
CBench: Towards Better Evaluation ofQuestion Answering Over
Knowledge Graphs

Abdelghny Orogat

Carleton University

abdelghny.orogat@carleton.ca

Isabelle Liu

Carleton University

isabelle.liu@carleton.ca

Ahmed El-Roby

Carleton University

ahmed.elroby@carleton.ca

ABSTRACT
Recently, there has been an increase in the number of knowledge

graphs that can be only queried by experts. However, describing

questions using structured queries is not straightforward for non-

expert users who need to have sufficient knowledge about both

the vocabulary and the structure of the queried knowledge graph,

as well as the syntax of the structured query language used to de-

scribe the user’s information needs. The most popular approach

introduced to overcome the aforementioned challenges is to use nat-

ural language to query these knowledge graphs. Although several

question answering benchmarks can be used to evaluate question-

answering systems over a number of popular knowledge graphs,

choosing a benchmark to accurately assess the quality of a question

answering system is a challenging task.

In this paper, we introduce CBench, an extensible, and more

informative benchmarking suite for analyzing benchmarks and

evaluating question answering systems. CBench can be used to

analyze existing benchmarks with respect to several fine-grained

linguistic, syntactic, and structural properties of the questions and

queries in the benchmark. We show that existing benchmarks vary

significantly with respect to these properties deeming choosing a

small subset of them unreliable in evaluating QA systems. Until

further research improves the quality and comprehensiveness of

benchmarks, CBench can be used to facilitate this evaluation using

a set of popular benchmarks that can be augmented with other

user-provided benchmarks. CBench not only evaluates a question

answering system based on popular single-number metrics but also

gives a detailed analysis of the linguistic, syntactic, and structural

properties of answered and unanswered questions to better help

the developers of question answering systems to better understand

where their system excels and where it struggles.

PVLDB Reference Format:
Abdelghny Orogat, Isabelle Liu, and Ahmed El-Roby. CBench: Towards

Better Evaluation of Question Answering Over Knowledge Graphs. PVLDB,

14(8): 1325 - 1337, 2021.

doi:10.14778/3457390.3457398

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/aorogat/CBench.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 8 ISSN 2150-8097.

doi:10.14778/3457390.3457398

1 INTRODUCTION
Recent years witnessed an unprecedented growth in the number

of knowledge graphs (KGs) [6, 9, 16, 31, 36, 47]. These knowledge

graphs contain a plethora of information that can be potentially

used for question answering (QA). However, finding answers in a

KG is not an easy task. The user is required to have a detailed knowl-

edge of the KG, and a structured query language to describe their

questions in a structured format that can be used to find matches in

the KG. This requirement limits the ability to ask questions to power

users who have the necessary skills to write syntactically and se-

mantically correct queries to accurately represent their information

needs. The number of such users represents a tiny fraction of a po-

tentially large userbase. To overcome this challenge, a large number

of QA systems that let users describe their information needs using

natural language were developed [13, 18, 20, 22, 27, 29, 39, 49–52].

In fact, over 62 QA systems have been developed since 2010 [23].

As a result of the popularity of QA over KGs, several benchmarks

were introduced to evaluate QA systems [7, 8, 12, 35, 38, 40–43,

46]. These benchmarks typically include questions described in

natural language, answers to the questions from the KG targeted

by the benchmark, and possibly structured queries that return the

previously mentioned answers. To evaluate a newly developed

QA system, its developers need to choose from a large number of

benchmarks (at least 17 at the time of writing this paper) to evaluate

their system. Without a quantitative comparison that highlights

the differences between these benchmarks, choosing a subset of

them to evaluate a new QA system is mainly motivated by the ease

of comparison to existing systems in the literature
1
rather than

by how effective a benchmark is in evaluating a QA system. In

fact, existing benchmarks differ significantly from each other with

respect to the following three points:

• How the benchmarks were created: Some benchmarks are man-

ually created by human experts based on heuristics [3, 11, 12,

14, 40–46]. Other benchmarks are automatically generated from

the KG [7, 35, 38].

• Metadata: This includes what KGs that the benchmark target,

and the number of questions in the benchmark. Most bench-

marks target a limited number of KGs (All benchmarks that we

are aware of target only 5 KGs). Also, the number of questions

in each benchmark varies significantly. Out of the benchmarks

we are aware of, the benchmark with the smallest number of

questions includes 150 questions, while the benchmark with

the largest number of questions includes 108,442 questions.

