
Minimum Vertex Augmentation
Jianwen Zhao

Chinese University of Hong Kong

jwzhao@cse.cuhk.edu.hk

Yufei Tao

Chinese University of Hong Kong

taoyf@cse.cuhk.edu.hk

ABSTRACT
This paper introduces a class of graph problems named minimum
vertex augmentation (MVA). Given an input graph 𝐺 where each

vertex carries a binary color 0 or 1, we want to flip the colors of the

fewest 0-vertices such that the subgraph induced by all the (original

and new) 1-vertices satisfies a user-defined predicate 𝜋 . In other

words, the goal is to minimally augment the subset of 1-vertices

to uphold the property 𝜋 . Different formulations of 𝜋 instantiate

the framework into concrete problems at the core of numerous

applications. We first describe a suite of techniques for solving MVA

problems with strong performance guarantees, and then present

a generic algorithmic paradigm that a user can instantiate to deal

with ad-hoc MVA problems. The effectiveness and efficiency of our

solutions are verified with an extensive experimental evaluation.

PVLDB Reference Format:
Jianwen Zhao and Yufei Tao. Minimum Vertex Augmentation. PVLDB,

14(9): 1454 - 1466, 2021.

doi:10.14778/3461535.3461536

1 INTRODUCTION
Many graph-based applications endow vertices with binary states,
such as reliable/unreliable (e.g., sensors), customer/non-customer

(people), verified/non-verified (intermediate outputs in a workflow),

etc. It is often feasible to switch a less desired state to the opposite,

e.g., replace a sensor’s battery, influence a non-customer with adver-

tising, and authenticating an unreliable output, and so on. Limited

budgets, on the other hand, constrain how many vertices of the bad

state can be fixed. Repairing the fewest bad vertices to achieve an

optimization objective poses interesting algorithmic challenges.

This paper proposes a minimum vertex augmentation (MVA)

framework to capture problems of the above style. Consider a di-

rected/undirected graph 𝐺 = (𝑉 , 𝐸). Each vertex 𝑣 ∈ 𝑉 has a color,

which can be 0 or 1. Define 𝑉0 (resp. 𝑉1) as the set of vertices in

𝑉 having color 0 (resp. 1). We want to find a subset 𝐹 ⊆ 𝑉0 of the
minimum |𝐹 | such that the subgraph of𝐺 induced by 𝐹 ∪𝑉1 satisfies
a user-defined predicate 𝜋 . This is equivalent to augmenting 𝑉1 by

flipping the least 0-vertices to uphold 𝜋 on the subgraph induced by

all the (old and new) 1-vertices. With 𝜋 formulated differently, the

framework defines a class of problems that we call the MVA class
and denote as CMVA. Some problems in the class extend conven-

tional graph problems in non-trivial manners, while certain MVA

problems do not necessarily have “conventional” counterparts. The

next subsection discusses a representative problem selection.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 9 ISSN 2150-8097.

doi:10.14778/3461535.3461536

1.1 Representative problems and applications
Problem 1: MVA-shortest-distance. In this problem, 𝐺 can be

directed or undirected. Each edge of𝐺 carries a non-negativeweight.
The input also includes a source vertex 𝑠 ∈ 𝑉 , a destination vertex

𝑡 ∈ 𝑉 , a real value 𝜏 ≥ 0, and predicate 𝜋 = “the subgraph induced
by 𝐹 ∪𝑉1 has a path from 𝑠 to 𝑡 whose total length (weight sum of all
the edges on the path) is at most 𝜏”.

Consider the graph in Figure 1a, where all edges have weight 1,

and the 0- and 1-vertices are shown in white and black, respectively.

The shortest path from 𝑠 to 𝑡 has length 3. For 𝜏 = 3, the optimal

solution is to flip (the colors of) a and b. For 𝜏 = 4, the optimal

solution is to flip only d; note that the 1-path (i.e., a path consisting

of only 1-vertices) 𝑠, c, d, e, 𝑡 is not the shortest path from 𝑠 to 𝑡 .

Problem 2: MVA-connectivity. In this problem, 𝐺 is an undi-

rected graph. The input also includes a set 𝑆 of terminal vertices and
predicate 𝜋 = “the subgraph induced by 𝐹 ∪𝑉1 has all the vertices of
𝑆 in the same connected component”.

Consider the graph 𝐺 in Figure 1b where 𝑉1 = {𝑡1, 𝑡2, 𝑡3, b, d}.
For 𝑆 = {𝑡1, 𝑡2, 𝑡3}, the optimal solution is to flip 𝐹 = {a, c}, which
connects the terminal vertices with a tree of 6 edges. Note that this

is not the smallest tree that can connect 𝑡1, 𝑡2, and 𝑡3; the smallest

tree has only 5 edges but requires flipping e, f, and g.
Problem 3: MVA-influence-minseed. Consider𝐺 as a social net-

work for viral marketing. We want to promote a product to a seed
set 𝑆 ⊆ 𝑉 of people, hoping that they can relay the product infor-

mation to their acquaintances, who, in turn, may do the same to

their acquaintances, and so on. Denote by spread (𝑆) the overall

influence of 𝑆 in this cascading process (the detailed calculation of

spread (𝑆) will appear in Section 2). In MVA-influence-minseed, the
predicate 𝜋 is “spread (𝐹 ∪𝑉1) ≥ 𝜏” for some real value 𝜏 > 0.

Figure 1c illustrates the effects of 𝑉1. If 𝑉1 were empty, vertex a
would make a better seed than j. Given 𝑉1 = {b, c, d, e}, however,
j becomes better. The presence of b, c, d, and e “blocks” a from

f, g, h and i such that advertising to a will create no more impact

on {f, g, h, i} than what 𝑉1 can already achieve. On the other hand,

advertising to j may influence one more non-customer, i.e., k.
Problem 4: MVA-reachability. The above problems are not “in-

herently” MVA because they are meaningful problems even when

𝑉1 = ∅, i.e., the conventional scenario without the MVA incarnation

(see Section 2 for further elaboration). They are better regarded as

MVA extensions of traditional graph problems. Our next problem,

named MVA-reachability, is inherently MVA as it makes little sense

if 𝑉1 = ∅. Here, 𝐺 can be directed or undirected. The input also

includes a source vertex 𝑠 , an integer 𝜏 > 0, and the predicate 𝜋 =

“𝑠 can reach at least 𝜏 vertices in the subgraph induced by 𝐹 ∪𝑉1”.
Consider the example in Figure 1d where 𝑉1 contains all the

vertices in black. Fix 𝑠 = a. If 2 ≤ 𝜏 ≤ 4, an optimal solution is

to flip only vertex c, after which a can reach a, c, f, and g. For
5 ≤ 𝜏 ≤ 6, an optimal solution is to flip c and d, allowing a to reach
a, c, f, g, d and h. Similarly, an optimal solution for 𝜏 ∈ [7, 9] is to

1454

https://doi.org/10.14778/3461535.3461536
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3461535.3461536

c d e

a b

s t

.

.

t1

t2 t3

a

b c

d

e

f g

c

d

a

b

g

k

j

f

h

e i

c d

a

b

gf he

i
j

k l

(a) MVA-shortest-distance (b) MVA-connectivity (c) MVA-influence-minseed (d) MVA-reachability

Figure 1: Illustration of the representative MVA problems (0-vertices in white and 1-vertices in black)

flip c, d, and j. When 𝑉1 = ∅, the problem is rather awkward and

admits a trivial solution: we can simply return the first 𝜏 vertices

visited by a DFS or BFS starting from 𝑠 .

Applications. Unlike the existing problems in the “influence max-

imization” family (see Section 3), MVA-influence-minseed incorpo-

rates the fact that some people will promote a product voluntarily.
Market mavens, sales-persons, and employees, for example, are

naturally motivated to disseminate product information and would

form the set 𝑉1. Therefore, resources should focus on people who

initially have no incentives to participate in word-of-mouth adver-

tising. The problem’s goal is to identify the minimum number of

such people to attain a target effect.

MVA-connectivity suggests an alternative marketing strategy

also leveraging a social network 𝐺 . This time, regard 𝑉1 as the

set of existing customers. A company can first identify a set 𝑆 of

VIP customers living in the same neighborhood and having similar

backgrounds. Based on 𝑆 , MVA-connectivity outputs a set 𝐹 of non-

customers for promotion. Turning all of 𝐹 into customers enforces
a connected community in 𝐺 . This community has great potentials

to attract new customers because the people therein may have

common friends who have never patronized the company.

Today, massive sensor networks have become indispensable in

smart-city, agriculture, forest protection, etc. Besides the analysis

of sensor measurements, a sensor database [4, 27, 43] also supports

querying sensors’ status (e.g., location and battery power). Battery

replacement is notoriously tricky. How quickly a battery drains out

depends on a sensor’s communication volume and its surroundings

(in particular, temperature and moisture). By resorting to a sensor

database, a modern system monitors every sensor’s power and

issues replacement jobs as needed to satisfy a performance goal.

MVA-shortest-distance, -connectivity, and -reachability are pow-

erful tools in the above scenarios. The sensors constitute the ver-

tices in a graph 𝐺 , where an edge exists between two sensors if

they are within the communication range; and the edge’s weight

corresponds to the round-trip time between them. A vertex has

color 0 if its sensor’s battery has dropped below a certain level, or

1 otherwise. Suppose that vertices 𝑠 and 𝑡 represent two critical

locations in the sensor network (e.g., two base stations). When they

are no longer connected by a robust route (i.e., a fast 1-path), fix-

ing it by replacing the fewest sensors’ batteries makes an instance

of MVA-shortest-distance. Similarly, in MVA-connectivity, we aim

to guarantee robust connectivity among multiple strategic nodes

(instead of only 2). Finally, consider 𝑠 once again as a base station,

which ideally should have a 1-path to every sensor. The task of

“changing the fewest sensors’ batteries for 𝑠 to maintain 1-paths to

at least half of the sensors” makes an instance of MVA-reachability.

The problems defined earlier find further applications in logistics

(e.g., “apply the minimum reallocation of the depot workforce to

ensure fast package delivery time from location 𝑠 to location 𝑡”),

data provenance (e.g., “validate the least intermediate outputs to

maximize the number of authenticated facts derived from a data

container), urban planning (e.g., “upgrade the fewest road segments

to create fast connections among a set of sites”), etc.

1.2 Contributions
This paper studies the MVA class CMVA at two levels:

• Micro. By delving into representative problems, we present

generic techniques useful for designing MVA algorithms

with attractive performance guarantees.

• Macro. By treating CMVA as a whole, we propose an algo-

rithmic paradigm that can be specialized with user plugins

to tackle ad-hoc MVA problems.

Next, we give an overview of our contributions at each level.

Micro: theoretical methods. The representative problems are

selected to illustrate three techniques to approach MVA:

• Dynamic programming: The technique allows us to set-

tles MVA-shortest-distance in �̃� (𝑛 + 𝑘∗𝑚) time
1
where 𝑛 =

|𝑉 |,𝑚 = |𝐸 |, and 𝑘∗ is the optimal solution size (same below),

i.e., the minimum number of 0-vertices to flip to satisfy 𝜋 .

• Half weighting: MVA-connectivity is NP-hard. We show

how to obtain a (2+|𝑆 |/𝑘∗)-approximate solution in �̃� (𝑛+𝑚)
time, after a half-weighting transformation that assigns edge

weights according to vertex colors.

• Greedy: MVA-influence-minseed is NP-hard. We describe

a greedy algorithm finding in �̃� (𝑛 + 𝑘∗𝑚) time a solution 𝐹

with size 𝑂 (1 + 𝑘∗) and spread (𝐹 ∪𝑉1) = Ω(𝜏).
The above techniques can be combined to approach an MVA

problem, which is the case for MVA-reachability. The problem can

be shown to be NP-hard. By integrating half weighting and greedy,

we obtain an algorithm that runs in �̃� (|𝑉0 | · (𝑛 +𝑚)) time and finds

a solution 𝐹 larger than the optimal by a factor of 𝑂 (𝑘∗ log𝜏).
Macro: a paradigm. For system engineering, it would be useful to

offer a generic paradigm to tackle all MVA problems in a uniform

manner. A user can fill in certain details to instantiate our paradigm

for different problems. The paradigm returns a high-quality solution

fast, continues to search promising areas of the solution space, and

produces better answers over time.

1
The notation �̃� (.) hides a factor polylogarithmic to the problem size.

1455

2 PROBLEM DEFINITIONS
Consider a directed/undirected graph 𝐺 = (𝑉 , 𝐸); define 𝑛 = |𝑉 |
and𝑚 = |𝐸 |. We follow the convention that a directed edge from

vertex 𝑢 to vertex 𝑣 is represented as an ordered pair (𝑢, 𝑣), while
an undirected edge between 𝑢 and 𝑣 is represented as a set {𝑢, 𝑣}.
Each vertex 𝑣 ∈ 𝑉 has a color in {0, 1}, denoted as color (𝑣). Define
𝑉0 = {𝑣 ∈ 𝑉 | color (𝑣) = 0} and 𝑉1 = {𝑣 ∈ 𝑉 | color (𝑣) = 1}.

