
Shortest Paths and Centrality in Uncertain Networks
Arkaprava Saha

NTU Singapore

saha0003@e.ntu.edu.sg

Ruben Brokkelkamp

CWI Amsterdam, The Netherlands

ruben.brokkelkamp@cwi.nl

Yllka Velaj

University of Vienna, Austria

yllka.velaj@univie.ac.at

Arijit Khan

NTU Singapore

arijit.khan@ntu.edu.sg

Francesco Bonchi

ISI Foundation, Turin, Italy

francesco.bonchi@isi.it

ABSTRACT
Computing the shortest path between a pair of nodes is a funda-

mental graph primitive, which has critical applications in vehicle

routing, finding functional pathways in biological networks, surviv-

able network design, among many others. In this work, we study

shortest-path queries over uncertain networks, i.e., graphs where

every edge is associated with a probability of existence. We show

that, for a given path, it is #P-hard to compute the probability of it

being the shortest path, and we also derive other interesting prop-

erties highlighting the complexity of computing the Most Probable

Shortest Paths (MPSPs). We thus devise sampling-based efficient

algorithms, with end-to-end accuracy guarantees, to compute the

MPSP. As a concrete application, we show how to compute a novel

concept of betweenness centrality in an uncertain graph using

MPSPs. Our thorough experimental results and rich real-world

case studies on sensor networks and brain networks validate the

effectiveness, efficiency, scalability, and usefulness of our solution.

PVLDB Reference Format:
Arkaprava Saha, Ruben Brokkelkamp, Yllka Velaj, Arijit Khan,

and Francesco Bonchi. Shortest Paths and Centrality in Uncertain

Networks. PVLDB, 14(7): 1188-1201, 2021.

doi:10.14778/3450980.3450988

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/ArkaSaha/MPSP-Centrality.

1 INTRODUCTION
Uncertain networks, i.e., graphs where each edge is associated with

a probability of existence, have received a great deal of attention

thanks to their expressivity and applicability in many real world

contexts. Researchers have studied 𝑘-nearest neighbor queries [39,

52], reachability queries [31], clustering [23], sampling [48], net-

work design [30], and embedding [24], just to mention a few. Un-

certainty in a network might arise due to noisy measurements [2],

edge imputation using inference and prediction models [1, 40], and

explicit manipulation of edges, e.g., for privacy purposes [7].

Shortest-path queries [8, 17, 27] are one of the fundamental

graph primitives with a plethora of applications, e.g., traffic routing,

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 7 ISSN 2150-8097.

doi:10.14778/3450980.3450988

𝑠 𝑡

𝑤

𝑥

𝑦

𝑧

1, 0.05

2, 0.15

3, 0.25

4, 0.95

1, 0.05

2, 0.15

3, 0.25

4, 0.95

Path 𝑃 Length 𝑃𝑟 (Sh𝑡𝑠 (𝑃))
𝑃1 : (𝑠,𝑤, 𝑡) 2 0.0025

𝑃2 : (𝑠, 𝑥, 𝑡) 4 0.0224

𝑃3 : (𝑠,𝑦, 𝑡) 6 0.0609

𝑃4 : (𝑠, 𝑧, 𝑡) 8 0.8250

Figure 1: Example of paths in an uncertain graph: 𝑃𝑟 (Sh𝑡𝑠 (𝑃)) de-
notes the probability that path 𝑃 is the shortest path from 𝑠 to 𝑡 .

finding functional pathways in biological networks. A critical appli-

cation of shortest paths is the computation of betweenness centrality
[10, 19, 43, 54], a measure of importance of a node based on its

effectiveness in connecting pairs of other nodes via shortest paths.

In this paper, we first study the fundamental problem of com-

puting shortest-path queries in uncertain networks, then we build

over it a measure of betweeness centrality. The notion of shortest

path in an uncertain graph should consider not only the length of

a path but also the probability of existence of all edges on the path.

Specifically, given an uncertain graph G, a source node 𝑠 , and a tar-

get node 𝑡 , our goal is to find the path 𝑃 from 𝑠 to 𝑡 with the highest

probability of being the shortest path (SP), i.e., the probability with

which 𝑃 exists and no path shorter than 𝑃 exists. We refer to such

a path as the Most Probable Shortest Path (MPSP) from 𝑠 to 𝑡 .

Example 1. Each edge in the uncertain graph in Figure 1 is anno-
tated with its length and its probability of existence. For the source
𝑠 and target 𝑡 , although the path 𝑃1 = (𝑠,𝑤, 𝑡) is the shortest (when
not considering probabilities), the one having the highest probability
of being the shortest path, i.e., theMPSP from 𝑠 to 𝑡 , is 𝑃4 = (𝑠, 𝑧, 𝑡),
which is also the longest path (when not considering probabilities).

ComputingMPSPs is useful inmany applications. Road networks

are modeled as uncertain graphs because of unexpected traffic jams

[25], where a vehicle driver may find the MPSP to the nearest

gas station or restaurant. MPSPs are also useful in routing over

wireless sensor networks, where links between sensor nodes have

a probability of failure. Many applications not only require the

shortest route, but also one with a high precision [22, 33], such

as being the shortest with a high probability. Brain networks are

often represented as weighted uncertain graphs, where nodes are

the brain regions of interest (ROIs), edges indicate potential co-

activation between ROIs, edge distance represents physical distance

between ROIs, and edge probability indicates the strength of the

co-activation signal [15]. Finding MPSPs between different ROIs

of the brain could differentiate healthy brains from those with

diseases, such as autism [16, 20]. In our experiments, we present

1188

https://doi.org/10.14778/3450980.3450988
https://github.com/ArkaSaha/MPSP-Centrality
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3450980.3450988

two concrete use cases of MPSPs on sensor networks (§ 5.7) and

brain networks (§ 5.8).

1.1 Related Work
Several variants of shortest-path queries over uncertain graphs

have been studied in the literature. Work in [12, 13, 62] investigates

threshold-based shortest-path queries in uncertain graphs, i.e., the

problem of finding all paths having shortest-path probability larger

than a predefined threshold. In particular, [12, 13] consider a differ-

ent uncertain graph model with correlation. The work closest to

ours is probably [63], which considers MPSP queries as we do, but

it does not provide any hardness result or any accuracy guarantee.

In [63], similar to [13, 62], a filtering-and-verification framework

is used, which enumerates paths between the two given nodes in

increasing order of length, without considering edges’ probabili-

ties, till a termination criterion is achieved. Among the candidate

paths generated, a sampling method is applied (e.g., the Luby-Karp

algorithm [28]) to approximately measure each candidate path’s

probability of being the shortest path. However, it may happen that

theMPSP (the path we are looking for) is not one of the shortest few

paths when one does not consider probabilities (as in Example 1). In

this case, a filtering-and-verification approach would have to enu-

merate a large number of paths before including the real MPSP in

the candidate set. Thus we ask the question: can we quickly include
the MPSP in the candidate set, without requiring to enumerate all
paths shorter than theMPSP? To address this, we combine Monte

Carlo (MC) sampling with Dijkstra’s algorithm (referred to as Dijk-

stra+MC) from the source node. That is, when a node is reached via

Dijkstra’s algorithm, its outgoing edges are sampled according to

their probabilities, and only the sampled edges are considered for

choosing the next node. As formally proved in § 3.3, our method

will need only a small number (≈ 20) of Dijkstra+MC runs to in-

clude the MPSP in the candidate set with a high probability. We

demonstrate this with an example.