• Linguistic, syntactical, and structural properties: The natural

language questions have linguistic properties. Their correspond-

ing queries (if they exist in the benchmark) also have syntactical

1
Out of 20 QA systems that were developed in the past 5 years, only 6 are open-sourced,

and only 3 systems are accessible via a functional web interface.

1325

https://doi.org/10.14778/3457390.3457398
https://github.com/aorogat/CBench
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3457390.3457398

and structural properties. In this paper, we reveal that existing

benchmarks vary significantly with respect to these properties,

which is reflected on the reported quality scores depending on

the benchmark used.

Another issue with existing benchmarks is their limited usability.

Today, benchmarks are used in the following fashion: The user

parses the benchmark file, extract the questions and utilizes the

QA system to find answers in the targeted KG, then compare the

returned answers to the answers extracted from the benchmark file

to calculate multiple evaluation scores like micro, macro, and global

F-1 scores (discussed in Section 7). The user then examines the

questions that the QA system failed to answer correctly and debug

their code to identify why the QA system struggles with these

questions. In that sense, the benchmark is used as a dataset that

helps in producing the aforementioned scores with a lost potential

of being more informative to its user by giving more details on the

fine-grained properties of the processed questions, which will help

the user better understand how the QA system behaves.

In this paper, we introduce CBench
2
, an extensible fine-grained

benchmark suite that overcomes the aforementioned challenges

facing accurate evaluation of QA systems. CBench can be used in

two modes: Benchmark Analysis Mode and QA Evaluation Mode.
CBench can be used in the first mode to perform a fine-grained

analysis on the natural language questions and queries in a set

of benchmarks selected by the user. CBench includes a total of

17 benchmarks targeting 5 KGs, and can be easily extended with

new benchmarks and KGs. For the structured queries, CBench ana-

lyzes several syntactical properties of structured queries like the

type of the query, the operators used, and the query size. CBench

also analyzes the structural properties (shapes) of the queries. For

the natural language questions, CBench analyzes several linguis-

tic properties like the type of question, and part-of-speech (PoS)

tags of each question token of the natural language question. In

our analysis, we surprisingly quantify high-degree variations with

respect to the linguistic, syntactical, and structural properties of

questions and queries among different benchmarks in the litera-

ture, and experimentally show that these differences result in an

inconsistent assessment of QA systems. These findings motivate

further research in building better benchmarks that address as much

fine-grained properties as possible to have a good coverage of real-

world questions that the QA systems will encounter in real-world

deployments.

Until such benchmarks are available, CBench facilitates evalu-

ating QA systems in the second mode (QA Evaluation Mode), in
which the user can choose the benchmarks they wish to use to

evaluate their QA system. Then, CBench interacts with the QA

system using a set of well-defined APIs to send/recieve question-

s/answers. In addition to reporting micro, macro, and global F-1

scores, CBench also analyzes all the questions in the chosen bench-

marks and their corresponding structured queries (if available).

Specifically, CBench returns (1) a detailed analysis of the proper-

ties of the queries that the evaluated QA system processed, and (2)

linguistically-similar natural language questions for any question

of interest (e.g., a question that the QA system failed to answer).

Using the two aforementioned types of output, the QA user can

2
https://github.com/aorogat/CBench

either (1) identify common properties between questions that the

QA system struggles with (e.g., most of the questions have a spe-

cific query shape), or (2) identify obvious inconsistencies in the

processed questions. For example, using CBench, we were able

to quickly identify that one of the QA systems we evaluated was

able to answer the question “What is the capital of Cameroon?”

correctly, while it incorrectly answered “What is the capital of

Canada?”, which highlights an overfitting problem in their entity

recognition and relation mapping approaches. Being able to quickly

identify commonalities or inconsistencies will help the QA system

developers to quickly identify the QA system component that they

need to improve. Based on the insights provided by CBench, the

user can also use it in a Debugging Mode within the QA Evaluation
Mode, where they can control CBench’s output questions based on

any of the linguistic, syntactical, or structural properties of all the

questions and queries in CBench to better understand how their

QA system behaves in several controlled situations. For example,

the user can specify that CBench only outputs temporal questions

whose queries have a star-shape.

