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ABSTRACT
Can AI help automate human-easy but computer-hard data prepara-
tion tasks that burden data scientists, practitioners, and crowd work-
ers?We answer this question by presenting RPT, a denoising autoen-

coder for tuple-to-X models (“X ” could be tuple, token, label, JSON,

and so on). RPT is pre-trained for a tuple-to-tuple model by corrupt-

ing the input tuple and then learning a model to reconstruct the

original tuple. It adopts a Transformer-based neural translation ar-

chitecture that consists of a bidirectional encoder (similar to BERT)

and a left-to-right autoregressive decoder (similar to GPT), leading

to a generalization of both BERT and GPT. The pre-trained RPT can

already support several common data preparation tasks such as data

cleaning, auto-completion and schema matching. Better still, RPT

can be fine-tuned on a wide range of data preparation tasks, such

as value normalization, data transformation, data annotation, etc.

To complement RPT, we also discuss several appealing techniques

such as collaborative training and few-shot learning for entity res-

olution, and few-shot learning and NLP question-answering for

information extraction. In addition, we identify a series of research

opportunities to advance the field of data preparation.
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1 INTRODUCTION
Data preparation — including data cleaning [1], data transforma-

tion [31], entity resolution [24], information extraction [10], and

so forth — is the most time-consuming and least enjoyable work

for data scientists [18]. Next, we present several scenarios to better

understand these problems.

Scenario 1: Data Cleaning. Figure 1(a) Q1 and Q2 show two typ-

ical data cleaning problems. (i) Cell Filling: Question Q1 asks for
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<latexit sha1_base64="VbzSbnmdJaP568yLMzT896PumY0="></latexit>

type description label
notebook 2.3GHz 8-Core, 1TB Storage, 8GB memory,

16-inch Retina display
8GB

phone 6.10-inch touchscreen, a resolution of
828x1792 pixels, A14 Bionic processor, and
come with 4GB of RAM

Berkeley

(a) Sample Tasks for Value Filling ([M]: value to fill)

(c) A Sample Information Extraction Task (s1: example, t1: task)

(b) A Sample Entity Resolution Task

city

Cafarella

4GB

Q1: r1[name, expertise, city] = (Michael Jordan, Machine Learning, [M])

A1:

Q3: r2[name, expertise, [M]] = (Michael Jordan, Basketball, New York City)

A3: 

Q2: r3[name, affiliation] = (Michael [M], CSAIL MIT)

A2:

<latexit sha1_base64="PELJVxOArAWGr52Nf6vBT8UXjxI="></latexit>

product company year memory screen
iPhone 10 Apple 2017 64GB 5.8 inchs
iPhone X Apple Inc 2017 256GB 5.8-inch
iPhone 11 AAPL 2019 128GB 6.1 inches

e1
e2
e3

s1

t1

Figure 1: Motivating Scenarios.

the city for the “Michael Jordan” whose expertise is “Machine

Learning”. (ii) Value Filling: Q2 asks for the last name of someone

who works at “CSAIL MIT” with the first name “Michael”.

Answering Q1 can help solve a series of problems such as er-

ror detection, data repairing, and missing value imputation; and

answering Q2 can help auto-completion (e.g., give the answer A2
“Cafarella”) and auto-suggestion (e.g., provide a list of candidate
names such as {Cafarella, Stonebraker}).

Scenario 2: Attribute Filling for Schema Matching. Figure 1(a) Q3
asks for the attribute name for the value “New York City”, w.r.t.
name “Michael Jordan” and expertise “Basketball”. Answering

this question can help schema matching, a core data integration

problem [21], by better aligning attributes from different tables.

Scenario 3: Entity Resolution (ER) Figure 1(b) shows a typical ER
task that asks whether e1, e2 and e3 are the “same”.

A human with enough knowledge can tell that “iPhone 10” =

“iPhone X” ≠ “iPhone 11”, “Apple” = “Apple Inc” = “AAPL”, and

“inches” = “-inch”. Hence, one can decide that e1 and e2 do not

match e3, and e1 matches e2 (if the memory does not matter).