Example 2. In Figure 1, there are four paths from 𝑠 to 𝑡 . The path
𝑃4 (the longest path) is the MPSP. The probabilities of the edges in 𝑃4
are much larger than those of the edges in the other paths. Hence, a
run of Dijkstra+MC on this graph produces the path 𝑃4 with a higher
probability, since the other edges are highly unlikely to be sampled.
Thus, we need only a small number of such runs (maybe 1 or 2) to
include 𝑃4 in the candidate set. On the other hand, the method in [63]
requires all the three remaining paths to be enumerated before 𝑃4,
which is clearly more time-consuming.

The idea of Dijkstra+MC (or BFS+MC in an uncertain graph

that does not consider edge lengths) has been extensively used in

probabilistic reachability queries [26, 31, 33] and to build reverse-

reachable sketches for the influence maximization problem [9, 57].

The work in [12], discussed before, also employs a form of Dijk-

stra+MC, followed by the Horvitz-Thompson (HT) unequal proba-

bility estimator, to compute the probability of being the shortest

path heuristically, without any accuracy guarantee. While we em-

ploy Dijkstra+MC for effective and faster candidate generation,

we then apply the Luby-Karp sampling to find the MPSP in this

candidate set. Unlike [12], we provide end-to-end accuracy guaran-

tees of our method, and we also experimentally demonstrate the

superiority of our approach over [12].

1.2 Contributions and Roadmap
We formally define the concept of the Most Probable Shortest Path

(MPSP) in an uncertain graph (§ 2), prove that our problem is

#P-hard, and also derive other interesting properties highlighting

the complexity of computingMPSPs (§ 2.1). We discuss an earlier

baseline solution [63], together with its shortcomings (§ 2.2). In § 3,

we propose our sampling based efficient algorithms, with end-to-

end accuracy guarantees, to compute theMPSP.

We then focus on three important generalizations of our problem:

first we study top-𝑘 MPSP queries for 𝑘 > 1 (§ 3.2); followed by

single-source and single-targetMPSP queries (§ 3.4); thenMPSPs

over uncertain multi-graphs (§ 3.5). The last one provides a general

data model, since it allows one to model the uncertainty as a prob-

ability distribution of the length of an edge: for instance, in road

networks, it canmodel the probability distribution of travel times on

specific road segments. Furthermore, we studyMPSP-Betweenness-

Centrality and develop efficient sampling strategies to compute the

top-𝑘 central nodes, with theoretical quality guarantees (§ 4).

Finally, we conduct thorough experiments (§ 5) showing scalabil-

ity over large-scale datasets and performance improvements against

state-of-the-art methods [12, 63]. We also develop interesting case

studies with sensor (§ 5.7) and brain (§ 5.8) networks.

2 PRELIMINARIES
Let G = (𝑉 , 𝐸,𝑊 , 𝑝) be a probabilistic (or uncertain) directed graph,
where𝑊 : 𝐸 → R≥0 defines non-negative edge length, and 𝑝 :

𝐸 → (0, 1] is a function that assigns a probability of existence

to each edge. Following the bulk of the literature on uncertain

graphs [5, 26, 34, 35, 52, 59, 62, 63], we adopt the well-established

possible world semantics and assume that edge probabilities are

independent of each other: the uncertain graph G is interpreted

as a probability distribution over the 2
|𝐸 |

deterministic graphs

(possible worlds) 𝐺 = (𝑉 , 𝐸𝐺 ,𝑊) ⊑ G obtained by sampling each

edge 𝑒 ∈ 𝐸 independently at random with probability 𝑝 (𝑒). That is,
the probability of observing the possible world 𝐺 = (𝑉 , 𝐸𝐺 ,𝑊) is:

𝑃𝑟 (𝐺) =
∏︂
𝑒∈𝐸𝐺

𝑝 (𝑒)
∏︂

𝑒∈𝐸\𝐸𝐺
(1 − 𝑝 (𝑒)) (1)

Given a pair of distinct nodes (𝑠, 𝑡) ∈ 𝑉 ×𝑉 , a (simple) path 𝑃 from 𝑠

to 𝑡 is an ordered sequence of edges denoted by 𝑃 = (𝑒1, 𝑒2, . . . , 𝑒𝑛),
such that 𝑒𝑖 = (𝑢𝑖 , 𝑢𝑖+1) ∈ 𝐸 for all 𝑖 ∈ {1, 2, . . . , 𝑛}, 𝑢1 = 𝑠 , 𝑢𝑛+1 = 𝑡

and 𝑢𝑖 ≠ 𝑢 𝑗 for 𝑖 ≠ 𝑗 . For this path, the nodes 𝑠 and 𝑡 are called

the source and target nodes respectively, while the remaining ones

constitute the set 𝐼𝑛𝑡 (𝑃) of internal nodes. The length of the path 𝑃 is

the sum of lengths of its edges:𝑊 (𝑃) = ∑︁𝑛
𝑖=1𝑊 (𝑒𝑖). A shortest path

from 𝑠 to 𝑡 in a deterministic graph 𝐺 is one having the minimum

length, and we denote by 𝑆𝑃 (𝐺, 𝑠, 𝑡) the set of all such paths.

In an uncertain graph G, let P(G, 𝑠, 𝑡) denote the set of all paths
from 𝑠 to 𝑡 . Given a path 𝑃 , the event that 𝑃 exists (resp. does not ex-

ist) is denoted by X(𝑃) (resp. X(𝑃)), and 𝑃𝑟
(︁
X(𝑃)

)︁
=

∏︁𝑛
𝑖=1 𝑝 (𝑒𝑖) =

1 − 𝑃𝑟
(︁
X(𝑃)

)︁
. We also denote by Sh𝑡𝑠 (𝑃) the event that 𝑃 happens

to be a shortest path from 𝑠 to 𝑡 , whose probability is:

𝑃𝑟 (Sh𝑡𝑠 (𝑃)) =
∑︂
𝐺⊑G

𝑃𝑟 (𝐺) × 1[𝑃 ∈ 𝑆𝑃 (𝐺, 𝑠, 𝑡)] (2)

where 1[.] is the indicator function.

1189

The main problem studied in this paper is as follows.

Problem 1 (Most Probable Shortest Path (MPSP)). Given
an uncertain graph G = (𝑉 , 𝐸,𝑊 , 𝑝) and two nodes 𝑠, 𝑡 ∈ 𝑉 , find the
Most Probable Shortest Path (MPSP) from 𝑠 to 𝑡 . Formally:

𝑀𝑃𝑆𝑃 (G, 𝑠, 𝑡) = argmax

𝑃∈P(G,𝑠,𝑡)
𝑃𝑟 (Sh𝑡𝑠 (𝑃)) (3)

2.1 Hardness of the Problem
One factor that makes Problem 1 challenging is that even computing

the probability of being the shortest path between two given nodes,

for a given path, is hard.

Theorem 1. Given an uncertain graph G = (𝑉 , 𝐸,𝑊 , 𝑝) and a
path 𝑃 ∈ P(G, 𝑠, 𝑡), the problem of computing the probability of 𝑃
being a shortest path from 𝑠 to 𝑡 in G is #P-hard.

