummy block devices to substrates
for running database engines. In addition, we also demonstrated
that moderate prototyping of SaS using a real SSD can perform
comparable to IHDE. Finally, based on this experiment, we set out
several interesting directions for future SaS research.
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