Given a subset 𝑈 of 𝑉 , we denote by 𝐺𝑈 the subgraph of 𝐺 in-

duced by𝑈 . Let𝜋 be a function from {𝐺𝑈 | 𝑈 ⊆ 𝑉 } to {true, false}.
We will be concerned with only monotone 𝜋 :

Definition 2.1 (Monotonicity). Function 𝜋 is monotone if, for any
𝑈1 ⊆ 𝑈2 ⊆ 𝑉 , 𝜋 (𝐺𝑈1

) = true implies 𝜋 (𝐺𝑈2
) = true.

Every such 𝜋 defines an MVA-problem:

Definition 2.2. Theminimum vertex augmentation (MVA) problem
defined by a monotone function 𝜋 is to find a subset 𝐹 ⊆ 𝑉0 with
the smallest |𝐹 | such that 𝜋 (𝐺𝐹∪𝑉1

) = true.

We will refer to an 𝐹 as a solution if 𝜋 (𝐺𝐹∪𝑉1
) = true, and an

optimal solution if |𝐹 | is the smallest among all solutions. An MVA-

problem is feasible if it admits a solution, or infeasible otherwise.
Note that the problem is infeasible if and only if 𝜋 (𝐺𝑉) = false
due to monotonicity. When 𝑉1 = ∅ (i.e., all the vertices have color
0), we refer to the degenerated MVA-problem as a plain problem.

The MVA-class CMVA is the set of all MVA-problems defined by

monotone functions 𝜋 .

MVA-shortest-distance. 𝐺 can be directed or undirected. Each

edge 𝑒 ∈ 𝐸 has aweight𝑤 (𝑒) ≥ 0. The input specifies a source 𝑠 ∈ 𝑉 ,

a destination 𝑡 ∈ 𝑉 , and a value 𝜏 ≥ 0 such that 𝜋 (𝐺𝑈) = true if
and only if 𝐺𝑈 contains a path from 𝑠 to 𝑡 whose length is at most

𝜏 (the length of a path is the weight sum of its edges).

The problem’s plain version finds, among all the 𝑠-to-𝑡 paths

with length at most 𝜏 , the one with the fewest vertices. Note that

an optimal solution is not necessarily a shortest path from 𝑠 to 𝑡 .

MVA-connectivity. 𝐺 is undirected. The input includes a set 𝑆 of

vertices in 𝑉 (called the terminal vertices) such that 𝜋 (𝐺𝑈) = true
if and only if 𝐺𝑈 contains all the terminal vertices in the same

connected component.

The plain version returns a tree which (i) is a subgraph of 𝐺 ,

(ii) contains all the terminal vertices, and (iii) has the fewest edges

among all trees fulfilling the previous two conditions. This is a

degenerated version of the steiner tree problem.

MVA-influence-minseed. 𝐺 is directed. The input provides a

value 𝜏 > 0 such that 𝜋 (𝐺𝑈) = true if and only if spread (𝑈) ≥ 𝜏 .

The definition of spread (𝑈) follows the independent cascade
model [23]. In 𝐺 , every edge 𝑒 is given an influence probability 𝑝𝑒 .
Imagine retaining each edge 𝑒 independently with probability 𝑝𝑒 .

Denote by 𝐸rand the set of edges retained and by𝐺rand = (𝑉 , 𝐸rand)
the resulting random graph. Count the number 𝑋 of vertices 𝑣 such

that at least one vertex in 𝑈 has a path to 𝑣 in 𝐺rand . The value of

spread (𝑈) is the expectation of the random variable 𝑋 .

Example. Suppose that𝐺 is the graph in Figure 1c and that 𝑝𝑒 < 1

for every 𝑒 ∈ 𝐸 (colors are omitted because they are not needed

here). Figure 2 shows one possible 𝐺rand . For 𝑈 = {a, c}, 𝑋 = 6

because𝑈 can reach a, b, c, d, f and g in 𝐺rand . □

The plain version of MVA-influence-minseed finds a subset 𝑈 ⊆
𝑉 with the smallest size to satisfy spread (𝑈) ≥ 𝜏 . This is called

c

d

a

b

g

k

j

f

h

e i

Figure 2: A random graph (MVA-influence-minseed)

minimum target set selection (MINTSS) [14] and dual to the influence
maximization problem [23] (the latter returns a set 𝑈 ⊆ 𝑉 with the

maximum spread (𝑈) subject to |𝑈 | = 𝑘 for some integer 𝑘 ≥ 1).

MVA-reachability. 𝐺 can be directed or undirected. The input

gives a source vertex 𝑠 ∈ 𝑉 and an integer 𝜏 > 0, such that 𝜋 (𝐺𝑈) =
true if and only if 𝑠 can reach at least 𝜏 vertices in 𝐺𝑈 .

The reader can verify that the plain version, although having a

sound mathematical definition, is algorithmically trivial and bears

little practical significance. MVA-reachability is “inherently MVA”,

as mentioned in Section 1.1.

3 RELATED WORK
Graph coloring is a general topic in graph theory that studies how

to assign colors to vertices/edges to fulfill a designated requirement;

see [20, 26] for comprehensive coverage of the existing algorithms.

The area’s main objective is to understand the minimum number

of colors required. In particular, plenty of work has been devoted

to the chromatic number, the least number of colors necessary to

assign different colors to adjacent vertices (see [20] for an excellent

survey). On the other hand, the number of colors is fixed to 2 in

MVA, whose goal is to understand the minimum number of vertices

to switch from color 0 to 1 to uphold a property 𝜋 .

CMVA should not be confused with edge switching problems. In

the latter, we have a graph 𝐺 where each edge is colored either 0

or 1. A switch operation selects a vertex 𝑢 and flips the colors of all

the edges incident on 𝑢 (0 turns into 1 and 1 into 0). The objective

is to carry out the operation the least number of times to make

a predicate hold (e.g., “the subgraph induced by the 1-edges are

connected”). The reader may refer to [16, 17, 19, 31, 35, 45] as entry

points into that literature.

We now review results on the plain versions (if they exist) of the

MVA problems in Section 2. The input to the steiner tree problem
includes (i) an undirected graph𝐺 = (𝑉 , 𝐸) where each edge carries

a non-negative weight and (ii) a set 𝑆 ⊆ 𝑉 of terminal vertices.
Define a subtree 𝑇 of 𝐺 as a connected acyclic subgraph of 𝐺 , and

theweight of𝑇 as the sum of the weights of its edges. The problem’s

goal is to find a subtree of𝐺 with the minimumweight that contains

all the terminal vertices. The problem is NP-hard [10], with many

polynomial-time approximation algorithms known (e.g., [2, 3, 7, 12,

18, 22, 28, 32, 33, 46]). Currently, the best approximation ratio is

roughly 1.39, obtained by Byrka et al. [7]. Mehlhorn [28] designed

a practical 2-approximate algorithm that runs in �̃� (𝑛 +𝑚) time.

The influence maximization problem (see definition in Section 2)

was introduced by Kempe et al. [23]. They proved the problem’s

NP-hardness and gave a (1 − 1/𝑒 − 𝜖)-approximate algorithm with

running time Ω(𝑘𝑚𝑛). The quest for a faster algorithm has attracted

considerable interests [1, 5, 8, 9, 13, 25, 29, 30, 37–39]. A major

1456

breakthrough was achieved by Borgs et al [5], whose algorithm

runs in time �̃� (𝑘 (𝑚 + 𝑛)) and ensures the same approximation

ratio as [23]. The closely-related MINTSS problem (Section 2) was

studied by Goyal et al. [14]. Based on non-trivial evidence, they

conjectured that no polynomial algorithms can find a solution𝑈 of

size 𝑂 (1 + 𝑘∗) where 𝑘∗ is the size of an optimal solution (we will

refer to this as theMINTSS conjecture). They also gave an algorithm

of �̃� (𝑘∗ (𝑚 + 𝑛)) time
2
to find a solution 𝑈 of size 𝑂 (𝑘∗) with

spread (𝑈) = Ω(𝜏). Our algorithm for MVA-influence-minseed was

inspired by the previous work but incorporates new observations

necessitated by the presence of 𝑉1. Further details will appear in

Section 6.3.

The plain version of MVA-reachability essentially outputs an

arbitrary subgraph 𝐺 ′ of 𝐺 such that (i) 𝐺 ′ includes the source

vertex 𝑠 , (ii)𝐺 ′ has 𝜏 vertices, and (iii) 𝑠 can reach all the vertices in

𝐺 ′. The problem can be settled in linear time by running DFS/BFS

from 𝑠 and returning the first 𝜏 vertices seen.

CMVA belongs to the broader class of combinatorial optimiza-
tion where the goal is to find a subset of some universe that mini-

mizes/maximizes a certain objective function. We refer the reader

to [24, 34] for a systematic introduction to that grand topic.

4 DYNAMIC PROGRAMMING
(MVA-SHORTEST-DISTANCE)

This section will settle MVA-shortest-distance with dynamic pro-

gramming. It suffices to consider the case where 𝑠 and 𝑡 belong to

𝑉1. The assumption does not lose generality because if 𝑠 (or 𝑡) has

color 0, it must be added to 𝐹 (the set of vertices whose colors are

flipped) anyway. We will assume that the problem is feasible, as

this can be tested in �̃� (𝑛 +𝑚) time by computing the shortest path

from 𝑠 to 𝑡 in the whole 𝐺 (ignoring colors). We will regard 𝐺 as a

directed graph; if 𝐺 is undirected, simply replace each edge {𝑢, 𝑣}
with two directed edges (𝑢, 𝑣) and (𝑣,𝑢). For an edge 𝑒 = (𝑢, 𝑣),
𝑤 (𝑢, 𝑣) will serve as another representation for the weight𝑤 (𝑒).

We use the term 𝑘-zero path to refer to a path with at most 𝑘

0-vertices. For each vertex 𝑣 ∈ 𝑉 and 𝑘 ≥ 0, define spdist (𝑣 |𝑘) as
the minimum length of all 𝑘-zero paths 𝑃 from 𝑠 to 𝑣 . We prove in

the long version [47]:

Lemma 4.1. spdist (𝑣 |𝑘) equals{
min𝑢∈IN(𝑣) spdist (𝑢 |𝑘) +𝑤 (𝑢, 𝑣) if color (𝑣) = 1

min𝑢∈IN(𝑣) spdist (𝑢 |𝑘 − 1) +𝑤 (𝑢, 𝑣) otherwise

where IN(𝑣) is the set of in-neighbors of 𝑣 .

The lemma motivates integrating Dijkstra’s algorithm with dy-

namic programming. At a high level, wemaintain a set𝑄 of dist (𝑣 |𝑘)
values for different 𝑣 ∈ 𝑉 and 𝑘 ≥ 0. The value of dist (𝑣 |𝑘) is at
least spdist (𝑣 |𝑘) and decreases monotonically as the algorithm runs.

A dist (𝑣 |𝑘) is active if it is at most 𝜏 , or inactive otherwise.
We impose a total order ⊴ on 𝑄 : dist (𝑣 |𝑘) ⊴ dist (𝑣 ′ |𝑘 ′) if
• dist (𝑣 |𝑘) is active but dist (𝑣 ′ |𝑘 ′) is not;
• (both active) 𝑘 < 𝑘 ′;
• (both active and 𝑘 = 𝑘 ′) dist (𝑣 |𝑘) < dist (𝑣 ′ |𝑘 ′).

2
There was no analysis of running time in [14] but one can derive this bound based

on the result of [5].