Scenario 4: Information Extraction (IE) Figure 1(c) shows an IE

task, which is typically done via crowdsourcing [39]. A requester

1254

https://doi.org/10.14778/3457390.3457391
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3457390.3457391


provides several samples (e.g., s1) that show what “label” should be

extracted, and asks workers to perform similar tasks (e.g., t1).
A crowd worker needs first to interpret the task by analyzing s1

(and maybe a few more examples) and concretizes it as “what is the
memory size”. Afterwards, he can perform t1 by extracting the label
4GB from t1[description] by knowing “RAM” is for memory.

Challenges. Scenarios (1–4) are simple for humans, but are hard

for computers. To solve them, computers face the following chal-

lenges. (1) Knowledge: computers need to have the background

knowledge through understanding an enormous corpora of tables.

(2) Experience: computers should be able to learn from prior and

various tasks. (3) Adaptation: computers should (quickly) adjust to

new inputs and new tasks.

Vision. Indeed, these problems have been seen as ‘holy grail’ prob-

lems for the database community for decades [1, 21, 25, 30, 36, 46],

but despite thousands of papers on these topics, they still remain

unsolved. Recent evidence from the NLP community, where DL-

based models and representations have been shown to perform

nearly as well as humans on various language understanding and

question answering tasks, suggests that a learned approach may be

a viable option for these data preparation tasks as well.

Desiderata. The desiderata for AI-powered tools to achieve near-

human intelligence for data preparation is summarized as below,

in response to Challenges (1–3), respectively. (1) Deep learning ar-
chitecture and self-supervised pre-training. We need a deep learning

architecture that can learn from many tables, similar to language

models that can learn from a large text corpora. This simulates

how humans gain knowledge. Moreover, it should be pre-trained

without human provided labels, i.e., self-supervision. (2) Transfer
learning. The model should be able obtain knowledge from different

tasks on different datasets. (3) Fine-tuning and few-shot learning.
The pre-trained model should allow customization on different

downstream applications through fine-tuning. In addition, it should

be able to understand a new task from a few examples.

RPT Is *Almost* All You Need. The design of Relational Pre-
trained Transformer (RPT) is inspired by recent successes of DL

models in NLP. The fundamental questions for relational data un-

derstanding on data preparation are: (1) what is the architecture?
and (2) what is the surrogate task for pre-training?

(1) RPT Architecture. Typical choices are encoder-only such as

BERT [20], decoder-only such as GPT-3 [8], or encoder-decoder

such as BART [44] and T5 [55]. In fact, the encoder-decoder archi-

tecture can be considered as a generalization of the encoder-only

model (e.g., BERT) and the decoder-only model (e.g., GPT-3). Recent
studies from BART and T5 found that encoder-decoder models gen-

erally outperform encoder-only or decoder-only language models.

Thus, a Transformer-based [64] encoder-decoder model provides

more flexibility and can be adapted to a wide range of data prepa-

ration tasks, and hence can be used by RPT.

(2) RPT Pre-training. There have been several works on pre-training

using tables, such as TAPAS [35], TURL [19], TaBERT [72] and

TabFact [13]. However, since most data preparation tasks are in the

granularity of tuples, instead of entire tables, we posit that training

RPT tuple-by-tuple ismore desirable. For the pre-training objectives,

most recent studies confirm that fill-in-the-blank style denoising

objectives (where the model is trained to recover missing pieces in

the input) work best; examples include BERT [20], BART [44], and

T5 [55] for NLP, and TURL [19] for relational tables.

Contributions.We make the following notable contributions.

• RPT: We describe a standard Transformer-based denoising

autoencoder architecture to pre-train sequence-to-sequence

models for tuple-to-tuple training, with new tuple-aware
masking mechanisms. (Section 2)

• Fine-tuning RPT:We discuss a wide range of data preparation

tasks that can be supported by fine-tuning RPT. (Section 3)

• Beyond RPT: We discuss several appealing techniques that

can complement RPT in specific data preparation tasks, e.g.,
collaborative training and few-shot learning for ER, and few-

shot learning and NLP question-answering for IE. (Section 4)

2 RPT
2.1 Architecture
RPT uses a standard sequence-to-sequence (or encoder-decoder)

Transformer [64] model, similar to BART [52], as shown in Figure 2.

