
Tempura: A General Cost-Based Optimizer Framework for
Incremental Data Processing

Zuozhi Wang
1
, Kai Zeng

2
, Botong Huang

2
, Wei Chen

2
, Xiaozong Cui

2
, Bo Wang

2
, Ji Liu

2
,

Liya Fan
2
, Dachuan Qu

2
, Zhenyu Hou

2
, Tao Guan

2
, Chen Li

1
, Jingren Zhou

2

1
University of California, Irvine

2
Alibaba Group

1
Irvine, United States

2
Hangzhou, China

1
{zuozhiw, chenli}@ics.uci.edu,

2
{zengkai.zk, botong.huang, wickeychen.cw, xiaozong.cxz, yanyu.wb, niki.lj,

liya.�y, dachuan.qdc, zhenyuhou.hzy, tony.guan, jingren.zhou}@alibaba-inc.com

ABSTRACT
Incremental processing is widely-adopted in many applications,

ranging from incremental view maintenance, stream computing,

to recently emerging progressive data warehouse and intermittent

query processing. Despite many algorithms developed on this topic,

none of them can produce an incremental plan that always achieves

the best performance, since the optimal plan is data dependent. In

this paper, we develop a novel cost-based optimizer framework,

called Tempura, for optimizing incremental data processing. We

propose an incremental query planning model called TIP based on

the concept of time-varying relations, which can formally model

incremental processing in its most general form. We give a full

speci�cation of Tempura, which can not only unify various existing

techniques to generate an optimal incremental plan, but also allow

the developer to add their rewrite rules. We study how to explore

the plan space and search for an optimal incremental plan. We

evaluate Tempura in various incremental processing scenarios to

show its e�ectiveness and e�ciency.

PVLDB Reference Format:
Zuozhi Wang, Kai Zeng, Botong Huang, Wei Chen, Xiaozong Cui, Bo

Wang, Ji Liu, Liya Fan, Dachuan Qu, Zhenyu Hou, Tao Guan, Chen Li,

Jingren Zhou. Tempura: A General Cost-Based Optimizer Framework for

Incremental Data Processing. PVLDB, 14(1): 14-27, 2021.

doi:10.14778/3421424.3421427

1 INTRODUCTION
Incremental processing is widely used in data computation, where

the input data to a query is available gradually, and the query

computation is triggered multiple times each processing a delta

of the input data. Incremental processing is central to database

views with incremental view maintenance (IVM) [3, 18, 24, 30] and

stream processing [1, 8, 19, 34, 42]. It has been adopted in various

application domains such as active databases [4], resumable query

execution [15], approximate query processing [16, 26, 50], etc. New

advancements in big data systems make data ingestion more real-

time and analysis increasingly time sensitive, which further boost

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 1 ISSN 2150-8097.

doi:10.14778/3421424.3421427

the adoption of the incremental processing model. Here are a few

examples of emerging applications.

ProgressiveDataWarehouse [45]. Enterprise datawarehouses
usually have a large amount of automated routine analysis jobs,

which have a stringent schedule and deadline determined by vari-

ous business logic. For example, at Alibaba, daily report queries are

scheduled after 12 am when the previous day’s data has been fully

collected, and the results must be delivered by 6 am sharp before the

bill-settlement time. These routine analysis jobs are predominately

handled using batch processing, causing dreadful “rush hour” sched-

uling patterns. This approach puts pressure on resources during

tra�c hours, and leaves the resources over-provisioned and wasted

during the o�-tra�c hours. Incremental processing can answer

routine analysis jobs progressively as data gets ingested, and its

scheduling �exibility can be used to smoothen the resource skew.

Intermittent Query Processing [40].Many modern applica-

tions require querying an incomplete dataset with the remaining

data arriving in an intermittent yet predictable way. Intermittent

query processing can leverage incremental processing to balance

latency for maintaining standing queries and resource consump-

tion by exploiting knowledge of data-arrival patterns. For instance,

when querying dirty data, the data is usually �rst cleaned and then

fed into a database. The data cleaning step can quickly spill the

clean data but needs to conduct a time-consuming processing on

the dirty data. Intermittent query processing can use incremental

processing to quickly deliver informative but partial results to the

user, before delivering the �nal results on the fully cleaned data.

A key problem behind these applications is how to generate

an e�cient incremental plan for a query. Previous studies focused

on various aspects of the problem, e.g., incremental computation

algorithms for a speci�c setting such as [3, 18, 30], or algorithms to

determine which intemediate states to materialize [36, 40, 51]. The

following example based on two commonly used algorithms shows

that none of them can generate an incremental-computation plan

that is always optimal, since the optimal plan is data dependent.

Example 1 (Reporting consolidated revenue).

summary =
WITH sales_status AS (
SELECT sales.o_id, category, price, cost
FROM sales LEFT OUTER JOIN returns ON sales.o_id = returns.o_id)

SELECT category, SUM(IF(cost IS NULL, price, -cost)) AS gross
FROM sales_status GROUP BY category

In the progressive data warehouse scenario, consider a routine

analysis job in Example 1 that reports the gross revenue by con-

solidating the sales orders with the returned ones. We want to

incrementally compute the job as data gets ingested, to utilize the

14

https://doi.org/10.14778/3421424.3421427
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3421424.3421427

cheaper free resources occasionally available in the cluster. We

want to �nd an incremental plan with the optimal resource usage

pattern, i.e., carrying out as much early computation as possible

using cheaper free resources to keep the overall resource bill low.

This query can be incrementally computed in di�erent ways as

the data in tables sales and returns becomes available gradually.

For instance, consider two basic methods used in IVM and stream

computing. (1) A typical view maintenance approach (denoted as

IM-1) treats summary as views [18, 23, 24, 50]. It always maintains

summary as if it is directly computed from the data of sales and
returns seen so far. Therefore, even if a sales order will be returned
in the future, its revenue is counted into the gross revenue tem-

porarily. (2) A typical stream-computing method (denoted as IM-2)
avoids such retraction [25, 31, 33, 41]. It holds back sales orders
that do not join with any returns orders until all data is available.
Clearly, if returned orders are rare, IM-1 can maximize the amount

of early computation and thus deliver better resource-usage plans.

Otherwise, if returned orders are often, IM-2 can avoid unnecessary
re-computation caused by retraction and thus be better. (See §2.2

for a detailed discussion.) This analysis shows that di�erent data

statistics can lead to di�erent preferred methods.

Since the optimal plan for a query given a user-speci�ed op-

timization goal is data dependent, a natural question is how to

develop a principled cost-based optimization framework to support

e�cient incremental processing. To our best knowledge and also

to our surprise, there is no such a framework in the literature. In

particular, existing solutions still rely on users to empirically choose

from individual incremental techniques, and it is not easy to com-

bine the advantages of di�erent techniques and �nd the plan that is

truly cost optimal. When developing this framework, we face more

challenges compared to traditional query optimization [22, 39] (see

§2.2): (1) Incremental query planning requires tradeo� analysis on

more dimensions than traditional query planning, such as di�erent

incremental computation methods, data arrival patterns, which

states to materialize, etc. (2) The plans for di�erent incremental

runs are correlated and may a�ect each other’s optimal choices. It

is essential to jointly consider the runs across the entire timeline.

In this paper we propose a uni�ed cost-based query optimization

framework, which allows users to express and integrate various

incremental computation techniques and provides a turn-key so-

lution to decide optimal incremental execution plans subject to

various objectives. We make the following contributions.

• We propose a new theory called the TIP model on top of time-

varying relation (TVR) that formulates incremental processing

using TVR, and de�nes a formal algebra for TVRs (§3). In the

TIP model, we also provide a rewrite-rule framework to describe

di�erent incremental computation techniques, and unify them to

explore in a single search space for an optimal incremental plan

(§4). This framework allows these techniques to work coopera-

tively, and enables cost-based search among possible plans.

• We build a Cascade-style optimizer named Tempura. It supports
cost-based optimization for incremental query planning based

on the TIP model. We discuss how to explore the plan space (§5)

and search for an optimal incremental plan in Tempura (§6).

• We conduct a thorough experimental evaluation of the Tempura
optimizer in various application scenarios. The results show the

e�ectiveness and e�ciency of Tempura (§8).

2 PROBLEM FORMULATION
In this section we formally de�ne the problem of cost-based opti-

mization for incremental computation. We elaborate on the running

example to show that execution plans generated by di�erent algo-

rithms have di�erent costs. We then illustrate the challenges.

2.1 Incremental Query Planning
Despite the di�erent requirements in various applications, a key

problem of cost-based incremental query planning (IQP) can be

modeled uniformly as a quadruple (®), ®�, ®&, c̃), where:
• ®) = [C1, . . . , C:] is a vector of time points when we can carry

out incremental computation. Each C8 can be either a concrete

physical time, or a discretized logical time.

• ®� = [�1, · · · , �:] is a vector of data, where �8 represents the

input data available at time C8 , e.g., the delta data newly available

at C8 , and/or all the data accumulated up to C8 . For a future time

point C8 , �8 can be expected data to be available at that time.

• ®& = [&1, . . . , &:] is a vector of queries. &8 de�nes the expected

results that are supposed to be delivered by the incremental

computation carried out at C8 . If there is no required output at C8 ,

then &8 is a special empty query ∅.
• c̃ is a cost function that we want to minimize.

The goal is to generate an incremental plan P = [%1, . . . , %:] where
%8 de�nes the task (a physical plan) to execute at time C8 , such that

(1) ∀1 ≤ 8 ≤ : , %8 can deliver the results de�ned by &8 , and (2) the

cost c̃(P) is minimized. Next we use a few example IQP scenarios to

demonstrate how they can be modeled using the above de�nition.

Incremental ViewMaintenance (IVM-PD). Consider the problem
of incrementally maintaining a view de�ned by query & . Instead

of using any concrete physical time, we can use two logical time

points ®) = [C8 , C8+1] to represent a general incremental update at

C8+1 of the result computed at C8 . We assume that the data available

at C8 is the data accumulated up to C8 , whereas at C8+1 the new delta

data (insertions/deletions/updates) between C8 and C8+1 is available,
denoted by ®� = [�,Δ�]. At both C8 and C8+1 we want to keep the

view up to date, i.e., ®& is de�ned as &8 = & (�), &8+1 = & (� + Δ�).
As the main goal is to �nd the most e�cient incremental plan, we

set c̃ to be the cost of %8+1, i.e., the execution cost at C8+1. (For a
formal de�nition see 2̃E in §6.2.) Note that if & involves multiple

tables and wewant to use di�erent incremental plans for updates on

di�erent tables, we can optimize multiple IQP problems by setting

Δ� to the delta data on only one of the tables at a time.

Progressive Data Warehouse (PDW-PD). We model this scenario

by choosing ®) as physical time points of the planned incremental

runs. Note that we only require the incremental plan to deliver

the results de�ned by the original analysis job & at the last run,

that is, at the scheduled deadline of the job, without requiring

output during the early runs. Thus, ®& = [∅, · · · , ∅, &]. We set c̃ as

a weighted sum of the costs of all plans in P (see 2̃F ($) in §6.2).