Our contributions in the CBench suite are:

• To the best of our knowledge, We are the first to introduce the

concept of fine-grained analysis of questions and queries in QA

benchmarks.

• Using our fine-grained analysis, we surprisingly identify a high

degree of variations among existing benchmarks with respect

to several linguistic, syntactical, and structural properties of the

natural language questions and their corresponding queries in

the benchmarks.

• To demonstrate the effects of such variations, we evaluate six

QA systems using CBench in the QA Evaluation Mode and show
that their quality scores vary significantly.

• We give important insights to QA systems’ researchers on

benchmark selection and QA evaluation metrics.

The rest of this paper is organized as follows: Section 2 presents

the preliminaries of this paper. Section 3 discusses the architec-

ture of CBench. Section 4 gives an overview of the benchmarks in

CBench. Section 5 presents how CBench analyzes the structured

queries in the benchmarks. Section 6 presents how CBench analyzes

the natural language questions. Section 7 discusses our experiments

on six QA systems using CBench. Section 8 concludes the paper.

2 PRELIMINARIES
Knowledge Graph (KG): A knowledge graph is a directed graph

KG = {V ,E} consisting of a set of vertices V that represent enti-

ties, types, and literals, and a set of labeled edges E that connect

these vertices. RDF [2] is a popular representation model for KGs,

which organizes data as a set of triples in the form ⟨s,p,o⟩ where
s refers to subject, p refers to predicate, and o refers to object, such
that s,o ∈ V , and p ∈ E. SPARQL [1] is the structured query lan-

guage for querying RDF. Figure 1 visualizes a sample subgraph

from DBpedia [6].

Graph Pattern (gp): A Graph Pattern is a set of triple patterns. A

triple pattern can be generated from a triple by replacing the s , p,
or o by a variable from the universal set of variables U . A query

can include multiple graph patterns.

1326

https://github.com/aorogat/CBench

dbr : Lenovo

dbr : Electronics

dbr : Bei jinд

dbo : Company

dbr : India

dbr : Indian_Railways

dbr : New_Delhi

dbo : Country

60000 1335000

dbo : numberOf Employees

dbo : f oundationPlace

dbo : industry

rdf : type

rdf : type

dbo : locat ion

dbo : capital
rdf : type

dbo : numberOf Employees

Figure 1: A Subgraph from the DBpedia.

Query (q): A query is represented as the pair (GP , SM), where GP
is the set of graph patterns in the query and SM is the set of solution

modifiers. The query returns an answer set A that (1) matches the

givenGP from a knowledge graph KG , and (2) modified to conform

to the the solution modifiers SM (e.g., select, ordered by, distinct,

limit and offset, etc.). In SPARQL, a query with type Select is used to
select all, or a subset of, the variables bound in the set of subgraphs

that matchesGP . If type isAsk instead of Select , it returns a Boolean
answer; true if GP can be matched (A is a non-empty set).

Natural Language Question (nlq): A natural language ques-

tion is represented as the list of all tokens of the question ex-

cluding white spaces and punctuation marks. Formally, nlq =
[token1, token2, . . . , tokenm], wherem is the number of tokens in

the question.

Benchmark (B):AbenchmarkB = {NLQ,Q,G} consists of a set of

natural language questions NLQ , an optional set of formal queries

Q , and a set of gold standard answers G such that дi is the set of
gold standard answers for the question nlqi , whose corresponding
query is qi .

Example 1. Following is an example of a natural language ques-
tion that can be found in a benchmark (nlqi): [Which, companies,
have, more, than, 1, million, employees, or, founded, in, Beijing]. The
query3 (qi) that is associated with this question is:
SELECT DISTINCT ?uri WHERE {

?uri a dbo:Company {
?uri dbo:numberOfEmployees ?n .
FILTER (?n > 1000000)

} UNION {
?uri dbo:foundationPlace dbr:Beijing.

}
}

The answers (дi) to this query based on the subgraph in Figure 1 are
{“Lenovo”, “Indian Railways”}.