Encoder. RPT uses a bidirectional encoder (similar to BERT [20])

because it has the advantage of learning to predict the corrupted

data bidirectionally, from both the context on the left and the con-

text on the right of the corrupted data. Moreover, it is Transformer-

based, which can use self-attention to generate a richer representa-

tion of each input token. Hence, a Transformer-based bidirectional

encoder is a natural fit for reading tuples where, by definition, the

ordering of (attribute name, attribute value) pairs is irrelevant.

Decoder. RPT uses a left-to-right autoregressive decoder (similar

to GPT-3 [8]).

2.2 Pre-training RPT
RPT is pre-trained on tuples, for which we just need to corrupt

tuples and then optimize a reconstruction loss – the cross-entropy

between the model output and the original tuple.

Tuple Tokenization. We represent each tuple as a concatenation

of its attribute names and values. For example, tuple t1 in Figure 1(a)
can be tokenized as:

name Michael Jordan expertise Machine Learning city Berkeley

Token Embeddings. Because there is a clear semantic difference

between attribute names and values, we can add special tokens,

[A] before an attribute name and [V] before an attribute value.

Token embeddings are widely used in NLP tasks, such as the [CLS]

(indicating the start) and [SEP] (indicating the next sentence) tokens

used by BERT [20]. Hence, we can get a sequence of t1 with a richer

tuple-aware semantics as:

[A] name [V] Michael Jordan [A] expertise [V] Machine Learning

[A] city [V] Berkeley

Positional and Column Embeddings. We can add additional

meta-data such as positional embeddings (i.e., indicating the token’s
position in the sequence) and segment embeddings (e.g., adding
the same segment embedding to the tokens belonging to the same

attribute value), which are inspired by TAPAS [35] for table parsing.
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(Bidirectional) Transformer-based Encoder 

Autoregressive Decoder

[A] name [V] Michael Jordan [A] expertise [V] [A] city [V] Berkeley[M]Token Embeddings

[A] name [V] Michael Jordan [A] expertise [V] [A] city [V] BerkeleyMachine Learning

h

Reconstruct 
“Machine Learning”

From 
[M]

Figure 2: The RPT Architecture.

Working Mechanism. Given an input sequence of a tuple with

some value to be masked out (e.g., “Machine Learning” in Figure 2)

represented by a “mask token" [M], along with rich semantic infor-

mation (e.g., an attribute [A] or a value [V], which position, and

which column), the bidirectional encoder will look at the informa-

tion before and after the masked token [M], learn which token to

pay attention to (using Transformer [64]), and generate an inter-

mediate vector representation h. The autoregressive decoder will
take h as input, and generate an output sequence, by denoising the

masked input [M] to be “Machine Learning”. By doing so, we can

train RPT in an unsupervised fashion, without any human labels.

One difficulty is to predict how many tokens are masked by

one [M]. Note that, BERT [20] masks each token with one [M];

i.e., “Machine Learning” will be masked as [M][M], which tells

explicitly how many tokens are missing. We cannot do the same

(masking each token with one [M]), because during prediction, we

do not know how many tokens are missing. The ability to teach

the model to predict the length of the missing tokens masked by

one single mask token [M] can be achieved by text infilling [40],
which will be discussed next.

Token Masking. (1) Attribute Name Masking: We randomly select

attribute names to mask, e.g., name.
(2) Entire Attribute Value Masking: We randomly select entire

attribute values to mask, e.g., “Machine Learning” is masked with

one [M] (see Figure 2), which forces RPT to first predict the number

of masked tokens and then predict the tokens.