2.2 Plan Space and Search Challenges
We elaborate di�erent plans to answer the query in Example 1 using

the PDW-PD de�nition. Suppose the query summary is originally

scheduled at C2, but the progressive data warehouse decides to

schedule an early execution at C1 on partial inputs. Assume the

15

records visible at C1 and C2 in sales and returns are those in Fig. 1(a).

In this IQP problem, we have ®) = [C1, C2] and ®& = [∅, @], where
@ is the summary query, ®� is shown in Fig. 1(a), and c̃ is the cost

function that takes the weighted sum of the resources used at C1
and C2. Many existing incremental methods (e.g., view maintenance,

stream computing, mini-batch execution [3, 8, 18, 24]) can be used

here. Consider two commonly used methods IM-1 and IM-2.

sales
o_id cat price
>
1

2
1

100 C
1

>
2

2
2

150 C
1

>
3

2
1

120 C
1

>
4

2
1

170 C
1

>
5

2
2

300 C
2

>
6

2
1

150 C
2

>
7

2
2

220 C
2

returns
o_id cost
>
1

10 C
1

>
2

20 C
2

>
6

15 C
2

(a)

sales_status
o_id cat price cost
>
1

2
1

100 10

>
2

2
2

150 20

>
3

2
1

120 null

>
4

2
1

170 null

>
5

2
2

300 null

>
6

2
1

150 15

>
7

2
2

220 null

summary
cat gross
2
1

265

2
2

500

(b)

sale_status at C
1

o_id cat price cost
>
1

2
1

100 10

>
2

2
2

150 null

>
3

2
1

120 null

>
4

2
1

170 null

Changes to sale_status at C
2

o_id cat price cost #

>
2

2
2

150 null −1
>
2

2
2

150 20 +1
>
5

2
2

300 null +1
>
6

2
1

150 15 +1
>
7

2
2

220 null +1
(c)

sale_status at C
1

o_id cat price cost
>
1

2
1

100 10

Changes to sale_status at C
2

o_id cat price cost #

>
2

2
2

150 20 +1
>
3

2
1

120 null +1
>
4

2
1

170 null +1
>
5

2
2

300 null +1
>
6

2
1

150 15 +1
>
7

2
2

220 null +1
(d)

Figure 1: (a) Data arrival patterns of sales and returns, (b)
results of sales_status and summary at C2, (c) incremental re-
sults of sales_status produced by IM-1 at C1 and C2, and (d)
incremental results of sales_status produced by IM-2 at C1, C2.

Method IM-1 treats sales_status and summary as views, and uses

incremental computation to keep the views up to date with respect

to the data seen so far. The incremental computation is done on the

delta input. For example, the delta input to sales at C2 includes tuples
{>5, >6, >7}. Fig. 1(c) depicts sales_status’s incremental outputs at

C1 and C2, respectively, where # = +/−1 denote insertion or deletion

respectively. Note that a returns record (e.g., >2 at C2) can arrive

much later than its corresponding sales record (e.g., the shaded >2
at C1). Therefore, a sales record may be output early as it cannot

join with a returns record at C1, but retracted later at C2 when the

returns record arrives, such as the shaded tuple >2 in Fig. 1(c).

Method IM-2 can avoid such retraction during incremental com-

putation. Speci�cally, in the outer join of sales_status, tuples in
sales that do not join with tuples from returns for now (e.g., >2,

>3, and >4) may join in the future, and thus will be held back at C1.

Essentially the outer join is computed as an inner join at C1. The

incremental outputs of sales_status are shown in Fig. 1(d).

In addition to these two, there are many other methods as well.

Generating one plan with a high performance is non-trivial due

to the following reasons. (1) The optimal incremental plan is data
dependent, and should be determined in a cost-based way. In the

running example, IM-1 computes 9 tuples (5 tuples in the outer join

and 4 tuples in the aggregate) at C1, and 10 tuples at C2. Suppose the

cost per unit at C1 is 0.2 (due to fewer queries at that time), and the

cost per unit at C2 is 1. Then its total cost is 9 × 0.2 + 10 × 1 = 11.8.

IM-2 computes 6 tuples at C1, and 11 tuples at C2, with a total cost

of 6 × 0.2 + 11 × 1 = 12.2. IM-1 is more e�cient, since it can do

more early computation in the outer join, and more early outputs

further enable summary to do more early computation. On the

contrary, if retraction is often, say, with one more tuple >4 at C2,

then IM-2 is more e�cient, as it costs 12.2 versus 13.8 of IM-1. This
is because retraction wastes early computation and causes more

recomputation. Notice that the performance di�erence of these two

approaches can be arbitrarily large.

(2) The entire space of possible plan alternatives is very large.
Di�erent parts within a query can choose di�erent incremental

methods. Even if early computing the entire query does not pay

o�, we can still incrementally execute a subquery. For instance, for

the left outer join in sales_status, we can incrementally shu�e the

input data once it is ingested without waiting for the last time. IQP

needs to search the entire plan space ranging from the traditional

batch plan at one end to a fully-incrementalized plan at the other.

(3) Complex temporal dependencies between di�erent incremental
runs can also impact the plan decision. For instance, during the con-

tinuous ingestion of data, query sales_statusmay prefer a broadcast

join at C1 when the returns table is small, but a shu�ed hash join

at C2 when the returns table gets bigger. But the decision may not

be optimal, as shu�ed hash join needs data to be distributed by

the join key, which broadcast join does not provide. Thus, di�erent

join implementations between C1 and C2 incur reshu�ing overhead.

IQP needs to jointly consider all runs across the entire timeline.

Such complex reasoning is challenging, if not impossible, even

for very experienced experts. To solve this problem, we o�er a

cost-based solution to systematically search the entire plan space

to generate an optimal plan. Our solution can unify di�erent incre-

mental computation techniques in a single plan.

3 THE TIP MODEL
The core of incremental computation is to deal with relations chang-

ing over time, and understand how the computation on these re-

lations can be expanded along the time dimension. In this section,

we introduce a formal theory based on the concept of time-varying
relation (TVR) [8, 11, 37], called the TVR-based Incremental query
Planning (TIP) Model. The model naturally extends the relational

model by considering the temporal aspect to formally describe in-

cremental execution. It also includes various data-manipulation

operations on TVRs, as well as rewrite rules of TVRs in order for a

query optimizer to de�ne and explore a search space to generate an

e�cient incremental query plan. To the best of our knowledge, the

proposed TIP model is the �rst one that not only uni�es di�erent

incremental computation methods, but also can be used to develop

a principled cost-based optimization framework for incremental

execution. We focus on de�nitions and algebra of TVRs in this

section, and dwell on TVR rewrite rules in §4.

3.1 Time-Varying Relations
Definition 2. A time-varying relation (TVR) ' is a mapping

from a time domain T to a bag of tuples belonging to a schema.

A snapshot of ' at a time C , denoted 'C , is the instance of ' at

time C . For example, due to continuous ingestion, table sales (()
in Example 1 is a TVR, depicted as the blue line in Fig. 2. On the

16

Figure 2: Example TVRs and their relationships.

line, tables 1© and 2© show the snapshots (C1 and (C2 respectively.

Traditional data warehouses run queries on relations at a speci�c

time, while incremental execution runs queries on TVRs.

Definition 3 (�erying TVR). Given a TVR ' on time domain
T , applying a query & on ' de�nes another TVR & (') on T , where
[& (')]C = & ('C),∀C ∈ T .

In other words, the snapshot of& (') at C is the same as applying

& as a query on the snapshot of ' at C . For instance, in Fig. 2, joining

two TVRs sales (() and returns (') yields a TVR ((⊲⊳;> '), depicted
as the green line. Snapshot ((⊲⊳;> ')C1 is shown as table 3©, which

is equal to (C1 ⊲⊳;> 'C1 . We denote left outer-join as ⊲⊳;> , left anti-

join as ⊲⊳;0 , left semi-join as ⊲⊳;B , and aggregate as W . For brevity,

we use “&” to refer to the “TVR & (')” when there is no ambiguity.

3.2 Basic Operations on TVRs
Besides as a sequence of snapshots, a TVR can be encoded from a

delta perspective using the changes between two snapshots. We

denote the di�erence between two snapshots of TVR ' at C, C ′ ∈)

(C < C ′) as the delta of ' from C to C ′, denoted Δ'C
′
C , which de�nes a

second-order TVR.

Definition 4 (TVR difference). Δ'C
′
C de�nes a mapping from

a time interval to a bag of tuples belonging to the same schema, such
that there is a merge operator “+” satisfying 'C + Δ'C

′
C = 'C ′ .

Table 4© in Fig. 2 shows Δ((⊲⊳;> ')C2C1 , which is the delta of snap-

shots ((⊲⊳;> ')C1 and ((⊲⊳;> ')C2 . Here multiplicities (#) represent
insertion and deletion of the corresponding tuple, respectively. The

merge operator + is de�ned as additive union on relations with bag

semantics, which adds up the multiplicities of tuples in bags.

Interestingly, a TVR can have di�erent snapshot/delta views. For

instance, the delta ΔWBD<
C2
C1
can be de�ned di�erently as Table 5© in

Fig. 2. Here the merge operator + directly sums up the partial SUM
values (the gross attribute) per category. For category 21, summing

up the partial SUM’s inWBD<C1
andΔWBD<

C2
C1
yields the value inWBD<C2

,

i.e., 280 + (− 15) = 265. To di�erentiate these two merge operators,

we denote the merge operator for (⊲⊳;> ' as +#, and the merge

operator for WBD< as +BD< . This observation shows that the way

to de�ne TVR deltas and the merge operator + is not unique. In

general, as studied in previous research [29, 50], the di�erence

between two snapshots 'C and 'C ′ can have two types:

(1) Multiplicity Perspective. 'C and 'C ′ may have di�erent mul-

tiplicities of tuples. 'C may have less or more tuples than 'C ′ . In

this case, the merge operator (e.g., +#) combines the same tuples by

adding up their multiplicities.

(2) Attribute Perspective. 'C may have di�erent attribute values

in some tuples compared to 'C ′ . In this case, the merge operator

(e.g., +BD<) groups tuples with the same primary key, and com-

bines the delta updates on the changed attributes into one value.

Aggregation operators usually produce this type of snapshots and

deltas. Formally, distributed aggregation in data-parallel computing

platforms is often modeled using four methods [49]: Initialize,
Iterate, Merge, and Final. The snapshots/deltas are the aggre-

gate states computed using Initialize and Iterate on partial

data; the merge operator +W is de�ned using Merge; at the end, the
attribute-perspective snapshot is converted by Final to produce

the multiplicity-perspective snapshot, i.e., the �nal result.
1
Note

that for aggregates such as MEDIAN whose state needs to be the full

set of tuples, Iterate and Merge degenerate to no-op.