Proof. We prove the #P-hardness by polynomial-time reduction

from the 𝑠-𝑡 connectedness problem, which is known to be #P-hard
[59]. Given a certain (deterministic) graph 𝐺 = (𝑉 , 𝐸), and two

nodes 𝑠 and 𝑡 , the goal of the 𝑠-𝑡 connectedness problem is to find

the number of subgraphs of 𝐺 in which there is a path from 𝑠 to 𝑡 .

Consider an arbitrary instance of the 𝑠-𝑡 connectedness problem

with inputs 𝐺 = (𝑉1, 𝐸1) and two nodes 𝑠, 𝑡 ∈ 𝑉1. Let 𝑛 = |𝑉1 |.
The deterministic graph 𝐺 is converted to an uncertain graph G =

(𝑉1 ∪𝑉2, 𝐸1 ∪𝐸2,𝑊 , 𝑝), where𝑉2 = {𝑣1, 𝑣2, . . . , 𝑣𝑛} is a set of 𝑛 new

nodes and 𝐸2 = {(𝑠, 𝑣1), (𝑣1, 𝑣2), (𝑣2, 𝑣3), . . . , (𝑣𝑛−1, 𝑣𝑛), (𝑣𝑛, 𝑡)}. In
other words, 𝐺 is augmented with a new path 𝑃 from 𝑠 to 𝑡 . The

functions𝑊 and 𝑝 are defined ∀𝑒 ∈ 𝐸1 ∪ 𝐸2 as𝑊 (𝑒) = 1 and

𝑝 (𝑒) =
{︄
1

2
if 𝑒 ∈ 𝐸1

1 if 𝑒 ∈ 𝐸2
We make three observations. (𝑖) Every possible world 𝐺 ′ ⊑ G
for which 𝑃𝑟 (𝐺 ′) > 0 contains the path 𝑃 and satisfies 𝑃𝑟 (𝐺 ′) =(︁
1

2

)︁ |𝐸1 |
. (𝑖𝑖) There is a bijection between the set of subgraphs of

𝐺 and the set of possible worlds of G with non-zero probability.

A subgraph 𝐺 ′′ = (𝑉 ′′, 𝐸 ′′) of 𝐺 can be mapped to the possible

world 𝐺 ′ = (𝑉 ′′ ∪ 𝑉2, 𝐸 ′′ ∪ 𝐸2,𝑊) of G. This mapping is clearly

one-to-one, since𝑉 ′′∩𝑉2 = 𝜙 and 𝐸 ′′∩𝐸2 = 𝜙 by definition. To see

why it is onto, note that any possible world of G, that exists with
positive probability, must contain all edges in 𝐸2, since 𝑝 (𝑒) = 1

∀𝑒 ∈ 𝐸2. Hence, given a possible world𝐺 ′ = (𝑉 ′, 𝐸 ′,𝑊) of G, there
exists a subgraph𝐺 ′′ = (𝑉 ′ \𝑉2, 𝐸 ′ \𝐸2,𝑊) which is the pre-image

of𝐺 ′ under the mapping. (𝑖𝑖𝑖) For a subgraph𝐺 ′′ = (𝑉 ′′, 𝐸 ′′) of𝐺
and its corresponding possible world 𝐺 ′ = (𝑉 ′′ ∪𝑉2, 𝐸 ′′ ∪ 𝐸2,𝑊)
of G, 𝑃 is the shortest path from 𝑠 to 𝑡 in 𝐺 ′ if and only if 𝑠 and 𝑡

are disconnected in 𝐺 ′′. The ‘if’ part is trivial. The ‘only if’ part
follows since𝑊 (𝑃) = 𝑛 + 1 and𝑊 (𝑃 ′) ≤ 𝑛 − 1, where 𝑃 ′ denotes
any path from 𝑠 to 𝑡 in 𝐺 ′′.

Putting together the above observations, we obtain the following:

𝑃𝑟 (Sh𝑡𝑠 (𝑃)) =
∑︂

𝐺′⊑G
𝑃𝑟 (𝐺 ′) × 1[𝑃 ∈ 𝑆𝑃 (𝐺 ′, 𝑠, 𝑡)]

= 1 −
∑︂

𝐺′⊑G
𝑃𝑟 (𝐺 ′) × 1[𝑃 ∉ 𝑆𝑃 (𝐺 ′, 𝑠, 𝑡)]

= 1 −
(︃
1

2

)︃ |𝐸1 | ∑︂
𝐺′⊑G :𝑃𝑟 (𝐺′)>0

1[𝑃 ∉ 𝑆𝑃 (𝐺 ′, 𝑠, 𝑡)]

𝑠 𝑡

𝑤

𝑢 𝑣
10, 0.1

2, 0.9 10, 0.9

4, 0.9

3, 0.4

5, 0.6

Path P W(P) 𝑃𝑟 (Sh𝑡𝑠 (𝑃))
(𝑠,𝑢,𝑤, 𝑡) 18 0.024

(𝑠,𝑢, 𝑣,𝑤, 𝑡) 21 0.029

(𝑠,𝑢, 𝑣, 𝑡) 22 0.035

Figure 2: An example to demonstrate properties of MPSP

From observation (𝑖𝑖𝑖), the summation term in the last line is ex-

actly the number of subgraphs of 𝐺 in which the nodes 𝑠 and 𝑡

are connected. Thus, a solution to our problem on G provides a

solution to the 𝑠-𝑡 connectedness problem on 𝐺 . This reduction

involves O(𝑛) node and edge additions to𝐺 , and hence takes time

polynomial in the size of 𝐺 . □

In addition to #P-hardness, there are some other properties of

MPSPs that make our problem hard.Many of the classical properties
of shortest paths over deterministic graphs no longer hold forMPSPs in
uncertain graphs. For instance, the concatenation of twoMPSPs, and

a subpath of anMPSP, are not necessarilyMPSPs. We demonstrate

these properties next, using the uncertain graph G in Figure 2.

In the following, we denote byM(G, 𝑠, 𝑡) the set of MPSPs from

𝑠 to 𝑡 , and byM(G) the set of allMPSPs between all pairs of nodes,

i.e,.M(G) = ⋃︁
(𝑠,𝑡) ∈𝑉×𝑉 M(G, 𝑠, 𝑡).

Observation 1. Given an uncertain graph G = (𝑉 , 𝐸,𝑊 , 𝑝), an
MPSP 𝑃 ∈ M(G) and a subpath𝑄 of 𝑃 , it is possible that𝑄 ∉ M(G).

Consider the path (𝑠,𝑢, 𝑣, 𝑡) ∈ M(G, 𝑠, 𝑡) and its subpath (𝑣, 𝑡).
The probabilities of being a shortest path from 𝑣 to 𝑡 turn out to be

𝑃𝑟 (Sh𝑡𝑣 (𝑣, 𝑡)) = 0.414 and 𝑃𝑟 (Sh𝑡𝑣 (𝑣,𝑤, 𝑡)) = 0.540, so that (𝑣, 𝑡) is
not even the MPSP from 𝑣 to 𝑡 . The observation follows.