• (both active, 𝑘 = 𝑘 ′, and dist (𝑣 |𝑘) = dist (𝑣 ′ |𝑘 ′)) 𝑣 has a

smaller id than 𝑣 ′.3

The algorithm essentially inspects values according to ⊴, until
encountering the first active dist (𝑡 |𝑘) for an arbitrary 𝑘 :

algorithm MVA-shortest-distance
1. insert triplet (dist (𝑠 |0), 𝑠, 0) into𝑄 where dist (𝑠 |0) = 0 is the key

2. repeat
3. remove from𝑄 the triplet (dist (𝑢 |𝑘),𝑢, 𝑘) with the smallest

dist (𝑢 |𝑘) under ⊴
4. if 𝑢 = 𝑡 then return 𝑘

5. for every out-neighbor 𝑣 of 𝑢 do relax-edge(𝑢, 𝑣, 𝑘)
subroutine relax-edge(𝑢, 𝑣, 𝑘)
1. if color (𝑣) = 1 and dist (𝑢 |𝑘) + 𝑤 (𝑢, 𝑣) < dist (𝑣 |𝑘) then

/* convention: dist (𝑣 |𝑘) = ∞ if (dist (𝑣 |𝑘), 𝑣, 𝑘) is not in𝑄 */

2. update/insert the triplet (dist (𝑣 |𝑘), 𝑣, 𝑘) in𝑄 with

dist (𝑣 |𝑘) ← dist (𝑢 |𝑘) + 𝑤 (𝑢, 𝑣)
3. if color (𝑣) = 0 and dist (𝑢 |𝑘) + 𝑤 (𝑢, 𝑣) < dist (𝑣 |𝑘 + 1) then
4. update/insert the triplet (dist (𝑣 |𝑘 + 1), 𝑣, 𝑘 + 1) in𝑄 with

dist (𝑣 |𝑘 + 1) ← dist (𝑢 |𝑘) + 𝑤 (𝑢, 𝑣)
Example. We illustrate the algorithm on the input graph in Fig-

ure 1a, setting 𝜏 = 4 (recall that all edges have weight 1). Initially,

dist (𝑠 |0) = 0, whereas dist (𝑢 |𝑘) = ∞ for every vertex𝑢 ≠ 𝑠 and inte-

ger 𝑘 ≥ 1. After removing dist (𝑠 |0) from𝑄 , we perform relax-edge
on (𝑠, a, 0) and (𝑠, c, 0), after which dist (a|1) = 1 and dist (c|0) = 1

are added to 𝑄 . As dist (c|0) ⊴ dist (a|1), the next entry removed

from 𝑄 is dist (c|0), triggering relax-edge on (c, d, 0), which adds

dist (d|1) = 2 to 𝑄 . Similarly, dist (a|1) is then removed; and relax-
edge(a, b, 1) adds dist (b|2) = 2 to 𝑄 . The algorithm then removes

dist (d|1) = 2, performs relax-edge(d, e, 1), adds dist (e|1) = 3, re-

moves dist (e|1) = 3, performs relax-edge(e, t, 1), adds dist (t|1) =
4, removes dist (t|1) = 4, and finishes with 𝑘 = 1. □

We prove the lemma below in the long version [47]:

Lemma 4.2. Algorithm MVA-shortest-distance returns the smallest
𝑘∗ satisfying spdist (𝑡 |𝑘∗) ≤ 𝜏 . The execution time is in �̃� (𝑛 + 𝑘∗𝑚).

Recall that 𝑘∗ is the size of an optimal solution. We still need to

find the path 𝑃 from 𝑠 to 𝑡 corresponding to spdist (𝑡 |𝑘∗); namely,

𝑃 has length spdist (𝑡 |𝑘∗) and exactly 𝑘∗ 0-vertices. After that, the
𝐹 returned is just the set of 0-vertices in 𝑃 . To obtain 𝑃 , we apply

the standard “parent pointer trick” that converts a shortest-distance
algorithm to a shortest-path one. Specifically, we maintain a pointer

parent (𝑣 |𝑘) for each vertex 𝑣 and 𝑘 ≥ 0. Every time Line 2 (or 4)

of relax-edge is executed, we set parent (𝑣 |𝑘) (or parent (𝑣 |𝑘 + 1),
resp.) to 𝑢. This introduces only constant-time overhead for Lines

2 and 4 and, hence, does not affect the overall complexity.

5 HALF-WEIGHTING (MVA-CONNECTIVITY)
This section will solve MVA-connectivity with non-trivial guaran-

tees. We will assume 𝑆 ⊆ 𝑉1 because every 0-vertex in 𝑆 must be

added to 𝐹 anyway.

5.1 Algorithm
We propose the half-weighting transformation that converts the

(unweighted) input graph 𝐺 = (𝑉 , 𝐸) to a weighted graph 𝐺+ with
the same vertex and edge sets. Specifically, to every edge 𝑒 = {𝑢, 𝑣},
3
We could do away with this bullet and define ⊴ as a partial order. We feel that it is

conceptually cleaner to work with a total order.

1457

t1

t2 t3

a

b c

d

e

f g

0.5
0.5

00.5

0.5

0.5

0.5

0.5

0

1 1
1

Figure 3: The weighted graph created (MVA-connectivity)

we assign the weight (i) 1 if both𝑢 and 𝑣 have color 0, (ii) 1/2 if only
one of 𝑢 and 𝑣 has color 0, or (iii) 0 if neither does. To understand

this in another way, consider processing each 0-vertex by injecting

a weight of 1/2 to every incident edge. Thus, an edge incident to

two 0-vertices gets injected a total weight of 1.

Our MVA-connectivity algorithm has two steps:

(1) find a minimum steiner tree 𝑇 ∗ on 𝐺+ with respect to the

terminal vertices in 𝑆 ;

(2) set 𝐹 to the set of 0-vertices in 𝑇 ∗.

Example. Figure 3 shows the 𝐺+ obtained from the input graph 𝐺

in Figure 1b. Assuming 𝑆 = {𝑡1, 𝑡2, 𝑡3}, the optimal steiner tree 𝑇 ∗

contains vertices 𝑡1, 𝑡2, 𝑡3, a, b, c, and d. □

We cannot execute Step (1) efficiently because the steiner tree

problem is NP-hard. Assuming the availability of an 𝛼-approximate

steiner tree algorithm, we replace 𝑇 ∗ in Steps (1) and (2) with an 𝛼-

approximate steiner tree 𝑇 of 𝐺+. The modified algorithm ensures:

Lemma 5.1. We return an 𝐹 of size at most 𝑘∗ · 𝛼 (1 + |𝑆 |
2𝑘∗), where

𝑘∗ is the size of an optimal solution to MVA-connectivity.

The above lemma, which we will prove in Section 5.2, indicates

an approximation ratio of 𝛼 (1 + |𝑆 |/(2𝑘∗)). By adopting the 2-

approximate steiner tree algorithm of [28] (Section 3), we achieve

approximation ratio 2 + |𝑆 |/𝑘∗ and running time �̃� (𝑛 +𝑚).
It is worth pointing out that MVA-connectivity is NP-hard be-

cause the steiner tree problem is NP-hard even when all the edges

have unit weight [10] (as mentioned in Section 2, the unit-weight

steiner tree problem is the plain version of MVA-connectivity).

5.2 Proof of Lemma 5.1
We start by proving a property of 𝐺+:

Lemma 5.2. Let 𝑇 be any tree embedded in 𝐺+ (i.e., each edge of
𝑇 is in 𝐺+) such that all the leaf nodes of 𝑇 have color 1. Then, the
weight of 𝑇 is 1

2

∑
𝑢∈𝑍 𝑑𝑇 (𝑢), where 𝑍 is the set of 0-nodes in 𝑇 , and

𝑑𝑇 (𝑢) is the degree of a node 𝑢 in 𝑇 .

Proof. For each node 𝑢 in 𝑇 , define𝑤 (𝑢) = 1/2 if color (𝑢) = 0,

or 0 otherwise. Given an edge {𝑢, 𝑣} in 𝑇 , its weight is precisely

𝑤 (𝑢) +𝑤 (𝑣) by how 𝐺+ is created. Hence, the weight of 𝑇 equals∑
edge {𝑢, 𝑣 } in𝑇

(𝑤 (𝑢) +𝑤 (𝑣)) =
∑

node 𝑢 in𝑇

𝑤 (𝑢) · 𝑑𝑇 (𝑢)

which is
1

2

∑
𝑢∈𝑍 𝑑𝑇 (𝑢). □

We now establish a connection from minimum steiner trees:

Lemma 5.3. Let 𝐶∗ be the weight of an (exact) minimum steiner
tree of 𝐺+. It must hold that 𝐶∗ < |𝑆 |/2 + 𝑘∗.

Proof. Consider an optimal solution 𝐹 ∗ (that is, 𝑘∗ = |𝐹 ∗ |) to
the MVA-connectivity problem. 𝐺𝑉1∪𝐹 ∗ must contain a steiner tree

𝑇 with respect to the terminal vertices in 𝑆 . Let 𝑋 (or 𝑌) be the set

of non-leaf (or leaf, resp.) nodes of 𝑇 . For sure, 𝐹 ∗ ⊆ 𝑋 and 𝑌 ⊆ 𝑆 .

Denote by 𝐶 the weight of 𝑇 . Lemma 5.2 tells us:

𝐶 =
∑
𝑢∈𝐹 ∗

𝑑𝑇 (𝑢)
2

=
∑
𝑢∈𝐹 ∗

(
𝑑𝑇 (𝑢)

2

− 1 + 1
)

= |𝐹 ∗ | +
∑
𝑢∈𝐹 ∗
(𝑑𝑇 (𝑢)/2 − 1) ≤ |𝐹 ∗ | +

∑
𝑢∈𝑋
(𝑑𝑇 (𝑢)/2 − 1)

= |𝐹 ∗ | − |𝑋 | + 1

2

∑
𝑢∈𝑋

𝑑𝑇 (𝑢). (1)

𝑇 has |𝑋 | + |𝑌 | − 1 = 1

2

∑
𝑢∈𝑋∪𝑌 𝑑𝑇 (𝑢) edges. Therefore:

|𝑋 | + |𝑌 | − 1 = 1

2

(∑
𝑢∈𝑋

𝑑𝑇 (𝑢) +
∑
𝑢∈𝑌

𝑑𝑇 (𝑢)
)
=

1

2

(∑
𝑢∈𝑋

𝑑𝑇 (𝑢) + |𝑌 |
)

leading to

∑
𝑢∈𝑋 𝑑𝑇 (𝑢) = 2|𝑋 | + |𝑌 | − 2. Thus:
(1) = |𝐹 ∗ | + |𝑌 |/2 − 1 < |𝐹 ∗ | + |𝑆 |/2

The claim then follows from 𝐶∗ ≤ 𝐶 . □

We now return to the proof of Lemma 5.1. Recall that Step (1) of

our (modified) algorithm returns an 𝛼-approximate steiner tree 𝑇

of 𝐺+. Let 𝐶 be the weight of 𝑇 ; by Lemma 5.3, 𝐶 ≤ 𝛼 (|𝑆 |/2 + 𝑘∗).
Since every 0-vertex 𝑢 in 𝑇 must be an internal node (otherwise,

simply discard 𝑢, which strictly reduces the number of 0-vertices in

𝑇), 𝑢 has a degree at least 2. By Lemma 5.2, the set 𝐹 of 0-vertices

in 𝑇 must satisfy 𝐶 = 1

2

∑
𝑢∈𝑍 𝑑

𝑇
(𝑢) ≥ 1

2

∑
𝑢∈𝐹 𝑑𝑇 (𝑢) ≥ |𝐹 | where

𝑍 is the set of 0-nodes in 𝑇 . We thus have |𝐹 | ≤ 𝛼 (|𝑆 |/2 + 𝑘∗).

6 GREEDY (MVA-INFLUENCE-MINSEED)
This section will apply the greedy methodology to tackle MVA-

influence-minseed. Define:

• OPTone = max𝑣∈𝑉 spread ({𝑣});
• 𝑣first as an arbitrary vertex with spread ({𝑣first }) ≥ 1

2
OPTone ;

• ˜OPTone as an arbitrary value in [OPTone
2

,OPTone].
It is possible to find a pair (𝑣first , ˜OPTone) in �̃� (𝑛 +𝑚) time with

probability at least 1 − 1/𝑛3 [5].
We will deal with the following problem instead:

Influence Maximization with Pre-selection (IMP). Given
𝑣first ∈ 𝑉1, we want to find a subset 𝐹 ⊆ 𝑉0 with |𝐹 | = 𝑘 to

maximize spread (𝐹∪𝑉1), where𝑘 ≥ 1 is an integer. Furthermore,

we also want to report the value of spread (𝐹 ∪𝑉1).
Let 𝐹 ∗ be an optimal solution to IMP. Given an 𝐹 ⊆ 𝑉0 and a real

value 𝑋 , we will call (𝐹, 𝑋) a 0.5-approximate solution if

• spread (𝐹 ∪𝑉1) ≥ 0.5 · spread (𝐹 ∗ ∪𝑉1) and
• 0.5 · spread (𝐹 ∪𝑉1) ≤ 𝑋 ≤ 1.5 · spread (𝐹 ∪𝑉1).

The lemma below, proved in the long version [47], connects IMP to

MVA-influence-minseed:

Lemma 6.1. Suppose that we can find a 0.5-approximate solution
to IMP in cost (𝑛,𝑚, 𝑘) expected time with probability at least 1 −
1/𝑛3. Then, for MVA-influence-minseed, with probability at least
1 −𝑂 (1/𝑛2) we can find in �̃� (cost (𝑛,𝑚, 𝑘∗)) expected time a set 𝐹

1458

of size𝑂 (1 + 𝑘∗) with spread (𝐹 ∪𝑉1) = Ω(𝜏), where 𝑘∗ is the size of
an optimal solution to MVA-influence-minseed.