Furthermore, for some merge operator +, there is an inverse

operator −, such that 'C ′ − 'C = Δ'C
′
C . For instance, the inverse

operator −BD< for +BD< is de�ned as taking the di�erence of SUM
values per category between two snapshots.

4 TVR REWRITE RULES
Rewrite rules expressing relational algebra equivalence are the key

mechanism that enables traditional query optimizers to explore

the entire plan space. As TVR snapshots and deltas are simply

static relations, traditional rewrite rules still hold within a single

snapshot/delta. However, these rewrite rules are not enough for

incremental query planning, due to their inability to express algebra

equivalence between TVR concepts.

To capture this more general form of equivalence, in this section,

we introduce TVR rewrite rules in the TIP model, focusing on logical

plans. We propose a trichotomy of TVR rewrite rules, namely TVR-
generating rules, intra-TVR rules, and inter-TVR rules, and show how

to model existing incremental techniques using these three types

of rules. This modeling enables us to unify existing incremental

techniques and leverage them uniformly when exploring the plan

space; it also allows IQP to evolve by adding new TVR rewrite rules.

4.1 TVR-Generating and Intra-TVR Rules
Most existing work on incremental computation revolves around

the notion of delta query that can be described as Eq. 1 below.

& ('C ′) = & ('C + Δ'C
′
C) = & ('C) + d& ('C ,Δ'C

′
C) . (1)

1
Note that Final also needs to �lter out empty groups with zero contributing tuples.

We omit this detail due to the limited space.

17

(1)

(3)

(4)

(3) (4)

(1) (2)

(2)

(a)

{ } { }

(b)

{ }

{ }

(1)

(2)

(3)

(1) (2)

(3)

(0)

(c)

{ } { }

(d)

Figure 3: (a) Examples of TVR-generating and intra-TVR rules, (b) examples of inter-TVR equivalence rules in IM-2, (c) exam-
ples of inter-TVR equivalence rules in outer-join view maintenance, and (d) the incremental plan space of Example 1.

The idea is intuitive: when an input delta Δ��
′
� arrives, instead of re-

computing the query on the new input snapshot�� ′ , one can directly

compute a delta update to the previous query result � (��) using a

new delta query �� . Essentially, Eq. 1 contains two key parts—the

delta query �� and the merge operator +, which correspond to the

�rst two types of TVR rewrite rules, namely TVR-generating rules
and intra-TVR rules, respectively.
TVR-Generating Rules. Formally, TVR-generating rules de�ne

for each relational operator on a TVR, how to compute its deltas

from the snapshots and deltas of its input TVRs. In other words,

TVR-generating rules de�ne �� for each relational operator� such

that Δ�� ′
� = �� (�� ,Δ��

′
�). Many previous studies on deriving delta

queries under di�erent semantics [13, 14, 18, 23, 24] fall into this

category. As an example, Fig. 3(a) shows the TVR-generating rules

used by IM-1 in Example 1. The rules for left outer-join (Rule (1))2
and aggregate (Rule (2)) are from [23] and [24], respectively. For

simplicity, we separate the inserted/deleted part in a TVR delta,

and denote them by superscripting Δ with +/−. The blue lines in
Fig. 3(a) demonstrate these TVR-generating rules in a plan space.

Intra-TVRRules. Intra-TVR rules de�ne the conversions between

snapshots and deltas of a single TVR. As in Eq. 1, the merge operator

+ de�nes how to merge � ’s snapshot �� and delta Δ�� ′
� into a new

snapshot �� ′ . Other examples of intra-TVR rules include rules that

take the di�erence between snapshots/deltas if the merge operator

+ has an inverse operator −, e.g., �� ′ − �� = Δ��
′
� . The red lines in

Fig. 3(a) demonstrate the intra-TVR rules used by IM-1 in Example 1.

Note that when merging the snapshot/delta of � ⊲⊳�� �, we use +#
(Rule (3)), whereas when merging the snapshot/delta of � (� ⊲⊳�� �)
(query summary), we use +��� ((Rule (4)).

2
For brevity, padding nulls to match outer join’s schema is omitted in Fig. 3(a) and

Fig. 3(c). This padding can simply be implemented using a project operator.

4.2 Inter-TVR Rules
There are incremental methods that cannot be modeled using the

two aforementioned types of rules alone. The IM-2 approach in

Example 1 is such an example. Di�erent from IM-1, approach IM-2

does not directly deliver the snapshot of � ⊲⊳�� � at �1. Instead,

it delivers only the tuples that will not be retracted in the future,

essentially the results of � ⊲⊳ �. At �2 when the data is known to

be complete, IM-2 computes the rest part of � ⊲⊳�� �, essentially

� ⊲⊳�� �, then pads with nulls to match the output schema.

This observation shows another family of incremental methods:

without computing� directly, one can incrementally compute a set

of queries {� ′
1
, · · · , � ′

�
}, and then apply another query � on their

results to get � , formally described as Eq. 2. The intuition is that

{� ′
1
, · · · , � ′

�
} may be more amenable to incremental computation:

� (�) = � (� ′
1
(�), · · · , � ′

�
(�)) (2)

Eq. 2 describe a general family of methods: they all rely on

certain rewrite rules describing the equivalence between snapshot-

s/deltas of multiple TVRs. We summarize this family of methods

into inter-TVR rules. Next we demonstrate using a couple of existing

incremental methods how they can be modeled by inter-TVR rules.

(1) IM-2: Let us revisit IM-2 using the terminology of inter-TVR

rules. Formally, � = � ⊲⊳�� � is decomposed into ��
and ��

:

��
� = �� ⊲⊳ �� , ��

� = �� ⊲⊳
�� �� , �� = ��

� +# ��
� (3)

where ��
is a positive part that will not retract tuples if both �

and � are append-only, whereas ��
represents a part that could

retract tuples. The inter-TVR rule in Eq. 3 states that any snapshot

of � can be decomposed into snapshots of ��
and ��

at the same

time. Similar decomposition holds for the aggregate � in summary
too, just with a di�erent merge operator +��� . Fig. 3(b) depicts

18

these rules in a plan space. As it is easier to incrementally compute

inner join than left outer join, &%
can be incrementalized more

e�ciently than & with rules in §4.1, whereas &#
cannot be easily

incrementalized, and is not computed until the completion time.

(2) Outer-join view maintenance: [30] proposed a method to in-

crementally maintain outer-join views. Its main idea can be sum-

marized using two types of inter-TVR rules:

&C = &�
C +# &�

C +# &*
C , Δ&� C

′

C = % (Δ&�C ′

C , &C) (4)

The left rule decompose a query into three parts given an update

to a single input table: a directly a�ected part &�
, an indirectly

a�ected part&�
, and an una�ected part&*

, formally de�ned using

the join-disjunctive normal form of & . Due to space limitation we

refer the readers to [30] for formal details. Intuitively, an insertion

(deletion) into the input table will cause insertions (deletions) to

&�
and deletions (insertions) to &�

, but leave &*
una�ected. Eq. 4

right describes the second type of rules that directly compute the

deltas of &�
from the delta of &�

and the previous snapshot of & .

At updates, one can use the TVR-generating rules to compute the

delta of &�
, and the inter-TVR rules in Eq. 4 right to get delta of

&�
; these two deltas can be merged to incrementally compute & .

Take query sales_status as an example. Fig. 3(c) shows the cor-

responding inter-TVR rules. As the algorithm in [30] considers

updating one input table at a time, we insert a virtual time point

C ′ between C1 and C2, assuming ' and (are updated separately at

C ′ and C2. Rule (0) shows the decomposition of sales_status at C ′

and C2 following the inter-TVR rule in Eq. 4 left. By applying the

TVR-generating rules, &�
can be incrementally computed as rules

(1) and (3); whereas &�
can be incrementally computed following

the inter-TVR rule in Eq. 4 right, as shown in rule (2). Combining

them yields the delta of & as in Table 4© in Fig. 2.

In our technical report [46], we demonstrate more examples of

using inter-TVR rules to express complex incremental methods

such as the higher-order view maintenance algorithm [3, 35].

4.3 Putting Everything Together
The above TVR rewrite rules lay a theoretical foundation for our

IQP framework. Di�erent TVR rules can be extended individually

and work together automatically. For example, TVR-generating

rules can be applied on any TVR created by inter-TVR rules. By

jointly applying TVR rewrite rules and traditional rewrite rules, we

can explore a plan space much larger than any individual incremen-

tal method. Fig. 3(d) shows an example plan space by overlaying

Fig. 3(a) and 3(b). Any tree rooted at W ((⊲⊳;> ')C2 is a valid incre-

mental plan for Example 1, e.g., IM-2’s plan is shown in red.

In the next two sections, we discuss how to build an optimizer

framework based on the TIP model, including plan-space explo-

ration (§5) and selecting an optimal incremental plan (§6).

5 PLAN-SPACE EXPLORATION
In this section we study how Tempura explores the incremental plan

space. Existing query optimizers explore plans only for a speci�c

time. For incremental processing, we need to explore a much bigger

plan space by considering not only relations at di�erent times, but

also transformations between them. We illustrate how to incorpo-

rate the TIP model into a Cascades-style optimizer [20, 22], and

develop a cost-based optimizer framework for IQP called Tempura.
We focus on the key adaptations on two main modules. (1)Memo:

it keeps track of the explored plan space, i.e., all plan alternatives

generated, in a succinct data structure, typically represented as

an AND/OR tree, for detecting redundant derivations and fast re-

trieval. (2) Rule engine: it manages all the transformation rules,

which specify algebraic equivalence laws and physical implementa-

tions of logical operators, and monitors new plans generated in the

memo. Whenever there are changes, the rule engine �res applicable

transformation rules on the newly-generated plans to add more

plan alternatives to the memo. We refer interested readers to our

technical report [46] for more details.

5.1 Memo: Capturing TVR Relationships
The memo in the traditional Cascades-style optimizer only captures

two levels of equivalence relationship: logical equivalence and phys-
ical equivalence. A logical equivalence class groups operators that

generate the same result set; within each logical equivalence class,

operators are further grouped into physical equivalence classes by

their physical properties such as sort order, distribution, etc. The

“Traditional Memo” part in Fig. 4(a) depicts the traditional memo

of the sales_status query. For brevity, we omit the physical equiva-

lence classes. For instance, LeftOuterJoin[0,1] has Groups G0 and
G1 as children, and it corresponds to the plan tree rooted at ⊲⊳;> .