Given two paths 𝑃 = (𝑒1, . . . , (𝑢, 𝑣)) and𝑄 = ((𝑣,𝑤), . . . , 𝑒𝑛), the
concatenation of 𝑃 and𝑄 , denoted by 𝑃 ·𝑄 , is defined as the sequence

𝑃 · 𝑄 = (𝑒1, . . . , (𝑢, 𝑣), (𝑣,𝑤), . . . , 𝑒𝑛). Note that the concatenation
of two paths 𝑃 and 𝑄 is defined only when the target node of 𝑃 is

the same as the source node of 𝑄 . The next observation states that

the concatenation of twoMPSPs is not necessarily anMPSP.

Observation 2. Given an uncertain graph G = (𝑉 , 𝐸,𝑊 , 𝑝) and
twoMPSPs 𝑃,𝑄 ∈ M(G), such that the target node of 𝑃 is the same
as the source node of 𝑄 , it is possible that 𝑃 ·𝑄 ∉ M(G).

Notice that since 𝑃 = (𝑠,𝑢, 𝑣) is the only path from 𝑠 to 𝑣 , it is

clear thatM(G, 𝑠, 𝑣) = {(𝑠,𝑢, 𝑣)}. Also, as shown in Observation

1, 𝑄 = (𝑣,𝑤, 𝑡) ∈ M(G, 𝑣, 𝑡). However, 𝑃 ·𝑄 = (𝑠,𝑢, 𝑣,𝑤, 𝑡) = 𝑃2 ∉

M(G, 𝑠, 𝑡), and hence 𝑃 ·𝑄 ∉ M(G).

2.2 Baseline: Filtering-and-Verification
In our experiments (§5) we use as a baseline the filtering-and-

verification approach of [63]. This method consists of two steps:

generating a set of candidate paths containing theMPSP, and using

Luby-Karp sampling to find theMPSP in this set.

For step 1, given a source 𝑠 and a target 𝑡 , Yen’s algorithm [61] is

used to progressively generate 𝑠-𝑡 paths 𝑃1, 𝑃2, 𝑃3, . . . in ascending

order of lengths. For any 𝑖 , using paths 𝑃1, . . . , 𝑃𝑖 , a lower bound

𝐿𝐵(𝑃𝑖) and an upper bound𝑈𝐵(𝑃𝑖) on the probability that the path

𝑃𝑖 is the SP is computed. The upper bound is monotonically decreas-

ing in 𝑖 , and hence, if 𝑈𝐵(𝑃𝑖) < 𝜖 for some 𝜖 > 0, 𝑈𝐵(𝑃 𝑗) < 𝜖 for

all 𝑗 > 𝑖 . For including theMPSP in the candidate set, the algorithm

1190

continues to generate paths until 𝑈𝐵(𝑃𝑖+1) < max𝑗 ∈[1,𝑖] {𝐿𝐵(𝑃 𝑗)}
for some 𝑖 . This gives the candidate set {𝑃1, . . . , 𝑃𝑖 }.

Step 2 consists of running the Luby-Karp algorithm [28] to ap-

proximate the probability that each path in the candidate set is the

MPSP. It returns the path with the highest such probability.

Two major shortcomings have an influence on the performance

of this method. First, the number of candidates generated can be

very large, even exponential in the input size. For both lower bounds

𝐿𝐵 given in [63], it holds that 𝐿𝐵(𝑃 𝑗) ≤ 𝑃𝑟 (X(𝑃 𝑗)). The upper

bound on the probability of path 𝑃𝑖 being the SP is computed as

𝑈𝐵(𝑃𝑖) = 1 − ∑︁𝑖−1
𝑗=1 𝐿𝐵(𝑃 𝑗). If the probability of existence of the

MPSP is low, then those of the other shorter paths would generally

be low. Hence, the upper bound will decrease very slowly, and it

can take a lot of time before the candidate generation terminates.

The second shortcoming is the computational cost of candidate

generation. Assume that we generate 𝑘 paths before the candidate

generation terminates. This step has time complexity O(𝑘 |𝑉 | (|𝐸 | +
|𝑉 | log |𝑉 |)). As mentioned in the first shortcoming, the number

of candidates 𝑘 can become very large, and even if it is small, we

have the |𝑉 | |𝐸 | factor. Empirically (§5) we find that the candidate

generation does not finish in one hour for our synthetic datasets.

3 PROPOSED SOLUTION
We propose a two-phase algorithm to approximate theMPSP be-

tween two nodes in an uncertain graph. In the first phase we

compute paths that are candidates for being the MPSP (via Dijk-

stra+MC), and in the second phase we approximate the probability

of each candidate path being the shortest path (via Luby-Karp algo-

rithm). Our method is described in § 3.1 and theoretical guarantees

on the quality of the returned path are provided in § 3.3.

Dijkstra+MC is simple, yet effective and efficient for candidate

generation as we argued in Example 2 (§ 1.1). Our novel algorithmic

contributions include pairing up Dijkstra+MC with the Luby-Karp

algorithm for ultimately finding the MPSP approximately, with

accuracy guarantees. Empirical results show that our algorithm has

better accuracy and scalability over the baseline [63] (§2.2), and

over more advanced sampling approaches, e.g., Horvitz-Thompson

unequal probability estimator (we demonstrate it in §5.4). Among

other novel algorithmic contributions, we extend our method to

find the top-𝑘 MPSPs for 𝑘 > 1 (§ 3.2), single-source and single-

targetMPSP queries (§ 3.4), and to compute theMPSPs in uncertain

multi-graphs (§ 3.5). Our final technical contribution is to define

a novel MPSP-Betweenness-Centrality as a concrete application

(§ 4); we then develop efficient sampling strategies to compute the

top-𝑘 central nodes, with theoretical quality guarantees.

3.1 Two-Phase Algorithm
In Algorithm 1 we describe our two-phase approach.

Phase 1:Dijkstra+MC.Given an uncertain graphG = (𝑉 , 𝐸,𝑊 , 𝑝)
and two nodes (𝑠, 𝑡) ∈ 𝑉 ×𝑉 , the first phase involves computing

paths that are candidates for being the MPSP from 𝑠 to 𝑡 . This is

done by performing𝑚 independent runs of Dijkstra’s algorithm

on G, where𝑚 is a hyperparameter (lines 2 to 7 of Algorithm 1).

Dijkstra’s algorithm on an uncertain graph is similar to the classic

algorithm on deterministic graphs, except that when the algorithm

Algorithm 1 Approximating theMPSP from 𝑠 to 𝑡

Input: Uncertain graph G = (𝑉 , 𝐸,𝑊 , 𝑝) , source 𝑠 , target 𝑡 , positive integers𝑚 and 𝑁
Output: An (approximate)MPSP from 𝑠 to 𝑡
1: 𝐶𝑃 ← 𝜙
2: for 𝑖 = 1 to𝑚 do
3: 𝑃 ← Alg. 2 (G, 𝑠, 𝑡)
4: if 𝑃 ≠ 𝑃𝜙 then
5: 𝐶𝑃 ← 𝐶𝑃 ∪ {𝑃 }
6: end if
7: end for
8: 𝐿𝑃 ← All paths in𝐶𝑃 in increasing order of length

9: for 𝑖 = 1 to |𝐿𝑃 | do
10: ˆ︁p(𝐿𝑃 [𝑖]) ← Alg. 3 (G, 𝑠 , 𝑡 , 𝐿𝑃 [𝑖], {𝐿𝑃 [1], . . ., 𝐿𝑃 [𝑖 − 1] }, 𝑁)