Next, we will focus on finding a 0.5-approximate solution to IMP.

6.1 The reverse-reachability framework
Obtain a random graph 𝐺rand from 𝐺 in the way explained in

Section 2. Take a vertex 𝑣 ∈ 𝑉 uniformly at random and identify the

set 𝑅 of vertices that can reach 𝑣 in 𝐺rand . Call this an experiment
and 𝑅 a reverse reachability (RR) set. It is known [5] that 𝑅 has size

�̃� (𝑚𝑛 OPTone) in expectation and can be obtained in �̃� (𝑚𝑛 OPTone)
expected time after �̃� (𝑛 +𝑚) preprocessing time [5, 39]. Repeat the

experiment multiple times to produce a collection R of RR-sets.

Example. Consider the random graph 𝐺rand shown in Figure 2. If

𝑣 is (randomly) selected to be f, the RR set 𝑅 consists of {a, b, c, f};
if 𝑣 = g, 𝑅 = {c, g}; if 𝑣 = a, then 𝑅 contains only a. □

Given any𝑈 ⊆ 𝑉 , we define 𝑋𝑈 as the number of RR-sets 𝑅 ∈ R
such that 𝑅 ∩ 𝑈 ≠ ∅. Borgs [5] proved a lemma — we name the

spread approximation lemma — stating that 𝑋𝑈 · 𝑛/|R| accurately
estimates spread (𝑈), as long as |R | is sufficiently large. The IMP

problem thus boils down to finding a subset 𝐹 ⊆ 𝑉0 to maximize

𝑋𝐹∪𝑉1
, which is an instance of the hitting set problem.

6.2 Making it work for IMP
The above discussion points to the greedy algorithm below:

(1) Remove from R all the RR-sets 𝑅 that have a non-empty

intersection with 𝑉1.

(2) Repeat the following 𝑘 times with an initially empty 𝐹 : add

to 𝐹 the vertex 𝑢 appearing in the largest number of RR-sets

in R, and then remove from R all the RR-sets containing 𝑢.

(3) Return (𝐹, 𝑋𝐹∪𝑉1
· 𝑛/|R|).

The algorithm can be implemented in time linear to the total size of

the RR-sets in R [5], which is �̃� (|R|𝑚𝑛 OPTone) in expectation (as

mentioned before, each RR-set has an expected size of �̃� (𝑚𝑛 OPTone)).
We need to minimize |R | to maximize efficiency. The analysis of

[5] shows that |R | = �̃� ((𝑘 + |𝑉1 |)𝑛/OPTone) is a safe upper bound.
Our contribution is to improve this bound:

Lemma 6.2. By setting |R | = �̃� (𝑘𝑛/OPTone), the above greedy
algorithm returns a 0.5-approximate solution to IMP with probability
at least 1 − 1/𝑛3.

Equipped with the lemma, whose proof will be presented in

Section 6.3, we can compute a 0.5-approximate IMP solution in

cost (𝑛,𝑚, 𝑘) = �̃� (𝑛 +𝑚 + |R|𝑚𝑛 OPTone) = �̃� (𝑛 + 𝑘𝑚) time, where

the term �̃� (𝑛 +𝑚) is due to the one-off preprocessing in Section 6.1.

MVA-influence-minseed is NP-hard.
4
By combining Lemmas 6.1

and 6.2, we can find in �̃� (𝑛+𝑘∗𝑚) time a solution that approximates

both the size and influence up to a constant factor. The necessity of

such bi-criteria approximation is justified by the MINTSS conjecture

[14] mentioned in Section 3.

4
If it was polynomial-time solvable, by setting𝑉1 = ∅ we would settle the influence

maximization problem with binary search in polylogarithmic time. The latter problem

is known to be NP-hard [23].

6.3 Proof of Lemma 6.2
Greedy on a submodular function. Let us start by considering

a general optimization problem. Denote by D an arbitrary finite

set. There is a monotone submodular function 𝑓 : 2
D → R≥0

(where R≥0 is the set of non-negative real values). Given an integer

parameter 𝑘 ≥ 1, we want to find a set 𝐹 ⊆ D to maximize 𝑓 (𝐹)
subject to |𝐹 | = 𝑘 . Consider the following greedy algorithm:

(1) Repeat the following 𝑘 times with an initially empty 𝐹 : add

to 𝐹 the element 𝑢 ∈ D that maximizes 𝑓 (𝐹 ∪ {𝑢}) − 𝑓 (𝐹).
(2) Return 𝐹 .

It is well-known that the algorithm is (1−1/𝑒)-approximate, namely,

𝑓 (𝐹) ≥ (1 − 1/𝑒) · 𝑓 (𝐹 ′) where 𝐹 ′ is any size-𝑘 subset of D.
An approximation scheme. Consider now a similar but (much)

more difficult scenario. Given an arbitrary (not necessarily submod-

ular) function 𝑔 : 2
D → R≥0 and an integer 𝑘 ≥ 1, we want to find

an 𝐹 ⊆ D to maximize 𝑔(𝐹) subject to |𝐹 | = 𝑘 . Denote by 𝐹 ∗ an
optimal solution.

The above problem in general admits no fast algorithms. How-

ever, an exception arises when 𝑔 can be approximated by a mono-

tone submodular function𝑔 : 2
D → R≥0 such that |𝑔(𝐹)−𝑔(𝐹) | ≤ 𝜖

holds for any 𝐹 ⊆ D with |𝐹 | ≤ 𝑘 , where 𝜖 ≥ 0 is a real value. In

this case, we can find a (1 − 1/𝑒)-approximate 𝐹 under 𝑔, namely,

𝑔(𝐹) ≥ (1 − 1/𝑒) · 𝑔(𝐹 ′) for any 𝐹 ′ ⊆ D with |𝐹 ′ | ≤ 𝑘 . This 𝐹 also

serves as a good solution under function 𝑔:

Lemma 6.3 ([5]). 𝑔(𝐹) ≥ (1 − 1/𝑒) · 𝑔(𝐹 ∗) − 2𝜖 .

Proof of Lemma 6.2. We can connect the context of Lemma 6.2

to the above discussion as follows:

• set D = 𝑉0;

• for any 𝐹 ⊆ 𝑉0, define 𝑔(𝐹) = spread (𝐹 ∪𝑉1);
• for any 𝐹 ⊆ 𝑉0, define 𝑔(𝐹) = 𝑋𝐹∪𝑉1

· 𝑛/|R|, where 𝑋𝐹∪𝑉1
is

the number of sets 𝑅 ∈ R such that 𝑅 ∩ (𝐹 ∪𝑉1) ≠ ∅;
• for any 𝐹 ⊆ 𝑉0, define 𝑓 (𝐹) = 𝑔(𝐹).

Lemma 6.4. By setting |R | = �̃� (𝑘𝑛/ ˜OPTone), with probability at
least 1 − 1/𝑛3, we guarantee

|𝑔(𝐹) − 𝑔(𝐹) | ≤ 0.05 · 𝑔(𝐹). (2)

simultaneously for all 𝐹 ⊆ 𝑉0 satisfying |𝐹 | ≤ 𝑘

Proof. We utilize the following fact proved in [5, 39]:

Fact: For any 𝑈 ⊆ 𝑉 , when |R | reaches some threshold which

is �̃� (ℓ𝑛
spread (𝑈)), with probability at least 1 − 1/𝑛ℓ we have

|spread (𝑈) − (𝑛/|R|) · 𝑋𝑈 | ≤ 0.05 · spread (𝑈).
The definition of IMP ensures 𝑣first ∈ 𝑉1. Hence, for any 𝐹 in the

lemma, 𝑔(𝐹) = spread (𝐹 ∪ 𝑉1) ≥ spread ({𝑣first }) = Ω(OPTone).
Applying the above fact with ℓ = 𝑘 + 𝑐 (for some constant 𝑐 decided

later) and𝑈 = 𝐹∪𝑉1, we know that |R | = �̃� (𝑘𝑛/ ˜OPTone) suffices to

validate (2) for one arbitrary 𝐹 with probability at least 1 − 1/𝑛𝑘+𝑐 .
The number of such 𝐹 is

∑𝑘
𝑖=0

(𝑛
𝑖

)
= 𝑂 (𝑛𝑘). Therefore, (2) holds for

all 𝐹 simultaneously with probability at least 1 − 𝑂 (𝑛𝑘/𝑛𝑘+𝑐) ≥
1 − 1/𝑛3, as long as constant 𝑐 is sufficiently large. □

Let 𝐹 ∗ be an optimal solution to the IMP problem. Since 𝑔(𝐹) ≤
𝑔(𝐹 ∗), (2) implies |𝑔(𝐹) −𝑔(𝐹) | ≤ 0.05 ·𝑔(𝐹 ∗). With our formulation

of D and 𝑓 , the IMP algorithm explained in Section 6.2 is exactly

the greedy algorithm presented at the beginning of Section 6.3.

1459

Hence, our IMP algorithm finds a (1 − 1/𝑒)-approximate 𝐹 under 𝑔.

From Lemma 6.3 (setting 𝜖 = 0.05 · 𝑔(𝐹 ∗)) and Lemma 6.4, we can

conclude that 𝑔(𝐹) ≥ (1 − 1/𝑒) · 𝑔(𝐹 ∗) − 2 · 0.05 · 𝑔(𝐹 ∗) > 𝑔(𝐹 ∗)/2
holds with probability at least 1 − 1/𝑛3.
Discussion. A key idea behind our MVA-influence-minseed algo-

rithm is to force 𝑣first into 𝐹 . Regarding IMP, the proposed algo-

rithm is built on the RR-set technique of [5] and the approximation

scheme manifested by Lemma 6.3. Our chief contribution is to ob-

serve that IMP can be transformed into submodular optimization

in the manner explained in the four bullets under Lemma 6.3. The

transformation bounds the number of possible 𝐹 ’s with 𝑂 (𝑛𝑘), im-

proving the obvious bound of 𝑂 (𝑛𝑘+|𝑉1 |). This is the key behind

reducing |𝑅 | from �̃� ((𝑘 + |𝑉1 |)𝑛/OPTone) to �̃� (𝑘𝑛/OPTone).

7 HALF-WEIGHTING + GREEDY
(MVA-REACHABILITY)

This section will attack MVA-reachability, which is NP-hard, as

shown in the long version [47]. By combining the half-weighting

(Section 5) and greedy techniques, we will develop an algorithm to

return an approximation solution having non-trivial guarantees.

7.1 Algorithm
Our discussion assumes that the source vertex 𝑠 has color 1; no

generality is lost because otherwise 𝑠 must be added to 𝐹 anyway.

Let us start by introducing several concepts. Fix a 0-vertex 𝑢.

We call a subset 𝑆 ⊆ 𝑉0 a reachability flipping set of 𝑢 if flipping 𝑆

creates a 1-path from 𝑠 to 𝑢 (recall that a 1-path is a path with no

0-vertices). Define MRF (𝑢) as a reachability flipping set of 𝑢 with

the minimum size; if there are multiple such reachability flipping

sets, MRF (𝑢) can be any of them.

Example. Consider the 0-vertex j in Figure 1d where the source

vertex is a. {j, e, b}, {j, c}, and {j, b} are all reachability flipping sets

of j. MRF (j) can be either {j, c} or {j, b}. □
Fix a 0-vertex 𝑢 and a 1-vertex 𝑣 . We say that 𝑢 can semi-directly

1-reach 𝑣 if 𝐺 has a path from 𝑢 to 𝑣 on which all the vertices have

color 1 except 𝑢. Fix, instead, a 1-vertex 𝑢 and a 1-vertex 𝑣 . We say

that 𝑢 can directly 1-reach 𝑣 if 𝐺 contains a 1-path from 𝑢 to 𝑣 .

Example. In Figure 1d, the 0-vertex j can semi-directly 1-reach {k,
l, f, g}, while the 1-vertex f can directly 1-reach {f, g}. □

The last concept we will need is coverage. If 𝑢 is a 0-vertex,

we define coverage(𝑢) to be the set of 1-vertices semi-directly 1-

reachable from 𝑢. Otherwise, coverage(𝑢) is the set of 1-vertices
directly 1-reachable from 𝑢. Given a subset 𝑆 ⊆ 𝑉 , we define

coverage(𝑆) = ⋃
𝑢∈𝑆 coverage(𝑢).

Example. In Figure 1d, coverage(j) = {k, l, f, g} and coverage(f) =
{f, g}. Hence, coverage({j, f}) = {k, l, f, g}. □

Let us assume that we have obtained MRF (𝑢) for every 𝑢 ∈ 𝑉0
and coverage(𝑢) for every 𝑢 ∈ 𝑉0 ∪ {𝑠} (how to achieve this will be

discussed later). We now formulate an instance of the partial set
cover problem. Given any 𝑆 ⊆ 𝑉0, define cost (𝑆) =

∑
𝑢∈𝑆 |MRF (𝑢) |.