G2 represents all plans logically equivalent to LeftOuterJoin[0,1].
However, the above two equivalences are not enough to capture

the rich relationships in the TIPmodel. For example, the relationship

between snapshots and deltas of a TVR cannot be modeled using

the logical equivalence due to the following reasons. Two snapshots

at di�erent times produce di�erent relations, and the snapshots and

deltas do not even have the same schema (deltas have an extra # col-

umn). To solve this problem, on top of logical/physical equivalence

classes, we explicitly introduce TVR nodes into the memo, and

keep track of the following relationships, shown as the “Tempura
Memo” part in Fig. 4(a): (1) Intra-TVR relationship speci�es the

snapshot/delta relationship between logical equivalence classes of

operators and the corresponding TVRs. The traditional memo only

models scanning the full content of (, i.e., (C2 , represented by G0,

while the Tempuramemo models two more scans: scanning the par-

tial content of (available at C1 ((C1), and scanning the delta input of

(newly available at C2 (Δ(
C2
C1
), represented by G3 and G5. The memo

uses an explicit TVR-0 to track these intra-TVR relationships. (2)

Inter-TVR relationship speci�es the relationship between TVRs

described by inter-TVR equivalence rules. For example, the IM-2

approach decomposes (⊲⊳;> ' (TVR-2) into two parts &%
(TVR-3)

and &#
(TVR-4) as in §3. Note that the above relationships are

transitive. For instance, as G7 is the snapshot at C2 of TVR-3, and

TVR-3 is in turn the &%
part of TVR-2, G7 is also related to TVR-2.

5.2 Rule Engine: Enabling TVR Rewritings
As the memo of Tempura strictly subsumes a traditional Cascades

memo, traditional rewrite rules can be adopted and work without

modi�cations. Besides, the rule engine of Tempura supports TVR
rewrite rules. Tempura allows optimizer developers to de�ne TVR

19

LeftOuterJoin[0, 1]

G2

S

RScan(returns@t2)[]

G1

Scan(sales@t2)[]

G0

LeftOuterJoin[0, 1]

G2

LeftAntiJoin[0, 1]

G10

InnerJoin[0, 1]

G7 InnerJoin[3, 4]

G8

DeltaInnerJoin[3,4,5,6]

G9

G1 G4 G6

Union[7,10]

AdditiveUnion[8, 9]

Scan(returns@t2)[] Scan(returns@t1)[] Scan(returns@(t1t2])[]

G0 G3 G5

Scan(sales@t2)[] Scan(sales@t1)[] Scan(sales@(t1t2])[]

TVR-4

t2 : G10

QP: N/A QN: TVR-4

TVR-1
t1: G4

QN�: N/AQP�: TVR-1

Δt1,t2: G6t2: G1

TVR-0

t1: G3

QN�: N/AQP�: TVR-0

Δt1,t2: G5t2: G0

TVR-2

t2: G2

QN: TVR-4QP: TVR-3

TVR-3

t1: G8

QN�: N/AQP�: TVR-3

Δt1,t2: G9t2: G7

Traditional Memo Tempura Memo

(a) An example memo of subquery sales_status

G3 G5

Scan(sales@t1)[] Scan(sales@(t1t2])[]

G4 G6

Scan(returns@t1)[] Scan(returns@(t1t2])[]

TVR-1
t1: G4

QN: N/AQP: TVR-1

Δt1,t2: G6t2: G1

TVR-2

t2: G2LeftOuterJoin[0, 1]

G2

Scan(returns@t2)[]

G1

Scan(sales@t2)[]

G0

TVR-1
t2: G1

QN: N/AQP: TVR-1

InnerJoin[0,1]

G7
TVR-2

t2: G2 QP: TVR-3

TVR-3

t2: G7 QP: TVR-3 QN: N/A

TVR-0
t1: G3

QN: N/AQP: TVR-0

Δt1,t2: G5t2: G0

InnerJoin[3, 4]

G8 G9 TVR-3
t1: G8Δt1,t2�: G9t2: G7

QN�: N/AQP�: TVR-3

TVR-0
t2�: G0

QN: N/AQP: TVR-0

Initial Step 3

Step 2

DeltaInnerJoin[3,4,5,6]

Step 1

(b) A step-wise illustration of the growth of the memo

Rule 1

operator operand

TVR operand

operator edge

intra-TVR edge

inter-TVR edge

=G8

=G3 =G4=TVR-0 =G5 =G6=TVR-1

=TVR-3
=G9

(c) A TVR-generating rule pattern

Rule 2

=G2

=G8

=TVR-2 =TVR-3

=G0 =G1=TVR-0 =TVR-0 =G3 =G4=TVR-1 =TVR-1

(d) An inter-TVR rule pattern

Figure 4: Examples of the memo and TVR rewrite-rule patterns in Tempura.

rewrite rules by specifying a graph pattern on both relational op-

erators and TVR nodes in the memo. A TVR rewrite rule pattern

consists of two types of nodes and three types of edges: (1) operator
operands that match relational operators; (2) TVR operands that
match TVR nodes; (3) operator edges between operator operands

that specify traditional parent-child relationship of operators; (4)

intra-TVR edges between operator operands and TVR operands that

specify intra-TVR relationships; and (5) inter-TVR edges between
TVR operands that specify inter-TVR relationships. All nodes and

intra/inter-TVR edges can have predicates. Once �red, TVR rewrite

rules can register new TVR nodes and intra/inter-TVR relationships.

Fig. 4(c)-4(d) depict two TVR rewrite rules, where solid nodes

and edges specify the patterns to match, and dotted ones are newly

registered by the rules. In the �gures, we also show an example

match of these rules when applied on the memo in Fig. 4(a). Rule
1 is the TVR-generating rule to delta compute an inner join. It

matches a snapshot of an InnerJoin, whose children !, ' each have

a delta sibling !′, '′
. The rule generates a DeltaInnerJoin taking !,

', !′, '′
as inputs, and register it as a delta sibling of the original

InnerJoin.Rule 2 is an inter-TVR rule of IM-2. It matches a snapshot

of a LeftOuterJoin, whose children !, ' each have a &%
snapshot

sibling !′, '′
. The rule generates an InnerJoin of !′ and '′

, and

register it as the &%
snapshot sibling of the original LeftOuterJoin.

Fig. 4(b) demonstrates the growth of a memo in Tempura. For
each step, we only draw the updated part due to space limitation.

The memo starts with G0 to G2 and their corresponding TVR-0

to TVR-2. In step 1, we �rst populate the snapshots and deltas of

the scan operators, e.g., G3 to G6, and register the intra-TVR re-

lationship in TVR-0 and TVR-1. We also populate their &%
and

&#
inter-TVR relationships as in IM-2 (for base tables these rela-

tionships are trivial). In step 2, rule 2 �res on the tree rooted at

LeftOuterJoin[0,1] in G2 as in Fig. 4(d). In step 3, rule 1 �res on the

tree rooted at InnerJoin[0,1] in G7 as in Fig. 4(c). By applying other

TVR rewrite rules, we eventually get the memo in Fig. 4(a).

To facilitate fast rule triggering, Tempura indexes the rule pat-
terns by their operands and edges. Whenever changes in the memo

are detected, Tempura only �res patterns with operands and edges

that potentially match the changes. Tempura does not distinguish
TVR rules from traditional rules in terms of rule �ring. All rule

matches are stored in the same queue, and the �ring order is de-

termined by the customizable scoring function. As TVR rules are

transformations on logical plans, we adjusted the scoring function

to �re TVR rules before physical implementation rules.

5.3 Speeding Up Exploration Process
In this section, we discuss optimizations to speed up the exploration

process, which is needed since IQP explores a much bigger plan

space than traditional query planning.

Translational symmetry of TVRs.The structures in the Tempura
memo usually have translation symmetry along the timeline, be-

cause the same rule generates similar patterns when applied on

snapshots or deltas of the same set of TVRs. For instance, in Fig. 4(d),

if we let C ′ = C1 instead, !
′
('′

) will match G0 (G1) instead of G3

(G4), and we will generate the InnerJoin in G7 instead of G8. In

other words, InnerJoin[0,1] in G7 and InnerJoin[3,4] are translation
symmetric, modulo the fact that G0, G1, and G7 (G3, G4, and G8)

are all snapshot C1 (C2) of the corresponding TVRs respectively.

By leveraging this symmetry, instead of repeatedly �ring TVR

rewrite rules on snapshots/deltas of the same set of TVRs, we can

apply the rules on just one snapshot/delta, and copy the structures

to other snapshots/deltas. This helps eliminate the expensive repet-

itive matching process of the same rule patterns on the memo. The

improved process is as follows:

(1) We seed the TVRs of the leaf operators (usually Scan) with only

one snapshot plus a consecutive delta, and �re all the rewrite

rules to populate the memo.

(2) We seed the TVRs leaf operators with all snapshots and deltas,

and copy the memo from step 1 by substituting its leaf operators

with their snapshot/delta siblings in the corresponding TVRs.

(3) We continue optimizing the copied memo, as we can further

apply time-speci�c optimization, e.g., pruning empty relations

if a delta at a speci�c time is empty.

20

......

(a)

......

P1 P2

(b)

Figure 5: Examples of (a) the temporal plan space, and (b) a
temporal assignment for subquery sales_status’s plan.

Pruning non-promising alternatives. There are multiple ways

to compute a TVRs snapshot or delta, within which certain ways are

usually more costly than others. We can prune the non-promising

alternatives. For instance, to compute a delta, one can take the dif-

ference of two snapshots, or use TVR-generating rules to directly

compute from deltas of the inputs. Based on the experience of pre-

vious research on incremental computation [28], we know that the

plans generated by TVR-generating rules are usually more e�cient.

Therefore, for operators that are known to be easily incrementally

maintained, such as �lter and project, we assign a lower importance

to intra-TVR rules for generating deltas to defer their �ring. Once

we �nd a delta that can be generated through TVR-generating rules,

we skip the corresponding intra-TVR rules altogether. To imple-

ment this optimization, we can give this subset of intra-TVR rules

a lower priority than all other rules, and thus other TVR rewrite

rules and traditional rewrite rules will always be ranked higher.

Each intra-TVR rule also has an extra skipping condition, which is

tested to see whether the target delta is already generated before

�ring the rule. If so, the rule is skipped.

Guided exploration. Inside a TVR, snapshots and deltas consec-

utive in time can be merged together, leading to combinatorial

explosion of rule applications. However, the merge order of these

snapshots and deltas usually do not a�ect the cost of the �nal plan.

Thus, we limit the exploration to a left-deep merge order. Specif-

ically, we disable merging of consecutive deltas, and only allow

patterns that merge a snapshot with its immediately consecutive

delta. In this way, we always use a left-deep merge order.

6 SELECTING AN OPTIMAL PLAN
In this section we discuss how Tempura selects an optimal plan

in the explored space. The problem di�ers from existing query

optimizers in two ways: (1) costing and searching the plan space

need to consider the temporal execution of a plan; and (2) the

optimal plan needs to decidewhich states tomaterialize tomaximize

the sharing between di�erent time points within a query.