3 OVERVIEW OF CBENCH
Figure 2 shows the architecture of CBench, which can be used in

two modes: (1) The Benchmark Analysis Mode, where CBench can

be used to perform a fine-grained analysis on the structured queries

and the natural language questions on a set of benchmarks selected

3
The prefix dbr is bound to http://dbpedia.org/resource/

The prefix dbo is bound to http://dbpedia.org/ontology/

The prefix rdf is bound to http://www.w3.org/2000/01/rdf-schema#

by the user, and (2) the QA Evaluation Mode, where CBench can be

used to evaluate a QA system over the user-selected benchmarks

providing deeper insights on how the QA system is performing.

Benchmark Analysis Mode: CBench includes 17 benchmarks

from which the user can choose a subset for analysis. The user can

also upload their own benchmarks to be included in the analysis.

The Benchmark Builder passes the selected benchmarks (and the

uploaded ones, if any) to the Q-Analyzer which carries out the

syntactical and structural analysis of the queries (Section 5), and

the linguistic analysis (Section 6). Finally, the Q-Analyzer returns

the analysis report to the user.

QA Evaluation Mode: Just like the previous mode, the user se-

lects a set of benchmarks and/or upload their own to evaluate the

QA system. In addition, the user provides CBench with a URL for

an endpoint that CBench can query. Other configuration parame-

ters that are used in the evaluation (e.g., thresholds for calculating

quality scores) are also chosen by the user prior to evaluation. To

avoid the scenario where the selected benchmarks target different

versions of the same KG (discussed in Section 4), the Benchmark

Builder updates the answers of the queries in the selected bench-

marks through the Benchmark Updater module, which queries the

used KG that will be used for the evaluation to retrieve the up-

dated answers. The updated benchmarks are then passed to the

System Evaluator. The System Evaluator carries out three tasks:

(1) Communicating with the QA system to collect the answers to

the questions from the selected benchmarks, (2) calculating the

micro, macro, and global F-1 scores (discussed in Section 7), and (3)

retrieving the fine-grained analysis of the processed questions from

the Q-Analyzer. The System Evaluator then outputs an interactive

report that includes the scores and the analysis of the processed

questions to the user. The user can choose to focus on specific

questions to view all their fine-grained properties. CBench also

finds other questions that are linguistically similar to the selected

questions (discussed in Section 6). Using this feature, the user is

able to quickly identify either common features or inconsistencies

of unanswered or incorrectly answered questions, which will help

the user to understand which components of their QA system to

improve. The user can also use CBench in the Debugging Mode, in

which they can group questions/queries based on specific proper-

ties to evaluate their QA system in specific scenarios. For example,

the user can choose to evaluate their QA system only on aggregate

questions (e.g., How many) whose queries have a star-shape to

investigate how their system deals with such questions.

The details of the configurations of CBench, how to add a new

benchmark, and the API’s used for communication with the QA

systems can be found in the system’s repository
4
.

4 BENCHMARKS IN CBENCH
Before discussing the analysis of queries and natural language ques-

tions, we give an overview of the benchmarks that are included in

CBench. CBench can also be augmented with other benchmarks

provided by the user. Table 1 shows the benchmarks along with the

number of questions in each and the KGs they target. QALD5
is an

annual evaluation campaign for question answering that started in

4
https://github.com/aorogat/CBench

5
http://qald.aksw.org

1327

https://github.com/aorogat/CBench
http://qald.aksw.org

Figure 2: CBench Architecture.

Table 1: The benchmarks used in CBench. DB refers to DB-
pedia, FB refers to Freebase, MB refers to MusicBrainz, WK
refers toWikidata, and LS refers to LinkedSpending. Bench-
marks annotated with ⋆ do not include queries, and bench-
marks annotatedwith † target only single-factoid questions.