11: end for
12: return argmax𝑃∈𝐿𝑃 [ˆ︁p(𝑃)]
Algorithm 2 Candidate Generation with Dijkstra+MC

Input: Uncertain graph G = (𝑉 , 𝐸,𝑊 , 𝑝) , source 𝑠 , target 𝑡
Output: A path from 𝑠 to 𝑡
1: 𝑢 ← 𝑠 , 𝑣𝑖𝑠 ← {𝑠 }, P[𝑣] ← 𝑃𝜙 ∀𝑣 ∈ 𝑉
2: repeat
3: for all 𝑒 = (𝑢, 𝑣) ∈ 𝐸 s.t. 𝑣 ∉ 𝑣𝑖𝑠 do
4: if𝑊 (P[𝑣]) >𝑊 (P[𝑢]) +𝑊 (𝑒) then
5: With probability 𝑝 (𝑒) , P[𝑣] ← P[𝑢] · (𝑒)
6: end if
7: end for
8: 𝑢 ← argmin𝑣∈𝑉 \𝑣𝑖𝑠𝑊 (P[𝑣])
9: 𝑣𝑖𝑠 ← 𝑣𝑖𝑠 ∪ {𝑢 }
10: until𝑢 = 𝑡 or P[𝑢] = 𝑃𝜙
11: return P[𝑡]

Algorithm 3 Estimate 𝑃𝑟 (Sh𝑡𝑠 (𝑃)) for a path 𝑃 from 𝑠 to 𝑡

Input: Uncertain graph G = (𝑉 , 𝐸,𝑊 , 𝑝) , source 𝑠 , target 𝑡 , 𝑠-𝑡 paths 𝑃 and {𝑃1, . . . , 𝑃𝑛 }
shorter than 𝑃 , positive integer 𝑁

Output: An estimate of 𝑃𝑟 (Sh𝑡𝑠 (𝑃))
1: 𝐶 ← 0, 𝑆 ← ∑︁𝑛

𝑖=1
𝑃𝑟

(︁
X(𝑃𝑖 \ 𝑃)

)︁
2: for 𝑟 = 1 to 𝑁 do

3: Sample 𝑖 ∈ [1, 𝑛] with probability

𝑃𝑟
(︁
X(𝑃𝑖 \𝑃)

)︁
𝑆

4: Sample𝐺 = (𝑉 , 𝐸𝐺 ,𝑊) ⊑ G such that (𝑃𝑖 \ 𝑃) ⊆ 𝐸𝐺
5: if ∀(𝑗 < 𝑖) [(𝑃 𝑗 \ 𝑃) ⊈ 𝐸𝐺] then
6: 𝐶 ← 𝐶 + 1
7: end if
8: end for
9: ˆ︁𝑝 ← 𝐶

𝑁
× 𝑆

10: return (1 − ˆ︁𝑝) × 𝑃𝑟 (︁X(𝑃))︁
reaches a node in the uncertain graph, its outgoing edges are sam-

pled according to their respective probabilities (Algorithm 2). At

any stage, only the sampled edges are considered for choosing the

next node. This is equivalent to running Dijkstra’s algorithm on

a possible world 𝐺 ⊑ G. If 𝑡 is reachable from 𝑠 in the sampled

possible world 𝐺 , then Dijkstra’s algorithm on 𝐺 results in an 𝑠-𝑡

path which is added to the set of candidate paths denoted by 𝐶𝑃 .

Otherwise, if 𝑡 is not reachable, then an empty path (denoted by 𝑃𝜙
in Algorithms 1 and 2) is returned.

Phase 2: Probability Approximation. In the second phase, the

Luby-Karp algorithm (Algorithm 3) is employed to compute an

approximation of the probability of each candidate path being the

shortest 𝑠-𝑡 path in G. Intuitively, given a path 𝑃 and some other

shorter paths from 𝑠 to 𝑡 , along with a hyperparameter 𝑁 , the

algorithm first estimates the probability ˆ︁𝑝 of existence of any of

the paths shorter than 𝑃 by generating 𝑁 suitable possible worlds

via Monte Carlo sampling, and then it returns the value (1 − ˆ︁𝑝) ×
𝑃𝑟

(︁
X(𝑃)

)︁
as an estimate of 𝑃𝑟 (Sh𝑡𝑠 (𝑃)).

Notice that in order to approximate the probability of a path

𝑃 being the shortest path in G, the Luby-Karp algorithm, as de-

scribed in [63], requires as input all the paths that are shorter than

1191

𝑃 . Although the set of candidate paths computed after𝑚 runs of Al-

gorithm 2 does not necessarily include all such paths, we shall show

in § 3.3 that we can still provide good approximation guarantees.

Time Complexity. In Phase 1, we perform𝑚 Dijkstra’s runs on

the uncertain graph G, which has time complexity O
(︁
𝑚(|𝐸 | +

|𝑉 | log |𝑉 |)
)︁
. However, due to sampling of edges, Dijkstra is run on

a smaller graph than the original uncertain graph, thus practically

it is even more efficient. In Phase 2, first we need to sort (at most)𝑚

distinct candidate paths. This step requires O(𝑚 log𝑚) time. Then,

we run Algorithm 3 for each candidate path, which has time com-

plexity O(𝑁 |𝐸 |), 𝑁 being the number of Monte Carlo (MC)-runs

in the Luby-Karp algorithm. Therefore, the overall time complexity

of our method is: O (𝑚 (𝑁 |𝐸 | + |𝑉 | log |𝑉 | + log𝑚)).
Space Complexity. Both Dijkstra+MC and Luby-Karp have lower

memory footprints, and do not have much additional overhead

other than storing the graph, which is O(|𝐸 |+ |𝑉 |) via adjacency list.
Additionally, Dijkstra+MC generates at most𝑚 candidate paths,

which require at most O(𝑚 |𝐸 |) storage, but practically it is less

since a path generally has fewer than |𝐸 | edges. Thus, the space
complexity of our method is: O(𝑚 |𝐸 | + |𝑉 |).

3.2 Extension to Top-𝑘 MPSPs
The method presented in §3.1 can be easily extended to compute the

top-𝑘 MPSPs where𝑘 > 1. We notice that if the number of candidate

paths is smaller than or equal to 𝑘 , we return all the candidate paths.

Otherwise, we modify Algorithm 1 so that it stores every candidate

path 𝑃 and the estimate of 𝑃𝑟 (Sh𝑡𝑠 (𝑃)) in decreasing order of the

probabilities, and then it returns the top-𝑘 elements.

We provide theoretical guarantees that with a high probability,
the true top-𝑘 shortest paths are the ones returned by our algorithm.