6.1 Time-Point Annotations of Operators
Costing the plan alternatives is not trivial because the temporal

dimension is involved. Fig. 5(a) depicts one physical plan rooted at

((⊲⊳;> ')C2 , as shown in red in Fig. 3(d). This plan only speci�es

the concrete physical operations taken on the data, but does not

specify when they are executed. Actually, each operator in the plan

usually has multiple choices of execution time. In Fig. 5(a), the

time points annotated alongside each operator shows the possible

temporal domain of its execution. For instance, snapshots (C1 and

'C1 are available at C1, and thus can execute at any time after that,

i.e., C1 or C2. Deltas Δ'
C2
C1
and Δ(C2C1 are not available until C2, and thus

any operators taking it as input, including the IncrHashInnerJoin,
can only be executed at C2. The temporal domain of each operator

$, denoted t-dom($), can be de�ned inductively: (1) For a base
relation', t-dom(') is the set of execution times that are no earlier

than the time point when ' is available. (2) For an operator $
with inputs �1, . . . , �: , t-dom(') is the intersection of its inputs’

temporal domains: t-dom(') = ∩
1≤ 9≤: t-dom(� 9).

To fully describe a physical plan, one has to assign each operator

in the plan an execution time from the corresponding temporal do-

main. We denote a speci�c execution time of an operator$ as g ($).
We have the following de�nition of a valid temporal assignment.

Definition 5 (Valid Temporal Assignment). An assignment
of execution times to a physical plan is valid if and only if for each
operator $, its execution time g ($) satis�es g ($) ∈ t-dom($) and
g ($) ≥ g ($ ′) for all operators $ ′ in the subtree rooted at $.

Fig. 5(b) demonstrates a valid temporal assignment of the physi-

cal plan in Fig. 5(a). At C1, the plan computes HashInnerJoin of (C1
and 'C1 , and shu�es (C1 and 'C1 to prepare for IncrHashInnerJoin.
At C2, the plan shu�es the new deltas Δ(C2C1 and Δ'C2C1 , �nishes In-
crHashInnerJoin, and unions the results with that of HashInnerJoin
computed at C1. Note that if an operator $ and its input � have dif-

ferent execution times, then the output of � needs to be saved �rst

at g (�), and later loaded and fed into$ at g ($), e.g., Union at C2 and

HashInnerJoin at C1. The cost of Save and Load needs to be properly

included in the plan cost. It is worth noting that some operators

save and load the output as a by-product, for which we can spare

Save and Load, e.g., Exchange of (C1 , 'C1 at C1 for IncrHashInnerJoin.

6.2 Time-Point-Based Cost Functions
The cost of an incremental plan is de�ned under a speci�c assign-

ment of execution times. Therefore, the optimization problem is

formulated as: given a plan space, �nd a physical plan and tem-

poral assignment that achieve the lowest cost. In this section, we

discuss the cost model and optimization algorithm for this problem

without considering sharing common sub-plans. We will discuss

the problem of how to decide which states to materialize in §6.3.

As an incremental plan can span across multiple time points,

the cost function c̃ in an IQP problem (as in §2.1) is extended to a

function taking into consideration of costs at di�erent times. For

the cost at each time point, we inherit the general cost model used

in traditional query optimizers, i.e., the cost of a plan is the sum of

the costs of all its operators. Below we give two examples of c̃. We

denote traditional cost functions as 2 , and 28 is the cost at time C8 .

21

As before, 2 can be a number, e.g., estimated monetized resource

cost, or a structure, e.g., a vector of CPU time and I/O.

(1) 2̃F ($) = ∑
8=1..) F8 · 28 ($). The extended cost of an operator

is a weighted sum of its cost at each time C8 . For the example

setting in §2.2,F1 = 0.2 for C1 andF2 = 1 for C2.

(2) 2̃E ($) = [21 ($), . . . , 2) ($)]. The extended cost is a vector com-

bining costs at di�erent times. 2̃E can be compared entry-wise

in a reverse lexical order. Formally, 2̃E ($1) > 2̃E ($2) i� ∃ 9 s.t.
2 9 ($1) > 2 9 ($2) and 28 ($1) = 28 ($2) for all 8, 9 < 8 ≤) .

Consider the plan in Fig. 5(a) as an example. To get the result of

HashInnerJoin at C2, we have two options: (i) compute the join at C2;

or (ii) as in Fig. 5(b), compute the join at C1, save the result, and load

it back at C2. Assume the cost of computing HashInnerJoin, saving
the result, and loading it are 10, 5, 4, respectively. Then for option

(i) (21, 22) = (0, 10), for option (ii) (21, 22) = (15, 4). Say that we use

2̃F as the cost function. If F1 = 0.6 and F2 = 1 then option (i) is

better, whereas ifF1 = 0.2 andF2 = 1, option (ii) becomes better.

Dynamic programming (DP) used predominantly in existing

query optimizers [22, 32, 38] also need to be adapted to handle

the cost model extensions. In existing query optimizers, the DP

state space is the set of all operators in the plan space, represented as

{$}. Each operator$ records the best cost of all the subtrees rooted

at $. We extend the state space by considering all combinations of

operators and their execution times, i.e., {$}× t-dom({$}). Instead
of recording a single optimum, each$ records multiple optima, one

for each execution time g ($), which represents the best cost of all

the subtrees rooted at$ if$ is generated at g . During optimization,

the state-transition function is as Eq. 5. That is, the best cost of$ if

executed at g is the best cost of all possible plans of computing $

with all possible valid temporal assignments compatible with g .

c̃[$, g] =<8=∀ valid g 9

(∑
9

c̃[� 9 , g 9] + 2g ($)
)

(5)

In general, we can apply DP to the optimization problem for any

cost function satisfying the property of optimal substructure. We

have the following correctness result of the above DP algorithm.

Theorem 6. The optimization problem under cost functions 2̃F
and 2̃E without sharing common sub-plans satis�es the property of
optimal substructure, and dynamic programming is applicable.

6.3 Deciding States to Materialize
The problem of deciding the states to materialize can be modeled

as �nding the sharing opportunities in the plan space. In other

words, a shared sub-plan between %8 and % 9 in an incremental

plan is essentially an intermediate state that can be saved by %8 and

reused by % 9 . For example, in Fig. 5(a), since both HashInnerJoin and
IncrHashInnerJoin require shu�ing (C1 and 'C1 , the two relations

can be shu�ed only once and reused for both joins. The parts 1©
and 2© circled in dashed lines depict the sharable sub-plans.

Finding the optimal common sub-plans to share is a multi-query

optimization (MQO) problem. In this paper, we extend the MQO

algorithm in [27]. The general idea is to greedily enumerate all

possible shareable sub-plans, and for each case optimize the best

plan given the enumerated sub-plans materialized. The optimum

under all cases is the solution to the MQO problem. We refer the

readers to our technical report [46] for the details of the algorithm.

7 TEMPURA IN ACTION
In this section, we discuss a few important considerations when

applying Tempura in practice.

Dynamic re-optimization of incremental plans.We have stud-

ied the IQP problem assuming a static setting, i.e., in (®), ®�, ®&, c̃)
where ®) and ®� are given and �xed. In many cases, the setting

can be much more dynamic where ®) and ®� are subject to change.

Tempura can be adapted to a dynamic setting using re-optimization.

Generally, an incremental plan P = [%1, · · · , %8−1, %8 , · · · , %:] for
®) = [C1, · · · , C8−1, C8 , · · · , C:] is only executed up to C8−1, after which
®) and ®� change to ®) ′ = [C8′, · · · , C:′] and ®� ′ = [�8′, · · · , �:′].
Tempura can adapt to this change by re-optimizing the plan under

®) ′
and ®� ′

. We want to remark that during re-optimization, Tempura
can incorporate the materialized states generated by %1, · · · , %8−1
as materialized views. In this way Tempura can choose to reuse the

materialized states instead of blindly recomputing everything.

Data statistics estimation. IQP scenarios usually involve plan-

ning for future logical times (e.g., IVM-PD) or physical times (e.g.,

PWD-PD) as described in §2.1, for which estimating the data statistics

becomes very challenging. Since these scenarios typically involve

recurring queries, we can use historical data arrival patterns to esti-

mate future data statistics. Having inaccurate statistics is not a new

problem to query optimization, andmany techniques have been pro-

posed [48] to tackle this issue. Note that we can always re-optimize

the plan when we �nd that the previously estimated statistics is

not accurate. Also, techniques such as robust planning [10, 21, 47]

can be adopted to IQP too. These are out of the scope of this paper.

8 EXPERIMENTS
In this section, we study the e�ectiveness and e�ciency of Tempura.
We used the query optimizer of Alibaba Cloud MaxCompute [5],

which was built on Apache Calcite 1.17.0 [6], as a traditional opti-

mizer baseline. We implemented Tempura on the optimizer of Max-

Compute. We integrated four commonly used incremental methods

into Tempura using TVR-rewrite rules: (1) IM-1 in §2.2, (2) IM-2 in

§2.2 and §4.2, (3) OJV the outer-join view maintenance algorithm

in §4.2, (4) HOV the higher-order view maintenance algorithm in

§4.2. By default, Tempura jointly considered all four methods in

planning. In the experiments, we used Tempura to simulate each

method by turning o� the inter-TVR rules of the other methods.

We used two incremental processing scenarios, PDW-PD and IVM-
PD described in §2.1, to demonstrate Tempura. PDW-PD uses the cost
function 2̃F ($) (in §6.2), where 28 was a linear function of the

estimated CPU/IO/memory/network costs, andF8 ∈ [0.25, 0.3] for
early runs andF8 = 1 for the last run.

We used the TPC-DS benchmark [43] (1)�) to study the ef-

fectiveness (§8.1) and performance (§8.3) of Tempura. To further

demonstrate the e�ectiveness of the plans, in §8.2 we used two

real-world analysis workloads consisting of recurrent daily jobs

from Alibaba’s enterprise data warehouse, denoted as W-A and W-B.
W-A and W-B have 274 and 554 queries each, among which over 60%

have more than 1 join, and over 26% have more than 2 joins.

Query optimization was carried out single-threaded on a ma-

chine with an Intel Xeon Platinum 8163 CPU@ 2.50GHz and 512GB

memory, whereas the generated query was executed on a cluster

of thousands of machines shared with other production workloads.

22

q10 q35 q40 q78 q800.0

0.4

0.8

1.2

1.6

Re
la

tiv
e

Co
st

IM-1 IM-2 OJV HOV Tempura

(a)

delta-big delta-small delta-R delta-RS0.0

0.3

0.6

0.9

1.2

Re
la

tiv
e

Co
st

IM-1 IM-2 OJV HOV Tempura

(b)

q10 q35 q40 q78 q800.0

0.4

0.8

1.2

1.6

Re
la

tiv
e

Co
st

IM-1 IM-2 OJV HOV Tempura

(c)

delta-big-0.3
delta-big-0.7

delta-small-0.3
delta-small-0.7

delta-R-0.3
delta-R-0.7

delta-RS-0.3
delta-RS-0.70.0

0.3

0.6

0.9

1.2

Re
la

tiv
e

Co
st

IM-1 IM-2 OJV HOV Tempura

(d) (e) (f)

Figure 6: (a)(b) The optimal estimated costs of incremental plans in IVM-PD for di�erent queries and data-arrival patterns. (c)(d)
The optimal estimated costs of incremental plans in PDW-PD for di�erent queries, data-arrival patterns and cost weights. (e)(f)
The PDW-to-TDW ratio of the real total CPU cost and CPU cost at 24:00 for the data warehouse workloads respectively.