𝑆 is a solution set if |coverage(𝑆 ∪ {𝑠}) | ≥ 𝜏 . The partial set cover

instance aims to return a solution set 𝑆 of the minimum cost (𝑆).
The problem is NP-hard but the standard greedy algorithm returns

a solution set whose cost is larger than the optimum by a factor of

𝑂 (log𝜏) [42]. The running time is �̃� (∑𝑢∈𝑉0∪{𝑠 } |coverage(𝑢) |).

Let 𝑆 be the output of the greedy algorithm. We return 𝐹 =⋃
𝑢∈𝑆 MRF (𝑢) for MVA-reachability. Section 7.2 will prove:

Lemma 7.1. If the size of an optimal solution to MVA-reachability
is 𝑘∗, the above algorithm finds an 𝐹 whose size is larger by a factor
at most 𝑂 (log𝜏) · 𝑘∗.
Computing coverage(𝒖) andMRF (𝒖).We can obtain coverage(𝑢)
by performing a DFS on the subgraph induced by 𝑉1 ∪ {𝑢}; the
running time is𝑂 (𝑛 +𝑚) (where 𝑛 = |𝑉 | and𝑚 = |𝐸 |). To compute

MRF (𝑢), we resort to the half-weighting idea, as explained next.

Construct from 𝐺 the weighted graph 𝐺+ in the way shown in

Section 5.1. Let 𝑃 be a path from the source vertex 𝑠 to a 0-vertex

𝑢. As a corollary of Lemma 5.2, the length of 𝑃 in 𝐺+ (i.e., the total
weight of the edges in 𝑃) plus 1/2 is precisely the number of 0-

vertices on 𝑃 . Thus, if 𝑃 is a shortest path from 𝑠 to 𝑢 on𝐺+, the set
of 0-vertices on 𝑃 can be taken as an MRF (𝑢). Therefore, we can
obtain MRF (𝑢) using Dijkstra’s algorithm in �̃� (𝑛 +𝑚) time.

Summary. In �̃� (|𝑉0 | (𝑛+𝑚)) time, we can acquire coverage(𝑢) and
MRF (𝑢) for all 𝑢 ∈ 𝑉0 ∪ {𝑠}. The complexity dominates the time of

solving the partial set cover instance as |coverage(𝑢) | ≤ 𝑛 for all 𝑢.

7.2 Proof of Lemma 7.1
Denote by 𝐹 ∗ an optimal solution to MVA-reachability. We know:

Lemma 7.2. 𝐹 ∗ is a solution set to the partial set cover instance.

Proof. By definition of 𝐹 ∗, after flipping the vertices in 𝐹 ∗, 𝑠
has 1-paths to at least 𝜏 1-vertices 𝑣 . In 𝐺 , every such 𝑣 must be

either directly 1-reachable from 𝑠 or semi-directly 1-reachable from

a 0-vertex in 𝐹 ∗. Hence, coverage(𝐹 ∗ ∪ {𝑠}) ≥ 𝜏 . □

Lemma 7.3. cost (𝐹 ∗) ≤ |𝐹 ∗ |2.

Proof. It suffices to prove that |MRF (𝑢) | ≤ |𝐹 ∗ | for every𝑢 ∈ 𝐹 ∗.
The claim will then follow from cost (𝐹 ∗) = ∑

𝑢∈𝐹 ∗ |MRF (𝑢) |.
Assume, on the contrary, that |MRF (𝑢) | > |𝐹 ∗ |. The definition

of MRF (𝑢) implies that 𝑠 cannot reach 𝑢 with a 1-path even after

flipping all the vertices in 𝐹 ∗. Thus, removing 𝑢 from 𝐹 ∗ will not
reduce the number of vertices reachable from 𝑠 in 𝐺𝑉1∪𝐹 ∗ . This
contradicts the optimality of 𝐹 ∗ for MVA-reachability. □

Recall that 𝑆 is the solution set to the partial set cover instance

found by our algorithm, and 𝐹 is the algorithm’s output for MVA-

reachability. Lemma 7.2 indicates that cost (𝑆) = 𝑂 (log𝜏) · cost (𝐹 ∗).
Regarding 𝐹 , we have |𝐹 | = |⋃𝑢∈𝑆 MRF (𝑢) | ≤ ∑

𝑢∈𝑆 |MRF (𝑢) | =
cost (𝑆). We thus conclude that |𝐹 | ≤ cost (𝑆) = 𝑂 (log𝜏) ·𝑐𝑜𝑠𝑡 (𝐹 ∗) ≤
𝑂 (log𝜏) · |𝐹 ∗ |2, where the last inequality used Lemma 7.3. This

completes the proof of Lemma 7.1.

8 A GENERIC FRAMEWORK
This section will describe an algorithmic paradigm that can be

instantiated to approach ad-hoc MVA problems. The paradigm

aims to output a good solution 𝐹 quickly and then look for better

solutions by searching a promising portion of the solution space.

8.1 The paradigm
Encoding the solution space. As before, denote by 𝜋 the mono-

tone condition that defines the underlying MVA problem. Recall

that a solution refers to a set 𝐹 ⊆ 𝑉0 such that 𝜋 (𝐺𝐹∪𝑉1
) = true.

1460

We use a solution tree T to encode all possible solutions. T is a

perfect binary tree with 2
|𝑉0 |

leaves. Every edge ofT is labeledwith
(i) a vertex in 𝑉0 and (ii) a status: alive or dead. Two requirements

are enforced for each internal node 𝑧:

• the left and right edges of 𝑧 must be labeled with the same

vertex, called the branching vertex of 𝑧;
• the left edge must be alive and the right one must be dead.

For each node 𝑧 in T , denote by 𝐴𝑧 (or 𝐷𝑧) the set of alive (or

dead, respectively) vertices on the path from the root of T to 𝑧. We

demand that the 𝐴𝑧 of all leaf nodes 𝑧 be distinct; in other words,

each 𝐴𝑧 corresponds to a unique subset of 𝑉0.

Example. Figure 4 illustrates a solution tree on𝑉0 = {a, b, c}. Node
𝑧5 has branching vertex c, 𝐴𝑧5 = {b}, and 𝐷𝑧5 = {a}. □

Thenext function.We can characterizeT using a simple function.

Specifically, define next (𝐴, 𝐷) as a function which takes disjoint
subsets𝐴, 𝐷 of𝑉0 as parameters, and outputs a vertex in𝑉0\(𝐴∪𝐷).
To see how T is constructed, imagine growing T in a top-down

manner: after creating an internal node 𝑧, we set 𝑣 = next (𝐴𝑧 , 𝐷𝑧)
as the branching vertex of 𝑧, which uniquely generates the left and

right children of 𝑧. The procedure below formalizes this process:

algorithm build-solution-tree (𝐴,𝐷)
1. if 𝐴 ∪𝐷 = 𝑉0 then return NULL

2. 𝑣 = next (𝐴,𝐷)
3. T1 ← build-solution-tree (𝐴 ∪ {𝑣 }, 𝐷)
4. T2 ← build-solution-tree (𝐴,𝐷 ∪ {𝑣 })
5. create a node 𝑧 with T1 (or T2) as the left (or right) subtree

and 𝑣 as the branching vertex

6. return the tree rooted at 𝑧

To construct T , simply call build-solution-tree(∅, ∅).
Example.Consider again the solution tree in Figure 4. Judging from
the fact that 𝑧0 has branching vertex b, we know next (∅, ∅) = b.
Likewise, it can be inferred from node 𝑧1 that next ({b}, ∅) = a, and
from 𝑧8 that next (∅, {b}) = c. □

The next (𝐴, 𝐷) function lends itself nicely to a greedy approach.

Imagine building a solution incrementally by adding one vertex at

a time. Treating (i) 𝐴 as the set of 0-vertices whose colors will be

flipped and (ii) conversely 𝐷 as the set of vertices whose colors will

not be flipped, we ask: under such circumstances, which should be the
next vertex to flip? The answer is precisely the output of next (𝐴, 𝐷).
Traversing the solution tree. Fix a function next (𝐴, 𝐷) (i.e., a
greedy strategy) and thus also a solution tree T . We perform a pre-
order traversal of T . For each node 𝑧 encountered, check whether

𝐴𝑧 is a solution; if a better solution is found, retain it. A user can

terminate the traversal when s/he is happywith the current solution.

The process can be accelerated by leveraging:

• (Fact 1) If 𝜋 (𝐺𝐴𝑧∪𝑉1
) = true, the subtree of 𝑧 can be pruned,

because 𝐴𝑧′ cannot have fewer 0-vertices than 𝐴𝑧 for any

descendant 𝑧′ of 𝑧.
• (Fact 2) Let 𝐹now be our best solution so far. If 𝐴𝑧 contains

at least |𝐹now | 0-vertices, the subtree of 𝑧 can be pruned.

• (Fact 3) Consider 𝑧 as the right child of its parent. The sub-

tree of 𝑧 can be pruned if 𝜋 (𝐺 (𝑉0\𝐷𝑧)∪𝑉1
) = false. No de-

scendant 𝑧′ of 𝑧 can yield a solution𝐴𝑧′ due to monotonicity.

Linear space implementation.Our paradigm requires only𝑂 (𝑛)
space to implement. The main observation is that a node 𝑧 inT can

be uniquely identified using the labels on the root-to-𝑧 path, which

+a

+b

+c −c

−a

+c −c

−b

+c −c

+a −a +a −a

z0

z1

z2

z3 z4

z5

z6 z7

z8

z9

z10 z11

z12

z13 z14

Figure 4: A possible solution tree on 𝑉0 = {a, b, c}

can be stored with𝑂 (𝑛) space. The path contains all the information

we need to carry out the pre-order traversal. Specifically, to descend

into the left child of 𝑧, we obtain the branching vertex 𝑣 of 𝑧 by

calling next (𝐴𝑧 , 𝐷𝑧). The vertex 𝑣 is kept at 𝑧. This occupies extra
space, but when there is a need to descend into the right child of 𝑧,

we can do so directly without another call to next (𝐴𝑧 , 𝐷𝑧).
Searching a polynomial core. The solution space can remain

large even with the pruning by Facts 1-3. To limit the search to a

good region in the solution space, we propose:

(Bounded-death heuristic) Prune the subtree of a node 𝑧 in
T if |𝐷𝑧 | > 𝜆, where 𝜆 ≥ 0 is a constant.

Our algorithm, in general, first descends the leftmost path of T
until finding the first node 𝑧 such that 𝐴𝑧 is a solution. Setting

𝑘first = |𝐴𝑧 |, we prove in the long version [47]:

Lemma 8.1. At most (𝑘first + 1)𝜆+1 nodes in T are visited.

We call the set of nodes counted in the lemma the polynomial
core of the next function. An effective next function should lead us

quickly to a first solution. The polynomial core represents a small

region “around” that solution, which our algorithm scrutinizes to

look for better solutions. It should be noted that the lemma does

not imply solving MVA in polynomial time because our processing

framework still requires exponential time if an optimal solution

must be found. Searching the polynomial core is a heuristic that

aims to improve the first solution within a user’s time constraint.

As a remark, Facts 1-3 have different importance. Facts 1-2 are

compulsory because they are needed in the proof of Lemma 8.1. Fact

3, on the other hand, is optional and helps improve the efficiency

by roughly 5% based on our empirical evaluation.

8.2 Paradigm instantiation for Problems 1-4
To solve an MVA-problem, a user needs to implement two plug-ins:
• the next (𝐴, 𝐷) function introduced in Section 8.1 and

• the 𝜋 (𝐺𝐴∪𝑉1
) function, i.e., testing whether 𝐴 is a solution.

Next, we demonstrate how to do so for Problems 1-4.

MVA-shortest-distance. The function 𝜋 (𝐺𝐴∪𝑉1
) returns true if

and only if the shortest path from the source 𝑠 to the destination 𝑡

has length at most 𝜏 in 𝐺𝐴∪𝑉1
. Regarding next (𝐴, 𝐷), our objective

is to find a 0-vertex 𝑣 ∉ (𝐴 ∪ 𝐷) to induce a path 𝑠 ⇝ 𝑣 ⇝ 𝑡 such

that (i) the path has length at most 𝜏 , (ii) the intermediate vertices

on 𝑠 ⇝ 𝑣 are all in𝐴∪𝑉1, and (iii) the part 𝑣 ⇝ 𝑡 has few 0-vertices.