(3) Single Attribute Value Masking:We randomly select a single

attribute value (i.e., one token) to mask, e.g., “Jordan”.
Note that one possible optimization to the above process is as

follows. Instead of giving RPT the full freedom to learn how in-

put tokens attend on each other in the form of an attention ma-

trix [64], we add some explicit rules. For example, (i) an attribute

name (e.g., name) can only attend on the other attribute names (e.g.,
expertise and city) and its associated tokens for attribute values

(e.g., “Michael” and “Jordan”), but not other attribute values (e.g.,
“Berkeley”), and (ii) a token for an attribute value (e.g., “Berkeley”)
can only attend to all attribute values of all attributes and its at-

tribute name (i.e., city), but not other attribute names (e.g., name).
TURL [19] also uses this technique, called visibility matrix.

2.3 Related Work
Data Cleaning. We categorize prior work on data cleaning into

three categories. (i) Only examine the data at hand. There are in-
tegrity constraints (FDs [6], its extensions CFDs [26] and PFDs [54],

denial constraints [16], and rule-based methods [33, 66]), and prob-

abilistic based methods (e.g., HoloClean [57]). They need enough

signals or data redundancy from D. Supervised ML based meth-

ods (e.g., GDR [70], SCAREd [69], Raha [49] and Baran [48]) learn

only from the data at hand, which cannot be generalized to other

datasets. (ii) Use External Reliable Sources: This includes the of mas-

ter data [28, 37] or knowledge bases [17, 32]. These methods require

experts to define or confirm the matching between the data at hand

and the external source, e.g., matching rules for table-table match-

ing [28] or graphical patterns for table-graph matching [17]. (iii)

Human- or crowd-in-the-loop.When neither (i) nor (ii) type solutions

work, a last resort is to fall back on humans to clean the dataset.

Intuitively, with enough signals, data redundancy, reliable exter-

nal sources with sufficient coverage, and the availability of experts

to bootstrap and tune the process, we can leverage (i) and (ii) style

solutions. Unfortunately, this is usually not the case in practice [1]

— cleaning is frequently of type (iii) with its high human cost. Au-

tomating type (iii) solutions is the main motivation of RPT.

Knowledge Bases. There are two ways to encode the knowledge:

“explicit knowledge” such as knowledge graphs, or “implicit knowl-

edge” by memorizing the knowledge using DL models. In practice,

both explicit knowledge graphs and implicit pre-trained DL models

have been widely studied in industry and academia. Both directions

are important, and RPT belongs to the latter. One drawback is that

it is hard to explain, for which explainable AI techniques [22, 42, 58]

will play an important role for grounding RPT-like tools.

Relational Table Understanding. TaBERT [72], Tapas [35] and

TabFact [13] study the question-answering tasks that involve joint

reasoning over both free text and structured tables. They take a

natural language utterance as input and produce a structured query

(e.g., an SQL query in TaBERT or aggregations in Tapas [35]), or a

classification result (e.g., support or refute in TabFact). To this end,

they focus on learning a joint representation over textual utterances

and tabular data with Transformer models and designing various

pre-training tasks to this end.

Closer to this work is TURL [19]. However, RPT differs from

TURL in two aspects: (i) TURL employs an encoder-only architec-

ture for learned representations, instead of generating a complicated

output, e.g., a tuple or a table. The additional decoder architecture
of RPT provides the flexibility of generating sequences in multiple

forms. (ii) TURL has to be used with a KB to extract values. For

example, for cell infilling, TURL uses a pre-trained model (1.2GB) to

generate a representation, which has to be linked to the KB (i.e., a
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Table 1: Compare RPT with BART (yellow: masked values;
green: (partially) correct; pink: wrong).
title manufacturer price Truth RPT-C BART
instant home

design (jewel

case)

topics enter-

tainment

[M] 9.99 9 Topics

disney’s 1st &

2nd grade bun-

dle ...

disney [M] 14.99 19 Dis

adobe after

effects pro-

fessional 6.5

...

[M] 499.99 adobe adobe $1.99

stomp inc re-

cover lost data

2005

[M] 39.95 stomp inc stomp 39.95

[M] write brothers 269.99 write

brothers

dramatica

...

write

brothers

1.99

collection of web tables, 4.6GB) to get the actual value. RPT (1.6GB

in our experiment) does not need such a KB to fill missing values.