8.1 E�ectiveness of IQP
We �rst evaluated the e�ectiveness of IQP by comparing Tempura
with four individual incremental methods IM-1, IM-2, OJV, and
HOV, in both the PDW-PD and IVM-PD scenarios. We controlled and

varied two factors in the experiments: (1) Queries. We chose �ve

representative queries covering complex joins (inner-, left-outer-

, and left-semi-joins) and aggregates. (2) Data-arrival patterns. We

controlled the amount of input data available in each incremental

run by varying the ratio � = |�1 |/|�2 |, and retractions in the input

data. We chose four data-arrival patterns: delta-big (� = 1), delta-

small (� = 4), delta-R (� = 2 with retractions in the sales table), and
delta-RS (� = 2 with retractions in both sales and returns tables).
As the accuracy of cost estimation is orthogonal to Tempura, to
isolate its interference, we mainly compared the estimated costs

of plans produced by the optimizer, and reported them in relative

scale (dividing them by the corresponding costs of IM-1) for easy
comparison. The trend of real costs (reported in [46]) was consistent

with the planner’s estimation. Due to space limit, we only report

the most signi�cant entries in the cost vector of �̃� for IVM-PD.
IVM-PD. We �rst �xed the data-arrival pattern to delta-big and

varied the queries. The optimal-plan costs are reported in Fig. 6(a).

As shown, di�erent queries prefer di�erent incremental methods.

For example, IM-1 outperformed both OJV and HOV for complex

queries such as q35. This is because OJV computed ��
by left-semi

joining the delta of ��
with the previous snapshot (§4.2), and a

bigger delta incurred a higher cost of computing ��
. Whereas for

simpler queries such as q80, OJV degenerated to a similar plan as

IM-1, and thus had similar costs. Note that HOV costs much less than

both OJV and IM-1, due to the fact that the maintained higher-order

views avoid many repeated joins (e.g., catalog_sales inner joining
warehouse, item and date_dim) as in OJV and IM-1.

Next we chose q10 as a complex query with multiple left outer

joins, and varied the data-arrival patterns. The results are plotted

in Fig. 6(b). Again, the data-arrival patterns a�ected the preference

of incremental methods. For example, IM-2 could not handle input

data with retractions. Compared to delta-big, HOV and OJV started
to outperform IM-1 by a large margin in delta-small, as both of

them could use di�erent join orders when applying updates to

di�erent input relations, and joining a smaller delta earlier could

signi�cantly reduce the join cost.

For both experiments, Tempura consistently delivered the best

plans. For q40 in Fig. 6(a) and the delta-small case in Fig. 6(b),

Tempura delivered a plan 5-10X better than others. Tempura com-

bines all three of HOV, IM-2 and IM-1 to generate a mixed optimal

plan, and thus leveraged all their advantages. E.g., in q40 Tempura
used a similar incremental plan to HOV, but Tempura used the IM-2
approach to join the higher-order views � and Δ�, and applied

IM-1 to incrementalize the ��
part in IM-2.

PDW-PD. For the PDW-PD scenario, we conducted the same exper-

iments as in IVM-PD, and in addition tried di�erent weights used

in the cost functions (�1 = 0.3 vs.�1 = 0.7). We have similar con-

clusions as in IVM-PD, and the results are reported in Figures 6(c)

and 6(d). We make two remarks. (1) Since PDW-PD did not require

any outputs at earlier runs, Tempura automatically avoided unnec-

essary computation, e.g., IM-2 avoided computing the��
part, and

thus performed better for q10, q35, q40 than in IVM-PD. (2) The cost
function can also a�ect the choice of the optimizer. For instance, in

Fig. 6(d), q10 preferred HOV to OJVwhen�1 = 0.3, but the other way

when�1 = 0.7. This was because with the cost of early execution

increasing, it was less preferable to store many intermediate states

as in HOV. Tempura automatically exploited this fact and adjusted

the computation in each run, and moved some early computation

from the �rst incremental run to the second.

Conclusion. The optimal incremental plan is a�ected by many

factors and does need to be searched in a cost-based way. Tempura
can consistently �nd better plans than incremental methods alone.

8.2 Case Study: Progressive Data Warehouse
To validate the e�ectiveness of Tempura in a real application, we

conducted a case study of the PDW-PD scenario using two real-world

23

q1 q10 q20 q30 q40 q50 q60 q70 q80 q90 q9910 3

10 2

10 1

1

101

102

Ti
m

e
(s

)

Traditional Planning State Materialization Optimization (Incremental Query Planning) Plan-Space Exploration (Incremental Query Planning)

(a)

q22 q20 q43 q67 q27 q99 q85 q91 q5 q330

2

4

6

8

Ti
m

e
(s

)

Time of State Materialization Optimization
Time of Plan-Space Exploration

(b)

q22 q20 q43 q67 q27 q99 q85 q91 q5 q330.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

Ti
m

e
of

 P
la

n
Sp

ac
e

Ex
pl

or
at

io
n

(s
)

of Time Points = 3
of Time Points = 5
of Time Points = 7
of Time Points = 9

(c)

q22 q20 q43 q67 q27 q99 q85 q91 q5 q3310 3

10 2

10 1

1

101

102

Ti
m

e
of

 S
ta

te
 M

at
er

ia
liz

at
io

n
 O

pt
im

iz
at

io
n

(s
)

of Time Points = 3
of Time Points = 5

of Time Points = 7
of Time Points = 9

(d)

q22 q20 q43 q67 q27 q99 q85 q91 q5 q330.0

0.5

1.0

1.5

2.0

2.5

3.0

Ti
m

e
of

 P
la

n
Sp

ac
e

Ex
pl

or
at

io
n

(s
)

IM-1 + IM-2 + HOV + OJV
IM-1 + IM-2 + HOV
IM-1 + IM-2
IM-1

(e)

q22 q20 q43 q67 q27 q99 q85 q91 q5 q3310 3

10 2

10 1

1

101

Ti
m

e
of

 S
ta

te
 M

at
er

ia
liz

at
io

n
 O

pt
im

iz
at

io
n

(s
)

IM-1 + IM-2 + HOV + OJV
IM-1 + IM-2 + HOV
IM-1 + IM-2
IM-1

(f)

q22 q20 q43 q67 q27 q99 q85 q91 q5 q330
15
30
45
60
75
90

105
120
135
150

Ti
m

e
(s

)

Baseline
Baseline + TS
Baseline + PNA
Baseline + GE
Tempura

(g)

Figure 7: (a) Overall planning performance on the TPC-DS between traditional and incremental query planning. (b) Impact of
the query complexity, (c) (d) the size of IQP, and (e)(f) the number of incremental methods on the planning performance. (g)
E�ectiveness of the speed-up optimization techniques. Note that the selected queries are ordered by their query complexity.

analysis workloads W-A and W-B at Alibaba. We compared the re-

source usage of these workloads in two ways: (1) Traditional
(TDW), where we ran the workloads at 24:00 according to a sched-

ule using the plans generated by a traditional optimizer; and (2)

Progressive (PDW), where besides 24:00, we also early executed

the workloads at 14:00 and 19:00 (chosen to simulate the observed

cluster usage pattern) using the plans generated by Tempura.
Fig. 6(e) shows the real CPU cost of executing the workloads

(scored using the cost function in the PDW-PD setting), where we

plotted the cumulative distribution of the ratio between the CPU

cost in PDW versus that in TDW. We can see that PDW delivered

better CPU cost for 80% of the queries. For about 60% of the queries,

PDW was able to cut the CPU cost by more than 35%. Remarkably,

PDW delivered a total cost reduction of 56.2% and 55.5% for W-A
and W-B, respectively. Note that Tempura searched plans based on

the estimated costs which could be di�erent from the real execution

cost. As a consequence, for some of the queries (less than 10%) we

see more than 50% cost increase. Accuracy of cost estimation is

not within the scope of the paper. We further reported the PDW-

to-TDW ratio of the CPU cost at 24:00 in Fig. 6(f), as this ratio

indicated the resource reduction during the “rush hours.” As shown,

for both workloads, PDW reduced the resource usage at peak hours

for over 85% of the queries, and for over 70% of the queries we can

see signi�cant reduction of more than 25%. We refer readers to our

technical report [46] for detailed comparison results.

8.3 Performance of IQP
Next, we evaluated the performance of Tempura. IQP has two salient
characteristics: (1) In Plan-Space Exploration (PSE) phase, IQP ex-

plores a larger plan space. (2) IQP has a new State Materialization
Optimization (SMO) phase to decide the intermediate states to share.

We will present performance results on these two phases.

We used PDW-PD as the IQP problem de�nition. Unless other-

wise speci�ed, we set | �� | = 3. We tested Tempura on the TPC-DS

queries. Besides the overall performance study, we also present a

detailed study on four aspects: (1) Query complexity: How does

Tempura perform when queries become increasingly complex, e.g.,

with more joins or subqueries? (2) Size of IQP: How does Tempura

perform when | �� | changes? (3) Number of incremental meth-
ods: How does Tempura perform when users integrate more in-

cremental methods into it? (4) Optimization breakdown: How
e�ective are the speed-up optimizations in §5.3? To study the above

four aspects, we selected ten representative TPC-DS queries (Q22,

Q20, Q43, Q67, Q27, Q99, Q85, Q91, Q5, Q33) with increasing num-

bers of joins, aggregates, and subqueries.

Overall Planning Performance. We �rst studied the overall plan-

ning performance by comparing Tempurawith traditional planning.
Fig. 7(a) shows the end-to-end planning time on all TPC-DS queries.

As shown, although planned a much bigger plan space, Tempura
still delivered high planning performance: IQP �nished within 3

seconds for 80% queries, and for all queries �nished within 14 sec-

onds. For over 80% queries, the IQP optimization time was less than

24

24X of the traditional planning time. Even though slower than tra-

ditional planning at optimization time, IQP generated much better

incremental plans that brought signi�cant bene�t in resource usage

and query latency. For most queries, the CPU time on planning was

2-3 orders of magnitude smaller than the CPU cost saved by PDW

compared to TDW. We report the detailed numbers in [46].

Query Complexity. To study the impact of query complexity, we

reported the planning time break-down on the selected TPC-DS

queriesin Fig. 7(b). As shown, the planning time increased when the

query complexity increased, because the plan space grew larger for

complex queries. The time spent on PSE was less than that spent

on SMO in general, and also grew with a slower pace. This shows

that query complexity has a smaller impact on PSE.

Size of IQP. To study the impact of the size of the planning problem,

we gradually increased the number of incremental runs planned

from 3 to 9, and reported the time on PSE and SMO in Fig. 7(c)

and 7(d). As depicted, the time on PSE stayed almost constant as

the size of IQP changed. E.g., when the number of incremental

runs grew 3X, the time for q33 only slightly increased by 20%. This

was mainly due to the e�ective speed-up optimization techniques

introduced in §5.3. In comparison, the SMO time increased super-

linearly with increasing number of incremental runs, due to the

time complexity of the MQO algorithm we chose [27].