3.3 Accuracy Guarantees
As a first step, notice that an 𝑠-𝑡 path 𝑃 is returned after one run of

Algorithm 2 if and only if Algorithm 2 samples a possible world of

G in which 𝑃 is a shortest path from 𝑠 to 𝑡 . Thus, the probability of

the former is equal to that of the latter, which, by definition, is equal

to 𝑃𝑟 (Sh𝑡𝑠 (𝑃)). Extending this to𝑚 runs of Algorithm 2, denoting

by𝐶𝑃 the set of all (candidate) paths returned, for any given path 𝑃 ,

we have 𝑃𝑟 (𝑃 ∈ 𝐶𝑃) = 1−
(︁
1 − 𝑃𝑟 (Sh𝑡𝑠 (𝑃))

)︁𝑚
. Further extending to

𝑘 paths, the probability of any given set {𝑃1, . . . , 𝑃𝑘 } of 𝑘 𝑠-𝑡 paths

being included in 𝐶𝑃 is, by the inclusion-exclusion principle:

𝑃𝑟 ({𝑃1, . . . , 𝑃𝑘 } ⊆ 𝐶𝑃) = 𝑃𝑟

(︄
𝑘⋀︂
𝑖=1

𝑃𝑖 ∈ 𝐶𝑃
)︄
= 1 − 𝑃𝑟

(︄
𝑘⋁︂
𝑖=1

𝑃𝑖 ∉ 𝐶𝑃

)︄
=

𝑘∑︂
𝑖=0

(−1)𝑖
∑︂

𝑆⊆{𝑃1,...,𝑃𝑘 } : |𝑆 |=𝑖

(︄
1 −

∑︂
𝑃∈𝑆

𝑃𝑟 (Sh𝑡𝑠 (𝑃))
)︄𝑚 (4)

A key observation is that, for an MPSP 𝑃∗, 𝑃𝑟 (𝑃∗ ∈ 𝐶𝑃) is very
high for a reasonably large value of 𝑃𝑟 (Sh𝑡𝑠 (𝑃∗)), even for small

𝑚. For example, consider the MPSP 𝑃4 in the graph in Figure 1

for which 𝑃𝑟 (Sh𝑡𝑠 (𝑃4)) = 0.825. Setting 𝑚 = 20 yields 𝑃𝑟 (𝑃4 ∈
𝐶𝑃) > 0.999. Also, in our experiments, the path 𝑃 returned by our

method for most of the synthetic networks and the road networks

for the smaller hop queries satisfies 𝑃𝑟 (Sh𝑡𝑠 (𝑃∗)) > 0.06, and hence

𝑃𝑟 (𝑃∗ ∈ 𝐶𝑃) > 0.7 with𝑚 = 20.

Before proceeding, we define some useful notations that we will

use throughout the remainder of the section. Given an uncertain

graph G = (𝑉 , 𝐸,𝑊 , 𝑝), a source node 𝑠 , a target node 𝑡 , a set of 𝑠-𝑡
paths 𝐶𝑃 , and any path 𝑃 ∈ 𝐶𝑃 , we use the following notation:
• A(𝑃) : Set of all paths in G that are shorter than 𝑃 .

• C(𝑃) : Set of all paths in 𝐶𝑃 shorter than 𝑃 , i.e., 𝐶𝑃 ∩ A(𝑃).
• M(𝑃) = A(𝑃) \ C(𝑃).
• pne

(︁
𝑃,C(𝑃)

)︁
: Probability that 𝑃 exists and no path in C(𝑃)

exists, i.e., 𝑃𝑟
(︁
X(𝑃)

)︁ [︁
1 − 𝑃𝑟

(︁ ⋃︁
𝑄 ∈C(𝑃) X(𝑄 \ 𝑃)

)︁]︁
where

𝑄 \ 𝑃 is the set of all edges in 𝑄 that are not in 𝑃 . Clearly,

pne
(︁
𝑃,A(𝑃)

)︁
= 𝑃𝑟 (Sh𝑡𝑠 (𝑃)).

• pm
(︁
𝑃,C(𝑃)

)︁
: Sum (over all paths𝑄 shorter than 𝑃 and miss-

ing from𝐶𝑃) of the probability that𝑄 is the shortest 𝑠-𝑡 path

and that 𝑃 exists, i.e.,

∑︁
𝑄 ∈M(𝑃) 𝑃𝑟 (Sh𝑡𝑠 (𝑄) ∧ X(𝑃)).

• ˆ︁p(︁
𝑃,C(𝑃)

)︁
: Output of Alg. 3 (G, 𝑠 , 𝑡 , 𝑃 , C(𝑃), 𝑁).

Even if the true top-𝑘 MPSPs are included in𝐶𝑃 , the probability

of them being the paths finally returned depends on the quality of

the approximation computed in Algorithm 3 for every single path

in 𝐶𝑃 . Fortunately, there is a guarantee on this quality [29, 63].

Theorem 2 ([29, 63]). Given an uncertain graph G = (𝑉 , 𝐸,𝑊 , 𝑝),
a source node 𝑠 and a target node 𝑡 , a set of 𝑠-𝑡 paths 𝐶𝑃 , and a path
𝑃 ∈ 𝐶𝑃 , ˆ︁p(︁

𝑃,C(𝑃)
)︁
is an accurate estimate of pne

(︁
𝑃,C(𝑃)

)︁
with a

high probability. More formally, for all 𝜖 ∈ [0, 2],

𝑃𝑟

(︂ |︁|︁ˆ︁p(︁
𝑃,C(𝑃)

)︁
− pne

(︁
𝑃,C(𝑃)

)︁ |︁|︁ ≥ 𝜖

)︂
≤ 2 exp

(︃
− 𝑁𝜖2

4 |C(𝑃) |

)︃
(5)

However, as mentioned in § 3.1, the quality of approximating

𝑃𝑟 (Sh𝑡𝑠 (𝑃)) could be hampered because the set 𝐶𝑃 computed after

𝑚 runs of Algorithm 2 may not include all paths shorter than the

path in question. We shall show that, even then, the approximation

made byAlgorithm 3 is very accurate with a high probability. To this

end, we first provide a lower and an upper bound on the difference

in the SP probability resulting from missing out some shorter paths.

Theorem 3. Given an uncertain graph G = (𝑉 , 𝐸,𝑊 , 𝑝), a source
node 𝑠 , and a target node 𝑡 , let 𝐶𝑃 denote a set of paths from 𝑠 to 𝑡 .
Consider a path 𝑃 ∈ 𝐶𝑃 . Then

0 ≤ pne
(︁
𝑃,C(𝑃)

)︁
− 𝑃𝑟 (Sh𝑡𝑠 (𝑃)) ≤ pm

(︁
𝑃,C(𝑃)

)︁
(6)

Proof. We have, by definition, the following:

pne
(︁
𝑃,C(𝑃)

)︁
= 𝑃𝑟

(︁
X(𝑃)

)︁ ⎡⎢⎢⎢⎢⎣1 − 𝑃𝑟 ⎛⎜⎝
⋃︂

𝑄∈C(𝑃)
X(𝑄 \ 𝑃)⎞⎟⎠

⎤⎥⎥⎥⎥⎦
𝑃𝑟 (Sh𝑡𝑠 (𝑃)) = 𝑃𝑟

(︁
X(𝑃)

)︁ ⎡⎢⎢⎢⎢⎣1 − 𝑃𝑟 ⎛⎜⎝
⋃︂

𝑄∈A(𝑃)
X(𝑄 \ 𝑃)⎞⎟⎠

⎤⎥⎥⎥⎥⎦
Let us define:

𝐷𝐴 = 𝑃𝑟
⎛⎜⎝

⋃︂
𝑄∈A(𝑃)

X(𝑄 \ 𝑃)⎞⎟⎠ , 𝐷𝐶 = 𝑃𝑟
⎛⎜⎝

⋃︂
𝑄∈C(𝑃)

X(𝑄 \ 𝑃)⎞⎟⎠
This means that

pne
(︁
𝑃,C(𝑃)

)︁
− 𝑃𝑟 (Sh𝑡𝑠 (𝑃))

= 𝑃𝑟
(︁
X(𝑃)

)︁ ⎡⎢⎢⎢⎢⎣𝑃𝑟 ⎛⎜⎝
⋃︂

𝑄∈A(𝑃)
X(𝑄 \ 𝑃)⎞⎟⎠ − 𝑃𝑟 ⎛⎜⎝

⋃︂
𝑄∈C(𝑃)

X(𝑄 \ 𝑃)⎞⎟⎠
⎤⎥⎥⎥⎥⎦

= 𝑃𝑟
(︁
X(𝑃)

)︁
×

(︁
𝐷𝐴 −𝐷𝐶

)︁
(7)

By definition, C(𝑃) ⊆ A(𝑃). Thus it holds that 𝐷𝐴 − 𝐷𝐶 ≥ 0.