Benchmarks #Qs KG Version

QALD-1 [40] 199 DB, MB 3.6

QALD-2 [14] 344 DB, MB 3.7

QALD-3 [12] 397 DB, MB 3.8

QALD-4 [41] 321 DB 3.9

QALD-5 [42] 334 DB 2014

QALD-6 [43] 431 DB, LS 10-2015

QALD-7 [46] 530 DB, WD 04-2016

QALD-8 [45] 315 DB, WD 10-2016

QALD-9 [44] 408 DB 10-2016

LC-QuAD [38] 4,998 DB 04-2016

WebQuestions [8] 5,810 FB 09-08-2015

GraphQuestions [35] 5,166 FB 06-2013

SimpleQuestions⋆† [11] 108,442 FB FB2M, FB5M

SimpleDBpediaQA⋆† [7] 43,086 DB 10-2016

TempQuestions⋆ [26] 1,271 FB 09-08-2015

ComplexQuestions⋆ [4] 150 FB 09-08-2015

ComQA⋆ [3] 11,214 Wikipedia -

2011. Therefore, it includes 9 benchmarks (QALD-1 to QALD-9). LC-
QuAD is a semi-automated question generation dataset. SPARQL

templates are automatically generated and are converted into nat-

ural question templates. These general templates are manually

transformed into natural language questions. GraphQuestions is
a set of questions that are generated in two steps. First, generat-

ing a set of graph-structured logical patterns from the KG, then

transforming them into natural questions with the help of human

annotators.WebQuestions is a set of questions obtained from non-

experts. These questions are collected based on suggestions from

Google Suggest API. The questions with answers from Freebase are

taken and annotated by Amazon Mechanical Turk workers then

converted to SPARQL queries by experts. SimpleQuestions is gen-
erated by shortlisting the set of facts from Freebase that can be

converted to informative questions. Then, these elected facts were

sampled and passed to annotators to manually generate natural

language questions whose answers are the entities in these facts.

SimpleDBpediaQA is a subset of the SimpleQuestions benchmark

dataset created by mapping entities and predicates from Freebase to

DBpedia. TempQuestions consists exclusively of temporal questions.

These questions are extracted from Free917 [15], WebQuestions and
ComplexQuestions. ComplexQuestions is multi-constraints question-

answer pairs that have some questions from WebQuestions (596
questions) and some manually labelled questions. ComQA is a large

benchmark that includes real questions taken from the WikiAn-

swers platform and present various challenging aspects such as

compositionality, temporal reasoning, and comparisons.

5 ANALYSIS OF STRUCTURED QUERIES
Most of the benchmarks discussed in Section 4 include structured

queries that can be used to obtain the answers to the natural lan-

guage questions in the benchmark. Inspired by prior work on the

analysis of query logs of endpoints [10], we discuss how the Query

Analyzer processes the SPARQL queries by focusing on both their

syntactically and structural properties to present them in the final

report shown to the user. We use CBench’s Benchmark Analysis

Mode to process all queries from the 12 benchmarks that include

SPARQL queries to highlight the high-degree variations among

them, then we give our insights in light of these variations. In Sec-

tion 7, we use CBench’s QA Evaluation mode to experimentally

show the effects of these variations on the accurate assessment of

QA systems.

5.1 Syntactical Analysis of Queries
In this section, we study the syntactical properties of the queries,

which include the frequency of query keywords, the number of

triple patterns in the query, and the frequency usage of operators.

1328

Table 2: Percentage of keyword occurrences in queries for
each benchmark.

Element QALD LC-QuAD Web Graph

Select 91.63% 91.52% 100.00% 100.00%

Ask 8.37% 8.48% 0.00% 0.00%

Distinct 76.65% 91.52% 99.98% 0.00%

Limit 6.51% 0.00% 0.02% 0.00%

Offset 3.93% 0.00% 0.00% 0.00%

Order By 5.99% 0.00% 0.02% 0.00%

And 51.65% 70.67% 37.65% 41.75%

Filter 10.33% 0.00% 99.62% 100.00%

Union 6.10% 0.00% 0.36% 0.00%

Optional 5.37% 0.00% 0.00% 0.00%

Not Exists 0.21% 0.00% 0.00% 0.00%

Minus 0.21% 0.00% 0.00% 0.00%

Aggregators 5.27% 0.00% 0.00% 20.17%

Group By 5.27% 0.00% 0.00% 13.74%

Having 1.34% 0.00% 0.00% 0.00%

5.1.1 Query Keywords. We count the frequency of query keywords

in the benchmarks. The results are shown in Table 2. Due to the

lack of space, we combine all the queries from QALD-1 to QALD-9
and report them under QALD. In the case of repetitive questions,

we consider the most recent query. After deduplication, the QALD
discussed here include 959 questions. We find that even within the

9 QALD benchmarks, variations still exist. We will highlight these

variations later in this section. The first block in Table 2 reports

the query types. In general, the majority of queries use the Select
keyword across all benchmarks (at least 91% of queries).Ask queries
whose answers are either true (if a solution matches the graph

pattern in the query) or false (otherwise) represent 8.37% and 8.48%

of the queries in QALD and LC-QuAD, respectively. GraphQuestions
andWebQuestions do not include queries that use the keyword Ask.