For this purpose, define sp
𝐷
(𝑣, 𝑡) as an arbitrary shortest path in𝐺 ,

among all the paths from 𝑣 to 𝑡 that do not pass any vertex in 𝐷 . Let

spdist
𝐷
(𝑣, 𝑡) be the length of sp

𝐷
(𝑣, 𝑡), and zcnt

𝐷
(𝑣, 𝑡) the number

of 0-vertices on sp
𝐷
(𝑣, 𝑡). Call a 0-vertex 𝑣 ∉ (𝐴 ∪ 𝐷) a candidate

if 𝑣 has an in-neighbor 𝑢 ∈ (𝐴 ∪𝑉1) satisfying spdist𝐴∪𝑉1

(𝑠,𝑢) +

1461

𝑤 (𝑢, 𝑣) + spdist
𝐷
(𝑣, 𝑡) ≤ 𝜏 where spdist𝐴∪𝑉1

(𝑠,𝑢) is the shortest
path distance from 𝑠 to 𝑢 in𝐺𝐴∪𝑉1

. Function next (𝐴, 𝐷) returns the
candidate vertex 𝑣 with the smallest zcnt

𝐷
(𝑣, 𝑡).5

MVA-connectivity. Let 𝑠1, 𝑠2, ..., 𝑠 |𝑆 | be the terminal vertices in 𝑆

(arbitrary ordering). Our strategy is to connect them incrementally:

first find a path to link up 𝑠1 and 𝑠2, extend the path into a tree

which includes 𝑠3, then 𝑠4, and so on, while striving to minimize

the number of 0-vertices in the process.

The function 𝜋 (𝐺𝐴∪𝑉1
) returns true if and only if 𝐺𝐴∪𝑉1

con-

tains all terminal vertices in one connected component (CC). To

explain the next function, let 𝑥 ≥ 1 be the smallest integer such that

𝐺𝐴∪𝑉1
includes 𝑠1, ..., 𝑠𝑥 in the same CC. Call 𝑣 ∈ 𝑉0 a candidate

if 𝑣 (i) does not belong to 𝐴 ∪ 𝐷 , (ii) is outside the CC, and (iii) is

adjacent to at least one vertex in the CC. We define next (𝐴, 𝐷) to
be the candidate vertex 𝑣 with the smallest zcnt

𝐷
(𝑣, 𝑠𝑥+1), where

zcnt
𝐷
(𝑣, 𝑠𝑥+1) has the same meaning as in MVA-shortest-distance.

MVA-influence-minseed. Our algorithm always adds the vertex

𝑣first described in Section 6 to 𝑉1. We implement functions next
and 𝜋 by resorting to the spread approximation lemma (Section 6)

and RR-sets of different sizes. A small RR-set Rnext suffices for next
because the function is only for greedy selection and does not affect

the correctness of solutions. The RR-set R𝜋 for 𝜋 , however, must

have a decent size for the ultimate quality control. Specifically, in

next (𝐴, 𝐷), we first remove all the RR-sets 𝑅 ∈ Rnext such that

𝑅 ∩ (𝐴 ∪ 𝑉1) ≠ ∅; let R ′next be the set of remaining RR-sets. The

function returns the 0-vertex 𝑣 ∉ 𝐴 ∪ 𝐷 that appears in the largest

number of RR-sets in R ′next . Function 𝜋 (𝐺𝐴∪𝑉1
), on the other hand,

returns true if and only if 𝑋 · 𝑛/|R𝜋 | ≥ 𝜏 , where 𝑋 is the number

of RR-sets in R𝜋 that intersect with 𝐴 ∪𝑉1.
While |Rnext | is set to a constant (10000 in our experiments),

we adopt an incremental approach for the size of R𝜋 . To ensure

success probability at least 1−1/𝑛, (as a corollary of Lemma 6.4) we

only need to set |R𝜋 | = �̃� (log𝑛call · 𝑛/ ˜OPTone) where 𝑛call is the
number of calls to the 𝜋 function, and ˜OPTone is obtained together

with 𝑣first . This way, |R𝜋 | only needs to increase slowly with time.

We append new RR-sets to R𝜋 as needed during the execution.

MVA-reachability. The function 𝜋 (𝐺𝐴∪𝑉1
) returns true if and

only if the source vertex 𝑠 can reach at least 𝜏 vertices in 𝐺𝐴∪𝑉1
.

To implement next (𝐴, 𝐷), we define a candidate as a 0-vertex 𝑣

satisfying (i) 𝑣 ∉ 𝐴 ∪ 𝐷 , (ii) 𝑣 is adjacent in 𝐺 to at least one vertex

that 𝑠 can reach in𝐺𝑉1∪{𝐴} with a 1-path. The function next (𝐴, 𝐷)
returns the candidate 𝑣 with the largest coverage(𝑣) \ coverage(𝐴 ∪
{𝑠}) (see Section 7.1 for the definition of coverage).

9 EXPERIMENTS
Data graphs. Our evaluation was based on four graphs

6
: (i) DBLP

(undirected, 𝑛 = 317080,𝑚 = 1049866) has an edge between two re-

searchers if they have co-authored a paper; (ii) Youtube (undirected,
𝑛 = 1134890, 𝑚 = 2987624) has an edge between two persons

if they are friends on Youtube; (iii) Wiki (directed, 𝑛 = 2394385,

𝑚 = 5021410) has an edge from a user to another if the former has

ever messaged the latter in Wikipedia; and (iv) USpatent (directed,

5
If more than one candidate fulfills the condition, next (𝐴,𝐷) returns an arbitrary one.

The same policy applies in the next functions of Problems 2-4.

6
All can be downloaded at http://konect.cc/networks/ (last accessed in Nov 2020).

𝑛 = 3774768,𝑚 = 16518947) has an edge from a patent to another

if the former’s legal document cites the latter.

Different preprocessing was carried out for each problem:

• The input of MVA-shortest-distance is a weighted graph.

We generated edge weights by first calculating the page

rank 𝜌 (𝑣) of each vertex 𝑣 . Then if 𝐺 was directed, we set

the weight of edge (𝑢, 𝑣) to 𝜌 (𝑢)/𝑑+ (𝑢) where 𝑑+ (𝑢) is the
out-degree of 𝑢; otherwise, the weight of edge {𝑢, 𝑣} was
𝜌 (𝑢)/𝑑 (𝑢) + 𝜌 (𝑣)/𝑑 (𝑣) where 𝑑 (𝑢) is the degree of 𝑢.
• MVA-connectivity takes an undirected graph as the input.

ForWiki andUSpatent, we obtained their undirected versions
by ignoring the edge directions.

• MVA-influence-minseed requires a directed graph. We con-

verted DBLP and Youtube into directed graphs by replacing

each edge {𝑢, 𝑣} with two directed edges (𝑢, 𝑣) and (𝑣,𝑢).
Following a common approach of influence maximization

[8, 13, 21, 38, 41], we set the influence probability 𝑝𝑒 of an

edge 𝑒 = (𝑢, 𝑣) to 1/𝑑− (𝑣) where 𝑑− (𝑣) is the in-degree of 𝑣 .

No special preprocessing was necessary for MVA-reachability.

Competing methods. Sections 4-7 have presented an algorithm

for each MVA problem. We call those algorithms collectively as Spe-
cialized. We will use Universal to refer to the algorithmic paradigm

in Section 8.1, integrated with the plugins described in Section 8.2.

Particular attention will be paid to Universal’s first solution because

its quality and production time indicate the effectiveness and effi-

ciency of the next function. We will use the name Uni-first for the
version of Universal that terminates right after the first solution.

For benchmarking, we also experimented with a Baselinemethod

for each problem. For MVA-shortest-distance, Baseline is the algo-
rithm of [44] which reports the paths from 𝑠 to 𝑡 in ascending order

of length. The algorithm finishes at discovering a path with length

greater than 𝜏 , and solves the problem optimally by returning the

path having the fewest 0-vertices. For MVA-connectivity, Baseline is
an implementation of [3, 12] which solves the steiner-tree problem

with approximation ratio 1.39, and returns the steiner tree as a

solution. For MVA-influence-minseed, Baseline is the influence max-

imization algorithm in [15]. It doubles the parameter 𝑘 of influence

maximization until the subset 𝑈 found has spread (𝑈) ≥ 𝜏 ; this 𝑈

is thus returned as a solution. For MVA-reachability, Baseline first
obtains the set 𝑆 ⊆ 𝑉 of vertices reachable from 𝑠 (ignoring colors).

It initializes 𝑈 to the set of vertices reachable from 𝑠 via 1-paths,

and then repeats the following step until |𝑈 | ≥ 𝜏 : randomly pick

a vertex 𝑢 from 𝑆 \𝑈 and add to 𝑈 all the vertices on the shortest

path from 𝑠 to 𝑢 (assigning length 1 to every edge).

Environments. The experimentation was performed on amachine

equipped with an Intel 2.3 GHz Dural-Core CPU and 8 GB memory.

Finding one solution. The first set of experiments aims to demon-

strate (i) the MVA solution sizes under various parameter settings

and (ii) the characteristics of Specialized and Uni-first.
Let us start with MVA-shortest-distance. The vertices in𝑉1 were

picked uniformly at random (subject to a designated size |𝑉1 |), so
were the source and destination vertices 𝑠 and 𝑡 . Each result reported

below is the average of at least 20 independent runs (a policy en-

forced throughout the experiments unless otherwise stated). The

first experiment compared Specialized, Uni-first, and Baseline by
varying |𝑉1 | and keeping the parameter 𝜏 at 1000/𝑚. Note that the

1462

http://konect.cc/networks/

Specialized |F | Uni-first |F | Specialized time Uni-first timeBaseline |F | Baseline time

0

1

2

3

4

5

0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99
0

0.2

0.4

0.6

0.8

1

|F
|

ru
n
n
in
g
ti
m
e
(s
ec
)

|V1| (×n)

0

1

2

3

4

0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99
0

1

2

3

4

5

|F
|

ru
n
n
in
g
ti
m
e
(s
ec
)

|V1| (×n)

0

1

2

3

0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99
0

1

2

3

4

|F
|

ru
n
n
in
g
ti
m
e
(s
ec
)

|V1| (×n)

0

1

2

3

4

0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99
0.1

1

10

100

|F
|

ru
n
n
in
g
ti
m
e
(s
ec
)

|V1| (×n)

(a) Varying |𝑉1 |, DBLP (b) Varying |𝑉1 |, Youtube (c) Varying |𝑉1 |,Wiki (d) Varying |𝑉1 |, USpatent

0

0.5

1

1.5

2

10 102 103 104 105 106
0

0.1

0.2

0.3

0.4

0.5

0.6

|F
|

ru
n
n
in
g
ti
m
e
(s
ec
)

τ (× 1
m
)

0

0.5

1

1.5

2

10 102 103 104 105 106
0

0.5

1

1.5

2

2.5

3

|F
|

ru
n
n
in
g
ti
m
e
(s
ec
)

τ (× 1
m
)

0

0.3

0.6

0.9

1.2

1.5

10 102 103 104 105 106
0

0.5

1

1.5

2

|F
|

ru
n
n
in
g
ti
m
e
(s
ec
)

τ (× 1
m
)

0

0.5

1

1.5

2

2.5

10 102 103 104 105 106
0.1

1

10

100

|F
|

ru
n
n
in
g
ti
m
e
(s
ec
)

τ (× 1
m
)

(e) Varying 𝜏 , DBLP (f) Varying 𝜏 , Youtube (g) Varying 𝜏 ,Wiki (h) Varying 𝜏 , USpatent

Figure 5: Specialized, Uni-first, and Baseline on MVA-shortest-distance

Specialized |F | Uni-first |F | Specialized time Uni-first timeBaseline |F | Baseline time

0

50

100

150

200

0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99
0.1

1

10

100

|F
|

ru
n
n
in
g
ti
m
e
(s
ec
)

|V1| (×n)

0

30

60

90

120

150

0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99
0.1

1

10

100

|F
|

ru
n
n
in
g
ti
m
e
(s
ec
)

|V1| (×n)

0

30

60

90

120

0.010.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.99
0.1

1

10

100

1000

|F
|

ru
n
n
in
g
ti
m
e
(s
ec
)

|V1| (×n)

0

50

100

150

200

250

300

0.010.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.99
0.1

1

10

100

1000

|F
|

ru
n
n
in
g
ti
m
e
(s
ec
)

|V1| (×n)

(a) Varying |𝑉1 |, DBLP (b) Varying |𝑉1 |, Youtube (c) Varying |𝑉1 |, Wiki (d) Varying |𝑉1 |, USpatent

0

50

100

150

200

2 10 20 30 40 50 60 70 80 90 100
0.1

1

10

100

|F
|

ru
n
n
in
g
ti
m
e
(s
ec
)

|S|

0

50

100

150

2 10 20 30 40 50 60 70 80 90 100
0.1

1

10

100

1000

|F
|

ru
n
n
in
g
ti
m
e
(s
ec
)

|S|

0

50

100

150

2 10 20 30 40 50 60 70 80 90 100
0.1

1

10

100

1000

|F
|

ru
n
n
in
g
ti
m
e
(s
ec
)

|S|

0

10

20

30

40

50

2 10 20 30 40 50 60 70 80 90 100
0.1

1

10

100

1000

|F
|

ru
n
n
in
g
ti
m
e
(s
ec
)

|S|

(e) Varying |𝑆 |, DBLP (f) Varying |𝑆 |, Youtube (g) Varying |𝑆 |,Wiki (h) Varying |𝑆 |, USpatent

Figure 6: Specialized, Uni-first, and Baseline on MVA-connectivity

value of 𝜏 is commensurate with the edge weights, which (by the

generation explained earlier) can be interpreted as the probability

of crossing an edge after a random walk has stabilized.