2.4 Opportunities
RPT naturally supports several common data preparation tasks, e.g.,
error detection, data repairing, auto-completion, auto-suggestion,

and schema matching. Yet there are also many opportunities.

(O1) Hybrid Solutions. While RPT does not differentiate between

categorical or numeric data during pre-training, it works better

for categorical data (i.e., human-easy). A promising direction is to

combine RPT with other (quantitative) data cleaning methods [53]

from a rich set of (a-b) type data cleaning solutions.

(O2) Dirty Data.Many tables are dirty. Pre-training RPT on these

dirty tables may yield a biased result. Currently, we learn directly

from dirty tables, by assuming that the frequency of correct values

is higher than the frequency of wrong values. There are several

open problems. First, we would like to provide some guarantee of

model robustness while still learning from dirty data. Second, a

cleaned version of training data that can be used as a benchmark is

highly desired, similar to the Colossal Clean Crawled Corpus (C4)

for Text-To-Text-Transfer-Transformer (T5) [55].

(O3) An AI-assisted Tool with Human-in-the-loop. Achieving high

accuracy in diverse data preparation tasks and domains is still a

challenge for RPT; it would require substantial in-domain training

data. Hence, a practical usage of RPT is to use it as an AI-assisted

tool that can suggest meaningful results in many human-in-the-

loop tasks, which can guide users and thus reduce human cost.

2.5 Preliminary Result
We have conducted preliminary experiments to show that RPT

can reconstruct the masked token(s) in tuples. Our baseline is

BART [52], which is pre-trained with a large corpus of text, in-

cluding from the product domain. Because BART and RPT have the

same architecture (Figure 2), we can use the parameters pre-trained

by BART, instead of a random initialization. We used tables about

products, including Abt-Buy [2] and Walmart-Amazon [65]. Note

that these two tables are naturally dirty.

For testing, we used Amazon-Google [3], the tables that were

not seen by BART or RPT. We masked attribute values and asked

BART and RPT to predict the original values. Table 1 shows some

results, where [M] means that the value is masked out, column

Truth is the ground truth, and columns RPT and BART provide the

results predicted by each, respectively. Tuples 1-2 involve predicting

missing prices, where RPT gives close predictions but BART does

not. Tuples 3-4 involve predicting missing manufacturers; RPT-C

provides good predictions. Tuple 5 involves predicting a missing

title, and RPT provides a partially correct prediction.

This preliminary experiment shows that RPT pre-trained on ta-

bles can learn structural data values from tables better than directly

using a pre-trained language model (e.g., BART), which is not cus-

tomized for relational data. The main reason is that, by pre-training

on the product tables, RPT can better learn dependency among

columns, and thus is more capable of predicting missing values.

Of course, RPT sometimes makes wrong predictions, but for those

cases, BART also fails. Our belief is that these preliminary results

are suggestive enough of the effectiveness of the approach that it

merits significant additional investigation.

Limitations. RPT faces similar limitations that pre-trained lan-

guage models (LMs) face. (1) Numeric values: numeric values are

usually mapped into unknown tokens causing the model to fail on

tasks that require precise prediction on numeric values. (2) Max se-
quence length: restricted by the GPU memory size, most pre-trained

LMs are limited by the sequence length, thus data preparation on

wide tables may require additional optimization. (3) Not fully reli-
able. Similar to GPT-3, a generative model cannot be fully trusted.

One way to combat this is to treat it as an AI-assistant with a

human-in-the-loop, as discussed in Section 2.4 Opportunities (O3).

3 FINE-TUNING RPT
The encoder-decoder architecture of RPT (pre-trained on tuple-to-
tuple) provides the flexibility to be fine-tuned for different down-

stream data preparation tasks (i.e., tuple-to-X).

ValueNormalization.Because RPT has an autoregressive decoder,

it can be directly fine-tuned for sequence generation tasks such as

value normalization (e.g., “Mike Jordan, 9 ST, Berkeley”→ “Mike

Jordan, 9th Street, Berkeley”). The encoder takes the input value as

a sequence and the decoder generates the output autoregressively.