The second block in Table 2 includes the keywords used as so-

lution modifiers in the queries. We notice that the majority of the

queries use the Distinct keyword in all benchmarks except Graph-
Questions, which is the only benchmark that does not use any of the

four solution modifiers. The Limit, Offset and Ordered-By keywords

are not frequently used in QALD, and almost non-existent in other

benchmarks.

The third block in Table 2 has keywords used to describe the

graph patterns as described in Section 2. The And operator, which

represents the conjunctions of triple patterns, is often used across all

benchmarks. However, there is a large variation in the percentage

of queries that use the keyword, where the minimum percentage is

37.65% (WebQuestions), and the maximum percentage is 70.67% (LC-
QuAD). The Filter keyword demonstrates an interesting case, where

it is used in almost all questions inWebQuestions and GraphQues-
tions, but with a much smaller percentage in QALD and not used

at all in LC-QuAD. The remaining keywords (Union, Optional, Not
Exists, and Minus) are used in a small percentage of queries across

all benchmarks. But again, there is a high degree of variation across

all benchmarks in their usage for these keywords.

Figure 3: Percentage of queries exhibiting different number
of triple patterns for each benchmark.

Lastly,Aggregators (e.g., count,max, etc.) andGroup-By keywords
are used only in QALD and GaphQuestions. The keyword Having is

used in QALD only.

With respect to the 9 QALD benchmarks, variations also exist

although they come from the same organization. For example, the

Distinct keyword occurs in only 38.69% of the QALD-1 queries ,
whereas in the other QALD benchmarks, the Distinct keyword oc-

curs in between 67% to 91% of the queries. The Limit keyword
occurrences steadily increase from 4.17% in QALD-1 to 9.64% in

QALD-9. The Offset keyword is approximately never used in QALD-
1 to QALD-3, but occurs more frequently in the other QALD bench-

marks (from 4% to 8%). The Filter and Optional keywords occur
frequently inQALD-1 andQALD-2 (39.29% and 54.44% of the queries,

respectively), while this percentage is significantly declined in other

QALD benchmarks (does not exceed 11%).

5.1.2 Number of Triple Patterns. The Query Analyzer also counts

the number of triple patterns in all the graph patterns of the queries

as a measure of the size of the queries in the benchmarks. The total

number of triple patterns has been computed and categorized from

1 to 11+ triple patterns for every benchmark. Figure 3 shows that

the queries with a low number of triple patterns (from 1 to 3) are

dominant in all benchmarks except the GraphQuestions benchmark,

in which there are no queries with 1 triple pattern. Noticeably,

the earlier versions of QALD and the GraphQuestions benchmarks

include longer queries when compared to the other benchmarks.

5.1.3 Query Operators. We also study the co-occurrences of the

Filter, And, Union, and Optional operators in the queries. The results

can be found in Table 3. The first block of the table shows the queries

with graph patterns that have triple patterns with no operators

(with a single triple pattern without filter), with Filter only, with
And only, or with both Filter and And operators. The next row has

their subtotal (conjunctive patterns with filters or CPF). Most of the

queries (from 89.77% to 100.00%) in all benchmarks are CPF queries.

However, the distribution of queries using the combinations of the

two operators varies.

The second block in the table shows the co-occurrences of the

Optional operator with different types of CPF queries. This operator

1329

Table 3: The frequency of the operators used in queries: Fil-
ter (F), And (A), Optional (O), and Union (U).