Figures 5a-d present the solution size |𝐹 | (columns, left y-axis)

and the running time (curves, right y-axis) as a function of |𝑉1 |.
Specialized and Baseline returned the smallest solutions because

they are optimal on this problem. Specialized did not exhibit an

obvious pattern in running time. To see why, note that while a

greater |𝑉1 | yields a smaller solution size 𝑘∗, it also increases the

number of nodes to be processed; the behavior of Specialized re-

sulted from the interplay of these two factors. The running time of

Uni-first escalated with |𝑉1 | because its next function computes the

shortest-path distances from 𝑠 to all vertices in 𝑉1. We omitted the

running time of Baseline in Figures 5a-c because it ran longer than

500 seconds (i.e., over 100 times worse than our solutions).

In the second experiment, we fixed |𝑉1 | to 0.5𝑛 while increasing 𝜏 .

The results are presented in Figures 5e-h. All algorithms produced

solutions of nearly the same size. Specialized’s running time did

not follow an obvious pattern. On the one hand, the value of 𝑘∗

goes down, which helps reduce time (see Lemma 4.2). On the other

hand, a greater 𝜏 forces Specialized to examine a larger portion of

𝐺 (to check longer paths that may contain fewer 0-vertices), which

induces higher cost. In contrast, Uni-first becomes faster for larger

𝜏 (which leads to smaller 𝑘∗) because its cost is proportional to 𝑘∗.
Figures 5e-g omitted Baseline’s running time (over 500 seconds).

We then turned to MVA-connectivity. In each experiment, 𝑆

equaled any of the size-|𝑆 | subsets of 𝑉1 with the same probability.

In Figures 6a-d, we set |𝑆 | = 50 and measured the performance

of Specialized, Uni-first, and Baseline as a function of |𝑉1 |; in Fig-

ures 6e-h, we fixed |𝑉1 | = 0.5𝑛 and measured their performance as

a function of |𝑆 |. The solutions from Uni-first were nearly as small

as those of Specialized. Specialized had very stable efficiency due

to its linear time complexity, while the time of Uni-first increased
linearly with |𝐹 |. Baseline was considerably worse in both solution

quality and efficiency in most settings.

The experiments on MVA-influence-minseed had a similar de-

sign. Recall from Section 6 that Specialized starts by computing

˜OPTone (roughly the spread of the most influential vertex in 𝐺).

We varied 𝜏 from 2 ˜OPTone to 6 ˜OPTone for two considerations. First,

this essentially requires the returned solution to have a spread

several times that of the most influential vertex. Second, such 𝜏

led to solutions with dozens of vertices, a common practice in the

influence-maximization literature (see, e.g., [1, 8, 9, 13, 38, 41]). We

set the parameter |Rnext | of Uni-first to 10000. The parameter con-

trols the quality and efficiency of the next function. Ideally, its value
should vary according to the graph size, but this requires careful

1463

Specialized |F | Uni-first |F | Specialized time Uni-first timeBaseline |F | Baseline time

0

2

4

6

8

10

1 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

|F
|

ru
n
n
in
g
ti
m
e
(s
ec
)

|V1|

0

5

10

15

20

1 5 10 15 20 25 30 35 40 45 50
0

5

10

15

|F
|

ru
n
n
in
g
ti
m
e
(s
ec
)

|V1|

0

5

10

15

20

25

1 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

|F
|

ru
n
n
in
g
ti
m
e
(s
ec
)

|V1|

0

5

10

15

20

25

1 5 10 15 20 25 30 35 40 45 50
0

50

100

150

200

250

300

|F
|

ru
n
n
in
g
ti
m
e
(s
ec
)

|V1|

(a) Varying |𝑉1 |, DBLP (b) Varying |𝑉1 |, Youtube (c) Varying |𝑉1 |,Wiki (d) Varying |𝑉1 |, USpatent

0

2

4

6

8

10

2 3 4 5 6
0

10

20

30

|F
|

ru
n
n
in
g
ti
m
e
(s
ec
)

τ (× ˜OPTone)

0

15

30

45

60

2 3 4 5 6
0

10

20

30

40

50

|F
|

ru
n
n
in
g
ti
m
e
(s
ec
)

τ (× ˜OPTone)

0

15

30

45

60

2 3 4 5 6
0

15

30

45

60

|F
|

ru
n
n
in
g
ti
m
e
(s
ec
)

τ (× ˜OPTone)

0

10

20

30

2 3 4 5 6
0

100

200

300

400

|F
|

ru
n
n
in
g
ti
m
e
(s
ec
)

τ (× ˜OPTone)

(e) Varying 𝜏 , DBLP (f) Varying 𝜏 , Youtube (g) Varying 𝜏 ,Wiki (h) Varying 𝜏 , USpatent

Figure 7: Specialized, Uni-first, and Baseline on MVA-influence-minseed

Specialized |F | Uni-first |F | Specialized time Uni-first timeBaseline |F | Baseline time

0

50

100

150

200

250

0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99
0

2

4

6

8

10

|F
|

ru
n
n
in
g
ti
m
e
(s
ec
)

|V1| (×n)

0

50

100

150

0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99
0

2

4

6

8

10

|F
|

ru
n
n
in
g
ti
m
e
(s
ec
)

|V1| (×n)

0

20

40

60

80

100

0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99
0

3

6

9

12

15

|F
|

ru
n
n
in
g
ti
m
e
(s
ec
)

|V1| (×n)

0

50

100

150

200

250

0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99
0

5

10

15

20

25

30

|F
|

ru
n
n
in
g
ti
m
e
(s
ec
)

|V1| (×n)

(a) Varying |𝑉1 |, DBLP (b) Varying |𝑉1 |, Youtube (c) Varying |𝑉1 |,Wiki (d) Varying |𝑉1 |, USpatent

0
15
30
45
60
75
90

10−5 10−4 10−3 10−2 10−1
0

2

4

6

|F
|

ru
n
n
in
g
ti
m
e
(s
ec
)

τ (×n)

0

15

30

45

60

10−5 10−4 10−3 10−2 10−1
0

2

4

6

8

10

|F
|

ru
n
n
in
g
ti
m
e
(s
ec
)

τ (×n)

0

30

60

90

120

10−5 10−4 10−3 10−2 10−1
0

5

10

15

20

|F
|

ru
n
n
in
g
ti
m
e
(s
ec
)

τ (×n)

0

100

200

300

400

500

10−5 10−4 10−3 10−2 10−1
0

10

20

30

40

|F
|

ru
n
n
in
g
ti
m
e
(s
ec
)

τ (×n)
(e) Varying 𝜏 , DBLP (f) Varying 𝜏 , Youtube (g) Varying 𝜏 ,Wiki (h) Varying 𝜏 , USpatent

Figure 8: Specialized, Uni-first, and Baseline on MVA-reachability

tuning. Fixing |Rnext |, as we did, means that the parameter tends

to be small for large graphs. We chose this design to demonstrate

(i) the benefits of Specialized (which has no such issues) and (ii) the

self-recovery behavior of Universal (in the next set of experiments).

Figures 7a-d compares Specialized, Uni-first, and Baseline under
different |𝑉1 | but the same 𝜏 = 4 ˜OPTone ; Figures 7e-h shows an-

other comparison under different 𝜏 but the same |𝑉1 | = 25. On

larger graphs, Specialized was noticeably superior to its competi-

tors in solution size. Regarding efficiency, Uni-first outperformed

Specialized on three graphs, while Baseline was consistently slower

than Specialized in all cases.

Let us now attend to MVA-reachability. Figures 8a-d compare

Specialized, Uni-first, Baseline under different |𝑉1 | but the same 𝜏 =

0.001𝑛, while Figures 8e-h compare under different 𝜏 but the same

|𝑉1 | = 0.5𝑛. Specialized and Uni-first had very similar performance.

They significantly outperformed Baseline in all settings.

Self-improving behavior of Universal. The second set of exper-
iments aims to demonstrate what happens when Universal explores
the polynomial core (Section 8.1), in particular, how additional

processing time helps to improve the solution quality.

For a more meaningful understanding of “elapsed time”, we use

the cost ofUni-first as a reference. To explain, suppose thatUniversal

finds the first solution in 𝐶first seconds. We continue running the

algorithm and measure, for each 𝑖 ≥ 1, the solution size |𝐹𝑖 | at the
moment when its running time reaches (1 + 𝑖

10
) · 𝐶first seconds.

Doing so till termination will produce a non-ascending sequence:

|𝐹1 |, |𝐹2 |, |𝐹3 |, Given an input and some fixed parameters, we

launch 20 independent runs and average their sequences into an

aggregated sequence Σ as follows. First, set 𝐼max to the length of

the 5th longest sequence (of the 20 runs). Then, generate an Σ of

length 𝐼max where Σ[𝑖] (1 ≤ 𝑖 ≤ 𝐼max) is the mean |𝐹𝑖 | of all the
runs. The Σ thus obtained manifests the self-improving ability of

Universal. Also, denote by 𝐶first the 20 runs’ average 𝐶first value.

Focusing on MVA-shortest-distance with |𝑉1 | = 0.1𝑛 and 𝜏 =

100/𝑚, Figures 9a-d plot the aggregated sequences for 𝜆 = 1, 2 and

3 on the four data graphs, respectively. Recall that 𝜆 controls the

polynomial core (Lemma 8.1). In each diagram, the x-axis is the

elapsed time, with the first value equal to 𝐶first ; the y-axis is the

solution size. For each aggregated sequence Σ, its Σ[𝑖] (𝑖 ≥ 1) is

the y-value of the corresponding curve at 𝑥 = (1 + 𝑖
10
) ·𝐶first . Note

that the three curves of each diagram start from the same y-value,

which is the size of the output of Uni-first. The average solution size

of Specialized is indicated under each figure. In the same fashion,

Figures 9e-h present the results for MVA-connectivity with |𝑉1 | =

1464

λ = 1 λ = 2 λ = 3

2.9

3

3.1

3.2

3.3

3.4

0.75 5 10 15 20

|F
|

elapsed time (sec)

2.3

2.33

2.36

2.39

2.42

1.5 5 10 15 20

|F
|

elapsed time (sec)

1.82

1.83

1.84

1.85

0.7 1 2 3 4

|F
|

elapsed time (sec)

3.82

3.84

3.86

3.88

1.2 5 10 15 20 25 30 35

|F
|

elapsed time (sec)

(a) MVA-shortest-dist, DBLP (b) MVA-shortest-dist, Youtube (c) MVA-shortest-dist, Wiki (d) MVA-shortest-dist, USpatent
(Specialized sol size avg = 2.91) (Specialized sol size avg = 2.30) (Specialized sol size avg = 1.81) (Specialized sol size avg = 3.82)

16.1

16.3

16.5

16.7

16.9

1.5 100 200 300 400

|F
|

elapsed time (sec)

12.5

12.6

12.7

4.6 30 60 90 120 150

|F
|

elapsed time (sec)

8.52

8.62

8.72

6.1 10 20 30 40

|F
|

elapsed time (sec)

12.1

12.3

12.5

12.7

30.6 1000 2000 3000 4000

|F
|

elapsed time (sec)

(e) MVA-conn, DBLP (f) MVA-conn, Youtube (g) MVA-conn, Wiki (h) MVA-conn, USpatent
(Specialized sol size avg = 17.43) (Specialized sol size avg = 12.73) (Specialized sol size avg = 8.78) (Specialized sol size avg = 12.13)

3.7

3.9

4.1

4.3

4.5

4.7

7.4 15 30 45 60 75

|F
|

elapsed time (sec)

7.7

7.8

7.9

8

8.1

7.2 10 15 20 25 30

|F
|

elapsed time (sec)

10.2

10.4

10.6

10.8

11

12.7 30 60 90 120 150

|F
|

elapsed time (sec)

6

8

10

12

14

124.1 300 600 900 1200 1500

|F
|

elapsed time (sec)

(i) MVA-inf-minseed, DBLP (j) MVA-inf-minseed, Youtube (k) MVA-inf-minseed, Wiki (l) MVA-inf-minseed, USpatent
(Specialized sol size avg = 3.08) (Specialized sol size avg = 8) (Specialized sol size avg = 10.6) (Specialized sol size avg = 3.81)

18.9

19.1

19.3

19.5

19.7

0.751 2 3 4

|F
|

elapsed time (sec)

16.9

17.1

17.3

17.5

2.53 4 6 8 10

|F
|

elapsed time (sec)

13.4

13.6

13.8

14

14.2

3.7 5 10 15 20

|F
|

elapsed time (sec)

22
22.3
22.6
22.9
23.2
23.5

4.59 200 400 600 800

|F
|

elapsed time (sec)

(m) MVA-reachability, DBLP (n) MVA-reachability, Youtube (o) MVA-reachability, Wiki (p) MVA-reachability, USpatent
(Specialized sol size avg = 22.4) (Specialized sol size avg = 19.8) (Specialized sol size avg = 16.2) (Specialized sol size avg = 23.9)

Figure 9: Self-improvement of Universal

0.1𝑛 and |𝑆 | = 10, Figures 9i-l present the results for MVA-influence-

minseed with |𝑉1 | = 5 and 𝜏 = 3 ˜OPTone , and Figures 9m-p present

the results for MVA-reachability with |𝑉1 | = 0.1𝑛 and 𝜏 = 0.001𝑛.