Now, observe that any path𝑄 ∈ A(𝑃) is shorter than 𝑃 . Since A(𝑃)
contains all paths in G that are shorter than 𝑃 , the set of all paths

1192

in A(𝑃) shorter than𝑄 is exactly equal to that of all paths in G that

are shorter than 𝑄 , which is, by definition, equal to A(𝑄). Hence,

𝐷𝐴 = 𝑃𝑟
⎛⎜⎝

⋃︂
𝑄∈A(𝑃)

X(𝑄 \ 𝑃)⎞⎟⎠
=

∑︂
𝑄∈A(𝑃)

⎡⎢⎢⎢⎢⎣𝑃𝑟
(︁
X(𝑄 \ 𝑃)

)︁ ⎧⎪⎪⎨⎪⎪⎩1 − 𝑃𝑟 ⎛⎜⎝
⋃︂

𝑅∈A(𝑄)
X

(︁
(𝑅 \ 𝑃) \𝑄

)︁⎞⎟⎠
⎫⎪⎪⎬⎪⎪⎭
⎤⎥⎥⎥⎥⎦ (8)

By a similar reasoning, the set of all paths in C(𝑃) shorter than 𝑄
is exactly equal to C(𝑄). Hence,

𝐷𝐶 = 𝑃𝑟
⎛⎜⎝

⋃︂
𝑄∈C(𝑃)

X(𝑄 \ 𝑃)⎞⎟⎠
=

∑︂
𝑄∈C(𝑃)

⎡⎢⎢⎢⎢⎣𝑃𝑟
(︁
X(𝑄 \ 𝑃)

)︁ ⎧⎪⎪⎨⎪⎪⎩1 − 𝑃𝑟 ⎛⎜⎝
⋃︂

𝑅∈C(𝑄)
X

(︁
(𝑅 \ 𝑃) \𝑄

)︁⎞⎟⎠
⎫⎪⎪⎬⎪⎪⎭
⎤⎥⎥⎥⎥⎦

≥
∑︂

𝑄∈C(𝑃)

⎡⎢⎢⎢⎢⎣𝑃𝑟
(︁
X(𝑄 \ 𝑃)

)︁ ⎧⎪⎪⎨⎪⎪⎩1 − 𝑃𝑟 ⎛⎜⎝
⋃︂

𝑅∈A(𝑄)
X

(︁
(𝑅 \ 𝑃) \𝑄

)︁⎞⎟⎠
⎫⎪⎪⎬⎪⎪⎭
⎤⎥⎥⎥⎥⎦ (9)

where (9) follows because C(𝑄) ⊆ A(𝑄) by definition.

Note that (8) and (9) are summations of the same term across all

paths 𝑄 in A(𝑃) and C(𝑃) respectively. Since C(𝑃) ⊆ A(𝑃) and
A(𝑃) \ C(𝑃) = M(𝑃) by definition,

𝐷𝐴 −𝐷𝐶 ≤
∑︂

𝑄∈M(𝑃)

⎡⎢⎢⎢⎢⎣𝑃𝑟
(︁
X(𝑄 \ 𝑃)

)︁ ⎧⎪⎪⎨⎪⎪⎩1 − 𝑃𝑟 ⎛⎜⎝
⋃︂

𝑅∈A(𝑄)
X

(︁
(𝑅 \ 𝑃) \𝑄

)︁⎞⎟⎠
⎫⎪⎪⎬⎪⎪⎭
⎤⎥⎥⎥⎥⎦

(10)

Plugging (10) into (7), and using 𝐷𝐴 − 𝐷𝐶 ≥ 0, we have

0 ≤ pne
(︁
𝑃,C(𝑃)

)︁
− 𝑃𝑟 (Sh𝑡𝑠 (𝑃)) = 𝑃𝑟

(︁
X(𝑃)

)︁
×

(︁
𝐷𝐴 −𝐷𝐶

)︁
≤ 𝑃𝑟

(︁
X(𝑃)

)︁ ∑︂
𝑄∈M(𝑃)

⎡⎢⎢⎢⎢⎣𝑃𝑟
(︁
X(𝑄 \ 𝑃)

)︁ ⎧⎪⎪⎨⎪⎪⎩1 − 𝑃𝑟 ⎛⎜⎝
⋃︂

𝑅∈A(𝑄)
X

(︁
(𝑅 \ 𝑃) \𝑄

)︁⎞⎟⎠
⎫⎪⎪⎬⎪⎪⎭
⎤⎥⎥⎥⎥⎦

=
∑︂

𝑄∈M(𝑃)
𝑃𝑟 (Sh𝑡𝑠 (𝑄) ∧𝑋 (𝑃)) = pm

(︁
𝑃,C(𝑃)

)︁
(by definition)

This completes the proof. □

Note that from (4), we can say that for every 𝑠-𝑡 path missing

from 𝐶𝑃 (not returned in any run of Algorithm 2), it is highly

likely that the probability of that path being a shortest 𝑠-𝑡 path

is extremely small. Thus, for any 𝑠-𝑡 path 𝑃 ∈ 𝐶𝑃 , the sum of the

shortest-path probabilities of all paths shorter than 𝑃 and missing

from 𝐶𝑃 is also very small, and hence pm
(︁
𝑃,C(𝑃)

)︁
, which also

includes the condition that 𝑃 exists, is even smaller.

Using Theorems 2 and 3, we can provide a quality guarantee for

Algorithm 3 on a single path even with some shorter paths missing.

Theorem 4. Consider an uncertain graph G = (𝑉 , 𝐸,𝑊 , 𝑝), a
source node 𝑠 and a target node 𝑡 , a set 𝐶𝑃 of 𝑠-𝑡 paths and a path
𝑃 ∈ 𝐶𝑃 . Then,ˆ︁p(︁

𝑃,C(𝑃)
)︁
is an accurate estimate of 𝑃𝑟 (Sh𝑡𝑠 (𝑃)) with

a high probability. Formally, assuming pm
(︁
𝑃,C(𝑃)

)︁
∈ [0, 1], for all

𝜖 ∈ [0, 1], the following holds.