In addition, normalizing “Mike” to “Michael” or “Sam” to “Samuel”

can be fine-tuned as a neural name translation [63] task.

Data Transformation. Similarly to what is described above, RPT

can be fine-tuned for transformation of data from one format (e.g.,
a tuple) to another format (e.g., JSON or XML), where the decoder

will autoregressively serialize the output in the target format.

Data Annotation. Given a tuple, data annotation requires adding

a label (e.g., a classification task). We can use the final hidden state

of the final decoder token to fine-tune a multi-class linear classifier.

Information Extraction (IE). Given a tuple, IE extracts a span or

multiple spans of relevant text, which can be done by fine-tuning

the decoder to produce the (start, end) pairs of spans.

Learned Tuple Representation for Entity Resolution. The em-

beddings of entities have been used in entity resolution for both

blocking [23] and entity matching [23, 50]. A typical trick is to
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Entities 
A

Blocker
(off-the-shelf tools)

(a, b)

Entities
B

Blocks 
P1
…
Pm

Pre-trained
Matcher

Clusters 
C1
…
Cn

Cluster
Consolidator

Few-shot Learning

Golden 
Records 

g1
…
gn

Examples E3
(iPhone 9, iPhone 10) -> iPhone 10

(iPhone 10, iPhone 12) -> iPhone 12

Examples E2
(a1, b1): True
(a2, b1): True
(a2, b2): True
(a1, b1): False

Examples E1
(iPhone 12 black, iPhone 12 red): True

(iPhone11, iPhone 12): False

Active 
Learning

Figure 3: Collaborative Learning and Few-shot Learning for Entity Resolution.

do cross-tuple training (or contrastive learning [12]), via Siamese

NNs [14], such that similar entities have similar embeddings. Sim-

ilarly, the encoder of RPT can be fine-tuned in Siamese NNs for

learned representations w.r.t. entity resolution.

4 BEYOND RPT
In this section, we explore other, but related, techniques that can

help on specific tasks.

4.1 Entity Resolution
Given two sets of entities, A and B, an end-to-end of entity res-
olution pipeline (Figure 3) is: (1) find duplicated entity pairs

(a ∈ A,b ∈ B) (blocking to improve efficiency); (2) merge them

into clusters, typically through transitive closure, and (3) consoli-

date each cluster into one entity.

Blocking. There is a rich literature on automatic blocking for ER

(see [51] for a survey). There are also DL-based methods [23, 45, 67]

to generate blocks. These prior works are automatic and already

work well, hence will not be covered in this paper.

Matcher. The state-of-the-art matchers are all ML based e.g., random
forests (e.g., Magellan [43]), or DL based (e.g., DeepMatcher [50]

and DeepER [23]). Recent works [9, 45] also study to leverage pre-

trained LM models for generating entity representations.

Consolidator. There are rule-based methods [27] and learning-based

approach [34] for entity consolidation – both need either significant

human involvement or a large amount of training data.

Vision and Opportunities. The Matcher and Consolidator should

be able to perform effectively through pre-trained models (i.e., to
obtain knowledge) and a few examples (i.e., to interpret the task).

However, this pipeline cannot be fully automated, because some

judgments are objective, e.g., “iPhone 10”, “iPhone ten”, and “iPhone
X” are the same, while some others are subjective, e.g., whether
“iPhone 12 red” matches “iPhone 12 black” is user dependent.

Our intuition is that the objective criteria can be pre-trained (such

as “iPhone 10” matches “iPhone X” and “Mike” matches “Michael”),

but the subjective criteria need task-specific samples, for both the

Matcher and the Consolidator (Figure 3), which could be achieved

by getting a few examples from humans.

We identify two major opportunities for the entire ER pipeline.