Operators QALD LC-QuAD Web Graph

none 42.25% 29.33% 0.09% 0.00%

F 0.00% 0.00% 62.19% 58.25%

A 42.87% 70.67% 0.17% 0.00%

A, F 4.65% 0.00% 37.19% 41.75%

CPF 89.77% 100.00% 99.64% 100.00%

O 0.00% 0.00% 0.00% 0.00%

O, F 2.58% 0.00% 0.00% 0.00%

A,O 0.10% 0.00% 0.00% 0.00%

A,O, F 1.45% 0.00% 0.00% 0.00%

CPF +O +4.13% +0.00% +0.00% +0.00%

U 2.48% 0.00% 0.07% 0.00%

U , F 0.10% 0.00% 0.00% 0.00%

A,U 1.96% 0.00% 0.05% 0.00%

A,U , F 0.31% 0.00% 0.24% 0.00%

CPF +U +4.86% +0.00% +0.36% +0.00%

is only used in the QALD benchmarks with an increase of +4.13%

in the relative size.

Finally, The third block of the table shows that theUnion operator
is not used in GraphQuestions and LC-QuAD, and is rarely used

in WebQuestions, while it is more frequently used in QALD. For
the QALD benchmarks, there are other combinations that are rare

and therefore not included in this table. For example, (O,U), (O,F,U),

(A,O,U), etc.

5.2 Structural Analysis
In addition to the syntactical analysis of the queries, we also analyze

the structural shapes of the queries of the following types of queries:

1. Conjunctive queries that can use only the And operator, denoted

by CQ. 2. Conjunctive queries that can use both And and Filter
operators, denoted by CQF. 3. Conjunctive queries that can use And,
Filter and Optional operators, denoted by CQOF.

CBench identifies eight different shapes of queries. Figure 4

illustrate these shapes
6
. The Single-Edge shape has only one edge.

The Chain shape with length n is a series of edges {x0,x1}, {x1,x2},
. . . {xn−1,xn }. The Cycle shape is like the Chain shape except that

the first node in the chain is the same as the last node. The Chain-Set
shape is a set of one or more unconnected chains. The Tree shape
can have any connected nodes keeping only one path between any

two nodes. The Star shape is a special case of the Tree shape where
there exists exactly one node with more than 2 neighbors. The

Flower shape is the graph that has a node that is connected to at

least one attachment that could have any of the following three

shapes: Chain, Tree and Petal, where the Petal is a graph with two

or more disjoint paths between a source node and a destination

node. The Forest shape includes a set of unconnected trees. It is
worth noting that some shapes subsume other shapes. For example,

6
Examples of questions, their corresponding queries, and their structural shapes can

be viewed in the repository.

Figure 4: The different shapes recognized by CBench

the Tree shape subsumes the Chain shape, which subsumes the

Single-Edge shape.
Table 4 shows the distribution of query shapes across all bench-

marks. Again, due to the lack of space, we combine all 9 benchmarks

of QALD into one column. The table shows that queries with the

Single-Edge shape represent at least 45.13% of the queries in almost

all benchmarks. This shape corresponds to simple-factoid questions.

The only exception is the GraphQuestions benchmark, which does

not include any Single-Edge queries.
It is interesting to see that a high percentage of the queries have

the Chain shape. With the exception of GraphQuestions, this shape
includes at least 72% of queries in all benchmarks. This observation

along with the information from Figure 3 indicate that a high per-

centage of the queries have a Chain shape with a relatively short

length of the chain. In contrast, the Chain-Set shape distribution
has almost the same percentage as that of the Chain shape, which

indicates that queries that have the Chain-Set shape, but not the
Chain shape are rare in all benchmarks. The same observation ap-

plies to the Tree and Forest shapes, indicating rare occurrences of
Forest shapes that are not trees. The Star shape distribution ranges

between 8.61% and 30.7% across all benchmark. The Cycle shape
is poorly represented in all benchmarks as every benchmark has

from one to two queries or no queries for this shape.

5.3 Insights on Benchmark Selection (1)
It is out of the scope of our study to determine which benchmark

is quantitatively and qualitatively best in evaluating QA systems.

However, given the previous fine-grained properties of queries in

the discussed benchmarks, and until further research on bench-

marking QA over KGs is done, we can give insights on what the

user can expect when using the discussed benchmarks in QA eval-

uation. In this section, and without loss of generality, we discuss

evaluating QA on the two most common KGs in the literature (DB-

pedia and Freebase), excluding simple-factoid questions.

QA over DBpedia: QALD-1 to QALD-9, and LC-QuAD target DB-

pedia with a mix of simple and complex queries. If the user intends

to evaluate their QA system over DBpedia, we recommend using

1330