A higher 𝜆 defines a larger polynomial core and enables Uni-
versal to discover better solutions. For MVA-shortest-distance, the

solutions of Universal at 𝜆 = 3 were almost as small as the op-

timal solutions found by Specialized. For MVA-connectivity and

MVA-reachability, the 𝜆 = 3 solutions were often smaller than

those of Specialized. The most substantial improvement occurred

on MVA-influence-minseed, where Universal improved Uni-first
significantly, especially on large graphs. As explained earlier, our

choice of |Rnext | (i.e., fixed, regardless of the graph size) implies

a less powerful next function for more sizable graphs. The phe-

nomenon suggests that our polynomial-core technique has good

“correction power” when a mediocre next function is supplied. For

practical use, we recommend choosing 𝜆 incrementally: start from

𝜆 = 1 and increase it if extra computation is affordable. Based on

our experiments, there would seldom be a need to go beyond 𝜆 = 3.

10 CONCLUSIONS
In real-world applications, the vertices in a data graph are often

divided into two states: bad vs. normal. This paper introduces mini-

mum vertex augmentation (MVA), whose goal is to fix the smallest

number of bad vertices to fulfill a user-defined objective. MVA not

only defines new problems but also motivates us to look at clas-

sical graph problems from a fresh perspective. We have proposed

a set of techniques to design MVA algorithms with attractive per-

formance guarantees, and developed a generic paradigm that a

user can instantiate to deal with ad-hoc MVA problems. We have

also presented extensive experimental results to demonstrate our

techniques’ effectiveness and efficiency on real data.

It is an exciting future direction to discover more generic tech-

niques for designing MVA algorithms with excellent guarantees.

For that purpose, we would like to invite the community to investi-

gate challenging MVA problems beyond this article. Some examples

include: flip the least number of 0-vertices such that the subgraph

induced by 1-vertices (i) is bi-connected [40], (ii) has at least 10

paths from 𝑠 to 𝑡 with distance at most 𝜏 [44], (iii) contains at

least 𝜏 occurrences of a user-defined pattern graph [36], (iv) can be

converted to a pattern graph using matrix operations [6, 11], etc.

ACKNOWLEDGMENTS
This work was partially supported by GRF grant 14207820 from

HKRGC and a research grant from Alibaba Group.

REFERENCES
[1] Akhil Arora, Sainyam Galhotra, and Sayan Ranu. 2017. Debunking the Myths

of Influence Maximization: An In-Depth Benchmarking Study. In Proceedings of
ACM Management of Data (SIGMOD). 651–666.

[2] Piotr Berman and Viswanathan Ramaiyer. 1994. Improved Approximations for

the Steiner Tree Problem. Journal of Algorithms 17, 3 (1994), 381–408.
[3] Stephan Beyer and Markus Chimani. 2014. Steiner Tree 1.39-Approximation in

Practice. In MEMICS, Vol. 8934. 60–72.

1465

[4] Philippe Bonnet, Johannes Gehrke, and Praveen Seshadri. 2001. Towards Sensor

Database Systems, Vol. 1987. 3–14.

[5] Christian Borgs, Michael Brautbar, Jennifer T. Chayes, and Brendan Lucier. 2014.

Maximizing Social Influence in Nearly Optimal Time. In Proceedings of the Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA). 946–957.

[6] Robert Brijder, Floris Geerts, Jan Van den Bussche, and Timmy Weerwag. 2018.

On the Expressive Power of Query Languages for Matrices. In Proceedings of
International Conference on Database Theory (ICDT). 10:1–10:17.

[7] Jaroslaw Byrka, Fabrizio Grandoni, Thomas Rothvoß, and Laura Sanità. 2013.

Steiner Tree Approximation via Iterative Randomized Rounding. Journal of the
ACM (JACM) 60, 1 (2013), 6:1–6:33.

[8] Wei Chen, Chi Wang, and Yajun Wang. 2010. Scalable influence maximization

for prevalent viral marketing in large-scale social networks. In Proceedings of
ACM Knowledge Discovery and Data Mining (SIGKDD). 1029–1038.

[9] Sainyam Galhotra, Akhil Arora, and Shourya Roy. 2016. Holistic Influence

Maximization: Combining Scalability and Efficiency with Opinion-Aware Models.

In Proceedings of ACM Management of Data (SIGMOD). 743–758.
[10] Michael R Garey and David S Johnson. 1979. Computers and intractability. Vol. 174.

Freeman San Francisco. 208–209 pages.

[11] Floris Geerts. 2020. When Can Matrix Query Languages Discern Matrices?. In

Proceedings of International Conference on Database Theory (ICDT). 12:1–12:18.
[12] Michel X. Goemans, Neil Olver, Thomas Rothvoß, and Rico Zenklusen. 2012.

Matroids and integrality gaps for hypergraphic steiner tree relaxations. In Pro-
ceedings of ACM Symposium on Theory of Computing (STOC). 1161–1176.

[13] Amit Goyal, Francesco Bonchi, and Laks V. S. Lakshmanan. 2011. A Data-Based

Approach to Social Influence Maximization. Proceedings of the VLDB Endowment
(PVLDB) 5, 1 (2011), 73–84.

[14] Amit Goyal, Francesco Bonchi, Laks V. S. Lakshmanan, and Suresh Venkatasub-

ramanian. 2013. On minimizing budget and time in influence propagation over

social networks. Social Netw. Analys. Mining 3, 2 (2013), 179–192.

[15] Qintian Guo, Sibo Wang, Zhewei Wei, and Ming Chen. 2020. Influence Maximiza-

tion Revisited: Efficient Reverse Reachable Set Generation with Bound Tightened.

In Proceedings of ACM Management of Data (SIGMOD). 2167–2181.
[16] Jurriaan Hage, Tero Harju, and Emo Welzl. 2003. Euler Graphs, Triangle-Free

Graphs and Bipartite Graphs in Switching Classes. Fundam. Inform. 58, 1 (2003),
23–37.

[17] Ryan B. Hayward. 1996. RecognizingP
3
-Structure: A Switching Approach. J.

Comb. Theory, Ser. B 66, 2 (1996), 247–262.

[18] Stefan Hougardy and Hans Jurgen Promel. 1999. A 1.598 Approximation Algo-

rithm for the Steiner Problem in Graphs. In Proceedings of the Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA). 448–453.

[19] Eva Jelínková and Jan Kratochvíl. 2014. On Switching to H -Free Graphs. Journal
of Graph Theory 75, 4 (2014), 387–405.

[20] T.R. Jensen and B. Toft. 1995. Graph Coloring Problems. John Wiley & Sons.

[21] Kyomin Jung, Wooram Heo, and Wei Chen. 2012. IRIE: Scalable and Robust Influ-

ence Maximization in Social Networks. In Proceedings of International Conference
on Management of Data (ICDM). 918–923.

[22] Marek Karpinski and Alexander Zelikovsky. 1997. New Approximation Algo-

rithms for the Steiner Tree Problems. J. Comb. Optim. 1, 1 (1997), 47–65.
[23] David Kempe, Jon M. Kleinberg, and Éva Tardos. 2003. Maximizing the spread of

influence through a social network. In Proceedings of ACM Knowledge Discovery
and Data Mining (SIGKDD). 137–146.

[24] Jon Lee. 2004. A First Course in Combinatorial Optimization. Cambridge University

Press.

[25] Jong-Ryul Lee and Chin-Wan Chung. 2014. A fast approximation for influence

maximization in large social networks. In Proceedings of International World Wide

Web Conferences (WWW). 1157–1162.
[26] R.M. R. Lewis. 2015. A Guide to Graph Colouring: Algorithms and Applications.

Springer.

[27] Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei Hong. 2005.

TinyDB: an acquisitional query processing system for sensor networks. ACM
Transactions on Database Systems (TODS) 30, 1 (2005), 122–173.

[28] Kurt Mehlhorn. 1988. A Faster Approximation Algorithm for the Steiner Problem

in Graphs. Information Processing Letters (IPL) 27, 3 (1988), 125–128.
[29] Hung T. Nguyen, My T. Thai, and Thang N. Dinh. 2016. Stop-and-Stare: Op-

timal Sampling Algorithms for Viral Marketing in Billion-scale Networks. In

Proceedings of ACM Management of Data (SIGMOD). 695–710.
[30] Naoto Ohsaka, Takuya Akiba, Yuichi Yoshida, and Ken-ichi Kawarabayashi. 2014.

Fast and Accurate Influence Maximization on Large Networks with Pruned

Monte-Carlo Simulations. 138–144.

[31] Ho Lam Pang and Leizhen Cai. 2019. Complexity of Vertex Switching on Edge-

Bicolored Graphs. In Proceedings of International Conference on Algorithms and
Complexity (CIAC). 339–351.

[32] Hans Jürgen Prömel and Angelika Steger. 1997. RNC-Approximation Algorithms

for the Steiner Problem. In Proceedings of Symposium on Theoretical Aspects of
Computer Science (STACS). 559–570.

[33] Gabriel Robins and Alexander Zelikovsky. 2005. Tighter Bounds for Graph Steiner

Tree Approximation. SIAM J. Discret. Math. 19, 1 (2005), 122–134.
[34] Alexander Schrijver. 2004. Combinatorial Optimization: Polyhedra and Efficiency.

Springer-Verlag.

[35] J. J. Seidel. 1991. A survey of two-graphs. Geometry and Combinatorics (1991),
146–176.

[36] Zhao Sun, Hongzhi Wang, Haixun Wang, Bin Shao, and Jianzhong Li. 2012.

Efficient Subgraph Matching on Billion Node Graphs. Proceedings of the VLDB
Endowment (PVLDB) 5, 9 (2012), 788–799.

[37] Jing Tang, Xueyan Tang, Xiaokui Xiao, and Junsong Yuan. 2018. Online Processing

Algorithms for Influence Maximization. In Proceedings of ACM Management of
Data (SIGMOD). 991–1005.

[38] Youze Tang, Yanchen Shi, and Xiaokui Xiao. 2015. Influence Maximization in

Near-Linear Time: A Martingale Approach. In Proceedings of ACM Management
of Data (SIGMOD). 1539–1554.

[39] Youze Tang, Xiaokui Xiao, and Yanchen Shi. 2014. Influence maximization:

near-optimal time complexity meets practical efficiency. In Proceedings of ACM
Management of Data (SIGMOD). 75–86.

[40] Robert Endre Tarjan. 1972. Depth-First Search and Linear Graph Algorithms.

SIAM Journal of Computing 1, 2 (1972), 146–160.

[41] Chi Wang, Wei Chen, and Yajun Wang. 2012. Scalable influence maximization

for independent cascade model in large-scale social networks. Data Min. Knowl.
Discov. 25, 3 (2012), 545–576.

[42] Laurence A.Wolsey. 1982. An analysis of the greedy algorithm for the submodular

set covering problem. Comb. 2, 4 (1982), 385–393.
[43] Yong Yao and Johannes Gehrke. 2003. Query Processing in Sensor Networks. In

Proceedings of Biennial Conference on Innovative Data Systems Research (CIDR).
[44] Ziqiang Yu, Xiaohui Yu, Nick Koudas, Yang Liu, Yifan Li, Yueting Chen, and

Dingyu Yang. 2020. Distributed Processing of k Shortest Path Queries over

Dynamic Road Networks. In Proceedings of ACM Management of Data (SIGMOD).
665–679.

[45] Thomas Zaslavsky. 1982. Signed graphs. Discret. Appl. Math. 4, 1 (1982), 47–74.
[46] Alexander Zelikovsky. 1993. An 11/6-Approximation Algorithm for the Network

Steiner Problem. Algorithmica 9, 5 (1993), 463–470.
[47] Jianwen Zhao and Yufei Tao. 2021. Minimum Vertex Augmentation. Technical

report downloadable on the authors’ homepages (2021).

1466