Number of Incremental Methods. To study the impact of more

incremental methods, we gradually added methods IM-1, IM-2, HOV
and OJV into Tempura. Fig. 7(f) and 7(g) show the time on PSE and

SMO, respectively. As illustrated, the time on both PSE and SMO

increased with more incremental methods, due to the increased

plan space. There are two interesting �ndings. (1) The PSE time did

not grow linearly with the number of incremental methods, but

rather the the plan space size that each method newly introduces.

E.g., the increase of PSE time at adding HOV was bigger than that

at adding OJV. This was because both HOV and OJV update a single

relation at a time, which are very di�erent from IM-1 and IM-2
that update all relations each time. (2) The number of incremental

methods had less impact than the size of the IQP problem, which

can be observed on the SMO time. This is because the plan space

explored by di�erent incremental methods often have overlaps,

whereas the plan spaces of di�erent incremental runs do not.

Optimization Breakdown. In the end, we evaluated the e�ective-

ness of the speed-up optimizations discussed in §5.3, i.e., transla-

tional symmetry (TS), pruning non-promising alternatives (PNA),

and guided exploration (GE). Fig. 7(g) reports the PSE times of dif-

ferent combinations of the speed-up optimizations. We compared

the implementations with no optimization (Baseline), with each

individual optimization (Baseline+TS, +PNA, +GE), and with all

three optimizations (Tempura). The optimizations together brought

up to 20X speed-up, among which the most e�ective ones were

PNA and TS, bringing 5-12X and 1.5-2.5X improvements each.

9 RELATED WORK
Incremental Processing. There are rich research works on incre-

mental processing, ranging from incremental view maintenance,

stream computing, to approximate query answering and so on.

Incremental view maintenance has been studied under both the

set [13, 14] and bag [18, 24] semantics, for queries with outer

joins [23, 30], and using higher-order maintenance methods [3].

Previous studies mainly focused on delta propagation rules for rela-

tional operators. Stream computing [1, 19, 34, 42] adopts incremen-

tal processing and sublinear-space algorithms to process updates

and deltas. Many approximate query answering studies [2, 9, 17]

focused on constructing optimal samples to improve query ac-

curacy. Proactive or trigger-based incremental computation tech-

niques [16, 50] were used to achieve low query latency. These

studies proposed incremental techniques in isolation, and do not

have a general cost-based optimization framework. In addition,

they can be integrated into Tempura.
Query Planning for Incremental Processing. Previous work
studied some optimization problems in incremental computation.

Viglas et al. [44] proposed a rate-based cost model for stream pro-

cessing. The cost model is orthogonal to Tempura and can be inte-

grated. DBToaster [3] discussed a cost-based approach to deciding

the views to materialize under a higher-order view maintenance

algorithm. Tang et al. [40] focused on selecting optimal states to ma-

terialize for scenarios with intermittent data arrival. They proposed

a DP algorithm for selecting states to materialize given a �xed phys-

ical incremental plan and a memory budget, by considering future

data-arrival patterns. These optimization techniques all focus on

the optimal materialization problem for a speci�c incremental plan

or incremental method, and thus are not general IQP solutions.

Flink [7] uses Calcite [12] as the optimizer to support stream

queries, which only provides traditional optimizations on the logical

plan generated by a �xed incremental method, but cannot combine

multiple incremental methods, nor consider correlations between

incremental runs. On the contrary, Tempura provides a general

framework for users to integrate various incremental methods, and

searches the plan space in a cost-based approach.

SemanticModels for Incremental Processing.CQL[8] exploited
the relational model to provide strong query semantics for stream

processing. Sax et al. [37] introduced the Dual Streaming Model

to reason about ordering in stream processing. The key idea be-

hind [8, 37] is the duality of relations and streams, i.e., time-varying

relations can be modeled as a sequence of static relations, or a se-

quence of change logs. The recent work [11] proposed to integrate

streaming into the SQL standard, and brie�y mentioned that TVRs

can serve as a uni�ed basis of both relations and streams. However,

their models do not include a formal algebra and rewrite rules on

TVRs. To the best of our knowledge, our TIP model for the �rst time

formally de�nes an algebra on TVRs, providing a principled way

to model di�erent types of snapshots/deltas and operators between

them. The trichotomy of TVR rewrite rules subsumes many existing

incremental methods, laying a theoretical foundation for Tempura.

10 CONCLUSION
In this paper, we proposed a theory called TIP model to formally

model incremental processing in its most general form, and based

on it developed a novel principled cost-based optimizer framework

Tempura for incremental data processing. Tempura not only uni�es

various existing techniques to generate an optimal incremental

plan, but also allows the developer to add their rewrite rules. We

conducted thorough experimental evaluation of Tempura in various
incremental-query scenarios to show its e�ectiveness and e�ciency.

25

REFERENCES
[1] Daniel J Abadi, Yanif Ahmad, Magdalena Balazinska, Ugur Cetintemel, Mitch

Cherniack, Jeong-Hyon Hwang, Wolfgang Lindner, Anurag Maskey, Alex Rasin,

Esther Ryvkina, et al. 2005. The design of the borealis stream processing engine..

In Cidr, Vol. 5. 277–289.
[2] Swarup Acharya, Phillip B Gibbons, Viswanath Poosala, and Sridhar Ramaswamy.

1999. The Aqua approximate query answering system. In ACM Sigmod Record,
Vol. 28. ACM, 574–576.

[3] Yanif Ahmad, Oliver Kennedy, Christoph Koch, and Milos Nikolic. 2012.

Dbtoaster: Higher-order delta processing for dynamic, frequently fresh views.

PVLDB 5, 10 (2012), 968–979.

[4] Alexander Aiken, Joseph MHellerstein, and Jennifer Widom. 1995. Static analysis

techniques for predicting the behavior of active database rules. ACM Transactions
on Database Systems (TODS) 20, 1 (1995), 3–41.

[5] Alibaba Cloud MaxCompute [n.d.]. https://www.alibabacloud.com/product/

maxcompute.

[6] Apache Calcite [n.d.]. https://calcite.apache.org.

[7] Apache Flink [n.d.]. https://�ink.apache.org.

[8] Arvind Arasu, Shivnath Babu, and Jennifer Widom. 2006. The CQL continuous

query language: semantic foundations and query execution. The VLDB Journal
15, 2 (2006), 121–142.

[9] Brian Babcock, Surajit Chaudhuri, and Gautam Das. 2003. Dynamic sample

selection for approximate query processing. In Proceedings of the 2003 ACM
SIGMOD international conference on Management of data. ACM, 539–550.

[10] Shivnath Babu, Pedro Bizarro, and David DeWitt. 2005. Proactive re-optimization.

In Proceedings of the 2005 ACM SIGMOD international conference on Management
of data. 107–118.

[11] Edmon Begoli, Tyler Akidau, Fabian Hueske, Julian Hyde, Kathryn Knight, and

Kenneth Knowles. 2019. One SQL to Rule Them All. CoRR abs/1905.12133 (2019).

arXiv:1905.12133 http://arxiv.org/abs/1905.12133

[12] Edmon Begoli, Jesús Camacho-Rodríguez, Julian Hyde, Michael J. Mior, and

Daniel Lemire. 2018. Apache Calcite: A Foundational Framework for Optimized

Query Processing Over Heterogeneous Data Sources. In Proceedings of the 2018
International Conference on Management of Data (Houston, TX, USA) (SIGMOD
’18). ACM, New York, NY, USA, 221–230. https://doi.org/10.1145/3183713.3190662

[13] Jose A. Blakeley, Per-Ake Larson, and Frank Wm Tompa. 1986. E�ciently Updat-

ing Materialized Views. In Proceedings of the 1986 ACM SIGMOD International
Conference on Management of Data (Washington, D.C., USA) (SIGMOD ’86). ACM,

New York, NY, USA, 61–71. https://doi.org/10.1145/16894.16861

[14] O. Peter Buneman and Eric K. Clemons. 1979. E�ciently Monitoring Relational

Databases. ACM Trans. Database Syst. 4, 3 (Sept. 1979), 368–382. https://doi.org/

10.1145/320083.320099

[15] Badrish Chandramouli, Christopher N Bond, Shivnath Babu, and Jun Yang. 2007.

Query suspend and resume. In Proceedings of the 2007 ACM SIGMOD international
conference on Management of data. 557–568.

[16] Badrish Chandramouli, Jonathan Goldstein, and Abdul Quamar. 2013. Scalable

Progressive Analytics on Big Data in the Cloud. Proc. VLDB Endow. 6, 14 (Sept.
2013), 17261737. https://doi.org/10.14778/2556549.2556557

[17] Surajit Chaudhuri, Gautam Das, and Vivek Narasayya. 2007. Optimized strati�ed

sampling for approximate query processing. ACM Transactions on Database
Systems (TODS) 32, 2 (2007), 9.

[18] Surajit Chaudhuri, Ravi Krishnamurthy, Spyros Potamianos, and Kyuseok Shim.

1995. Optimizing Queries with Materialized Views. In Proceedings of the Eleventh
International Conference on Data Engineering (ICDE ’95). IEEE Computer Soci-

ety, Washington, DC, USA, 190–200. http://dl.acm.org/citation.cfm?id=645480.

655434

[19] Thanaa M Ghanem, Ahmed K Elmagarmid, Per-Åke Larson, and Walid G Aref.

2010. Supporting views in data stream management systems. ACM Transactions
on Database Systems (TODS) 35, 1 (2010), 1.

[20] Goetz Graefe. 1995. The Cascades Framework for Query Optimization. Data
Engineering Bulletin 18 (1995).

[21] Goetz Graefe, Wey Guy, Harumi Anne Kuno, and Glenn Paullley. 2012. Robust

query processing (dagstuhl seminar 12321). In Dagstuhl Reports, Vol. 2. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik.

[22] Goetz Graefe and William J McKenna. [n.d.]. The volcano optimizer genera-

tor: Extensibility and e�cient search. In Proceedings of IEEE 9th International
Conference on Data Engineering. IEEE, 209–218.

[23] Timothy Gri�n and Bharat Kumar. 1998. Algebraic Change Propagation for

Semijoin and Outerjoin Queries. SIGMOD Rec. 27, 3 (Sept. 1998), 22–27. https:

//doi.org/10.1145/290593.290597

[24] Timothy Gri�n and Leonid Libkin. 1995. Incremental Maintenance of Views

with Duplicates. In Proceedings of the 1995 ACM SIGMOD International Conference
on Management of Data (San Jose, California, USA) (SIGMOD ’95). ACM, New

York, NY, USA, 328–339. https://doi.org/10.1145/223784.223849

[25] Introducing Stream-Stream Joins in Apache Spark 2.3 [n.d.]. https:

//databricks.com/blog/2018/03/13/introducing-stream-stream-joins-in-apache-

spark-2-3.html.