(O1) Collaborative learning or Federated Learning (FL) [7, 71]. This
is to learn the “objective” criteria for the Matcher. Note that there

are many public and private ER benchmarks, which share common

domains. It is promising to collaboratively train one Matcher, and

the knowledge can be learned and transferred from one dataset to

another dataset. Better still, this can be done securely [47], without

data sharing. Note that, there have been transfer learning tech-

niques on ER [41, 61] to show an early success on this thread.

We believe that we should build a platform collaboratively for ER,

with a pre-trained modelM for each domain. Anyone who wants

to benefit from M can download M , retrain using his/her data to

get aM1, and send back an update of parameters ∆1 = M1 −M , and

the platform will merge the model update withM , from multiple

users [7]. Because different entities may have different schemas,

we use a pre-trained model such as BERT to be schema-agnostic.

(O2) Few-shot Learning. This is to learn the “subjective” criteria, for

Matcher and Consolidator, through a human-in-the-loop approach.

The goal is to infer a better specified task from a few examples, e.g.,
using Pattern-Exploiting Training [59].

[Matcher.] Consider E1 in Fig. 3 that contains two user provided

examples and we want to automatically generate a clearer task

for workers, e.g., “color does not matter but model matters”. We

can design two templates like (T1) “True: if a and b have the

same [M]1” and (T2) “False: if a and b have different [M]2”. By

replacing the first matching pair in E1 to template (T1), we can infer

a pattern “model” or “series” (but not “color”) for [M]1. Similarly,

by using the second un-matching pair in E2 to template (T2), we

can infer a pattern “model” or “series” for [M]2.

Moreover, when merging matching entities into clusters based

on transitive closure, conflict may be automatically detected within

clusters (e.g., E2 in Fig. 3); such conflicts can be resolved by the

users through active learning. Note that, doing active learning from

conflicting predictions is different from traditional active learning

methods on ER that use confusing/informative entity pairs [4, 15].

[Consolidator.] Consider E3 with two examples, “iPhone 10 is

more preferred than iPhone 9”, and “iPhone 12 is more preferred

than iPhone 10”. We can use them to make the task clearer by

asking questions “iPhone 10 is [M] than iPhone 9” and “iPhone 12

is [M] than iPhone 10”, and enforce a language model to fill the

two masked tokens with the same value, which might be “newer”.

Another powerful method related to few-shot learning is meta-

learning (or learning to learn fast) [62], with the main goal to learn

new concepts and skills fast with a few examples.

Preliminary Results. We have conducted some preliminary ex-

periments on the “product” domain for the Matcher, because

this domain has a rich collection of ER benchmarks, and it is
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Table 2: Comparison with the State of the art.

Method Abt-Buy Amazon-Google
F1 score # labels F1 score # labels

Collaborative Training (CT) 0.72 0 0.53 0

ZeroER 0.52 0 0.48 0

DeepMatcher 0.63 7689 0.69 9167

Ditto 0.71 1500 0.50 1000

known to be hard ER cases because they are text-rich. Specif-

ically, we use five well-known benchmarks. (D1) Abt-Buy [2],

(D2) Amazon-Google [3], (D3) Walmart-Amazon [65], (D4) iTunes-

Amazon [38], and (D5) SIGMOD 2020 programming contest [60]

(we took 1000/8000 matching/unmatching pairs).

Specifically, when testing on D1, we train with D2–D5, and when

testing on D2, we train with D1, D3–D5. We only tested on D1 and

D2, so we can directly compare with ZeroER [68] (without any train-

ing data) and DeepMatcher [50] (trained with hundreds/thousands

of examples), where the F1 scores and the number of labels are re-

ported from their original papers. We also compare with Ditto [45].

We progressively add the number of labeled data to fine-tune Ditto

until its F1 is very close to that of collaborative training (CT).

We also note that the paper [9] is quite similar to Ditto. First,

both studies use the same strategy to model a record pair as a se-

quence and fine-tune a pre-trained model to output the matching

results. Second, [9] compares different pre-trained LM models for

entity resolution and reports that RoBERTa [23] achieves the best

performance. Similarly, the latest version of Ditto [45] also uses

RoBERTa as its pre-trained model. Third, both studies achieve simi-

lar results in the experiments. For example, on the Abt-Buy dataset,

[9] and Ditto achieve 0.91 and 0.90 on F1 score respectively.