𝑃𝑟

(︂ˆ︁p(︁
𝑃,C(𝑃)

)︁
− 𝑃𝑟 (Sh𝑡𝑠 (𝑃)) − pm

(︁
𝑃,C(𝑃)

)︁
≥ 𝜖

)︂
≤ exp

(︃
− 𝑁𝜖2

4 |C(𝑃) |

)︃
(11)

𝑃𝑟

(︂ˆ︁p(︁
𝑃,C(𝑃)

)︁
− 𝑃𝑟 (Sh𝑡𝑠 (𝑃)) ≤ −𝜖

)︂
≤ exp

(︃
− 𝑁𝜖2

4 |C(𝑃) |

)︃
(12)

Proof. Note that pm
(︁
𝑃,C(𝑃)

)︁
− pne

(︁
𝑃,C(𝑃)

)︁
+ Pr(Sh𝑡𝑠 (𝑃)) ∈

[0, 1] from Theorem 3. Thus 𝜖 + pm
(︁
𝑃,C(𝑃)

)︁
− pne

(︁
𝑃,C(𝑃)

)︁
+

𝑃𝑟 (Sh𝑡𝑠 (𝑃)) ∈ [0, 2]. Applying Theorem 2,

𝑃𝑟

(︂ˆ︁p(︁
𝑃,C(𝑃)

)︁
− 𝑃𝑟 (Sh𝑡𝑠 (𝑃)) − pm

(︁
𝑃,C(𝑃)

)︁
≥ 𝜖

)︂
= 𝑃𝑟

(︂ˆ︁p(︁
𝑃,C(𝑃)

)︁
− pne

(︁
𝑃,C(𝑃)

)︁
≥ 𝜖 + pm

(︁
𝑃,C(𝑃)

)︁
− pne

(︁
𝑃,C(𝑃)

)︁
+ 𝑃𝑟 (Sh𝑡𝑠 (𝑃))

)︂
≤ exp

⎛⎜⎜⎝−
𝑁

(︂
𝜖 + pm

(︁
𝑃,C(𝑃)

)︁
− pne

(︁
𝑃,C(𝑃)

)︁
+ 𝑃𝑟 (Sh𝑡𝑠 (𝑃))

)︂
2

4 |C(𝑃) |
⎞⎟⎟⎠

≤ exp

(︃
− 𝑁𝜖2

4 |C(𝑃) |

)︃
Similarly, pne

(︁
𝑃,C(𝑃)

)︁
− 𝑃𝑟 (Sh𝑡𝑠 (𝑃)) ∈ [0, 1]. Theorem 2 gives

𝑃𝑟

(︃ˆ︁p(︁
𝑃,C(𝑃)

)︁
− 𝑃𝑟 (Sh𝑡𝑠 (𝑃)) ≤ −𝜖

)︃
= 𝑃𝑟

(︂ˆ︁p(︁
𝑃,C(𝑃)

)︁
− pne

(︁
𝑃,C(𝑃)

)︁
≤ −𝜖 − pne

(︁
𝑃,C(𝑃)

)︁
+ 𝑃𝑟 (Sh𝑡𝑠 (𝑃))

)︂
≤ exp

⎛⎜⎜⎝−
𝑁

(︂
𝜖 + pne

(︁
𝑃,C(𝑃)

)︁
− 𝑃𝑟 (Sh𝑡𝑠 (𝑃))

)︂
2

4 |C(𝑃) |
⎞⎟⎟⎠ ≤ exp

(︃
− 𝑁𝜖2

4 |C(𝑃) |

)︃
Hence, the theorem. □

Wenowprove the accuracy guarantee of our top-𝑘MPSPmethod.

Theorem 5. Given an uncertain graph G = (𝑉 , 𝐸,𝑊 , 𝑝), a source
node 𝑠 , a target node 𝑡 , and an integer 𝑘 , let 𝑃1, . . . , 𝑃𝑘+1 denote the
true top 𝑘 +1MPSPs (in order) from 𝑠 to 𝑡 . Then, 𝑃1, . . . , 𝑃𝑘 are indeed
the paths returned by our method with a high probability. Formally,
define:𝑚𝑖𝑑 = 1

2
[𝑃𝑟 (Sh𝑡𝑠 (𝑃𝑘))+𝑃𝑟 (Sh𝑡𝑠 (𝑃𝑘+1))+pm (𝑃𝑘+1,C(𝑃𝑘+1))],

a set of 𝑠-𝑡 candidate paths 𝐶𝑃 , and for all 𝑃 ∈ 𝐶𝑃 ,

𝑑𝑃 =

{︄
𝑃𝑟 (Sh𝑡𝑠 (𝑃)) −𝑚𝑖𝑑 if 𝑃 ∈ {𝑃1, . . . , 𝑃𝑘 }
𝑚𝑖𝑑 − 𝑃𝑟 (Sh𝑡𝑠 (𝑃)) − pm (𝑃,C(𝑃)) otherwise

and assume that 𝑑𝑃 ∈ [0, 1]. This assumption is reasonable since, as
noted earlier, pm (𝑃,C(𝑃)) is very small. Then the probability that
𝑃1, . . . , 𝑃𝑘 are the paths returned is at least

𝑃𝑟 ({𝑃1, . . . , 𝑃𝑘 } ⊆ 𝐶𝑃)
∏︂

𝑃∈𝐶𝑃

[︄
1 − exp

(︄
−

𝑁𝑑2

𝑃

4 |C(𝑃) |

)︄]︄
Proof. The random variables ˆ︁p(𝑃,C(𝑃)) for all 𝑃 ∈ 𝐶𝑃 are

independent, since the Monte Carlo rounds of Algorithm 3 on input

path 𝑃 do not depend on each other. Hence, the probability that

𝑃1, . . . , 𝑃𝑘 are the paths returned is at least

𝑃𝑟 ({𝑃1, . . . , 𝑃𝑘 } ⊆ 𝐶𝑃) ×
∏︂

𝑃∈{𝑃1,...,𝑃𝑘 }
𝑃𝑟

(︂ˆ︁p(︁
𝑃,C(𝑃)

)︁
>𝑚𝑖𝑑

)︂
×

∏︂
𝑃∈𝐶𝑃\{𝑃1,...,𝑃𝑘 }

𝑃𝑟

(︂ˆ︁p(︁
𝑃,C(𝑃)

)︁
<𝑚𝑖𝑑

)︂
= 𝑃𝑟 ({𝑃1, . . . , 𝑃𝑘 } ⊆ 𝐶𝑃)

×
∏︂

𝑃∈{𝑃1,...,𝑃𝑘 }

[︂
1 − 𝑃𝑟

(︂ˆ︁p(︁
𝑃,C(𝑃)

)︁
− 𝑃𝑟 (Sh𝑡𝑠 (𝑃)) ≤ −𝑑𝑃

)︂]︂
×

∏︂
𝑃∈𝐶𝑃\{𝑃1,...,𝑃𝑘 }

[︂
1 − 𝑃𝑟

(︂ˆ︁p(︁
𝑃,C(𝑃)

)︁
− 𝑃𝑟 (Sh𝑡𝑠 (𝑃)) − pm

(︁
𝑃,C(𝑃)

)︁
≥ 𝑑𝑃

)︂]︂
≥ 𝑃𝑟 ({𝑃1, . . . , 𝑃𝑘 } ⊆ 𝐶𝑃)

∏︂
𝑃∈𝐶𝑃

[︄
1 − exp

(︄
−

𝑁𝑑2

𝑃

4 |C(𝑃) |

)︄]︄
□

1193