[26] Jianfeng Jia, Chen Li, and Michael J Carey. 2017. Drum: A rhythmic approach to

interactive analytics on large data. In 2017 IEEE International Conference on Big
Data (Big Data). IEEE, 636–645.

[27] Tarun Kathuria and S. Sudarshan. 2017. E�cient and Provable Multi-Query

Optimization. In Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI Symposium
on Principles of Database Systems (Chicago, Illinois, USA) (PODS ’17). ACM, New

York, NY, USA, 53–67. https://doi.org/10.1145/3034786.3034792

[28] Christoph Koch. 2010. Incremental query evaluation in a ring of databases. In

Proceedings of the twenty-ninth ACM SIGMOD-SIGACT-SIGART symposium on
Principles of database systems. 87–98.

[29] Willis Lang, Rimma V. Nehme, Eric Robinson, and Je�rey F. Naughton. 2014.

Partial Results in Database Systems. In Proceedings of the 2014 ACM SIGMOD
International Conference on Management of Data (Snowbird, Utah, USA) (SIGMOD
’14). ACM, New York, NY, USA, 1275–1286. https://doi.org/10.1145/2588555.

2612176

[30] Per-Åke Larson and Jingren Zhou. 2007. E�cient Maintenance of Materialized

Outer-Join Views. In Proceedings of the 23rd International Conference on Data
Engineering, ICDE 2007, The Marmara Hotel, Istanbul, Turkey, April 15-20, 2007.
56–65. https://doi.org/10.1109/ICDE.2007.367851

[31] Yan-Nei Law, Haixun Wang, and Carlo Zaniolo. 2004. Query Languages and Data

Models for Database Sequences and Data Streams. In Proceedings of the Thirtieth
International Conference on Very Large Data Bases - Volume 30 (Toronto, Canada)
(VLDB 04). VLDB Endowment, 492503.

[32] Mavis K Lee. 1988. Implementing an Interpreter for Functional Rules in a Query

Optimizer.

[33] David Maier, Jin Li, Peter Tucker, Kristin Tufte, and Vassilis Papadimos. 2005. Se-

mantics of Data Streams and Operators. In Database Theory - ICDT 2005, Thomas

Eiter and Leonid Libkin (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,

37–52.

[34] Rajeev Motwani, Jennifer Widom, Arvind Arasu, Brian Babcock, Shivnath Babu,

Mayur Datar, Gurmeet Manku, Chris Olston, Justin Rosenstein, and Rohit Varma.

2003. Query processing, resource management, and approximation in a data

stream management system. CIDR.

[35] Milos Nikolic, Mohammad Dashti, and Christoph Koch. 2016. How to Win a

Hot Dog Eating Contest: Distributed Incremental View Maintenance with Batch

Updates. In Proceedings of the 2016 International Conference on Management of
Data (San Francisco, California, USA) (SIGMOD ’16). ACM, New York, NY, USA,

511–526. https://doi.org/10.1145/2882903.2915246

[36] Vijayshankar Raman and Joseph M Hellerstein. 2002. Partial results for online

query processing. In Proceedings of the 2002 ACM SIGMOD international conference
on Management of data. 275–286.

[37] Matthias J. Sax, Guozhang Wang, Matthias Weidlich, and Johann-Christoph

Freytag. 2018. Streams and Tables: Two Sides of the Same Coin. In Proceedings of
the International Workshop on Real-Time Business Intelligence and Analytics (Rio
de Janeiro, Brazil) (BIRTE 18). Association for Computing Machinery, New York,

NY, USA, Article 1, 10 pages. https://doi.org/10.1145/3242153.3242155

[38] P Gri�ths Selinger, Morton M Astrahan, Donald D Chamberlin, Raymond A

Lorie, and Thomas G Price. 1979. Access path selection in a relational database

management system. In Proceedings of the 1979 ACM SIGMOD international
conference on Management of data. 23–34.

[39] Mohamed A. Soliman, Lyublena Antova, Venkatesh Raghavan, Amr El-Helw,

Zhongxian Gu, Entong Shen, George C. Caragea, Carlos Garcia-Alvarado, Foyzur

Rahman, Michalis Petropoulos, Florian Waas, Sivaramakrishnan Narayanan,

Konstantinos Krikellas, and Rhonda Baldwin. 2014. Orca: A Modular Query

Optimizer Architecture for Big Data. In Proceedings of the 2014 ACM SIGMOD
International Conference on Management of Data (Snowbird, Utah, USA) (SIGMOD
’14). ACM, New York, NY, USA, 337–348. https://doi.org/10.1145/2588555.2595637

[40] Dixin Tang, Zechao Shang, Aaron J. Elmore, Sanjay Krishnan, and Michael J.

Franklin. 2019. Intermittent Query Processing. Proc. VLDB Endow. 12, 11 (July
2019), 1427–1441. https://doi.org/10.14778/3342263.3342278

[41] Douglas Terry, David Goldberg, David Nichols, and Brian Oki. 1992. Continuous

Queries over Append-Only Databases. In Proceedings of the 1992 ACM SIGMOD
International Conference on Management of Data (San Diego, California, USA)

(SIGMOD 92). Association for Computing Machinery, New York, NY, USA, 321330.

https://doi.org/10.1145/130283.130333

[42] Hetal Thakkar, Nikolay Laptev, Hamid Mousavi, Barzan Mozafari, Vincenzo

Russo, and Carlo Zaniolo. 2011. SMM: A data stream management system

for knowledge discovery. In 2011 IEEE 27th International Conference on Data
Engineering. IEEE, 757–768.

[43] The TPC-DS Benchmark [n.d.]. http://www.tpc.org/tpcds/.

[44] Stratis D Viglas and Je�rey F Naughton. 2002. Rate-based query optimization

for streaming information sources. In Proceedings of the 2002 ACM SIGMOD
international conference on Management of data. 37–48.

[45] Zuozhi Wang, Kai Zeng, Botong Huang, Wei Chen, Xiaozong Cui, Bo Wang, Ji

Liu, Liya Fan, Dachuan Qu, Zhenyu Ho, Tao Guan, Chen Li, and Jingren Zhou.

2020. Grosbeak: A Data Warehouse Supporting Resource-Aware Incremental

Computing. In Proceedings of the 2020 ACM SIGMOD International Conference
on Management of Data (Portland, Oregon, USA) (SIGMOD ’20). ACM, Portland,

Oregon, USA.

26

https://www.alibabacloud.com/product/maxcompute
https://www.alibabacloud.com/product/maxcompute
https://calcite.apache.org
https://flink.apache.org
https://arxiv.org/abs/1905.12133
http://arxiv.org/abs/1905.12133
https://doi.org/10.1145/3183713.3190662
https://doi.org/10.1145/16894.16861
https://doi.org/10.1145/320083.320099
https://doi.org/10.1145/320083.320099
https://doi.org/10.14778/2556549.2556557
http://dl.acm.org/citation.cfm?id=645480.655434
http://dl.acm.org/citation.cfm?id=645480.655434
https://doi.org/10.1145/290593.290597
https://doi.org/10.1145/290593.290597
https://doi.org/10.1145/223784.223849
https://databricks.com/blog/2018/03/13/introducing-stream-stream-joins-in-apache-spark-2-3.html
https://databricks.com/blog/2018/03/13/introducing-stream-stream-joins-in-apache-spark-2-3.html
https://databricks.com/blog/2018/03/13/introducing-stream-stream-joins-in-apache-spark-2-3.html
https://doi.org/10.1145/3034786.3034792
https://doi.org/10.1145/2588555.2612176
https://doi.org/10.1145/2588555.2612176
https://doi.org/10.1109/ICDE.2007.367851
https://doi.org/10.1145/2882903.2915246
https://doi.org/10.1145/3242153.3242155
https://doi.org/10.1145/2588555.2595637
https://doi.org/10.14778/3342263.3342278
https://doi.org/10.1145/130283.130333
http://www.tpc.org/tpcds/

[46] Zuozhi Wang, Kai Zeng, Botong Huang, Wei Chen, Xiaozong Cui, Bo Wang, Ji

Liu, Liya Fan, Dachuan Qu, Zhenyu Hou, Tao Guan, Chen Li, and Jingren Zhou.

2020. Tempura: A General Cost Based Optimizer Framework for Incremental

Data Processing (Extended Version). arXiv:2009.13631 [cs.DB]

[47] Florian Wolf, Norman May, Paul R. Willems, and Kai-Uwe Sattler. 2018. On

the Calculation of Optimality Ranges for Relational Query Execution Plans. In

Proceedings of the 2018 International Conference on Management of Data (Houston,
TX, USA) (SIGMOD 18). Association for Computing Machinery, New York, NY,

USA, 663675. https://doi.org/10.1145/3183713.3183742

[48] Shaoyi Yin, Abdelkader Hameurlain, and Franck Morvan. 2015. Robust query

optimization methods with respect to estimation errors: A survey. ACM Sigmod

Record 44, 3 (2015), 25–36.

[49] Yuan Yu, Pradeep Kumar Gunda, andMichael Isard. 2009. Distributed aggregation

for data-parallel computing: interfaces and implementations. In Proceedings of
the ACM SIGOPS 22nd symposium on Operating systems principles. 247–260.

[50] Kai Zeng, Sameer Agarwal, and Ion Stoica. 2016. iOLAP: Managing Uncertainty

for E�cient Incremental OLAP. In Proceedings of the 2016 International Conference
on Management of Data (San Francisco, California, USA) (SIGMOD ’16). ACM,

New York, NY, USA, 1347–1361. https://doi.org/10.1145/2882903.2915240

[51] Yang Zhang, Bret Hull, Hari Balakrishnan, and Samuel Madden. 2007. ICEDB:

Intermittently-connected continuous query processing. In 2007 IEEE 23rd Inter-
national Conference on Data Engineering. IEEE, 166–175.

27

https://arxiv.org/abs/2009.13631
https://doi.org/10.1145/3183713.3183742
https://doi.org/10.1145/2882903.2915240

	Abstract
	1 Introduction
	2 Problem Formulation
	2.1 Incremental Query Planning
	2.2 Plan Space and Search Challenges

	3 The TIP Model
	3.1 Time-Varying Relations
	3.2 Basic Operations on TVRs

	4 TVR Rewrite Rules
	4.1 TVR-Generating and Intra-TVR Rules
	4.2 Inter-TVR Rules
	4.3 Putting Everything Together

	5 Plan-Space Exploration
	5.1 Memo: Capturing TVR Relationships
	5.2 Rule Engine: Enabling TVR Rewritings
	5.3 Speeding Up Exploration Process

	6 Selecting an Optimal Plan
	6.1 Time-Point Annotations of Operators
	6.2 Time-Point-Based Cost Functions
	6.3 Deciding States to Materialize

	7 Tempura in Action
	8 Experiments
	8.1 Effectiveness of IQP
	8.2 Case Study: Progressive Data Warehouse
	8.3 Performance of IQP

	9 Related Work
	10 Conclusion
	References