Table 2 shows that CT outperforms ZeroER and is comparable

with DeepMatcher that was trained with 1000+ examples. Moreover,

CT uses zero examples from the test ER dataset to achieve the

performance of Ditto, which is trained by fine-tuning a pre-trained

model with 1000+ examples. This result verifies the opportunity

(O1) that it is promising to collaboratively train a Matcher to decide

whether two entities (even in different schemas) match or not.

4.2 Information Extraction
Information Extraction (IE) is the process of retrieving specific

information from unstructured (e.g., text), or (semi-)structured (e.g.,
relational) data. We consider a simple IE problem: given a text or

text-rich tuple t , it is to extract a span (i.e., a continuous sequence
of tokens) from t , denoted by I(t). See Figure 1(c) for a sample IE

task. Although simple, the above definition is general enough to

cover a wide range of IE problems.

Connection with Question-Answering in NLP. There is a nat-
ural connection between the IE problem and a typical question-

answering problem in NLP. For question answering, there is an

input question such as “Q: where do water droplets collide with

ice crystals to form precipitation”, and an input paragraph “P: ...

Precipitation forms as smaller droplets coalesce via collision with

other rain drop or ice crystals within a cloud. ...”. The task is to find

a span e.g., within a cloud of paragraph P to answer the question

Q. There are many NLP question-answering benchmarks, such as

SQuAD [56] where AI has outperformed human performance [73].

Bidirectional Transformer-based Encoder
BERT (Fine-tuned with Question-Answering Tasks)

[CLS] Token 1 Token N [SEP] Token 1 Token M

Start/End Span

Question (Q) Paragraph (P)

What is the memory size?

Question 
Generation

Tuple 
Tokennization

type description label
notebook 2.3GHz 8-Core, 1TB Storage, 8GB memory,

16-inch Retina display
8GB

phone 6.10-inch touchscreen, a resolution of
828x1792 pixels, A14 Bionic processor, and
come with 4GB of RAM

<latexit sha1_base64="wCD0Gu79H514LkZdrYOOI7gAZ7A="></latexit>

4GB

s1

t1

Figure 4: Connecting IE with NLP Question-Answering.

As shown in Figure 4, given a query Q and a paragraph P, a pre-

trained model fine-tuned using question-answering benchmarks

can provide a span, i.e., (start, end) positions, as output.
We can tokenize a tuple t as a paragraph P (Section 2). The

remaining problem is to generate the question Q. We can have a

question template such as “what is the [M]”, where the [M] can

be instantiated with one-shot learning (e.g., the label of s1) via e.g.,
PET [59], which gives “what is the memory size” as the question Q.

Opportunities. (O1) Connect more DB-related IE tasks to well-

studied NLP tasks, so as to obtain pre-trained knowledge (e.g.,
NeruON [5] uses a seq-to-seq model to extract tuples from question-

answer pairs). (O2) Currently, many IE tasks are performed by

crowd workers (or crowd-in-the-loop). Instead of fully replacing

these crowd workers, we are studying how to train multiple RPT-I

models as AI-workers, and mix the AI-workers and crowd workers

to reduce the total cost of a crowdsourcing task.

5 CALL TO ARMS
We have presented our vision and concrete steps for democratiz-

ing data preparation: RPT, fine-tuning RPT, and other appealing

techniques. Several recent successes (e.g., Termite [29], EmbDI [11],

TURL [19], Ditto [45] and NeurON [5]) have shed some light on

this direction. Our preliminary results, along with these related

papers suggest that learning-based approaches have the potential

to outperform more traditional methods, much as they have rev-

olutionized NLP. However, the data preparation field is vast, the

problems are diverse and much work remains to be done. In partic-

ular, a major obstacle to advance all the above topics is the limited

availability of real-world benchmarks, e.g., C4 for T5 [55]. Now is

the time for the data preparation and larger database communities

to come together to explore the potential of these new techniques.
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